Totally Null Surfaces in Neutral K"ahler 4-Manifolds

Nikos Georgiou
Department of Mathematics Waterford Institute of Technology Waterford, Co. Waterford, Ireland.
\section*{Brendan Guilfoyle}
School of Science, Technology, Engineering and Mathematics Institute of Technology, Tralee, Clash
Tralee, Co. Kerry, Ireland., brendan.guilfoyle@mtu.ie
Wilhelm Klingenberg
Department of Mathematical Sciences, University of Durham, Durham DH1 3LE, United Kingdom.

Follow this and additional works at: https://sword.cit.ie/dpttem_kpub
Cart of the Mathematics Commons

Recommended Citation

Georgiou, Nikos \& Guilfoyle, Brendan \& Klingenberg, Wilhelm. (2016). Totally Null Surfaces in Neutral Kaehler 4-Manifolds. Balkan Journal of Geometry and Its Applications. 21. 27-.

This Article is brought to you for free and open access by the Technology, Engineering \& Mathematics at SWORD South West Open Research Deposit. It has been accepted for inclusion in Publications by an authorized administrator of SWORD - South West Open Research Deposit. For more information, please contact sword@cit.ie.

Totally null surfaces in neutral Kähler 4-manifolds

N. Georgiou, B. Guilfoyle, W. Klingenberg

Abstract

We study the totally null surfaces of the neutral Kähler metric on certain 4 -manifolds. The tangent spaces of totally null surfaces are either self-dual (α-planes) or anti-self-dual (β-planes) and so we consider α-surfaces and β-surfaces. The metric of the examples we study, which include the spaces of oriented geodesics of 3-manifolds of constant curvature, are anti-self-dual, and so it is well-known that the α-planes are integrable and α-surfaces exist. These are holomorphic Lagrangian surfaces, which for the geodesic spaces correspond to totally umbilic foliations of the underlying 3 -manifold. The β-surfaces are less known and our interest is mainly in their description. In particular, we classify the β-surfaces of the neutral Kähler metric on $T N$, the tangent bundle to a Riemannian 2-manifold N. These include the spaces of oriented geodesics in Euclidean and Lorentz 3-space, for which we show that the β-surfaces are affine tangent bundles to curves of constant geodesic curvature on S^{2} and H^{2}, respectively. In addition, we construct the β-surfaces of the space of oriented geodesics of hyperbolic 3 -space.

M.S.C. 2010: 53B30, 53A25.

Key words: neutral Kaehler surface; self-duality; α-planes; β-planes.

1 Introduction

Neutral Kähler 4-manifolds exhibit remarkably different behavior than their positivedefinite counterparts. The failure of the complex structure J to tame the symplectic structure Ω means that 2-planes in the tangent space of a point can be both holomorphic and Lagrangian. Under favorable conditions (namely the vanishing of the self-dual conformal curvature) such planes are integrable and there exist holomorphic Lagrangian surfaces.

In the space $L(M)$ of oriented geodesics of a 3-manifold of constant curvature M (on which a natural neutral Kähler structure exists) such surfaces play a distinctive role: they correspond to totally umbilic foliations of M (see $[2,4,5]$).

Holomorphic Lagrangian planes are totally null, that is, the induced metric identically vanishes on the plane. Moreover, with respect to the Hodge star operator of

[^0]the neutral metric, the self-dual 2-forms vanish on these planes. There exists however another class of totally null planes, upon which the anti-self-dual forms vanish. The former planes are referred to as α-planes, while the latter are β-planes.

In this note we consider the β-surfaces in certain neutral Kähler 4-manifolds, which include spaces $L(M)$ of oriented geodesics of 3-manifolds M of constant curvature. In the cases of $M=E^{3}, E_{1}^{3}, H^{3}$ we compute the β-surfaces explicitly and show that they include $L\left(E^{2}\right), L\left(H^{2}\right)$. In particular, we prove:
Main Theorem. A β-surface in $L\left(E^{3}\right)$ is an affine tangent bundle over a curve of constant geodesic curvature in $\left(S^{2}, g_{r n d}\right)$.

A β-surface in $L\left(E_{1}^{3}\right)$ is an affine tangent bundle over a curve of constant geodesic curvature in $\left(H^{2} g_{h y p}\right)$.

A β-surface in $L\left(H^{3}\right)$ is a piece of a torus which, up to isometry, is either

1. $L\left(H^{2}\right)$, where $H^{2} \subset H^{3}$, or
2. $\mathcal{C}_{1} \times \mathcal{C}_{2} \subset S^{2} \times S^{2}-\bar{\Delta}$, where \mathcal{C}_{1} is a circle given by the intersection of the 2-sphere and a plane containing the north pole, and \mathcal{C}_{2} is the image of \mathcal{C}_{1} under reflection in the horizontal plane through the origin.

In the next section we discuss self-duality for planes in neutral Kähler 4-manifolds and their properties. We then turn to the neutral metric on $T N$ and the special case $L\left(E^{3}\right)$ and $L\left(E_{1}^{3}\right)$. In the final section we characterize the β-surfaces in $L\left(H^{3}\right)$.

2 Neutral metrics on 4-manifolds

2.1 Self-dual and anti-self-dual 2-forms

Consider the neutral metric G on \mathbb{R}^{4} given in standard coordinates $\left(x^{1}, x^{2}, x^{3}, x^{4}\right)$ by

$$
d s^{2}=\left(d x^{1}\right)^{2}+\left(d x^{2}\right)^{2}-\left(d x^{3}\right)^{2}-\left(d x^{4}\right)^{2}
$$

Throughout, we denote \mathbb{R}^{4} endowed with this metric by $\mathbb{R}^{2,2}$.
The space of 2 -forms on $\mathbb{R}^{2,2}$ is a 6 -dimensional linear space that splits naturally with respect to the Hodge star operator $*$ of G into two 3 -dimensional spaces: $\Lambda^{2}=$ $\Lambda_{+}^{2} \oplus \Lambda_{-}^{2}$, the space of self-dual and anti-self-dual 2 -forms. Thus, if $\omega \in \Lambda^{2}$, then $\omega=\omega_{+}+\omega_{-}$, where $* \omega_{+}=\omega_{+}$and $* \omega_{-}=-\omega_{-}$.

We can easily find a basis for Λ_{+}^{2} and Λ_{-}^{2}. First, define the double null basis of 1-forms:

$$
\Theta^{1}=d x^{1}+d x^{3}, \quad \Theta^{2}=d x^{2}-d x^{4}, \quad \Theta^{3}=-d x^{2}-d x^{4}, \quad \Theta^{4}=d x^{1}-d x^{3}
$$

so that the metric is

$$
d s^{2}=\Theta^{1} \otimes \Theta^{4}-\Theta^{2} \otimes \Theta^{3} .
$$

Proposition 2.1. If $\omega \in \Lambda^{2}=\Lambda_{+}^{2} \oplus \Lambda_{-}^{2}$, with $\omega=\omega_{+}+\omega_{-}$, then

$$
\begin{aligned}
& \omega_{+}=a_{1} \Theta^{1} \wedge \Theta^{2}+b_{1} \Theta^{3} \wedge \Theta^{4}+c_{1}\left(\Theta^{1} \wedge \Theta^{4}-\Theta^{2} \wedge \Theta^{3}\right) \\
& \omega_{-}=a_{2} \Theta^{1} \wedge \Theta^{3}+b_{2} \Theta^{2} \wedge \Theta^{4}+c_{2}\left(\Theta^{1} \wedge \Theta^{4}+\Theta^{2} \wedge \Theta^{3}\right)
\end{aligned}
$$

for $a_{1}, b_{1}, c_{1}, a_{2}, b_{2}, c_{2} \in \mathbb{R}$.

Proof. This follows from computing the Hodge star operator acting on 2-forms:

$$
\begin{gathered}
*\left(\Theta^{1} \wedge \Theta^{4}\right)=-\Theta^{2} \wedge \Theta^{3}, \quad *\left(\Theta^{2} \wedge \Theta^{4}\right)=-\Theta^{2} \wedge \Theta^{4}, \quad *\left(\Theta^{1} \wedge \Theta^{3}\right)=-\Theta^{1} \wedge \Theta^{3}, \\
*\left(\Theta^{3} \wedge \Theta^{4}\right)=\Theta^{3} \wedge \Theta^{4}, \quad *\left(\Theta^{1} \wedge \Theta^{2}\right)=\Theta^{1} \wedge \Theta^{2},
\end{gathered}
$$

which completes the proof.

2.2 Totally null planes

Definition 2.1. A plane $P \subset \mathbb{R}^{2,2}$ is totally null if every vector in P is null with respect to G, and the inner product of any two vectors in P is zero.

A plane P is self-dual if $\omega_{+}(P)=0$ for all $\omega_{+} \in \Lambda_{+}^{2}$, and anti-self-dual if $\omega_{-}(P)=0$ for all $\omega_{-} \in \Lambda_{-}^{2}$. Self-dual planes are also called α-planes, while anti-self-dual planes are called β-planes.

Proposition 2.2. A plane P is totally null iff P is either self-dual or anti-self-dual.
Proof. Suppose all self-dual forms vanish on P and let $\{V, W\}$ be a basis for P. Let $\left(e_{1}, e_{2}, e_{3}, e_{4}\right)$ be the vector basis of $\mathbb{R}^{2,2}$ that is dual to $\left(\Theta^{1}, \Theta^{2}, \Theta^{3}, \Theta^{4}\right)$ and $V=V^{j} e_{j}, W=W^{j} e_{j}$. Since all of the self-dual 2-forms vanish on P, we have from the expression of ω_{+}in Proposition 2.1 that

$$
\begin{gather*}
V^{1} W^{2}=W^{1} V^{2}, \quad V^{3} W^{4}=W^{3} V^{4} \tag{2.1}\\
V^{1} W^{4}-V^{2} W^{3}=W^{1} V^{4}-W^{2} V^{3} \tag{2.2}
\end{gather*}
$$

We can assume without loss of generality that V and W are orthogonal: $G(V, W)=0$, which in frame components says that

$$
V^{1} W^{4}+W^{1} V^{4}=V^{2} W^{3}+W^{2} V^{3}
$$

Combining this with equation (2.2) we have that

$$
\begin{equation*}
V^{1} W^{4}=V^{2} W^{3}, \quad W^{1} V^{4}=W^{2} V^{3} \tag{2.3}
\end{equation*}
$$

Multiplying the first equation of (2.3) by W^{1} we have $V^{1} W^{4} W^{1}=V^{2} W^{3} W^{1}$, which, by virtue of the first equation of (2.1), is $V^{1} W^{4} W^{1}=W^{2} W^{3} V^{1}$. Thus

$$
G(W, W) V^{1}=2\left(W^{1} W^{4}-W^{2} W^{3}\right) V^{1}=0
$$

Similarly, multiplying the first equation of (2.3) by W^{2}, and the second equation by W^{3} and W^{4}, applying equations (2.1), we find that

$$
G(W, W) V^{2}=G(W, W) V^{3}=G(W, W) V^{4}=0
$$

Thus, either $G(W, W)=0$ or $V=0$. Since the latter is not true, we conclude that W is a null vector.

On the other hand, multiplying the second equation of (2.3) by V^{1} and V^{2}, and the first by V^{3} and V^{4}, utilizing equations (2.1), we have

$$
G(V, V) W^{1}=G(V, V) W^{2}=G(V, V) W^{3}=G(V, V) W^{4}=0
$$

Thus V is also a null vector, and the plane spanned by V and W is totally null, as claimed. An analogous argument establishes that a plane on which all anti-self-dual 2 -forms vanish is totally null.

Conversely, suppose that a plane P is totally null. That is, in terms of a vector basis V and W as before

$$
\begin{align*}
& V^{1} V^{4}=V^{2} V^{3}, \quad W^{1} W^{4}=W^{2} W^{3} \tag{2.4}\\
& V^{1} W^{4}+V^{4} W^{1}-V^{2} W^{3}-V^{3} W^{2}=0 \tag{2.5}
\end{align*}
$$

Multiplying equation (2.5) by V^{1}, V^{3}, W^{1} and W^{3}, yields, with the aid of equations (2.4):

$$
\begin{align*}
& V^{2}\left(V^{3} W^{1}-V^{1} W^{3}\right)=V^{1}\left(V^{3} W^{2}-V^{1} W^{4}\right) \tag{2.6}\\
& V^{4}\left(V^{3} W^{1}-V^{1} W^{3}\right)=V^{3}\left(V^{3} W^{2}-V^{1} W^{4}\right) \tag{2.7}\\
& W^{2}\left(V^{1} W^{3}-V^{3} W^{1}\right)=W^{1}\left(V^{2} W^{3}-V^{4} W^{1}\right) \tag{2.8}\\
& W^{4}\left(V^{1} W^{3}-V^{3} W^{1}\right)=W^{3}\left(V^{2} W^{3}-V^{4} W^{1}\right) \tag{2.9}
\end{align*}
$$

Now, adding V^{1} times equation (2.8), W^{1} times equation (2.6), V^{3} times equation (2.9) and W^{3} times equation (2.7) and using equation (2.5), we obtain

$$
\begin{equation*}
\left(V^{1} W^{2}-V^{2} W^{1}+V^{3} W^{4}-V^{4} W^{3}\right)\left(V^{1} W^{3}-V^{3} W^{1}\right)=0 \tag{2.10}
\end{equation*}
$$

By a similar manipulation we find that

$$
\begin{equation*}
\left(V^{1} W^{2}-V^{2} W^{1}+V^{3} W^{4}-V^{4} W^{3}\right)\left(V^{2} W^{4}-V^{4} W^{2}\right)=0 \tag{2.11}
\end{equation*}
$$

Now suppose that P, in addition to being totally null, is Lagrangian. If $J(V)$ is not in P, then, since $G(W, J(V))=\Omega(W, V)=0$, the metric would be identically zero on the 3 -space spanned by $\{V, W, J(V)\}$. For a non-degenerate metric G on $\mathbb{R}^{2,2}$ this is not possible. Thus $J(V) \in P$ and so P is a complex plane. It follows easily that P is self-dual.

On the other hand, suppose that the totally null plane P is not Lagrangian. Then $\Omega(V, W) \neq 0$ or

$$
V^{1} W^{2}-V^{2} W^{1}+V^{3} W^{4}-V^{4} W^{3} \neq 0
$$

By equations (2.10) and (2.11), we have $V^{1} W^{3}-V^{3} W^{1}=V^{2} W^{4}-V^{4} W^{2}=0$. Moreover, substituting these in (2.6) to (2.9) we conclude that $V^{1} W^{4}-V^{4} W^{1}+$ $V^{2} W^{3}-V^{3} W^{2}=0$. Then, by Proposition 2.1 we must have $\omega_{-}(V, W)=0$, which completes the result.

2.3 Kähler structures on $\mathbb{R}^{2,2}$

Up to an overall sign, there are two complex structures on $\mathbb{R}^{2,2}$ that are compatible with the metric G :

$$
\left\{\begin{array}{l}
J\left(X^{1}, X^{2}, X^{3}, X^{4}\right)=\left(-X^{2}, X^{1},-X^{4}, X^{3}\right) \\
J^{\prime}\left(X^{1}, X^{2}, X^{3}, X^{4}\right)=\left(-X^{2}, X^{1}, X^{4},-X^{3}\right)
\end{array}\right.
$$

By compatibility we mean that $G(J \cdot, J \cdot)=G(\cdot, \cdot)$, and similarly for J^{\prime}.
We can utilize these and define two symplectic forms by $\Omega=G(\cdot, J \cdot)$ and $\Omega^{\prime}=$ $G\left(\cdot, J^{\prime} \cdot\right)$. That is

$$
\Omega=d x^{1} \wedge d x^{2}-d x^{3} \wedge d x^{4}, \quad \Omega^{\prime}=d x^{1} \wedge d x^{2}+d x^{3} \wedge d x^{4}
$$

Thus, the symplectic 2 -form Ω is self-dual while Ω^{\prime} is anti-self-dual. Moreover, we have the following result:

Proposition 2.3. An α-plane is holomorphic and Lagrangian with respect to (J, Ω), while a β-plane is holomorphic and Lagrangian with respect to $\left(J^{\prime}, \Omega^{\prime}\right)$.

Proof. The proof follows from arguments similar to those of Proposition 2.2.
Given a null vector V in $\mathbb{R}^{2,2}$, the planes spanned by $\{V, J(V)\}$ and $\left\{V, J^{\prime}(V)\right\}$ are easily seen to be totally null. More explicitly, the set of totally null planes is, in fact, the disjoint union $S^{1} \coprod S^{1}$, which can be parameterized as follows. For $a, b \in \mathbb{R}$, $\phi \in[0,2 \pi)$ and $\epsilon= \pm 1$, consider the vector in $\mathbb{R}^{2,2}$ given by

$$
V_{\phi}^{\epsilon}(a, b)=(a \cos \phi+b \sin \phi, a \sin \phi-b \cos \phi, a,-\epsilon b) .
$$

Let P_{ϕ}^{ϵ} be the plane containing $V_{\phi}^{\epsilon}(a, b)$ as a and b vary over \mathbb{R}. Then a quick check shows that P_{ϕ}^{+}is self-dual, while P_{ϕ}^{-}is anti-self-dual.
An alternative way of visualising the null planes is as follows.
Definition 2.2. The neutral null cone is the set of null vectors in $\mathbb{R}^{2,2}$:

$$
\mathcal{C}=\left\{X \in \mathbb{R}^{2,2} \mid G(X, X)=0\right\} .
$$

The null cone is a cone over a torus, in distinction to the lorentz $\mathbb{R}^{3,1}$ case where the null cone is a cone over a 2 -sphere. To see the torus, simply note that the map $f: \mathbb{R} \times S^{1} \times S^{1} \rightarrow \mathcal{C}$

$$
f\left(a, \theta_{1}, \theta_{2}\right)=\left(a \cos \theta_{1}, a \sin \theta_{1}, a \cos \theta_{2}, a \sin \theta_{2}\right)
$$

parameterizes the null vectors as a cone.
Since every vector that lies in a totally null plane is null, we can picture a null plane as a cone over a circle in \mathcal{C}. A straight-forward calculation shows that:

Proposition 2.4. A totally null plane is a cone over either a (1,1)-curve or a (1,-$1)$-curve on the torus, the former for an α-plane, the latter for a β-plane.

By rotating around the meridian we see that the set of totally null planes is $S^{1} \amalg S^{1}$ 。

2.4 Neutral Kähler surfaces

Let (M, G, J, Ω) be a smooth neutral Kähler 4-manifold. Thus M is a smooth 4manifold, G is a neutral metric, while J is a complex structure that is compatible with G and $\Omega(\cdot, \cdot)=G(J \cdot, \cdot)$ is a closed non-degenerate (symplectic) 2-form.

The existence of a unitary frame at a point of M implies that it is possible to apply the algebra of the last section pointwise on M, and we therefore have $S^{1} \cup S^{1}$ worth of totally null planes at each point. On a compact 4-manifold, the existence of an oriented 2-dimensional distribution implies topological restrictions on M [6], and so not every compact 4-manifold admits a neutral Kähler structure. However, the examples we consider are non-compact and the neutral Kähler structure will be given explicitly.

On any (pseudo)-Riemannian 4-manifold (M, G) the Riemann curvature tensor can be considered as an endomorphism of $\Lambda^{2}(M)$. The splitting $\Lambda^{2}(M)=\Lambda_{+}^{2}(M) \oplus$ $\Lambda_{-}^{2}(M)$ with respect to the Hodge star operator $*$ yields a block decomposition of the Riemann curvature tensor

$$
\operatorname{Riem}=\left(\begin{array}{cc}
\text { Weyl }^{+}+\frac{1}{12} \mathrm{R} & \text { Ric } \\
\text { Ric } & \text { Weyl }^{-}+\frac{1}{12} \mathrm{R}
\end{array}\right)
$$

where Ric is the Ricci tensor, R is the scalar curvature and Weyl ${ }^{ \pm}$are the self- and anti-self-dual Weyl curvature tensors [1].
Definition 2.3. A (pseudo)-Riemannian 4-manifold (M, G) is anti-self-dual if the self-dual part of the Weyl conformal curvature tensor vanishes: $\mathrm{Weyl}^{+}=0$.

A well-known result of Penrose states:
Theorem 2.5. [8] The α-surfaces of a neutral Kähler 4-manifold (M, G) are integrable iff (M, G) is anti-self-dual.

3 Neutral Kähler metrics on $T N$

Let (N, g) be a Riemannian 2-manifold and consider the total space $T N$ of the tangent bundle to N. Choose conformal coordinates ξ on N so that $d s^{2}=e^{2 u} d \xi d \bar{\xi}$ for some function $u=u(\xi, \bar{\xi})$, and the corresponding complex coordinates (ξ, η) on $T N$ obtained by identifying

$$
(\xi, \eta) \leftrightarrow \eta \frac{\partial}{\partial \xi}+\bar{\eta} \frac{\partial}{\partial \bar{\xi}} \in T_{\xi} N
$$

The coordinates (ξ, η) define a natural complex structure on $T N$ by

$$
J\left(\frac{\partial}{\partial \xi}\right)=i \frac{\partial}{\partial \xi} \quad J\left(\frac{\partial}{\partial \eta}\right)=i \frac{\partial}{\partial \eta} .
$$

In [4] a neutral Kähler structure was introduced on $T N$. In the above coordinate system, the symplectic 2 -form is

$$
\begin{equation*}
\Omega=2 e^{2 u} \mathbb{R} e\left(d \eta \wedge d \bar{\xi}+2 \eta \partial_{\xi} u d \xi \wedge d \bar{\xi}\right) \tag{3.1}
\end{equation*}
$$

while the neutral metric \mathbb{G} is

$$
\begin{equation*}
\mathbb{G}=2 e^{2 u} \operatorname{Im}\left(d \bar{\eta} d \xi-2 \eta \partial_{\xi} u d \xi d \bar{\xi}\right) \tag{3.2}
\end{equation*}
$$

Here we have introduced the notation ∂_{ξ} for differentiation with respect to ξ. note:

When $u=0$, we retrieve the neutral Kähler metric on $\mathbb{R}^{4}=T \mathbb{R}^{2}$, where

$$
\xi=\frac{1}{2}\left[x^{1}+x^{3}+i\left(x^{2}+x^{4}\right)\right], \quad \eta=\frac{1}{2}\left[x^{2}-x^{4}+i\left(-x^{1}+x^{3}\right)\right]
$$

or

$$
\begin{array}{lll}
x^{1}=\frac{1}{2}[\xi+\bar{\xi}+i(\eta-\bar{\eta})], & x^{2}=\frac{1}{2}[-i(\xi-\bar{\xi})+\eta+\bar{\eta}], \\
x^{3}=\frac{1}{2}[\xi+\bar{\xi}-i(\eta-\bar{\eta})], & x^{4}=\frac{1}{2}[-i(\xi-\bar{\xi})-\eta-\bar{\eta}] .
\end{array}
$$

Proposition 3.1. The double null basis for $(T N, G)$ is

$$
\begin{array}{ll}
\Theta^{1}=2 \mathbb{R} e(d \xi), & \Theta^{2}=2 e^{2 u} \mathbb{R} e\left(d \eta+2 \eta \partial_{\xi} u d \xi\right) \\
\Theta^{3}=2 \mathbb{I} m(d \xi), & \Theta^{4}=2 e^{2 u} \mathbb{I} m\left(d \eta+2 \eta \partial_{\xi} u d \xi\right)
\end{array}
$$

Proof. A straight-forward check shows that

$$
d s^{2}=\Theta^{1} \otimes \Theta^{4}-\Theta^{2} \otimes \Theta^{3},
$$

as claimed.

The coordinate expressions for self-dual and anti-self-dual 2-forms on $T N$ are
Proposition 3.2. If $\omega \in \Lambda^{2}(T N)=\Lambda_{+}^{2}(T N) \oplus \Lambda_{-}^{2}(T N)$, with $\omega=\omega_{+}+\omega_{-}$, then

$$
\begin{aligned}
& \omega_{+}=a_{1}(d \xi \wedge d \eta+d \bar{\xi} \wedge d \bar{\eta})+b_{1}\left[d \xi \wedge d \bar{\eta}+d \bar{\xi} \wedge d \eta+2\left(\bar{\eta} \partial_{\bar{\xi}} u-\eta \partial_{\xi} u\right) d \xi \wedge d \bar{\xi}\right] \\
& \quad+i c_{1}(d \xi \wedge d \eta-d \bar{\xi} \wedge d \bar{\eta}) \\
& \omega_{-}=i a_{2} d \xi \wedge d \bar{\xi}+i b_{2}\left[d \xi \wedge d \bar{\eta}-d \bar{\xi} \wedge d \eta+2\left(\bar{\eta} \partial_{\bar{\xi}} u+\eta \partial_{\xi} u\right) d \xi \wedge d \bar{\xi}\right] \\
& \\
& \quad+i c_{2}\left(d \eta \wedge d \bar{\eta}+2 \eta \partial_{\xi} u d \xi \wedge d \bar{\eta}+2 \bar{\eta} \partial_{\bar{\xi}} u d \bar{\xi} \wedge d \eta+4 \eta \bar{\eta} \partial_{\xi} u \partial_{\bar{\xi}} u d \xi \wedge d \bar{\xi}\right)
\end{aligned}
$$

for $a_{1}, b_{1}, c_{1}, a_{2}, b_{2}, c_{2} \in \mathbb{R}$.

3.1α-surfaces in $T N$

We first note that
Proposition 3.3. The neutral Kähler metric G on $T N$ is anti-self-dual.
Proof. A calculation using the coordinate expression (3.2) of the metric shows that the only non-vanishing component of the conformal curvature tensor is

$$
W_{\xi \bar{\xi}}{ }^{\eta \bar{\eta}}=i\left(\eta \partial_{\xi} \kappa-\bar{\eta} \partial_{\bar{\xi}} \kappa\right),
$$

where κ is the Gauss curvature of (N, g). Thus, from Proposition 3.2, for any $\omega_{+} \in$ $\Lambda_{+}^{2}(T N), W\left(\omega_{+}\right)=0$. That is, the metric is anti-self-dual.

By applying Theorem 2.5 we have:
Corollary 3.4. There exists α-surfaces, i.e. holomorphic Lagrangian surfaces, in $(T N, J, \Omega)$.

3.2β-surfaces in $T N$

Proposition 3.5. An immersed surface $\Sigma \subset T N$ is a β-surface iff locally it is given by $(s, t) \rightarrow(\xi(s, t), \eta(s, t))$ where

$$
\xi=s e^{i C_{0}}+\xi_{0}, \quad \eta=\left(t e^{i C_{0}}+\eta_{0}\right) e^{-2 u}
$$

for $C_{0} \in \mathbb{R}$ and $\xi_{0}, \eta_{0} \in C$.
Proof. By Proposition 3.2 surface $f: \Sigma \rightarrow T N$ is a β-surface iff

$$
\begin{equation*}
f^{*}(d \xi \wedge d \bar{\xi})=0, \quad f^{*}\left(d\left(\eta e^{2 u}\right) \wedge d\left(\bar{\eta} e^{2 u}\right)\right)=0 \tag{3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
f^{*}\left(d \xi \wedge d\left(\bar{\eta} e^{2 u}\right)-d \bar{\xi} \wedge d\left(\eta e^{2 u}\right)\right)=0 \tag{3.4}
\end{equation*}
$$

The first equation of (3.3) implies that the map $(s, t) \rightarrow \xi(s, t)$ is not of maximal rank, and as it cannot be of rank zero (as this would mean that Σ is a fibre of $\pi: T N \rightarrow N$, and is therefore an α-surface) it must be of rank 1. By the implicit function theorem either

$$
\xi(s, t)=\xi(s, t(s)) \quad \text { or } \quad \xi(s, t)=\xi(s(t), t)
$$

Without loss of generality, we will assume the former: $\xi=\xi(s)$.
Similarly, the second equation of (3.3) implies that either

$$
\eta e^{2 u}=\psi(s, t)=\psi(s, t(s)) \quad \text { or } \quad \eta e^{2 u}=\psi(s, t)=\psi(s(t), t)
$$

Here, we must have the latter $\eta e^{2 u}=\psi(t)$, or else the surface Σ would be singular. Turning now to equation of (3.4), we have

$$
\frac{d \xi}{d s} \frac{d \bar{\psi}}{d t}=\frac{d \bar{\xi}}{d s} \frac{d \psi}{d t}
$$

By separation of variables we see that

$$
\frac{d \xi}{d s}=e^{2 i C_{0}} \frac{d \bar{\xi}}{d s}, \quad \frac{d \psi}{d s}=e^{2 i C_{0}} \frac{d \bar{\psi}}{d s}
$$

for some real constant C_{0}. These can be integrated to

$$
\xi=h_{1}(s) e^{i C_{0}}+\xi_{0}, \quad \eta=\left(h_{2}(t) e^{i C_{0}}+\eta_{0}\right) e^{-2 u}
$$

for complex constants ξ_{0} and η_{0} and real functions h_{1} and h_{2} of s and t, respectively. Finally, we can reparameterize s and t so that $h_{1}=s$ and $h_{2}=t$, as claimed.

3.3 The oriented geodesic spaces $T S^{2}$ and $T H^{2}$

In the cases where $N=S^{2}$ or $N=H^{2}$ endowed with a metric of constant Gauss curvature $\left(e^{2 u}=4(1 \pm \xi \bar{\xi})^{-2}\right)$, the above construction yields the neutral Kähler metric on the space $L\left(E^{3}\right)$ of oriented affine lines or on the space $L\left(E_{1}^{3}\right)$ of future-pointing time-like lines, in E^{3} or E_{1}^{3} (respectively) [5].

In what follows we consider only the Euclidean case, although analogous results hold for the Lorentz case. We define the map Φ which sends $L\left(E^{3}\right) \times \mathbb{R}$ to E^{3} as follows: Φ takes an oriented line γ and a real number r to that point in E^{3} which lies on γ and is an affine parameter distance r from the point on γ closest to the origin.

Proposition 3.6. [4] The map can be written as $\Phi((\xi, \eta), r)=(z, t) \in C \oplus \mathbb{R}=E^{3}$ where the local coordinate expressions are:

$$
\begin{cases}z=\frac{2\left(\eta-\bar{\eta} \xi^{2}\right)+2 \xi(1+\xi \bar{\xi}) r}{(1+\xi \bar{\xi})^{2}}, & t=\frac{-2(\eta \bar{\xi}+\bar{\eta} \xi)+\left(1-\xi^{2} \bar{\xi}^{2}\right) r}{(1+\xi \xi)^{2}} \\ e t a=\frac{1}{2}\left(z-2 t \xi-\bar{z} \xi^{2}\right), & r=\frac{\bar{\xi} z+\xi \bar{z}+(1-\xi \bar{\xi}) t}{1+\xi \bar{\xi}}\end{cases}
$$

For α-surfaces, we have
Proposition 3.7. A holomorphic Lagrangian surface in $T S^{2}$ corresponds to the oriented normals to totally umbilic surfaces in E^{3} i.e. round spheres or planes.

On the other hand:
Proposition 3.8. A β-surface in $T S^{2}$ is an affine tangent bundle over a curve of constant geodesic curvature in $\left(S^{2}, g_{r n d}\right)$.

Proof. By Proposition 3.5, the β-surfaces are given by

$$
\xi=s e^{i C_{0}}+\xi_{0}, \quad \eta=(1+\xi \bar{\xi})^{2}\left(t e^{i C_{0}}+\eta_{0}\right)
$$

Clearly this is a real line bundle over a curve on S^{2}. By a rotation this can be simplified to

$$
\xi=s+\xi_{0} e^{-i C_{0}}, \quad \eta=(1+\xi \bar{\xi})^{2}\left(t+\eta_{0} e^{-i C_{0}}\right)
$$

and after an affine reparameterization of s and t we can set

$$
\xi=s+i C_{1}, \quad \eta=(1+\xi \bar{\xi})^{2}\left(t+i C_{2}\right)
$$

Projecting onto S^{2} we get the curve $\xi=s+i C_{1}$ with unit tangent \vec{T} and normal vector \vec{N} (with respect to the round metric)

$$
\vec{T}=\frac{(1+\xi \bar{\xi})}{2 \sqrt{2}}\left(\frac{\partial}{\partial \xi}+\frac{\partial}{\partial \bar{\xi}}\right), \quad \vec{N}=\frac{i(1+\xi \bar{\xi})}{2 \sqrt{2}}\left(\frac{\partial}{\partial \xi}-\frac{\partial}{\partial \bar{\xi}}\right)
$$

Considered as a set of vectors on S^{2}, the β-surface is

$$
\begin{aligned}
\eta \frac{\partial}{\partial \xi}+\bar{\eta} \frac{\partial}{\partial \bar{\xi}} & =(1+\xi \bar{\xi})^{2}\left(t+i C_{2}\right) \frac{\partial}{\partial \xi}+(1+\xi \bar{\xi})^{2}\left(t-i C_{2}\right) \frac{\partial}{\partial \bar{\xi}} \\
& =2 \sqrt{2}(1+\xi \bar{\xi})\left(t \vec{T}+C_{2} \vec{N}\right)
\end{aligned}
$$

These form a real line bundle over the base curve - which do not pass through the origin in the fibre of $T S^{2}$ for $C_{2} \neq 0$. For $C_{2}=0$, this is exactly the tangent bundle to the curve. The geodesic curvature of this curve is

$$
\begin{aligned}
g\left(\vec{N}, \nabla_{\vec{T}} \vec{T}\right) & =N_{k} T^{j}\left(\partial_{j} T^{k}+\Gamma_{j l}^{k} T^{l}\right) \\
& =N_{k} T^{j} \partial_{j} T^{k}+N^{k} T^{j} T^{l}\left(2 \partial_{j} g_{l k}-\partial_{k} g_{j l}\right)=\sqrt{2} C_{1}
\end{aligned}
$$

which completes the proof.
A similar calculation establishes:
Proposition 3.9. A β-surface in $T H^{2}$ is an affine tangent bundle over a curve of constant geodesic curvature in $\left(H^{2}, g_{\text {hyp }}\right)$.
We also have the following:
Corollary 3.10. Given an affine plane P in E^{3}, the set $L\left(E^{2}\right)$ of oriented lines contained in P is a β-surface in $T S^{2}$.

Proof. By Proposition 3.5, the β-surfaces are given by

$$
\xi=s e^{i C_{0}}+\xi_{0}, \quad \eta=(1+\xi \bar{\xi})^{2}\left(t e^{i C_{0}}+\eta_{0}\right)
$$

Isometries of E^{3} induce isometries on $T S^{2}$ and hence preserve β-surfaces. Thus we can translate and rotate P so that it is vertical and contains the t-axis. Thus we can consider the β-surface Σ with $\xi_{0}=\eta_{0}=0$, and then using the map Φ we find the two parameter family of oriented lines in E^{3} to be

$$
z=\frac{2\left[\left(1-s^{4}\right) t+s r\right]}{1+s^{2}} e^{i C_{0}}, \quad t=\frac{-4 s\left(1+s^{2}\right) t+\left(1-s^{2}\right) r}{1+s^{2}}
$$

This is a vertical plane containing the t-axis, and Σ consists of all the oriented lines in this plane.

4 Oriented geodesics in hyperbolic 3-space

We briefly recall the basic construction of the canonical neutral Kähler metric on the space $L\left(H^{3}\right)$ of oriented geodesics of H^{3} - further details can be found in [2].

Consider the 4-manifold $P^{1} \times P^{1}$ endowed with the canonical complex structure $J=j \oplus j$ and complex coordinates μ_{1} and μ_{2}. If we let $\bar{\Delta}=\left\{\left(\mu_{1}, \mu_{2}\right): \mu_{1} \bar{\mu}_{2}=-1\right\}$ then $L\left(H^{3}\right)=P^{1} \times P^{1}-\bar{\Delta}$. We introduce the neutral Kähler metric and symplectic form on $L\left(H^{3}\right)$ by

$$
\begin{equation*}
G=-i\left[\frac{1}{\left(1+\mu_{1} \bar{\mu}_{2}\right)^{2}} d \mu_{1} \otimes d \bar{\mu}_{2}-\frac{1}{\left(1+\bar{\mu}_{1} \mu_{2}\right)^{2}} d \bar{\mu}_{1} \otimes d \mu_{2}\right] \tag{4.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\Omega=-\left[\frac{1}{\left(1+\mu_{1} \bar{\mu}_{2}\right)^{2}} d \mu_{1} \wedge d \bar{\mu}_{2}+\frac{1}{\left(1+\bar{\mu}_{1} \mu_{2}\right)^{2}} d \bar{\mu}_{1} \wedge d \mu_{2}\right] \tag{4.2}
\end{equation*}
$$

Proposition 4.1. A double null basis for $\left(L\left(H^{3}\right), G\right)$ is

$$
\begin{array}{rlrl}
\Theta^{1} & =\operatorname{Re}\left(\frac{d \mu_{1}}{1+\mu_{1} \bar{\mu}_{2}}-\frac{d \mu_{2}}{1+\bar{\mu}_{1} \mu_{2}}\right), & \Theta^{2} & =\operatorname{Re}\left(\frac{d \mu_{1}}{1+\mu_{1} \bar{\mu}_{2}}+\frac{d \mu_{2}}{1+\bar{\mu}_{1} \mu_{2}}\right), \\
\Theta^{3} & =-\operatorname{Im}\left(\frac{d \mu_{1}}{1+\mu_{1} \bar{\mu}_{2}}-\frac{d \mu_{2}}{1+\bar{\mu}_{1} \mu_{2}}\right), & \Theta^{4}=-\operatorname{Im}\left(\frac{d \mu_{1}}{1+\mu_{1} \bar{\mu}_{2}}+\frac{d \mu_{2}}{1+\bar{\mu}_{1} \mu_{2}}\right) .
\end{array}
$$

Proof. A straight-forward computation shows that

$$
d s^{2}=\Theta^{1} \otimes \Theta^{4}-\Theta^{2} \otimes \Theta^{3}
$$

as claimed
The coordinate expressions for self-dual and anti-self-dual 2 forms on $L\left(H^{3}\right)$ are easily found to be:
Proposition 4.2. If $\omega \in \Lambda^{2}\left(L\left(H^{3}\right)\right)=\Lambda_{+}^{2}\left(L\left(H^{3}\right)\right) \oplus \Lambda_{-}^{2}\left(L\left(H^{3}\right)\right)$, with $\omega=\omega_{+}+\omega_{-}$, then
$\omega_{+}=\left(a_{1}+i c_{1}\right) \frac{d \mu_{1} \wedge d \mu_{2}}{\left|1+\bar{\mu}_{1} \mu_{2}\right|^{2}}+\left(a_{1}-i c_{1}\right) \frac{d \bar{\mu}_{1} \wedge d \bar{\mu}_{2}}{\left|1+\bar{\mu}_{1} \mu_{2}\right|^{2}}+b_{1}\left[\frac{d \mu_{1} \wedge d \bar{\mu}_{2}}{\left(1+\mu_{1} \bar{\mu}_{2}\right)^{2}}+\frac{d \bar{\mu}_{1} \wedge d \mu_{2}}{\left(1+\bar{\mu}_{1} \mu_{2}\right)^{2}}\right]$,
$\omega_{-}=-i\left(a_{2}+c_{2}\right) \frac{d \mu_{1} \wedge d \bar{\mu}_{1}}{\left|1+\bar{\mu}_{1} \mu_{2}\right|^{2}}-i\left(a_{2}-c_{2}\right) \frac{d \mu_{2} \wedge d \bar{\mu}_{2}}{\left|1+\bar{\mu}_{1} \mu_{2}\right|^{2}}+i b_{2}\left[\frac{d \mu_{1} \wedge d \bar{\mu}_{2}}{\left(1+\mu_{1} \bar{\mu}_{2}\right)^{2}}-\frac{d \bar{\mu}_{1} \wedge d \mu_{2}}{\left(1+\bar{\mu}_{1} \mu_{2}\right)^{2}}\right]$.

4.1 $\quad \alpha$-surfaces in $L\left(H^{3}\right)$

Once again, the neutral metric on $L\left(H^{3}\right)$ is anti-self-dual, indeed, it is conformally flat, and so there exists α-surfaces in $L\left(H^{3}\right)$. These are found to be the normal congruence to the totally umbilic surfaces in H^{3} :
Proposition 4.3. [3] A smooth surface Σ in $L\left(H^{3}\right)$ is totally null iff Σ is the oriented normal congruence of

1. a geodesic sphere, or
2. a horosphere, or
3. a totally geodesic surface
in H^{3}.

4.2β-surfaces in $L\left(H^{3}\right)$

Proposition 4.4. Let Σ be a β-surface in $L\left(H^{3}\right)$. Then Σ is a piece of a torus which, up to isometry, is either

1. $L\left(H^{2}\right)$, where $H^{2} \subset H^{3}$, or
2. $\mathcal{C}_{1} \times \mathcal{C}_{2} \subset S^{2} \times S^{2}-\bar{\Delta}$, where the \mathcal{C}_{1} is a circle given by the intersection of the 2-sphere and a plane containing the north pole, and \mathcal{C}_{2} is the image of \mathcal{C}_{1} under reflection in the horizontal plane through the origin.

Proof. Let $f: \Sigma \rightarrow L\left(H^{3}\right)$ be an immersed β-surface. Then for every anti-self-dual 2 -form ω_{-}we have $f^{*} \omega_{-}=0$. Then we obtain the following equations

$$
\begin{gather*}
f^{*}\left(d \mu_{1} \wedge d \bar{\mu}_{1}\right)=0, \quad f^{*}\left(d \mu_{2} \wedge d \bar{\mu}_{2}\right)=0 \tag{4.3}\\
f^{*}\left(\frac{d \mu_{1} \wedge d \bar{\mu}_{2}}{\left(1+\mu_{1} \bar{\mu}_{2}\right)^{2}}-\frac{d \bar{\mu}_{1} \wedge d \mu_{2}}{\left(1+\bar{\mu}_{1} \mu_{2}\right)^{2}}\right)=0 \tag{4.4}
\end{gather*}
$$

The first equation of (4.3) implies that the map $(u, v) \mapsto \mu_{1}(u, v)$ is not of maximal rank and since it cannot be of rank zero (otherwise Σ would be an α-surface) it must be of rank 1. By the implicit function theorem either

$$
\mu_{1}(u, v)=\mu_{1}(u, v(u)) \quad \text { or } \quad \mu_{1}(u, v)=\mu_{1}(u(v), v)
$$

Without loss of generality, we will assume the former: $\mu_{1}=\mu_{1}(u)$.
Similarly, the second equation of (4.3) implies that

$$
\mu_{2}(u, v)=\mu_{2}(u, v(u)) \quad \text { or } \quad \mu_{2}(u, v)=\mu_{2}(u(v), v)
$$

Here, we must have $\mu_{2}=\mu_{2}(v)$, or else the surface Σ would be singular.
The equation (4.4) yields

$$
\begin{align*}
& \ln \mu_{2}-\ln \bar{\mu}_{2}+\ln \left(1+\bar{\mu}_{1} \mu_{2}\right)-\ln \left(1+\mu_{1} \bar{\mu}_{2}\right)=h_{1}(u)+h_{2}(v) \tag{4.5}\\
& \ln \bar{\mu}_{1}-\ln \mu_{1}+\ln \left(1+\bar{\mu}_{1} \mu_{2}\right)-\ln \left(1+\mu_{1} \bar{\mu}_{2}\right)=w_{1}(u)+w_{2}(v) \tag{4.6}
\end{align*}
$$

for some complex functions $h_{1}, h_{2}, w_{1}, w_{2}$.
If $h_{i}=a_{i} e^{i \phi_{i}}$ for $i=1,2$, where $a_{1}=a_{1}(u), \phi_{1}=\phi_{1}(u)$ and $a_{2}=a_{2}(v), \phi_{2}=$ $\phi_{2}(v)$ are real functions, we obtain

$$
h_{1}(u)=i a_{1} \quad h_{2}(v)=i a_{2}
$$

By a similar argument, there are real functions $b_{1}=b_{1}(u)$ and $b_{2}=b_{2}(v)$ such that (4.5) and (4.6) become

$$
\begin{align*}
& \ln \mu_{2}-\ln \bar{\mu}_{2}+\ln \left(1+\bar{\mu}_{1} \mu_{2}\right)-\ln \left(1+\mu_{1} \bar{\mu}_{2}\right)=i\left(a_{1}(u)+a_{2}(v)\right) \tag{4.7}\\
& \ln \bar{\mu}_{1}-\ln \mu_{1}+\ln \left(1+\bar{\mu}_{1} \mu_{2}\right)-\ln \left(1+\mu_{1} \bar{\mu}_{2}\right)=i\left(b_{1}(u)+b_{2}(v)\right) \tag{4.8}
\end{align*}
$$

Finally from combining equations (4.7) and (4.8) we have

$$
\ln \left(\frac{1+\bar{\mu}_{1} \mu_{2}}{1+\mu_{1} \bar{\mu}_{2}}\right)=-2 i(f(u)+g(v))
$$

We are thus led to consider the curves $\mathcal{C}_{1}, \mathcal{C}_{2}$ on S^{2} given locally by non-constant functions $\mu_{1}: \mathbb{R} \rightarrow S^{2}: u \mapsto \mu_{1}(u)$ and $\mu_{2}: \mathbb{R} \rightarrow S^{2}: v \mapsto \mu_{2}(v)$ which satisfy

$$
1+\mu_{1} \bar{\mu}_{2}=\left(1+\bar{\mu}_{1} \mu_{2}\right) e^{2 i(f+g)}
$$

for $f=f(u)$ and $g=g(v)$.
If we switch to polar coordinates $\mu_{1}=\lambda_{1}(u) e^{i \theta_{1}(u)}$ and $\mu_{2}=\lambda_{2}(v) e^{i \theta_{2}(v)}$, this reduces to

$$
\begin{equation*}
\sin [f(u)+g(v)]=\lambda_{1}(u) \lambda_{2}(v) \sin \left[\theta_{1}(u)-f(u)-\theta_{2}(v)-g(v)\right] \tag{4.9}
\end{equation*}
$$

By a rotation we can set μ_{2} to zero for some $v=v_{0}$, that is, $\lambda_{2}\left(v_{0}\right)=0$. We find from equation (4.9) that

$$
\sin \left[f(u)+g\left(v_{0}\right)\right]=0
$$

and so letting $g_{0}=g\left(v_{0}\right)$, we conclude that $f=-g_{0}$. Putting this back into (4.9) we have

$$
\begin{equation*}
\sin \left[g(v)-g_{0}\right]=\lambda_{1}(u) \lambda_{2}(v) \sin \left[\theta_{1}(u)-\theta_{2}(v)-g(v)+g_{0}\right] \tag{4.10}
\end{equation*}
$$

Thus for a fixed $u=u_{0}$ we have
$\lambda_{1}\left(u_{0}\right) \lambda_{2}(v) \sin \left[\theta_{1}\left(u_{0}\right)-\theta_{2}(v)-g(v)+g_{0}\right]=\lambda_{1}(u) \lambda_{2}(v) \sin \left[\theta_{1}(u)-\theta_{2}(v)-g(v)+g_{0}\right]$, or, for $v \neq v_{0}$

$$
\begin{equation*}
\lambda_{1}\left(u_{0}\right) \sin \left[\theta_{1}\left(u_{0}\right)-\theta_{2}(v)-g(v)+g_{0}\right]=\lambda_{1}(u) \sin \left[\theta_{1}(u)-\theta_{2}(v)-g(v)+g_{0}\right] \tag{4.11}
\end{equation*}
$$

Differentiating this relationship with respect to v yields

$$
\begin{align*}
& \lambda_{1}\left(u_{0}\right) \cos \left[\theta_{1}\left(u_{0}\right)-\theta_{2}(v)-g(v)+g_{0}\right] \partial_{v}\left(\theta_{2}+g\right) \\
& \quad=\lambda_{1}(u) \cos \left[\theta_{1}(u)-\theta_{2}(v)-g(v)+g_{0}\right] \partial_{v}\left(\theta_{2}+g\right) \tag{4.12}
\end{align*}
$$

If $\partial_{v}\left(\theta_{2}+g\right) \neq 0$, then we can cancel this factor and square both sides of equations (4.11) and (4.12) to find that $\lambda_{1}=\lambda_{1}\left(u_{0}\right)$. However, from the functional relation in equation (4.10), this means that θ_{1} is also constant. Thus μ_{1} would be constant, which is not true.

We conclude that $\partial_{v}\left(\theta_{2}+g\right)=0$, or equivalently, $g(v)=-\theta_{2}(v)+g_{1}$. Substituting this back into equation (4.10) we have

$$
\sin \left[\theta_{2}(v)+C_{0}\right]=\lambda_{1}(u) \lambda_{2}(v) \sin \left[\theta_{1}(u)+C_{0}\right]
$$

where $C_{0}=g_{0}-g_{1}$.
One solution of this equation is $\theta_{1}=\theta_{2}=-C_{0}$, which is the case $\Sigma=L\left(H^{2}\right)$, where $H^{2} \subset H^{3}$. Otherwise, we can separate variables

$$
\frac{\left.\sin \left[\theta_{2}(v)+C_{0}\right)\right]}{\lambda_{2}(v)}=\lambda_{1}(u) \sin \left[\theta_{1}(u)+C_{0}\right]=C_{1} \neq 0
$$

This yields

$$
\mu_{1}=\frac{C_{1} e^{i \theta_{1}(u)}}{\sin \left[\theta_{1}(u)+C_{0}\right]}, \quad \mu_{2}=\frac{\sin \left[\theta_{2}(v)+C_{0}\right] e^{i \theta_{2}(v)}}{C_{1}}
$$

By a rotation of S^{2} we can set C_{0} to zero, and with a natural choice of parameterization of the curves, the final form is

$$
\mu_{1}=\frac{C_{1} e^{i u}}{\sin u}, \quad \mu_{2}=\frac{\sin v e^{i v}}{C_{1}}
$$

for $u, v \in[0,2 \pi)$.
These are the tori of part (2) in the statement. To see that they are circles note that if we view S^{2} in \mathbb{R}^{3} given by

$$
x=\frac{\mu+\bar{\mu}}{1+\mu \bar{\mu}}, \quad y=\frac{-i(\mu-\bar{\mu})}{1+\mu \bar{\mu}}, \quad z=\frac{1-\mu \bar{\mu}}{1+\mu \bar{\mu}}
$$

then the first curve parameterizes the intersection of S^{2} with the plane $y+C_{1}(z-1)=$ 0 , while the second is the intersection with the plane $y-C_{1}(z+1)=0$.

In the ball model of H^{3} these 2-parameter families of geodesics can be visualized as the set of geodesics that begin on a circle on the boundary and end on another circle of the same radius on the boundary, the two circles having a single point of intersection, as illustrated below.

References

[1] A. L. Besse, Einstein Manifolds, Springer-Verlag, Berlin 1987.
[2] N. Georgiou and B. Guilfoyle, On the space of oriented geodesics of hyperbolic 3-space, Rocky Mountain J. Math. 40 (2010), 1183-1219.
[3] N. Georgiou and B. Guilfoyle, A characterization of Weingarten surfaces in hyperbolic 3-space, Abh. Math. Sem. Univ. Hambg. 80 (2010), 233-253.
[4] B. Guilfoyle and W. Klingenberg, An indefinite Kähler metric on the space of oriented lines, J. London Math. Soc. 72 (2005), 497-509.
[5] B. Guilfoyle and W. Klingenberg, On Weingarten surfaces in Euclidean and Lorentzian 3-space, Differential Geom. Appl. 28 (2010), 454-468.
[6] F. Hirzebruch and H. Hopf, Felder von Flächenelementen in 4-dimensionalen Mannigfaltigkeiten, Math. Ann. 136 (1958), 156-172.
[7] H. Kamada and Y. Machida, Self-duality of metrics of type (2,2) on fourdimensional manifolds, Tohoku Math. J. 49 (1997), 259-275.
[8] R. Penrose, Non-linear gravitons and curved twistor theory, Gen. Rel. Grav. 7 (1976), 31-52.

Authors' addresses:
Nikos Georgiou
Department of Mathematics
Waterford Institute of Technology
Waterford, Co. Waterford, Ireland.
E-mail: ngeorgiou@wit.ie
Brendan Guilfoyle
School of Science, Technology, Engineering and Mathematics
Institute of Technology, Tralee, Clash Tralee, Co. Kerry, Ireland.
E-mail: brendan.guilfoyle@ittralee.ie
Wilhelm Klingenberg
Department of Mathematical Sciences, University of Durham,
Durham DH1 3LE, United Kingdom.
E-mail: wilhelm.klingenberg@durham.ac.uk

[^0]: Balkan Journal of Geometry and Its Applications, Vol.21, No.1, 2016, pp. 27-41.
 (C) Balkan Society of Geometers, Geometry Balkan Press 2016.

