
TOTALLY INTEGRALLY CLOSED RINGS

EDGAR ENOCHS

All rings and algebras in the following will be assumed commuta-

tive and associative. All rings will have identities, and ring homo-

morphisms will map the identity onto the identity. The identity of a

subring will always be that of the ring.

We recall that if A is a subring of a ring B, then bEB is said to be

integral over A if there is a unitary polynomial fEA [X] such that

fib) = 0. 23 is said to be an integral extension of A il each b EB is

integral over A. If 23 is an integral extension of A, then for every

prime ideal 0° of A there is a prime ideal Q of 23 with Qf^A = (P. If 23

is any extension of the ring A, the set A' of bEB which are integral

over A is a subring of B and so an integral extension of A. If A =A',

A is said to be integrally closed in B. If A EBEC where C is a ring

and A and 23 are subrings, then if C is an integral extension of 23 and

B an integral extension of A then C is an integral extension of A.

From this it follows that the integral closure A' of A in an extension

23 is integrally closed in B.

In the category of fields, integral extensions are just the algebraic

extensions. The algebraically closed fields fi are precisely those which

are injective with respect to algebraic extensions, i.e. they have the

property that if a: K—+Q is a homomorphism where K is a field and

E is an algebraic extension of K, then there is a homomorphism

25—>S2 agreeing with o~ on K. Each field K has an algebraic extension

12 which is algebraically closed. Furthermore, if Q,' is another alge-

braically closed algebraic extension of K, then any ^-homomorphism

fl—>fl' (which always exists) is an isomorphism. The question nat-

urally rises whether we get the analogous result in the category of

rings when we consider integral extensions. In this paper we consider

this problem.

Definition. A ring D is said to be totally integrally closed if for

any ring homomorphism a: B—>D and any integral extension C of 23

there is a homomorphism C—>D extending a. (The term integrally

closed is reserved for an integral domain which is integrally closed in

its field of fractions.)

The following two propositions are immediate.

Proposition 1. If (77),-e/ is a family of rings, then JJ^iei At is
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totally integrally closed if and only if each ring A,- is totally integrally

closed.

Proposition 2. If A is a subring of a ring B and A is a retract of B

(i.e. there is a homomorphism r: B^A with r\A = lA), then if B is

totally integrally closed, A is totally integrally closed.

The following proposition gives examples of totally integrally

closed rings.

Proposition 3. An integral domain A is totally integrally closed if

and only if A is integrally closed in an algebraic closure ft of its field of

fractions K.

Proof. Suppose A is integrally closed in ft and let a: B—>A be a

ring homomorphism and let C be an integral extension of B. Then

Ker(cr) is a prime ideal of B since A is an integral domain. Since C is

an integral extension of B there is a prime ideal 6> oi C such that

(?r\B = Ker(cr). Let B'=B/Ker(a) and C' = C/S>. We consider B' a

subring of C. We have an induced injective homomorphism B'—>A,

and so a homomorphism B'—»ft. Now let M be a field of fractions of

C and LCM be a field of fractions of B'. Then M is an algebraic

extension of L since C is an integral extension of B. Now the injective

homomorphism B'—»ft can be extended to A—>ft and this in turn to a

homomorphism M—»ft since ft is algebraically closed. Thus by restric-

tion we get a homomorphism C/<P = C—>ft and so a homomorphism

t: C—>ft which agrees with a on B. Since C is an integral extension of

B, the elements of r(C) are integral over r(B) =a(B)CA and hence

belong to A since A is integrally closed in ft. Thus t(C)CA, and so

<r: B—*A has an extension C—>A.

Conversely, if A is totally integrally closed, then by Proposition 2

above there is a retraction r: B^>A where B is the integral closure of

A in ft. Then Ker(r)f~}A =0. But by the usual argument this is possi-

ble only if Ker(r)=0, for if bEB, br^O, then suppose bn+an-xbn~1

+ - • • +axb+a0 = 0 with a,EA, i = 0, ■ ■ ■ , n — 1 where n^l is

minimal. Then a07*0 and a0GKer(r). But Ker(r)r\A=0. Thus we

see that Ker(r)=0 and so r is an isomorphism which implies B=A.

Now we have

Theorem 1. A ring A is a subring of a totally integrally closed ring

if and only if A is reduced.

Proof. We first recall the well-known [l, Theorem 2.1, p. 4].

Lemma. If A is a ring and SEA is closed under multiplication and
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0(£S, then if S¥^0, any ideal of A which is a maximal element in the

set of ideals d such that 6tf~\S = 0 is a prime ideal.

Now let A be a reduced ring. If xEA, x^O, let S be the set of x™

for nEN. Then by the lemma there is a prime ideal <? with xc£(P.

Thus if Spec(^4) is the set of prime ideals of A, we see we have an

injective homomorphism ^4—>H^4/cP where (P ranges through

SpecTl). But each A/(? is an integral domain, so by Proposition 3

A/(? is a subring of a totally integrally closed ring, and so H^4/(P

by Proposition 1 is a subring of a totally integrally closed ring. But

then A is a subring of a totally integrally closed ring.

Now suppose A is not reduced. Then clearly there is a cEA with

c2 = 0, c^O. Let ffibe the set of bEA withfc = 0. ~Let A' = A/($>. Now
let 7 be any nonempty set and let Sr(7) be the set of nonempty finite

subsets of 7. We consider the algebra E over A' generated by elements

X, F, for i£7, and Z„ for vE$iI) with the relations:

X2= Y?=XY> = XZ, = 0 for all iEI, vE^il).
Y,Zv = 0 if i(£k for all iEI, vE'Sil).
Z\=ZV for all vEZil).

Z„YnY,%- ■ ■ Y,n=XilvE5iI),v={n, ■ • •,!„},

where t^iy if i^j.

Then we claim that every ideal of E different from 0 contains a

nonzero element of A'-X and that Card(£) =gCard(7).

For it's easy to see every element of E can be written uniquely in

the form

aX +    E    F(1 • • • F.„ +    E    Fn • • ■ YimZ,
aii---i„ 6il---i„,

where the first summations are over all sets {ti, ■ • • , t„| with (..^t,-

if i^ j, and the second over sets {n, • • • ,im} and v where {iu ■ ■ ■ ,im}

<3/v and i^ij if i^j. Now let zEE, z^O. If z = aX for some aEA',

we are through. If not, by the relations above and the form in which

we can write z, we see that for some vE'Sil), zZ^O, and so we can

suppose that z=(E7;'"'m YH ■ • • Ytm)Zy where the summation is

over {ii, • • • , im} C7 with i,-^t,- if i^j. Then it's easy to see that

multiplying z by some of the Y/s, we could assume zEA'-X and

z^O. Now clearly Card(£)^Card(7).

Now recalling that A' =A/<&, we make E into an algebra over A

in the obvious fashion. Note then that bz = 0 if bE(B, zEE. Now form

the ring A XE with componentwise addition and multiplication

(a, w) ■ ib, z) = iab, bw + az + wz).

Then considering A as a subring of A XE, we see A XE is an inte-
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gral extension of A. Now let C be the set of pairs (ac, aX) for aEA.

This  is  clearly  a  subgroup  of  A XE.   If  bEA,  zEE,  we  have

(6, o)(ac, aX) = (bac, baX),    (o, z)(ac, aX) = (o, acz + azX).

But ca = 0 since cE<$> and Az = 0. Thus we see & is an ideal of AXE.

Note that if ac = 0 for some aEA, then aE03 so aA = 0. Thus (3Pl4

= 0. Now let A =A XE/Q. We identify A with a subring of A, so now

^4 is an integral extension of A. Note we have Card (A) Si Card (I).

Now let 2D be an ideal of Z such that ^4 C\ 2D = 0. Then 2D = e'/ C where

C'DC is an ideal of ^4XA. If (a, z)£e', then a = 0 implies z = 0, for

otherwise, by the above, the subalgebra of E (as an algebra over A)

generated by z would contain an element aX, aEA, a(£(%>. Thus

(0, aX)EQ' but e'DC, so (-ac, 0)£6'. But a€jE«> so ac-^0 so that

ACMb^O, which is a contradiction. Also if (a, z)£2D and z = 0, we

have a = 0 since A f\ 2D = 0. Thus we see that Card (2D) ̂  Card (T).

Now suppose A is a subring of a totally integrally closed ring D.

Then there is a ring homomorphism a: A-^D with a\ A the canonical

injection. Thus Ker(cr)n^4 =0. By the above, this implies

Card(Ker(<r)) :SCard(.4). But Card(^4) =iCard(T). Hence if we choose

I infinite and such that Card (A)> Card (I), we get Card(4/Ker(cr))

= Card(A). But then Card(D) ^ Card(T) for any such T, which is

clearly impossible. This completes the proof of Theorem 1.

Remark. Note that if a ring A is a subring of a totally integrally

closed ring D, then the integral closure C of A in D is easily seen to be

totally integrally closed and is an integral extension of A. However,

the fact that two such extensions of A are not necessarily isomorphic

follows from the next proposition.

Proposition 4. If A ^0 is a reduced ring and Ny a cardinal number,

there exists a totally integrally closed integral extension D of A with

Card(D)^Ny.

Proof. Let B be a reduced integral extension of A. Then BXB

with componentwise addition and multiplication

(b, c)(b', c') = (bb', be' + cb' + cc')

is easily seen to be proper integral extension of B and to be reduced.

Thus we see that if /3 is an ordinal number, we can construct totally

integrally closed integral extensions Da of A for any a^/3 such that

if a<a'^j3, Da is a subring of Da> and Da^Da>. But then by choosing

,8 sufficiently large we have Card (.Dp) S: Ny.

In order to regain uniqueness we make the following.

Definition. An extension B of a ring A is said to be a tight exten-
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sion of A if (S>P\A =0 for any ideal 03 of 23, then (B = 0.

Then in complete analogy with the notion of an injective envelope

[2, pp. 75-78], we have

Theorem 2. If A is a reduced ring, there is a totally integrally closed

integral extension A' of A which is also a tight extension of A. If A" is

any other such extension of A, then any A-homomorphism A'—*A"

is an isomorphism.

Proof. The argument, with very slight modification, is that in

[2, pp. 75-78]. We repeat it here for completeness. We first note that

if 73 is a tight extension of A and C a tight extension of B, then C is

a tight extension of A. Then suppose that A is a subring of 23, 23 is a

limit ordinal number, and iAa) is a family of subrings of 23 indexed

bv all a</3 such that:

'Aa = A.
Aa+i is a tight extension of Aa for all a<(3.

Ay = \JAa for a<y whenever 7</8 is a limit ordinal.

Then it's easy to check that (iAa lor a </3 is a tight extension of A.

From this, it follows that we can find a tight extension A' ol A in 73

such that if A" is a tight extension of A', A"EB then A' = A". Now

suppose A is a reduced ring, 23 is a totally integrally closed ring con-

taining A. By the Remark following Theorem 1 we can furthermore

suppose B is an integral extension of A. Then it suffices to show the

A' gotten above is totally integrally closed. By Proposition 2 it

suffices to show A' is a retract of B. We choose an ideal 03 of 23 such

that -4'^ 03 = 0, and furthermore we suppose 03 is maximal with this

property. Then we can identify A' with a subring of 23/03. Clearly,

23/03 is an integral extension of A'. By the maximality of 03 it easily

follows that 23/03 is a tight extension of A'. Now 23 totally integrally

closed implies we can find an A '-homomorphism

23/03 -^ 73.

Then the fact that 73/03 is a tight extension of A' implies this is an

injection since Ker(o-)PL4' = 0. But then <r(73/ffi) is a tight extension

of oiA') =A'. By the choice of A' this implies <r(23/03) =A' so we get

^4'=23/03 since <r is an injection. This means that A' + (S, = B and,

since AT\ 03 = 0, that A' is a retract of B. Thus by Proposition 1, A' is

totally integrally closed.

Now if A' and A" are both totally integrally closed, integral exten-

sions of A, let cr: A'—* A" he an yl-homomorphism. <r is an injection

since Ker(<r)Pi^4 =0. Thus <r(^4')=^' and so is totally integrally

closed. But then there is a cr(.4')-homomorphism r: A"-*aiA'). But
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Ker(r)r\<r(A')=0 so Ker(r)n^=0 so Ker(r)=0. But then clearly

o~(A')=A". This completes the proof.

Remark 1. If A is a reduced ring and every unitary fEA [X] has a

root in A, it doesn't imply that A is totally integrally closed. For

example, let A Cft* with I infinite, where ft is an algebraically closed

field and A consists of all (x,) such that for some x£ft, xt = x for all

but a finite number of i£T. Then fEA [X] is such that/Gft^Xft^

X • • • Xftt„XA[A] where A is the diagonal of ft'' with T' = T

— {iii • • • , in}- But A = ft so clearly/has a root inft^X ■ • ■ XftlnXA

and so is in A. But the integral closure A' of A in ft7 consists of all (xu)

for which there is an/£ft[X],/?^0 with/(xt) =0 for all i£T. There is

such an (xt)(£A. But there exists no A -homomorphism A'—>A, for

it's easy to check that for any subring B, WEBEtt1, any ft(f)-

homomorphism A—>ft7 is an injection. This example also has the prop-

erty that for every prime ideal 9 of A, A/9 is totally integrally

closed, for, clearly, every unitary fEA/9[X] has a root in A/9. But

since A/9 is an integral domain, this is easily seen to imply A/9 is

integrally closed in the algebraic closure of its field of fractions (in fact

it can be shown that A/9=& for every prime ideal 9 of A). Hence

A/9 being totally integrally closed for every prime ideal 9 of a ring

A doesn't imply A is totally integrally closed.

Remark 2. If A is reduced and fEA [X] is unitary, it's easy to

check that there is a "splitting ring" of/ unique up to A -isomorphism,

i.e. a tight integral extension B of A with B=A [S] where S is the set

of roots of / in B and such that if C is any extension of A with C

= A [T] where T is the set of roots of /in A, there is an ^4-homo-

morphism C—+B.

Remark 3. If A is a field, any totally integrally closed extension D

of A which is also a tight extension is just an algebraic closure of A.

Remark 4. A tight extension need not be an integral extension,

for if A is a subfield of a field E, E[[X]] is a tight extension of

A [[A]]; but if E is not algebraic over A, it's not an integral exten-

sion.

It's an open question whether A totally integrally closed implies

S~1A totally integrally closed for every multiplicative set SCA.
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