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TOTALLY GEODESIC SUBMANIFOLDS OF
SYMMETRIC-LIKE RIEMANNIAN MANIFOLDS

By

J. BERNDT, F. PR\"UFER and L. VANHECKE

Abstract. We study for various kinds of geometric stmctures on
Riemannian manifolds whether these stmctures induoe on totally

geodesic submanifolds stmctures of the same kind.

1. Introduction

A submanifold $M$ of a Riemannian manifold $\overline{M}$ is said to be totally geodesic

if every geodesic in $M$ is also a geodesic in $\overline{M}$ . This is equivalent to saying that

the second fundamental form of $M$ vanishes. Suppose $\overline{M}$ is equipped with some
special geometric structure. A natural question is whether this structure induces a
stmcture of the same kind on its totally geodesic submanifolds. For instance,

when $\overline{M}$ is a Riemannian locally symmetric space, then any totally geodesic

submanifold of it is also locally symmetric for the induced Riemannian structure.

In this paper we study this question for various classes of Riemannian manifolds

which are natural generalizations of locally symmetric spaces. In Section 2 we
give a summary of their definitions. In Section 3 we show that for most of these

classes the totally geodesic submanifolds inherit a similar stmcture, but in Section

4 we use generalized Heisenberg groups to prove that this is not the case for

naturally reductive homogeneous spaces.

2. Symmetric-like Riemannian manifolds

We start by summarizing the definitions of the various Riemannian manifolds

which we call symmetric-like. A more thorough account and many further

references can be found in [1] and [6].
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Let $M$ be an n-dimensional, connected, smooth manifold of dimension $n\geq 2$

and equipped with some Riemannian metric $g$ . We denote its Levi Civita

connection by $\nabla$ and its Riemannian curvature tensor by $R$ , where we use the

convention $R_{XY}=\nabla_{[X,Y]}-[\nabla_{X}, \nabla_{Y}]$ . Further, $I(M)$ denotes the isometry group
of $M$ and $I^{0}(M)$ its identity component. The tangent bundle of $M$ is denoted by
$TM$, the tangent space of $M$ at some point $m\in M$ by $T_{m}M$ . If $\gamma$ is a geodesic in
$M$, the associated (Riemannian) Jacobi operator $R_{\gamma}$ is the self-adjoint tensor field
along $\gamma$ defined by $R_{\gamma}:=R(\dot{\gamma}, \cdot)\dot{\gamma}$ . For any $v\in TM$ the (Riemannian) Jacobi

operator $R_{v}$ with respect to $v$ is the self-adjoint endomorphism $R_{v}:=R(v, \cdot)v$ on
$T_{m}M$ . Let $\exp_{m}$ : $T_{m}M\rightarrow M$ be the exponential map of $M$ at $m$ . At least locally

we have a well-defined smooth map given for every unit vector $\xi\in T_{m}M$ by

$s_{m}$ : $p=\exp_{m}(t\xi)\mapsto s_{m}(p)=\exp_{m}(-t\xi)$

which is called a local geodesic symmetry of $M$ at $m$ . We shall also work with

normal coordinates $ p\mapsto$ $(x^{1}(p), \ldots , x^{n}(p))$ centered at $m\in M$ . The Riemannian

metric $g$ in such coordinates is given by the matrix-valued map $p\mapsto(g_{ij}(p))$ , and

we have the normal volume density function

$\omega_{m}(p)=(\det(g_{ij}))^{1/2}(p)$

defined on a normal coordinate neighborhood. We denote by $\mu_{k}(m,p)$ the k-th

elementary symmetric function of the characteristic polynomial of the symmetric

matrix $(g_{ij}(p))^{-1}$ Each $\mu_{k}$ is a symmetric two-point function [11].

(1) A Riemannian manifold $M$ is said to be a k-D’Atri space if for any
$m\in M$ the function $\mu_{k}(m,p)$ is left-centrally symmetric, that is,

$\mu_{k}(m,\exp_{m}(t\xi))=\mu_{k}(m,\exp_{m}(-t\xi))$ .

Note that a Riemannian manifold is a l-D’Atri space if and only if it is a D’Atri

space [9]. A Riemannian manifold is said to be a D’Atri space if its local geodesic

symmetries are volume-preserving up to sign, that is, $\mu_{n}(m,p)$ is left-centrally

symmetric.
(2) A Riemannian manifold $M$ is said to be a k-harmonic space if for any

$m\in M$ the symmetric two-point function $\mu_{k}(m,p)$ is radial in its first variable

(and hence also in its second variable). $M$ is harmonic in the usual sense if
$\mu_{n}(m,p)$ is radial. Note that a Riemannian manifold is l-harmonic if and only if

it is harmonic [10]. A necessary and sufficient condition for a Riemannian

manifold to be harmonic is that each small geodesic sphere in the manifold has

constant mean curvature.
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(3) A Riemannian homogeneous space $M$ is said to be naturally reductive if

there exists a connected Lie subgroup $G$ of $I(M)$ acting transitively on $M$ and a
reductive decomposition $\mathfrak{g}=\mathfrak{h}\oplus \mathfrak{m}$ of the Lie algebra $\mathfrak{g}$ of $G$, where $\mathfrak{h}$ is the Lie

algebra of the isotropy group $H$ under the action of $G$ at some point in $M$, such

that every geodesic in $M$ is the orbit of a one-parameter subgroup of $I^{0}(M)$

generated by some $X\in \mathfrak{m}$ .
(4) A Riemannian manifold $M$ is said to be a $g.0$ . space if every geodesic in

$M$ is the orbit of a one-parameter group of isometries.
(5) A Riemannian homogeneous space $M$ is said to be a commutative space if

the algebra of all $I(M)$ -invariant differential operators on $M$ is commutative.
(6) A Riemannian manifold $M$ is said to be a $\mathfrak{C}$-space if for every geodesic $\gamma$

in $M$ the eigenvalues of the associated Jacobi operator $R_{\gamma}$ are constant. This is
equivalent to saying that for any geodesic $\gamma$ in $M$ there exists a skew-symmetric

tensor field $T_{\gamma}$ along $\gamma$ such that $R_{\gamma}^{\prime}=[R_{\gamma}, T_{\gamma}]$ , where the prime denotes covariant
differentiation of $R_{\gamma}$ with respect to $\dot{\gamma}$ . If for any geodesic $\gamma$ in $M$ there exists a
parallel $T_{\gamma}$ with that property, then $M$ is said to be a $\mathfrak{C}_{0}$-space.

(7) A Riemannian manifold $M$ is called a $\mathfrak{P}$-space if for any geodesic $\gamma$ in $M$

the associated Jacobi operator $R_{\gamma}$ is diagonalizable by a parallel orthonormal

frame field along $\gamma$ .
(8) A Riemannian manifold is called an $\mathfrak{S}\mathfrak{C}$-space if for each small geodesic

sphere in it the principal curvatures at antipodal points coincide.

(9) A Riemannian manifold $M$ is called a $\mathfrak{T}\mathfrak{C}$-space if for any two small

geodesic spheres in $M$ with the same radii and touching each other at some point
$m\in M$ the principal curvatures of these two spheres coincide at $m$ .

(10) A Riemannian manifold $M$ with the property that the eigenvalues of the

Jacobi operator $R_{v}$ do not depend on the choice of the unit vector $v\in TM$ is
called an 0sserman space. If these eigenvalues do not depend on the choice of the

unit vector $v\in T_{m}M$ for any $m\in M$, but may vary with the point $m$ , then $M$ is
called a pointwise 0sserman space.

3. Totaly geodesic submanifolds

Next, we investigate whether totally geodesic submanifolds of the symmetric-

like Riemannian manifolds as defined in Section 2 admit corresponding prop-

erties. In the following, $M$ is a totally geodesic submanifold of a Riemannian

manifold $(\tilde{M},\tilde{g})$ . The induced Riemannian metric on $M$ will be denoted by $g$ . Let
$(x^{1}, \ldots,x^{\tilde{n}})$ be normal coordinates centered at some point $m\in\tilde{M}$ . We call these

normal coordinates adapted if $\partial/\partial x^{i}(m)(i=1, \ldots,n)$ is tangent to $M$ at $m$ and
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$\partial/\partial x^{a}(m)(a=n+1, \ldots,\tilde{n})$ is perpendicular to $M$ at $m$ . We will denote by
$\alpha,\beta\in\{1, \ldots,\tilde{n}\}$ tangential indices with respect to $\tilde{M}$ , by $i,j\in\{1, \ldots, n\}$ tan-

gential indices with respect to $M$, and by $a,b\in\{n+1, \ldots,\tilde{n}\}$ normal indices with

respect to $M$. We start with the following useful lemma.

LEMMA 1. With respect to an adapted normal coordinate system centered at

$m\in M$ we have for any $p\in M$ lying in the coordinate neighborhood the following

representation of the metric tensor of $\tilde{M}$ :

$(\tilde{g}_{\alpha\beta}(p))=(ij_{0}$ $\tilde{g}_{ab}(p)0$ $=(^{g_{ij}(p)}0$ $g_{ab}(p)0$

PROOF. Let $\gamma$ be a geodesic in $M$ parametrized by arc length and with
$\gamma(0)=m$ . We consider the Jacobi vector fields $\tilde{Y}_{i}$ : $ t\leftarrow\rangle$ $t\partial/\partial x^{j}(\gamma(t))$ and $\tilde{Y}_{a}$ : $ t\leftarrow\rangle$

$t\partial/\partial x^{a}(\gamma(t))$ along $\gamma$ in $\tilde{M}$ . Since $M$ is totally geodesic in $\tilde{M}$ and the initial values

of $\tilde{Y}_{i}$ at $0$ are tangent to $M$, this Jacobi vector field is the variational vector field

of a geodesic variation in $M$. Thus $\tilde{Y}_{i}(t)$ is tangent to $M$ for each $t$ . Further, since
$M$ is totally geodesic in $\tilde{M}$ , the Gauss equation implies that the tangential

component $\tilde{Y}_{a}^{T}$ of $\tilde{Y}_{a}$ is a Jacobi vector field in $M$. But $\tilde{Y}_{a}^{T}$ has initial values
$\tilde{Y}_{a}^{T}(0)=0$ and $(\tilde{Y}_{a}^{T})^{\prime}(0)=0$ . This implies that $\tilde{Y}_{a}^{T}$ vanishes and hence $\tilde{Y}_{a}(t)$ is

normal to $M$ for each $t$ . This gives $g_{ia}(\gamma(t))=(1/t^{2})g(\tilde{Y}_{i}(t),\tilde{Y}_{a}(t))=0$ for each $t$,

and the lemma follows.

We now come to the main result of this section.

THEOREM 1. Let $M$ be a connected totally geodesic submanifold of $\tilde{M}$ .
(i) If $\tilde{M}$ is a k-D’Atri space (resp. a k-harmonic space) for all $k=1,$ $\ldots,\tilde{n}$ ,

then $M$ is a k-D’Atri space (resp. a k-harmonic space) for all $k=1,$ $\ldots,n$ .
(ii) If $\tilde{M}$ is a C-space, $a\mathfrak{C}_{0}$ -space, $a\mathfrak{P}$-space, an $\mathfrak{S}C$-space, a XC-space, $an$

Osserman space, or a pointwise Osserman space, respectively, then $M$ belongs to

the same class as $\tilde{M}$ .
(iii) If $\tilde{M}$ is a $g.0$ . space or a commutative space, then $M$ is a k-D’Atri space

for each $k=1,$ $\ldots,$
$n$ .

(iv) If $\tilde{M}$ is a $g.0$. space and $M$ is complete, then $M$ is also a $g.0$. space.

$PR\infty F$ . (i) Let $\tilde{M}$ be a k-D’Atri space (resp. a k-harmonic space) for all

$k=1,$ $\ldots,\tilde{n}$ . Then Lemma 1 shows that the same holds for $M$.
(ii) First, suppose $\tilde{M}$ is a C-space and let $\gamma$ be a geodesic in $M$. Then there

exists a skew-symmetric tensor field $\tilde{T}_{\gamma}$ along $\gamma$ in $\tilde{M}$ such that $\tilde{R}_{\gamma}^{\prime}=[\tilde{R}_{\gamma},\tilde{T}_{\gamma}]$ .
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Since $M$ is totally geodesic in $\tilde{M}$, restriction and orthogonal projection of $\tilde{T}_{\gamma}$ to

the tangent spaces of $M$ along $\gamma$ gives a skew-symmetric tensor field $T_{\gamma}$ along $\gamma$ in
$M$ with $R_{\gamma}^{\prime}=[R_{\gamma}, T_{\gamma}]$ . This shows that $M$ is also a E-space. When $\tilde{T}_{\gamma}$ is $\tilde{\nabla}$-parallel,

then $T_{\gamma}$ is $\nabla$-parallel, which gives the corresponding statement for $\mathfrak{C}_{0}$ -spaces.

Next, suppose $\tilde{M}$ is a $\mathfrak{P}$-space and $\gamma$ a geodesic in $M$. As $M$ is totally geodesic in
$\tilde{M}$ , the associated Jacobi operator $\tilde{R}_{\gamma}$ leaves the tangent space of $M$ at any point

on $\gamma$ invariant. Since the tangent bundle of $M$ restricted to $\gamma$ is $\tilde{\nabla}$-parallel, it

follows that $\tilde{R}_{\gamma}$ can be diagonalized by a parallel orthonormal frame field along $\gamma$

whose first $n$ elements are tangent to $M$ everywhere. These $n$ parallel vector fields

diagonalize the Jacobi operator $R_{\gamma}$ in $M$, and it follows that $M$ is also a $\mathfrak{P}$-space.

Since $M$ is totally geodesic in $\tilde{M}$ , the Weingarten equation implies that any

principal curvature of a small geodesic sphere in $M$ is also a principal curva-
ture of the corresponding geodesic sphere in $\tilde{M}$ . This implies the statement for

SC- and $\mathfrak{T}\mathfrak{C}$-spaces. Finally, the statement for 0sserman spaces and pointwise

0sserman spaces follows from the fact that each eigenvalue of $R_{v},$ $v\in TM$ , is also

an eigenvalue of $\tilde{R}_{v}$ , because of the Gauss equation and since $M$ is totally

geodesic in $\tilde{M}$ .
(iii) This follows from (i) and the fact that every g.o. space [8] and every

commutative space [7] is a k-D’Atri space for all $k$ .
(iv) Let $\gamma$ be a maximal geodesic in $M$. As $\tilde{M}$ is a g.o. space, there exists a

one-parameter group of isometries of $\tilde{M}$ having $\gamma$ as an orbit. This one-parameter

group generates a Killing vector field $\tilde{X}$ on $\tilde{M}$ . The restriction and orthogonal

projection of $\tilde{X}$ to $M$ gives a Killing vector field $X$ on $M$, and by constmction $\gamma$

is an orbit of the one-parameter group of isometries of $M$ determined by $X$.

REMARK. Below we will provide an example of a complete totally geodesic

submanifold of a naturally reductive space which is not naturally reductive.

Nevertheless, the following questions remain open:
1. Is any complete totally geodesic submanifold of a commutative space also

commutative?

2. Is, for a fixed $k$, any totally geodesic submanifold of a k-D’Atri space
(resp. a k-harmonic space) also a k-D’Atri space (resp. a k-harmonic space)?

4. Totally geodesic subgroups of generalIzed Heisenberg groups

In this section we investigate totally geodesic submanifolds of generalized
Heisenberg groups. As a consequence we get the example mentioned in the

previous remark. A thorough treatment of generalized Heisenberg groups can be
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found in [1], from which we also take several facts without providing the proofs

here.

Let $\mathfrak{v}$ and 3 be real vector spaces with finite dimensions $n$ and $m$ , respectively,

and $\beta:\mathfrak{v}\times \mathfrak{v}\rightarrow 3$ a skew-symmetric bilinear map. Then the direct sum $\mathfrak{n}=\mathfrak{v}\oplus \mathfrak{z}$

becomes a 2-step nilpotent Lie algebra with m-dimensional center 3 by means of

$[U+X, V+Y]=\beta(U, V)$ $(U, V\in \mathfrak{v}, X, Y\in \mathfrak{z})$ .

We choose some inner product $\langle\cdot, \cdot\rangle$ on $\mathfrak{n}$ such that $\mathfrak{v}$ and 3 are perpendicular and

define a homomorphism

$J:3\rightarrow End(\mathfrak{v}),$ $Z\mapsto J_{Z}$

by

$\langle J_{Z}U, V\rangle=\langle[U, V], Z\rangle$ $(U, V\in \mathfrak{v}, Z\in\delta)$ .

Then $\mathfrak{n}$ is said to be a generalized Heisenberg algebra if

$J_{Z}^{2}=-|Z|^{2}$ id $(z\in \mathfrak{z})$ .

The associated connected, simply connected 2-step nilpotent Lie group $N$

equipped with the induced left-invariant Riemannian metric $g$ is called a gen-

eralized Heisenberg group. For $m=1$ these are precisely the classical Heisenberg

algebras and groups.

The classification of generalized Heisenberg algebras and groups can be

obtained by means of the classification of finite-dimensional real representations
of Clifford algebras over negative defimte real quadratic spaces. Denote by
$Cl(\mathfrak{z}, q)$ the real Clifford algebra of the real quadratic space $(\delta, q)$ , where $q$ is the

negative of the quadratic form associated to the inner product on 3. If $m\not\equiv 3$

$(mod 4)$ , then there exists (up to equivalence) precisely one irreducible real

Clifford module $\theta$ . The $\mathfrak{v}$ is isomorphic to $\oplus^{k}\theta$ for some positive integer $k$ . If
$m\equiv 3(mod 4)$ , then there exist (up to equivalence) precisely two non-equivalent

irreducible real Clifford modules $\theta_{1},$ $\theta_{2}$ over the Clifford algebra $Cl(\delta, q)$ . The

modules $\theta_{1},$ $\theta_{2}$ have the same dimension and $\mathfrak{v}$ is isomorphic to $(\oplus^{k_{1}}\theta_{1})\oplus$

$(\oplus^{k_{2}}\theta_{2})$ for some non-negative integers $k_{1},k_{2}$ . Any two pairs $(k_{1},k_{2})$ and $(\tilde{k}_{1},\tilde{k}_{2})$

of non-negative integers with $k_{1}+k_{2}=\tilde{k}_{1}+\tilde{k}_{2}$ yield generalized Heisenberg

algebras $\mathfrak{n}(k_{1},k_{2})$ and $\mathfrak{n}(\tilde{k}_{1},\tilde{k}_{2})$ of the same dimension. These are isomorphic if

and only if $(\tilde{k}_{1},\tilde{k}_{2})\in\{(k_{1},k_{2}), (k_{2},k_{1})\}$ , that is, the corresponding generalized

Heisenberg groups, $N(k_{1},k_{2})$ and $N(\tilde{k}_{1}.\tilde{k}_{2})$ are isometric if and only if $(\tilde{k}_{1},\tilde{k}_{2})\in$

$\{(k_{1},k_{2}), (k_{2},k_{1})\}$ .
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Viewing elements in the Lie algebra $\mathfrak{n}$ as left-invariant vector fields on the Lie
groups $N$, the Levi Civita connection $\nabla$ is determined by

$\nabla_{V+Y}(U+X)=\frac{1}{2}J_{X}V-\frac{1}{2}J_{Y}U-\frac{1}{2}[U, V]$

for all $U,$ $V\in v$ and $X,$ $Y\in 3$ .
We will now study totally geodesic submanifolds of generalized Heisenberg

groups. For general investigations about totally geodesic submanifolds of 2-step
nilpotent Lie groups we refer to [4].

PROPOSITION 1. Let $N,\tilde{N}$ be generalized Heisenberg groups and suppose $N$ is

$decompositionoftheLiealgebraofNand\tilde{N},.wehave\mathfrak{v}\subset\tilde{\mathfrak{v}}andatotallygeodesicsubmanifoldof\tilde{N}.Let\mathfrak{n}=\mathfrak{v}\bigoplus_{resp}\mathfrak{z}_{ectively}and\tilde{\mathfrak{n}}=\tilde{\mathfrak{v}}\bigoplus_{Then}\tilde{\mathfrak{z}}betheassociated$

$\mathfrak{z}\subset\tilde{\mathfrak{z}}$ .

$PR\infty F$ . The basic idea for the proof is as follows. Since $N$ is totally geodesic

in $\tilde{N}$, the spectmm and the eigenspaces of the Jacobi operator $R_{\xi}$ must be
contained in the spectmm and the eigenspaces of the Jacobi operator $\tilde{R}_{\xi}$ for each

unit vector $\xi\in TN$ . The spectra of these Jacobi operators and the corresponding

eigenspaces have been computed explicitly in [1, p. 36-38]. Comparing these data,

we get the result.

Let $V\in \mathfrak{v}$ be a unit vector. We have to show that $V\in\tilde{v}$ . First we note that
$R_{V}$ has three distinct eigenvalues $0,$ $-3/4$ and 1/4. We decompose $V$ into $V=$

$\tilde{V}+\tilde{Y}$ with $\tilde{V}\in$ fi and $\tilde{Y}\in\tilde{\mathfrak{z}}$ . If $\tilde{Y}=0$ we are done. Thus we assume $\tilde{Y}\neq 0$ . If
$\tilde{V}=0$ , then $\tilde{R}_{\overline{Y}}$ has just the two eigenvalues $0$ and 1/4, but $not-3/4$ . Therefore
we must have $\tilde{V}\neq 0$ and $\tilde{Y}\neq 0$ . We decompose $\tilde{\mathfrak{n}}$ into

$\tilde{\mathfrak{n}}=\tilde{\mathfrak{n}}_{3}+\tilde{p}+\tilde{q}$

with

$\tilde{\mathfrak{n}}_{3}$ $:=span\{\tilde{V},\tilde{J}_{\tilde{Y}}\tilde{V},\tilde{Y}\}$ ,

fi $:=kerad(\tilde{V})\cap kerad(\tilde{J}_{\tilde{Y}}\tilde{V})$ ,

$\tilde{q}$ $:=span\{\tilde{Y}^{\perp},\tilde{J}_{\tilde{Y}^{\perp}}\tilde{V},\tilde{J}_{\tilde{Y}^{\perp}}\tilde{J}_{\tilde{Y}}\tilde{V}\}$ .

Each of these three subspaces is invariant under the action of $\tilde{R}_{\tilde{V}+\tilde{Y}}$ . The
endomorphism $\tilde{R}_{\tilde{V}+\tilde{Y}}|\tilde{\mathfrak{n}}_{3}$ has the eigenvalues $0$ and 1/4 (if $|\tilde{V}|^{2}=1/4$) or $0,1/4$

and $1/4-|\tilde{V}|^{2}$ (if $|\tilde{V}|^{2}\neq 1/4$); the endomorphism $\tilde{R}_{\tilde{V}+\tilde{Y}}|\tilde{\mathfrak{p}}$ (if $\tilde{\mathfrak{p}}\neq\{0\}$ ) has only
one eigenvalue $(1-|\tilde{V}|^{2})/4=|\tilde{Y}|^{2}/4$ . The situation is more complicated for
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$\tilde{R}_{\overline{V}+\tilde{Y}}|\tilde{q}$ (if $\tilde{q}\neq\{0\}$ ). We put $\hat{V}=\tilde{V}/|\tilde{V}|,\hat{Y}=\tilde{Y}/|\tilde{Y}|$ , and consider the skew-

symmetric endomorphism

$\tilde{K}_{\overline{V},\overline{Y}}$ : $\tilde{Y}^{\perp}\rightarrow\tilde{Y}^{\perp},\tilde{X}\mapsto[\hat{V},\tilde{J}_{\overline{X}}\tilde{J}_{\hat{Y}}\hat{V}]$ .

Using the abbreviation $\tilde{K}:=\tilde{K}_{\tilde{V},\tilde{Y}}$ , we have an orthogonal decomposition of $\tilde{Y}^{\perp}$

into

$\tilde{Y}^{\perp}=\tilde{L}_{0}\oplus\cdots\oplus\tilde{L}_{k}$

where $\tilde{L}_{j}:=ker(\tilde{K}^{2}-\tilde{\mu}_{j}id_{\overline{Y}^{\perp}})(j=0,1, \ldots,k)$ and $0\geq\tilde{\mu}_{0}>\tilde{\mu}_{1}>\cdots>\tilde{\mu}_{k}\geq-1$

are the distinct eigenvalues of $\tilde{K}^{2}$ . We define

$\tilde{q}_{j}$ : $span\{\tilde{L}_{j},\tilde{J}_{\tilde{L}_{J}}\tilde{V},\tilde{J}_{\tilde{L}_{J}}\tilde{J}_{\tilde{Y}}\tilde{V}\}$ , $j=0,$ $\ldots,k$ , $\tilde{\mu}_{k}\neq-1$ ,

$\tilde{q}_{k}$ $:=span\{\tilde{L}_{k},\tilde{J}_{\tilde{L}_{k}}\tilde{V}\}$ , if $\tilde{\mu}_{k}=-1$ .

Then $\tilde{q}=\tilde{q}_{0}\oplus\cdots\oplus\tilde{q}_{k}$ and each space $\tilde{q}_{j}$ is invariant under the action of $\tilde{R}_{\tilde{V}+\overline{Y}}$

with

$\dim\tilde{q}_{j}\equiv\left\{\begin{array}{l}0(mod3)\\0(mod4)\\0(mod6)\end{array}\right.$
$if\tilde{\mu}_{j}^{j}=-1if\tilde{\mu}=0otherwise$

.

Finally, we put

$\tilde{\rho}_{1}=\frac{1}{4}-|\tilde{V}|^{2}$ ,

$\tilde{\rho}_{2}=\frac{1}{8}(1+\sqrt{1+32|\tilde{V}|^{2}|\tilde{Y}|^{2}})$ ,

$\tilde{\rho}_{3}=\frac{1}{8}(1-\sqrt{1+32|\tilde{V}|^{2}|\tilde{Y}|^{2}})$ .

Now, if $j=k$ and $\tilde{\mu}_{k}=-1$ , then $\tilde{R}_{\tilde{V}+\tilde{Y}}|\tilde{q}_{k}$ has two different eigenvalues $\tilde{\kappa}_{k1}$ and
$\tilde{\kappa}_{k2}$ which are thee solutions of the quadratic equation

$(\tilde{\rho}-\frac{1}{4}|\tilde{V}|^{2})(\tilde{\rho}-\tilde{\rho}_{1})=\frac{9}{16}|\tilde{V}|^{2}|\tilde{Y}|^{2}$ .

0therwise $\tilde{R}_{\tilde{V}+\tilde{Y}}|\tilde{q}_{j}$ has three distinct eigenvalues $\tilde{\kappa}_{j1},\tilde{\kappa}_{j2},\tilde{\kappa}_{j3}$ which are the

solutions of the third order equation

$(\tilde{\rho}-\tilde{p}_{1})(\tilde{\rho}-\tilde{\rho}_{2})(\tilde{\rho}-\tilde{p}_{3})=\frac{27}{64}|\tilde{V}|^{4}|\tilde{Y}|^{2}\tilde{\mu}_{j}$ .
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The substitution of $\tilde{\rho}=-3/4$ and the explicit expressions for $\tilde{\rho}_{1},\tilde{\rho}_{2},\tilde{\rho}_{3}$ into the

previous third order equation gives

$(t-1)(\frac{3}{4}-\frac{1}{2}t+\frac{1}{2}\iota^{2})=\frac{27}{64}t^{2}(1-t)s$ ,

where $t:=|\tilde{V}|^{2}$ and $s:=\tilde{\mu}_{j}$ . Since $t\neq 0$ and $t\neq 1$ , this implies

$s=\frac{32t^{2}-32t+48}{-27t^{2}}$ .

Regarding $s$ as a function in the variable $t$, we get for the derivative $s^{\prime}(t)=$

$32(3-t)/27t^{3}>0$ for $0<t<1$ , whence the function $s(t)$ is strictly monotone

increasing for $0<t\leq 1$ . Since $s(1)=-16/9<-1$ , this shows $s(t)<-1$ for

$0<t<1$ , in contrast to $-1\leq s=\tilde{\mu}_{j}\leq 0$ . This shows that $-3/4$ is not an
eigenvalue of $\tilde{R}_{\tilde{V}+\tilde{Y}}|\tilde{q}_{j}$ . Now we consider the case $\tilde{\mu}_{k}=-1$ . Then the above

quadratic equation gives

$(\frac{1}{4}t+\frac{3}{4})(1-t)=\frac{9}{16}t(1-t)$

with $t:=|\tilde{V}|^{2}$ and $\tilde{\rho}:=-3/4$ . However, this is possible only for $t=1$ or $t=$

$12/5$ , in contradiction to $0<t=|\tilde{V}|^{2}<1$ . Thus $-3/4$ is not an eigenvalue of
$\tilde{R}_{\tilde{V}+\tilde{Y}}|\tilde{q}_{k}$ . The eigenvalue of $\tilde{R}_{\tilde{V}+\tilde{Y}}|\tilde{p}$ is positive, so $-3/4$ is not an eigenvalue of
$\tilde{R}_{\overline{V}+\overline{Y}}|\tilde{\mathfrak{p}}$ . Eventually, we know that $\tilde{R}_{\tilde{V}+\tilde{Y}}|\tilde{\mathfrak{n}}_{3}$ has only the eigenvalues $0,1/4$ and
$1/4-|\tilde{V}|^{2}$ . Because of $|\tilde{V}|^{2}<1,$ $-3/4$ cannot be an eigenvalue of $\tilde{R}_{\tilde{V}+\tilde{Y}}|\tilde{\mathfrak{n}}_{3}$ .
Altogether we now see that $-3/4$ is not an eigenvalue of $\tilde{R}_{\overline{V}+\overline{Y}}$ . On the other
hand, $R_{V}$ has the eigenvalue $-3/4$ , which gives a contradiction. Thus $\tilde{Y}\neq 0$ is
not possible and so $V=\tilde{V}\in\tilde{v}$ . Thus we have now proved that $\mathfrak{v}\subset\tilde{v}$ .

Now let $ Y\in\delta$ be a unit vector. We have to show that $Y\in\tilde{\mathfrak{z}}$ . The Jacobi
operator $R_{Y}$ has two different eigenvalues $0$ and 1/4 with corresponding
eigenspaces 6 and $\mathfrak{v}$ , respectively. We decompose $Y$ into $Y=\tilde{V}+\tilde{Y}$ with $\tilde{V}\in$ fi
and $\tilde{Y}\in\tilde{\mathfrak{z}}$ . If $\tilde{V}=0$ we are done. Thus we assume $\tilde{V}\neq 0$ . If $\tilde{Y}=0$, then $\tilde{R}_{\overline{V}}$ has
the eigenvalues $0,$ $-3/4$ and 1/4, and the eigenspace corresponding to 1/4 is $\tilde{\delta}$ .
But this implies $v\subset\tilde{\mathfrak{z}}$, in contradiction to $\mathfrak{v}\subset\tilde{v}$ which was established above.
Therefore we must have $\tilde{Y}\neq 0$ . Since 1/4 is not an eigenvalue of $\tilde{R}_{\tilde{V}+\tilde{Y}}|\tilde{p}$ and of
$\tilde{R}_{\overline{V}+\tilde{Y}}|\tilde{q}$ , we have to consider only $\tilde{R}_{\tilde{V}+\tilde{Y}}|\tilde{\mathfrak{n}}_{3}$ . The eigenspace of 1/4 is spanned by
$-|\tilde{Y}|^{2}\tilde{V}+|\tilde{V}|^{2}\tilde{Y}$, which gives a contradiction to $\mathfrak{v}\subset\tilde{\mathfrak{v}}$ . Therefore, 1/4 is not an
eigenvalue of $\tilde{R}_{\overline{V}+\tilde{Y}}$ , which is another contradiction. Consequently, we must have
$\tilde{V}=0$ and it follows that $3\subset\tilde{\mathfrak{z}}$ . This finishes the proof of Proposition 1.
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REMARK. Proposition 1 says that any generalized Heisenberg group $N$ which

is totally geodesically embedded in some other generalized Heisenberg group $\tilde{N}$ is
well-positioned in the sense of [4]. This means that $\mathfrak{n}=(\mathfrak{n}\cap\tilde{\mathfrak{v}})\oplus(\mathfrak{n}\cap\tilde{\mathfrak{z}}),$

$\mathfrak{v}=\mathfrak{n}\cap\tilde{\mathfrak{v}}$

and $\delta=\mathfrak{n}\cap\tilde{\mathfrak{z}}$ .
A totally geodesic Lie subgroup $N$ of a Lie group $\tilde{N}$ is a Lie subgroup $N$

which is embedded totally geodesically in $\tilde{N}$ . A Lie subalgebra $\mathfrak{n}$ of the Lie

algebra $\tilde{\mathfrak{n}}$ of $\tilde{N}$ is said to be totally geodesic if $\tilde{\nabla}_{X}Y\in \mathfrak{n}$ for all $X,$ $Y\in \mathfrak{n}$ . There is
an obvious one-to-one correspondence between totally geodesic Lie subalgebra of
$\tilde{\mathfrak{n}}$ and connected totally geodesic Lie subgroups of $\tilde{N}$ .

The lowest dimension for a generalized Heisenberg group with 2-dimensional

center is 6. We will now show that this 6-dimensional generalized Heisenberg

group can be embedded totally geodesically into any generalized Heisenberg

group not satisfying the $J^{2}$ -condition. For this we must first recall the meaning of

the $J^{2}$ -condition, which has been formulated first in [2]. A generalized Heisenberg

group satisfies the $J^{2}$-condition if any only if for all $X,$ $Y\in \mathfrak{z}$ with \langle X, $ Y\rangle$ $=0$

and all non-zero vectors $U\in v$ there exists some vector $Z\in\delta$ so that $J_{X}J_{Y}U=$

$J_{Z}U$, that is, so that $J_{X}J_{Y}U\in kerad(U)^{\perp}$ . It was shown in [2] that a generalized

Heisenberg group satisfies the $J^{2}$-condition if and only if it is isomorphic to the

nilpotent part in the Iwasawa decomposition of the identity component of the

isometry group of a non-compact rank-one symmetric space. More precisely, a
generalized Heisenberg group satisfies the $J^{2}$-condition if and only if $m=1$ (this

corresponds to complex hyperbolic space), $m=3$ and $\mathfrak{v}$ is an isotypic module
(this corresponds to quatemionic hyperbolic space), or $m=7$ and $\mathfrak{v}$ is an
irreducible module (this corresponds to Cayley hyperbolic plane).

THEOREM 2. Let $\tilde{N}$ be a generalized Heisenberg group which does not satisfy

the $J^{2}$-condition. Then the 6-dimensional generalized Heisenberg group $N$ with 2-

dimensional center can be embedded totally geodesically into $\tilde{N}$ .

$PR\infty F$ . As $\tilde{N}$ does not satisfy the $J^{2}$-condition, the solvable extension of
$\tilde{N}$ known as a Damek-Ricci space has zero sectional curvature for some suitable

2-plane [3]. Such a 2-plane exists if and only if there exists a unit vector $ V+Y\in$

$\tilde{\mathfrak{n}}$ with $|V|^{2}=2/3$ and a non-zero vector $x\in Y^{\perp}$ so that $J_{X}J_{Y}V$ is orthogonal to
$J_{\tilde{\theta}^{V}}$ [ $1$ , p. 104]. A straightforward calculation shows that $V,$ $J_{X}V,$ $J_{Y}V,$ $J_{X}J_{Y}V$ ,

$X,$ $Y$ are orthogonal and span a 6-dimensional totally geodesic Lie subalgebra $\mathfrak{n}$

of $\tilde{\mathfrak{n}}$ isomorphic to a 6-dimensional generalized Heisenberg algebra with 2-

dimensional center. The corresponding totally geodesic Lie subgroup $N$ of $\tilde{N}$ is

a 6-dimensional generalized Heisenberg group with 2-dimensional center.
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COROLLARY 1. A totally geodesic submanifold of a naturally reductive space

is not naturally reductive in general.

$PR\infty F$ . A generalized Heisenberg group is naturally reductive if and only if
$\dim \mathfrak{z}\in\{1,3\}[5]$ . Any generalized Heisenberg group $\tilde{N}$ with 3-dimensional center

and arising from a non-isotypic module $\mathfrak{v}$ is therefore naturally reductive and

does not satisfy the $J^{2}$-condition. The previous theorem implies that one can find

a generalized Heisenberg group $N$ with 2-dimensional center embedded totally

geodesically in $\tilde{N}$ . Since the center of $N$ is 2-dimensional, $N$ is not naturally

reductive, and the corollary is proved.

We finish this paper with another existence theorem conceming totally

geodesic embeddings of generalized Heisenberg groups with 2-dimensional center

into generalized Heisenberg groups with 3-dimensional center.

THEOREM 3. Let $N=N(k_{1}, k_{2})$ be a generalized Heisenberg group with 3-
dimensional center and suppose that $k:=\min\{k_{1},k_{2}\}\geq 1$ . Then there exists for
each $l\in\{1, \ldots, k\}a(4l+2)$ -dimensional generalized Heisenberg group with 2-
dimensional center embedded totally geodesically in $N$.

$PR\infty F$ . We begin with an explicit description of the generalized Heisenberg

algebra $\mathfrak{n}=\mathfrak{n}(k_{1},k_{2})$ . Denote by $H$ the algebra of quatemions. We define a linear

map

$\Phi:R^{3}\rightarrow H,$ $(s, t, u)\mapsto si+tj+uk$ .

For $Z\in R^{3}$ we consider the automorphism

$J_{Z}$ : $H^{k_{1}+k_{2}}\rightarrow H^{k_{1}+k_{2}}$

given by

$(W_{1}, \ldots, W_{k_{1}+k_{2}})\leftarrow\rangle(W_{1}\Phi(Z), \ldots, W_{k_{1}}\Phi(Z), \Phi(Z)W_{k_{1}+1}, \ldots, \Phi(Z)W_{k_{1}+k_{2}})$ .

Then we have $J_{z}^{2}=-|Z|^{2}id$ and $\mathfrak{n}=\mathfrak{n}(k_{1},k_{2})=H^{k_{1}+k_{2}}\oplus R^{3}$ . Let $X,$ $Y,$ $Z$ be the

standard basis of $R^{3}$ which corresponds via $\Phi$ to $i,$ $j,k$ . Let $\pi_{1}$ (respectively $\pi_{2}$ ) be

the projection of $\mathfrak{v}=v_{1}\oplus v_{2}\cong H^{k_{1}}\oplus H^{k_{2}}$ onto the first (respectively second)

factor and $V_{1}\in v$ a unit vector with $|\pi_{1}(V_{1})|=|\pi_{2}(V_{1})|$ . Then

$2_{1}=span\{X, Y, V_{1},J_{X}V_{1},J_{Y}V_{1},J_{X}J_{Y}V_{1}\}$

is a totally geodesic Lie subalgebra isomorphic to the 6-dimensional generalized

Heisenberg algebra with 2-dimensional center. lf $k\geq 2$ we may find a unit vector
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$V_{2}\in \mathfrak{v}$ with $|\pi_{1}(V_{2})|=|\pi_{2}(V_{2})|$ and perpendicular to the 8-dimensional subspace

$\mathfrak{L}_{1}(Z)$ $:=(\mathfrak{L}_{1}\cap v)\oplus J_{Z}(\mathfrak{L}_{1}\cap \mathfrak{v})$

of $\mathfrak{v}$ . Then

$\mathfrak{L}_{2}$ $:=\mathfrak{L}_{1}\oplus span\{V_{2},J_{X}V_{2},J_{Y}V_{2},J_{X}J_{Y}V_{2}\}$

is a totally geodesic Lie subalgebra of $\mathfrak{n}$ isomorphic to the 10-dimensional
generalized Heisenberg algebra with 2-dimensional center. In this manner we may

constmct successively for each $1\in\{1, \ldots,k\}$ a totally geodesic Lie subalgebra of
$\mathfrak{n}$ isomorphic to the $(4l+2)$ -dimensional generalized Heisenberg algebra with 2-
dimensional center. This proves the theorem.
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