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TOTALLY CONTACT UMBILICAL SLANT LIGHTLIKE SUBMANIFOLDS

OF INDEFINITE KENMOTSU MANIFOLDS

RASHMI SACHDEVA, RAKESH KUMAR AND SATVINDER SINGH BHATIA

Abstract. In this paper, we study totally contact umbilical slant lightlike submanifolds of
indefinite Kenmotsu manifolds. We prove that there does not exist totally contact um-
bilical proper slant lightlike submanifold in indefinite Kenmotsu manifolds other than
totally contact geodesic proper slant lightlike submanifold. We also prove that there does
not exist totally contact umbilical proper slant lightlike submanifold of indefinite Ken-
motsu space forms. Finally, we give some characterization theorems on minimal slant
lightlike submanifolds of indefinite Kenmotsu manifolds.

1. Introduction

In the theory of submanifolds of semi-Riemannian manifolds it is interesting to study

the geometry of lightlike submanifolds due to the fact that the intersection of normal vector

bundle and the tangent bundle is non-trivial. Thus, the study becomes more interesting and

remarkably different from the study of non-degenerate submanifolds. The geometry of light-

like submanifolds of indefinite Kaehler manifolds was presented by Duggal and Bejancu in

[7]. Chen [5, 6], introduced the notion of slant submanifolds as a generalizing of holomor-

phic and totally real submanifolds for complex geometry and further extended by Lotta [11]

for contact geometry. Cabrerizo et. al. [3, 4] studied slant, semi-slant and bi-slant submani-

folds in contact geometry. They all studied the geometry of slant submanifolds with positive

definite metric. Therefore this geometry may not be applicable to the other branches of math-

ematics and physics, where the metric is not necessarily definite. Thus the geometry of slant

submanifolds with indefinite metric became a topic of chief discussion and Sahin [13] played

a very crucial role in this study by introducing the notion of slant lightlike submanifolds of

indefinite Hermitian manifolds.
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Recently the notion of slant lightlike submanifolds of indefinite Kenmotsu manifolds is

introduced by Gupta et. al. in [9] and obtained necessary and sufficient conditions for their

existence.

In this paper, we study totally contact umbilical slant lightlike submanifolds of indefinite

Kenmotsu manifolds. We prove that there do not exist totally contact umbilical proper slant

lightlike submanifolds in indefinite Kenmotsu manifolds other than totally contact geodesic

proper slant lightlike submanifolds. We also prove that there do not exist totally contact um-

bilical proper slant lightlike submanifolds of indefinite Kenmotsu space forms. Finally, we

give characterization theorems on minimal slant lightlike submanifolds.

2. Preliminaries

An odd-dimensional semi-Riemannian manifold M̄ is said to be an indefinite almost

contact metric manifold if there exist structure tensors (ϕ,V ,η, ḡ ), where ϕ is a (1,1) ten-

sor field, V is a vector field called structure vector field, η is a 1-form and ḡ is the semi-

Riemannian metric on M̄ satisfying

ϕ2X = −X +η(X )V , η◦ϕ= 0, ϕV = 0, η(V ) = 1, (1)

ḡ (ϕX ,ϕY ) = ḡ (X ,Y )−η(X )η(Y ), ḡ (X ,V ) = η(X ), (2)

for X ,Y ∈ Γ(T M̄), where T M̄ denotes the Lie algebra of vector fields on M̄ .

An indefinite almost contact metric manifold M̄ is called an indefinite Kenmotsu mani-

fold if (see [2]),

(∇̄X ϕ)Y =−ḡ (ϕX ,Y )V +η(Y )ϕX , and ∇̄X V =−X +η(X )V , (3)

for any X ,Y ∈ Γ(T M̄), where ∇̄ denote the Levi-Civita connection on M̄ .

A submanifold M m immersed in a semi-Riemannian manifold (M̄ m+n , ḡ ) is called an r -

lightlike submanifold [7] if it admits a degenerate metric g induced from ḡ , whose radical

distribution RadT M = T M ∩T M⊥ is of rank r , where 0 ≤ r ≤ mi n{m,n}. Let S(T M) be a

screen distribution which is a semi-Riemannian complementary distribution of RadT M in

T M , that is, T M = RadT M ⊥ S(T M) and S(T M⊥) be a screen transversal vector bundle,

which is a semi-Riemannian complementary vector bundle of RadT M in T M⊥. For any local

basis {ξi } of RadT M , there exists a null vector bundle l tr (T M) of RadT M in (S(T M))⊥ such

that {Ni } is a basis of l tr (T M) satisfying

ḡ (Ni , N j ) = 0 and ḡ (Ni ,ξ j ) = δi j , (4)
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for any i , j ∈ {1,2, . . . ,r }. Let tr (T M) be the complementary (but not orthogonal) vector bun-

dle to T M in T M̄ |M . Then

tr (T M) = l tr (T M)⊥S(T M⊥). (5)

T M̄ |M = T M ⊕ tr (T M) = (RadT M ⊕ l tr (T M))⊥S(T M)⊥S(T M⊥). (6)

Let ∇̄ and ∇ denote the linear connections on M̄ and M , respectively. Then the Gauss and

Weingarten formulae are given by

∇̄X Y = ∇X Y +h(X ,Y ), (7)

∇̄X U = −AU X +∇⊥
X U , (8)

for any X ,Y ∈ Γ(T M) and U ∈ Γ(tr (T M)), where {∇X Y , AU X } and {h(X ,Y ),∇⊥
X U } belongs to

Γ(T M) and Γ(tr (T M)), respectively. Here ∇ is a torsion-free linear connection on M , h is

a symmetric bilinear form on Γ(T M) which is called the second fundamental form, AU is a

linear operator on M , known as the shape operator. Considering the projection morphisms L

and S of tr (T M) on l tr (T M) and S(T M⊥), respectively then Gauss and Weingarten formulae

become

∇̄X Y = ∇X Y +hl (X ,Y )+hs(X ,Y ), (9)

∇̄X U = −AU X +D l
X U +D s

X U , (10)

where we put hl (X ,Y ) = L(h(X ,Y )),hs(X ,Y ) = S(h(X ,Y )),D l
X U = L(∇⊥

X U ), D s
X U = S(∇⊥

X U ).

As hl and hs are Γ(l tr (T M))-valued and Γ(S(T M⊥))-valued respectively, therefore they are

called as the lightlike second fundamental form and the screen second fundamental form on

M . In particular, we have

∇̄X N = −AN X +∇l
X N +D s(X , N ), (11)

∇̄X W = −AW X +∇s
X W +D l (X ,W ), (12)

where X ∈ Γ(T M), N ∈ Γ(l tr (T M)) and W ∈ Γ(S(T M⊥)). By using (9)-(12), we obtain

ḡ (hs(X ,Y ),W )+ ḡ (Y ,D l (X ,W )) = g (AW X ,Y ), (13)

for any X ,Y ∈ Γ(T M) and W ∈ Γ(S(T M⊥)). Let P̄ is a projection of T M on S(T M) then we

have

∇X P̄Y = ∇∗
X P̄Y +h∗(X , P̄Y ), (14)

∇X ξ = −A∗
ξ X +∇∗t

X ξ, (15)
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for any X ,Y ∈ Γ(T M) and ξ ∈ Γ(RadT M), where {∇∗
X P̄Y , A∗

ξ
X } and {h∗(X , P̄Y ), ∇∗t

X ξ} belong

to Γ(S(T M)) and Γ(RadT M) respectively. Here ∇∗ and ∇∗t
X are linear connections on S(T M)

and RadT M respectively. By using (9)-(10) and (14)-(15), we obtain

ḡ (hl (X , P̄Y ),ξ) = g (A∗
ξ X , P̄Y ), (16)

ḡ (h∗(X , P̄Y ), N ) = ḡ (AN X , P̄Y ). (17)

3. Slant lightlike submanifolds

A lightlike submanifold has two distributions, namely the radical distribution and the

screen distribution. The radical distribution is totally lightlike and it is not possible to define

angle between two vector fields of the radical distribution where the screen distribution is

non-degenerate. There are some definitions for angle between two vector fields in Lorentzian

setup [12], but not appropriate for our goal. Therefore to introduce the notion of slant lightlike

submanifolds one needs a Riemannian distribution. For such distribution Gupta et. al. [9]

proved the following lemmas.

Lemma 3.1. Let M be an r -lightlike submanifold of an indefinite Kenmotsu manifold M̄ of

index 2q with structure vector field V tangent to M. Suppose that ϕRadT M is a distribution on

M such that RadT M
∩
ϕRadT M = 0. Then ϕl tr (T M) is a subbundle of the screen distribution

S(T M) and ϕl tr (T M)
∩
ϕRadT M = {0}.

Lemma 3.2. Let M be an r -lightlike submanifold of an indefinite Kenmotsu manifold M̄ of

index 2r with structure vector field V tangent to M. Suppose that ϕRadT M is a distribution

on M such that RadT M
∩
ϕRadT M = {0}. Then any complementary distribution to ϕl tr (T M)⊕

ϕRadT M in screen distribution S(TM) is Riemannian.

Definition 3.3 ([9]). Let M be an r -lightlike submanifold of an indefinite Kenmotsu manifold

M̄ of index 2r with structure vector field V tangent to M . Then we say that M is a slant lightlike

submanifold of M̄ if the following conditions are satisfied:

(A) RadT M is a distribution on M such that ϕRadT M ∩Rad(T M) = {0}.

(B) For all x ∈ U ⊂ M and for each non zero vector field X tangent to D̄ = D ⊥ {V }, if X and

V are linearly independent, then the angle θ(X ) between ϕX and the vector space D̄x

is constant, where D is complementary distribution to ϕl tr (T M)
⊕

ϕRadT M in screen

distribution S(T M).

The constant angle θ(X ) is called the slant angle of D̄ . A slant lightlike submanifold M is said

to be proper if D ̸= {0}, and θ ̸= 0, π2 .
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Then the tangent bundle T M of M is decomposed as

T M = RadT M⊥S(T M) = RadT M⊥(ϕRadT M ⊕ϕl tr (T M))⊥D̄ , (18)

where D̄ = D⊥{V }. Therefore for any X ∈ Γ(T M) we write

ϕX = T X +F X , (19)

where T X is the tangential component of ϕX and F X is the transversal component of ϕX .

Similarly for any U ∈ Γ(tr (T M)) we write

ϕU = BU +CU , (20)

where BU is the tangential component of ϕV and CU is the transversal component of ϕV .

Using the decomposition in (18), we denote by P1,P2,Q1, Q2 and Q̄2 be the projections on

the distributions RadT M , ϕRadT M , ϕl tr (T M), D and D̄ = D⊥V , respectively. Then for any

X ∈ Γ(T M), we can write

X = P1X +P2X +Q1X +Q̄2X , (21)

where Q̄2X =Q2X +η(X )V. Applying ϕ to (21), we obtain

ϕX =ϕP1X +ϕP2X +FQ1X +TQ2X +FQ2X . (22)

Then using (19) and (20), we get

ϕP1X = T P1X ∈ Γ(ϕRadT M), ϕP2X = T P2X ∈ Γ(RadT M),

F P1X = F P2X = 0, TQ2X ∈ Γ(D), FQ1X ∈ Γ(l tr (T M)).

Now, differentiating (22) and using (9)-(12), (19) and (20), for any X ,Y ∈ Γ(T M), we have

(∇X T )Y = AFQ1Y X + AFQ2Y X +Bh(X ,Y )− g (ϕX ,Y )V +η(Y )T X , (23)

and

D s(X ,FQ1Y )+D l (X ,FQ2Y ) = F∇X Y −h(X ,T Y )+C h(X ,Y )−∇s
X FQ2Y

−∇l
X FQ1Y +η(Y )FQ1X +η(Y )FQ2X . (24)

We mention the following corollary for later use:

Corollary 3.4. ([9]) Let M be a slant lightlike submanifold of an indefinite Kenmotsu manifold

M̄ with structure vector field V tangent to M. Then we have

g (T Q̄2X ,T Q̄2Y ) = cos2θ[g (Q̄2X ,Q̄2Y )−η(Q̄2X )η(Q̄2Y )] (25)

and

g (FQ̄2X ,FQ̄2Y ) = sin2θ[g (Q̄2X ,Q̄2Y )−η(Q̄2X )η(Q̄2Y )] (26)

for any X ,Y ∈ Γ(T M).
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4. Totally contact umbilical slant lightlike submanifolds

Definition 4.1 ([14]). If the second fundamental form h of a submanifold tangent to charac-

teristic vector field V , of a Sasakian manifold M̄ is of the form

h(X ,Y ) = {g (X ,Y )−η(X )η(Y )}α+η(X )h(Y ,V )+η(Y )h(X ,V ), (27)

for any X ,Y ∈ Γ(T M), where α is a vector field transversal to M , then M is called a totally

contact umbilical and totally contact geodesic if α= 0.

The above definition also holds for a lightlike submanifold M . For a totally contact um-

bilical lightlike submanifold M , we have

hl (X ,Y ) = {g (X ,Y )−η(X )η(Y )}αL +η(X )hl (Y ,V )+η(Y )hl (X ,V ), (28)

hs(X ,Y ) = {g (X ,Y )−η(X )η(Y )}αS +η(X )hs(Y ,V )+η(Y )hs(X ,V ), (29)

where αL ∈ Γ(l tr (T M)) and αS ∈ Γ(S(T M⊥)).

Lemma 4.2. Let M be a slant lightlike submanifold of an indefinite Kenmotsu manifold M̄

then FQ2X ∈ Γ(S(T M⊥)), for any X ∈ Γ(T M).

Proof. Using (4) and (5) it is clear that FQ2X ∈ Γ(S(T M⊥)) if g (FQ2X ,ξ) = 0. Therefore

g (FQ2X ,ξ) = g (ϕQ2X −TQ2X ,ξ) = g (ϕQ2X ,ξ) =−g (Q2X ,ϕξ) = 0. Hence the result follows.

Thus from the Lemma (4.2) it follows that F (Dp ) is a subspace of S(T M⊥). Therefore

there exists an invariant subspace µp of Tp M̄ such that

S(Tp M⊥) = F (Dp )⊥µp , (30)

therefore

Tp M̄ = S(Tp M)⊥{Rad(Tp M)⊕ l tr (Tp M)}⊥{F (Dp )⊥µp }.

Theorem 4.3. Let M be a totally contact umbilical slant lightlike submanifold of an indefinite

Kenmotsu manifold M̄. Then at least one of the following statements is true

(i) M is an anti-invariant submanifold.

(ii) D = {0}.

(iii) If M is a proper slant submanifold, then αS ∈ Γ(µ).

Proof. Let M be a totally contact umbilical slant lightlike submanifold of an indefinite Ken-

motsu manifold M̄ then for any X = Q2X ∈ Γ(D) and using (27), we have h(TQ2X ,TQ2X ) =
g (TQ2X ,TQ2X )α. Using (7) and (25), we get

∇̄TQ2 X TQ2X −∇TQ2 X TQ2X = cos2θ[g (Q2X ,Q2X )]α.
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Using (19) and the fact that M̄ is Kenmotsu manifold, that is (3), we obtain

ϕ∇̄TQ2 X Q2X −∇̄TQ2 X FQ2X −∇TQ2 X TQ2X = cos2θ[g (Q2X ,Q2X )]α,

then using (9), (12), (19), (20), (28) and (29), we have

T∇TQ2 X Q2X +F∇TQ2 X Q2X + g (TQ2X , X )ϕαl + g (TQ2X , X )Bαs

+g (TQ2X ), X )Cαs + AFQ2 X TQ2X −∇s
TQ2 X FQ2X −D l (TQ2X ,FQ2X )

−∇TQ2 X TQ2X = cos2θ[g (Q2X ,Q2X )]α.

Equating the transversal components, we get

F∇TQ2 X Q2X + g (TQ2X , X )Cαs −∇s
TQ2 X FQ2X −D l (TQ2X ,FQ2X )

= cos2θ[g (Q2X ,Q2X )]α. (31)

On the other hand, from (26), we have g (FQ2X ,FQ2X ) = sin2θ[g (Q2X ,Q2X )], for any X ∈
Γ(D). Taking the covariant derivative of the above equation with respect to TQ2X , we obtain

g (∇s
TQ2 X FQ2X ,FQ2X ) = sin2θg (∇TQ2 X Q2X ,Q2X ). (32)

Now taking the inner product in (31) with FQ2X , we obtain

g (F∇TQ2 X Q2X ,FQ2X )− g (∇s
TQ2 X FQ2X ,FQ2X ) = cos2θ[g (Q2X ,Q2X )]g (αS ,FQ2X ).

Then using (26) and (32), we get cos2θ[g (Q2X ,Q2X )]g (αS ,FQ2X ) = 0, it follows that either

θ =π/2 or Q2X = 0 or αS ∈ Γ(µ). This completes the proof.

Lemma 4.4. Let M be a totally contact umbilical slant lightlike submanifold of an indefinite

Kenmotsu manifold M̄ then g (∇X X ,ϕξ) = 0, for any X ∈ Γ(D) and ξ ∈ Γ(Rad(T M)).

Proof. Let X ∈ Γ(D) therefore X = Q2X , then using (3), (9) and (12) for a totally contact um-

bilical slant lightlike submanifold, we have

g (∇X X ,ϕξ) = ḡ (∇̄X X ,ϕξ) =−ḡ (∇̄X TQ2X ,ξ)− ḡ (∇̄X FQ2X ,ξ)

=−g (hl (X ,TQ2X ),ξ)− ḡ (D l (X ,FQ2X ),ξ)

=−ḡ (D l (X ,FQ2X ),ξ), (33)

since for X ∈ Γ(D), using (2), (19) and (28) we have hl (X ,TQ2X ) = {g (X ,TQ2X )}αL = 0. Since

η(Q2X ) = 0 and η(ξ) = 0 therefore by replacing W by FQ2X and Y by ξ in (13) and using the

fact that M is a totally contact umbilical slant lightlike submanifold, we obtain

ḡ (D l (X ,FQ2X ),ξ) =−ḡ (hs(X ,ξ),FQ2X ) =−g (X ,ξ)g (αS ,FQ2X ) = 0. (34)

Hence from (33) and (34), the result follows.
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Theorem 4.5. Every totally contact umbilical proper slant lightlike submanifold of an indefi-

nite Kenmotsu manifold is totally contact geodesic.

Proof. Since M is a totally contact umbilical slant lightlike submanifold therefore for any

X =Q2X ∈ Γ(D), using (27) we have h(TQ2X ,TQ2X ) = g (TQ2X ,TQ2X )α, then using (25), we

get

h(TQ2X ,TQ2X ) = cos2θ[g (Q2X ,Q2X )−η(Q2X )η(Q2X )]α

= cos2θ[g (Q2X ,Q2X )]α. (35)

Using (1) and (24) for any X ∈ Γ(D), we obtain

F∇TQ2 X X = h(TQ2X ,TQ2X )−C h(TQ2X , X )+∇s
T Q2 X FQ2X

+D l (TQ2X ,FQ2X ). (36)

Since M is a totally contact umbilical slant lightlike submanifold therefore C h(TQ2X , X ) =

g (TQ2X , X )Cα= 0, therefore using (35) and (36), we get

cos2θ[g (Q2X ,Q2X )]α= F∇TQ2 X X −∇s
T Q2 X FQ2X −D l (TQ2X ,FQ2X ). (37)

Taking the scalar product of both sides of (37) with respect to FQ2X , we obtain

cos2θ[g (Q2X ,Q2X )]ḡ (αS ,FQ2X ) = ḡ (F∇T Q2 X X ,FQ2X )− ḡ (∇s
TQ2 X FQ2X ,FQ2X ),

using (26), we get

cos2θ[g (Q2X ,Q2X )]ḡ (αS ,FQ2X ) = sin2θ[g (∇TQ2 X X ,Q2X )]− ḡ (∇s
T Q2 X FQ2X ,FQ2X ). (38)

Now, for any X =Q2X ∈ Γ(D), (26) implies that

g (FQ2X ,FQ2X ) = sin2θ[g (Q2X ,Q2X )],

taking covariant derivative with respect to ∇̄TQ2 X , we get

ḡ (∇s
TQ2 X FQ2X ,FQ2X ) = sin2θ[g (∇TQ2 X Q2X ,Q2X )]. (39)

Using (39) in (38), we obtain cos2θ[g (Q2X ,Q2X )]ḡ (αS ,FQ2X ) = 0. Since M is a proper slant

lightlike submanifold and g is a Riemannian metric on D therefore we have ḡ (αs ,FQ2X ) = 0.

Thus using the Lemma (4.2) and the equation (30), we obtain αS ∈ Γ(µ). Let X ,Y ∈ Γ(D) then

using the Kenmotsu property of M̄ , we have ∇̄X ϕY =ϕ∇̄X Y −g (T X ,Y )V , then using (27), we

obtain

∇X TQ2Y + g (X ,TQ2Y )α− AFQ2Y X +∇s
X FQ2Y +D l (X ,FQ2Y )
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= T∇X Y +F∇X Y + g (X ,Y )ϕα− g (T X ,Y )V. (40)

Taking the scalar product of both sides of (40) with respect to ϕαS and using the fact that µ is

an invariant subbundle of T M̄ , we obtain

ḡ (∇s
X FQ2X ,ϕαS) = g (Q2X ,Q2Y )g (αS ,αS). (41)

Again using the Kenmotsu character of M̄ , we have ∇̄X ϕαS =ϕ∇̄X αS , this implies that

−AϕαS X +∇s
X ϕαS +D l (X ,ϕαS) =−T AαS X −F AαS X +B∇s

X αS +C∇s
X αS +ϕD l (X ,αS), (42)

taking the scalar product of both sides of above equation with respect to FQ2Y and using

invariant character of µ, that is, C∇s
X αS ∈ Γ(µ) and using (1) and (26), we get

ḡ (∇s
X ϕαS ,FQ2Y ) =−g (F AαS X ,FQ2Y ) =−sin2θ[g (AαS X ,Q2Y )]. (43)

Since ∇̄ is a metric connection therefore (∇̄X g )(FQ2Y ,ϕαS) = 0, this further implies that

ḡ (∇s
X FQ2Y ,ϕαS) = ḡ (∇s

X ϕαS ,FQ2Y ), therefore using (43), we obtain

ḡ (∇s
X FQ2Y ,ϕαS) =−sin2θ[g (AαS X ,Q2Y )]. (44)

From (41) and (44), we have g (Q2X ,Q2Y )g (αS ,αS) =−sin2θg [(AαS X ,Q2Y )], then using (13),

we obtain g (Q2X ,Q2Y )g (αS ,αS) =−sin2θ[g (Q2X ,Q2Y )]g (αS ,αS), this implies that

(1+ sin2θ)[g (Q2X ,Q2Y )]g (αS ,αS) = 0. Since M is a proper slant lightlike submanifold there-

fore sin2θ ̸= −1 and g is a Riemannian metric on D therefore we obtain

αS = 0. (45)

Next, for X ∈ Γ(D), using the Kenmotsu character of M̄ , we have ∇̄X ϕX = ϕ∇̄X X , this im-

plies that ∇X TQ2X + h(X ,TQ2X ) − AFQ2 X X +∇s
X FQ2X + D l (X ,FQ2X ) = T∇X X + F∇X X +

Bh(X , X )+C h(X , X ). Since M is totally contact umbilical slant lightlike submanifold therefore

using h(X ,TQ2X ) = 0, in above equation and then comparing the tangential components, we

obtain ∇X TQ2X − AFQ2 X X = T∇X X +Bh(X , X ). Taking the scalar product of both sides with

respect to ϕξ ∈ Γ(ϕRad(T M)) and then using the Lemma (4.4), we get

g (AFQ2 X X ,ϕξ)+ ḡ (hl (Q2X ,Q2X ),ξ) = 0. (46)

Now using (11), we have ḡ (hs(X ,ϕξ),FQ2X )+ḡ (ϕξ,D l (X ,FQ2X )) = g (AFQ2 X X ,ϕξ), since M is

a totally contact umbilical slant lightlike submanifold therefore using (29) and (45), we obtain

g (AFQ2 X X ,ϕξ) = 0. (47)
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Using (47) in (46), we obtain that ḡ (hl (Q2X ,Q2X ),ξ) = 0, then using (28), we obtain

g (Q2X ,Q2X )ḡ (αL ,ξ) = 0. Since g is a Riemannian metric on D therefore ḡ (αL ,ξ) = 0, then

using (4), we obtain that

αL = 0. (48)

Thus from (45) and (48), the proof is complete.

Next, denote by R̄ and R the curvature tensors of ∇̄ and ∇ respectively, then using (9)-

(12), we have

R̄(X ,Y )Z = R(X ,Y )Z + Ahl (X ,Z )Y − Ahl (Y ,Z )X + Ahs (X ,Z )Y

−Ahs (Y ,Z )X + (∇X hl )(Y , Z )− (∇Y hl )(X , Z )

+D l (X ,hs(Y , Z ))−D l (Y ,hs(X , Z ))+ (∇X hs)(Y , Z )

−(∇Y hs)(X , Z )+D s(X ,hl (Y , Z ))−D s(Y ,hl (X , Z )), (49)

where

(∇X hs)(Y , Z ) = ∇s
X hs(Y , Z )−hs(∇X Y , Z )−hs(Y ,∇X Z ),

and

(∇X hl )(Y , Z ) = ∇l
X hl (Y , Z )−hl (∇X Y , Z )−hl (Y ,∇X Z ). (50)

An indefinite Kenmotsu space form is a connected indefinite Kenmotsu manifold of constant

holomorphic sectional curvature c and denoted by M̄(c). Then the curvature tensor R̄ of M̄(c)

is given by (see [10])

R̄(X ,Y )Z = c −3

4
{ḡ (Y , Z )X − ḡ (X , Z )Y }+ c +1

4
{η(X )η(Z )Y −η(Y )η(Z )X

+ḡ (X , Z )η(Y )V − ḡ (Y , Z )η(X )V + ḡ (ϕY , Z )ϕX + ḡ (ϕZ , X )ϕY

−2ḡ (ϕX ,Y )ϕZ }. (51)

for X ,Y , Z vector fields on M̄ .

Theorem 4.6. There does not exist a totally contact umbilical proper slant lightlike submani-

fold of an indefinite Kenmotsu space form M̄(c) such that c ̸= −1.

Proof. Suppose M be a totally contact umbilical proper lightlike submanifold of M̄(c) such

that c ̸= −1. Then for any X ∈ Γ(D), Z ∈ Γ(ϕl tr (T M)) and ξ ∈ Γ(Rad(T M)), using (2) and (51),

we obtain

ḡ (R̄(X ,ϕX )Z ,ξ) =−c +1

2
g (Q2X ,Q2X )g (ϕZ ,ξ). (52)

On the other hand using (27) and (49), we get

ḡ (R̄(X ,ϕX )Z ,ξ) = ḡ ((∇X hl )(ϕX , Z ),ξ)− ḡ ((∇ϕX hl )(X , Z ),ξ), (53)
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where using (28) and (50), we have

(∇X hl )(ϕX , Z ) = −g (∇X ϕX , Z )αL − g (TQ2X ,∇X Z )αL , (54)

and

(∇ϕX hl )(X , Z ) = −g (∇ϕX X , Z )αL − g (X ,∇ϕX Z )αL . (55)

Using (54) and (55) in (53), we obtain

ḡ (R̄(X ,ϕX )Z ,ξ) = −g (∇X ϕX , Z )ḡ (αL ,ξ)− g (ϕX ,∇X Z )ḡ (αL ,ξ)

+g (∇ϕX X , Z )ḡ (αL ,ξ)+ g (X ,∇ϕX Z )ḡ (αL ,ξ). (56)

Now using (27), we have g (ϕX ,∇X Z ) = −ḡ (∇̄X ϕX , Z ) = −g (∇X ϕX , Z ) and g (X ,∇ϕX Z ) =
−ḡ (∇̄ϕX X , Z ) =−g (∇ϕX X , Z ). Hence (56) becomes ḡ (R̄(X ,ϕX )Z ,ξ) = 0, using this in (52), we

have (c +1)g (Q2X ,Q2X )g (ϕZ ,ξ) = 0. Since g is a Riemannian metric on D and g (ϕZ ,ξ) ̸= 0,

therefore c =−1. This contradiction completes the proof.

5. Minimal slant lightlike submanifolds

In [7], a minimal lightlike submanifold M is defined when M is a hypersurface of a 4-

dimensional Minkowski space. Then in [1], a general notion of minimal lightlike submanifold

of a semi-Riemannian manifold M̄ is introduced as follows:

Definition 5.1. A lightlike submanifold (M , g ,S(T M)) isometrically immersed in a semi-

Riemannian manifold (M̄ , ḡ ) is minimal if

(i) hs = 0 on Rad(T M) and

(ii) tr ace h = 0, where trace is written with respect to g restricted to S(T M).

We use the quasi orthonormal basis of M given by

{ξ1, . . . ,ξr ,ϕξ1, . . . ,ϕξr ,V ,e1, . . . ,eq ,ϕN1, . . . ,ϕNr },

such that {ξ1, . . . ,ξr }, {ϕξ1, . . . ,ϕξr }, {e1, . . . ,eq } and {ϕN1, . . . ,ϕNr } form a basis of Rad(T M),

ϕ(Rad(T M)), D and ϕ(l tr (T M)) respectively.

Theorem 5.2. A totally contact umbilical proper slant lightlike submanifold M of an indefinite

Kenmotsu manifold M̄ is minimal if and only if tr ace AWk = 0 and tr ace A∗
ξi
= 0 on D, where

{Wk }l
k=1 is a basis of S(T M⊥) and {ξi }r

i=1 is a basis of Rad(T M).

Proof. Using (1) and (3) we have ∇̄V V = 0 therefore using (9), we get hl (V ,V ) = 0 and hs(V ,V ) =
0. Thus from the definition of minimal submanifold and (18), a slant lightlike submanifold is

minimal if and only if

r∑
i=1

h(ϕξi ,ϕξi )+
r∑

i=1
h(ϕNi ,ϕNi )+

q∑
j=1

h(e j ,e j ) = 0
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and hs = 0 on Rad(T M). Since M is totally contact umbilical therefore from (27), we have

h(ϕξi ,ϕξi ) = 0 and h(ϕNi ,ϕNi ) = 0. Similarly hs = 0 on Rad(T M). Thus M is minimal sub-

manifold if and only if
∑q

j=1 h(e j ,e j ) = 0, where

q∑
j=1

h(e j ,e j ) =
q∑

j=1
hl (e j ,e j )+hs(e j ,e j )

=
q∑

j=1
{

1

r

r∑
i=1

g (hl (e j ,e j ),ξi )Ni + 1

l

l∑
k=1

g (hs(e j ,e j ),Wk )Wk },

where {W1, . . . ,Wl } is an orthonormal basis of S(T M⊥). Using (13) and (16) we obtain

q∑
j=1

h(e j ,e j ) =
q∑

j=1
{

1

r

r∑
i=1

g (A∗
ξi

e j ,e j )Ni + 1

l

l∑
k=1

g (AWk e j ,e j )Wk }. (57)

Thus our assertion follows from (57).

Definition 5.3 ([8]). A lightlike submanifold is called irrotational if and only if ∇̄X ξ ∈ Γ(T M)

for all X ∈ Γ(T M) and ξ ∈ Γ(Rad(T M)).

Theorem 5.4. Let M be an irrotational slant lightlike submanifold of an indefinite Kenmotsu

manifold M̄. Then M is minimal if and only if tr ace AWk |S(T M) = 0, t r ace A∗
ξi
|S(T M) = 0, where

{Wk }l
k=1 is a basis of S(T M⊥) and {ξi }r

i=1 is a basis of Rad(T M).

Proof. Since ∇̄V V = 0 using (1) and (3) therefore using (9), we get hl (V ,V ) = 0 and hs(V ,V ) = 0.

Moreover, M irrotational implies hs(X ,ξ) = 0 for X ∈ Γ(T M) and ξ ∈ Γ(Rad(T M)). Thus hs

vanishes on Rad(T M). Hence M is minimal if and only if trace h = 0 on S(T M), that is, M is

minimal if and only if

r∑
i=1

h(ϕξi ,ϕξi )+
r∑

i=1
h(ϕNi ,ϕNi )+

q∑
j=1

h(e j ,e j ) = 0.

Using (13) and (16) we obtain

r∑
i=1

h(ϕξi ,ϕξi ) =
r∑

i=1
{

1

r

r∑
a=1

g (A∗
ξa
ϕξi ,ϕξi )Na + 1

l

l∑
k=1

g (AWkϕξi ,ϕξi )Wk }. (58)

Similarly, we have

r∑
i=1

h(ϕNi ,ϕNi ) =
r∑

i=1
{

1

r

r∑
a=1

g (A∗
ξa
ϕNi ,ϕNi )Na + 1

l

l∑
k=1

g (AWk e j ,e j )Wk }, (59)

and
q∑

j=1
h(e j ,e j ) =

q∑
j=1

{
1

r

r∑
i=1

g (A∗
ξi

e j ,e j )Ni + 1

l

l∑
k=1

g (AWk e j ,e j )Wk }. (60)

Thus our assertion follows from (58)-(60).
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