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Totally null surfaces in neutral Kähler 4-manifolds

N. Georgiou, B. Guilfoyle, W. Klingenberg

Abstract. We study the totally null surfaces of the neutral Kähler met-
ric on certain 4-manifolds. The tangent spaces of totally null surfaces
are either self-dual (α-planes) or anti-self-dual (β-planes) and so we con-
sider α-surfaces and β-surfaces. The metric of the examples we study,
which include the spaces of oriented geodesics of 3-manifolds of constant
curvature, are anti-self-dual, and so it is well-known that the α-planes
are integrable and α-surfaces exist. These are holomorphic Lagrangian
surfaces, which for the geodesic spaces correspond to totally umbilic foli-
ations of the underlying 3-manifold. The β-surfaces are less known and
our interest is mainly in their description. In particular, we classify the
β-surfaces of the neutral Kähler metric on TN , the tangent bundle to a
Riemannian 2-manifold N . These include the spaces of oriented geodesics
in Euclidean and Lorentz 3-space, for which we show that the β-surfaces
are affine tangent bundles to curves of constant geodesic curvature on S2

and H2, respectively. In addition, we construct the β-surfaces of the space
of oriented geodesics of hyperbolic 3-space.

M.S.C. 2010: 53B30, 53A25.
Key words: neutral Kaehler surface; self-duality; α-planes; β-planes.

1 Introduction

Neutral Kähler 4-manifolds exhibit remarkably different behavior than their positive-
definite counterparts. The failure of the complex structure J to tame the symplectic
structure Ω means that 2-planes in the tangent space of a point can be both holo-
morphic and Lagrangian. Under favorable conditions (namely the vanishing of the
self-dual conformal curvature) such planes are integrable and there exist holomorphic
Lagrangian surfaces.

In the space L(M) of oriented geodesics of a 3-manifold of constant curvature M
(on which a natural neutral Kähler structure exists) such surfaces play a distinctive
role: they correspond to totally umbilic foliations of M (see [2, 4, 5]).

Holomorphic Lagrangian planes are totally null, that is, the induced metric iden-
tically vanishes on the plane. Moreover, with respect to the Hodge star operator of
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the neutral metric, the self-dual 2-forms vanish on these planes. There exists however
another class of totally null planes, upon which the anti-self-dual forms vanish. The
former planes are referred to as α-planes, while the latter are β-planes.

In this note we consider the β-surfaces in certain neutral Kähler 4-manifolds, which
include spaces L(M) of oriented geodesics of 3-manifolds M of constant curvature.
In the cases of M = E3, E3

1 , H
3 we compute the β-surfaces explicitly and show that

they include L(E2), L(H2). In particular, we prove:

Main Theorem. A β-surface in L(E3) is an affine tangent bundle over a curve of
constant geodesic curvature in (S2, grnd).

A β-surface in L(E3
1) is an affine tangent bundle over a curve of constant geodesic

curvature in (H2ghyp).
A β-surface in L(H3) is a piece of a torus which, up to isometry, is either

1. L(H2), where H2 ⊂ H3, or

2. C1 × C2 ⊂ S2 × S2 − ∆̄, where C1 is a circle given by the intersection of the
2-sphere and a plane containing the north pole, and C2 is the image of C1 under
reflection in the horizontal plane through the origin.

In the next section we discuss self-duality for planes in neutral Kähler 4-manifolds
and their properties. We then turn to the neutral metric on TN and the special case
L(E3) and L(E3

1). In the final section we characterize the β-surfaces in L(H3).

2 Neutral metrics on 4-manifolds

2.1 Self-dual and anti-self-dual 2-forms

Consider the neutral metric G on R
4 given in standard coordinates (x1, x2, x3, x4) by

ds2 = (dx1)2 + (dx2)2 − (dx3)2 − (dx4)2.

Throughout, we denote R
4 endowed with this metric by R

2,2.
The space of 2-forms on R

2,2 is a 6-dimensional linear space that splits naturally
with respect to the Hodge star operator ∗ of G into two 3-dimensional spaces: Λ2 =
Λ2
+ ⊕ Λ2

−, the space of self-dual and anti-self-dual 2-forms. Thus, if ω ∈ Λ2, then
ω = ω+ + ω−, where ∗ω+ = ω+ and ∗ω− = −ω−.

We can easily find a basis for Λ2
+ and Λ2

−. First, define the double null basis of
1-forms:

Θ1 = dx1 + dx3, Θ2 = dx2 − dx4, Θ3 = −dx2 − dx4, Θ4 = dx1 − dx3,

so that the metric is
ds2 = Θ1 ⊗Θ4 −Θ2 ⊗Θ3.

Proposition 2.1. If ω ∈ Λ2 = Λ2
+ ⊕ Λ2

−, with ω = ω+ + ω−, then

ω+ = a1Θ
1 ∧Θ2 + b1Θ

3 ∧Θ4 + c1(Θ
1 ∧Θ4 −Θ2 ∧Θ3),

ω− = a2Θ
1 ∧Θ3 + b2Θ

2 ∧Θ4 + c2(Θ
1 ∧Θ4 +Θ2 ∧Θ3),

for a1, b1, c1, a2, b2, c2 ∈ R.
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Proof. This follows from computing the Hodge star operator acting on 2-forms:

∗(Θ1 ∧Θ4) = −Θ2 ∧Θ3, ∗(Θ2 ∧Θ4) = −Θ2 ∧Θ4, ∗(Θ1 ∧Θ3) = −Θ1 ∧Θ3,

∗(Θ3 ∧Θ4) = Θ3 ∧Θ4, ∗(Θ1 ∧Θ2) = Θ1 ∧Θ2,

which completes the proof. �

2.2 Totally null planes

Definition 2.1. A plane P ⊂ R
2,2 is totally null if every vector in P is null with

respect to G, and the inner product of any two vectors in P is zero.
A plane P is self-dual if ω+(P ) = 0 for all ω+ ∈ Λ2

+, and anti-self-dual if ω−(P ) = 0
for all ω− ∈ Λ2

−. Self-dual planes are also called α-planes, while anti-self-dual planes
are called β-planes.

Proposition 2.2. A plane P is totally null iff P is either self-dual or anti-self-dual.

Proof. Suppose all self-dual forms vanish on P and let {V,W} be a basis for P .
Let (e1, e2, e3, e4) be the vector basis of R

2,2 that is dual to (Θ1,Θ2,Θ3,Θ4) and
V = V jej , W = W jej . Since all of the self-dual 2-forms vanish on P , we have from
the expression of ω+ in Proposition 2.1 that

(2.1) V 1W 2 =W 1V 2, V 3W 4 =W 3V 4,

(2.2) V 1W 4 − V 2W 3 =W 1V 4 −W 2V 3.

We can assume without loss of generality that V andW are orthogonal: G(V,W ) = 0,
which in frame components says that

V 1W 4 +W 1V 4 = V 2W 3 +W 2V 3.

Combining this with equation (2.2) we have that

(2.3) V 1W 4 = V 2W 3, W 1V 4 =W 2V 3.

Multiplying the first equation of (2.3) by W 1 we have V 1W 4W 1 = V 2W 3W 1, which,
by virtue of the first equation of (2.1), is V 1W 4W 1 =W 2W 3V 1. Thus

G(W,W )V 1 = 2(W 1W 4 −W 2W 3)V 1 = 0.

Similarly, multiplying the first equation of (2.3) by W 2, and the second equation by
W 3 and W 4, applying equations (2.1), we find that

G(W,W )V 2 = G(W,W )V 3 = G(W,W )V 4 = 0.

Thus, either G(W,W ) = 0 or V = 0. Since the latter is not true, we conclude that
W is a null vector.
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On the other hand, multiplying the second equation of (2.3) by V 1 and V 2, and
the first by V 3 and V 4, utilizing equations (2.1), we have

G(V, V )W 1 = G(V, V )W 2 = G(V, V )W 3 = G(V, V )W 4 = 0.

Thus V is also a null vector, and the plane spanned by V and W is totally null, as
claimed. An analogous argument establishes that a plane on which all anti-self-dual
2-forms vanish is totally null.

Conversely, suppose that a plane P is totally null. That is, in terms of a vector
basis V and W as before

V 1V 4 = V 2V 3, W 1W 4 =W 2W 3,(2.4)

V 1W 4 + V 4W 1 − V 2W 3 − V 3W 2 = 0.(2.5)

Multiplying equation (2.5) by V 1,V 3, W 1 and W 3, yields, with the aid of equations
(2.4):

V 2(V 3W 1 − V 1W 3) = V 1(V 3W 2 − V 1W 4),(2.6)

V 4(V 3W 1 − V 1W 3) = V 3(V 3W 2 − V 1W 4),(2.7)

W 2(V 1W 3 − V 3W 1) =W 1(V 2W 3 − V 4W 1),(2.8)

W 4(V 1W 3 − V 3W 1) =W 3(V 2W 3 − V 4W 1).(2.9)

Now, adding V 1 times equation (2.8), W 1 times equation (2.6), V 3 times equation
(2.9) and W 3 times equation (2.7) and using equation (2.5), we obtain

(2.10) (V 1W 2 − V 2W 1 + V 3W 4 − V 4W 3)(V 1W 3 − V 3W 1) = 0.

By a similar manipulation we find that

(2.11) (V 1W 2 − V 2W 1 + V 3W 4 − V 4W 3)(V 2W 4 − V 4W 2) = 0.

Now suppose that P , in addition to being totally null, is Lagrangian. If J(V ) is
not in P , then, since G(W,J(V )) = Ω(W,V ) = 0, the metric would be identically
zero on the 3-space spanned by {V,W, J(V )}. For a non-degenerate metric G on R

2,2

this is not possible. Thus J(V ) ∈ P and so P is a complex plane. It follows easily
that P is self-dual.

On the other hand, suppose that the totally null plane P is not Lagrangian. Then
Ω(V,W ) 6= 0 or

V 1W 2 − V 2W 1 + V 3W 4 − V 4W 3 6= 0.

By equations (2.10) and (2.11), we have V 1W 3 − V 3W 1 = V 2W 4 − V 4W 2 = 0.
Moreover, substituting these in (2.6) to (2.9) we conclude that V 1W 4 − V 4W 1 +
V 2W 3 − V 3W 2 = 0. Then, by Proposition 2.1 we must have ω−(V,W ) = 0, which
completes the result. �
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2.3 Kähler structures on R
2,2

Up to an overall sign, there are two complex structures on R
2,2 that are compatible

with the metric G:
{

J(X1, X2, X3, X4) = (−X2, X1,−X4, X3),

J ′(X1, X2, X3, X4) = (−X2, X1, X4,−X3).

By compatibility we mean that G(J ·, J ·) = G(·, ·), and similarly for J ′.
We can utilize these and define two symplectic forms by Ω = G(·, J ·) and Ω′ =

G(·, J ′·). That is

Ω = dx1 ∧ dx2 − dx3 ∧ dx4, Ω′ = dx1 ∧ dx2 + dx3 ∧ dx4.

Thus, the symplectic 2-form Ω is self-dual while Ω′ is anti-self-dual. Moreover, we
have the following result:

Proposition 2.3. An α-plane is holomorphic and Lagrangian with respect to (J,Ω),
while a β-plane is holomorphic and Lagrangian with respect to (J ′,Ω′).

Proof. The proof follows from arguments similar to those of Proposition 2.2. �

Given a null vector V in R
2,2, the planes spanned by {V, J(V )} and {V, J ′(V )}

are easily seen to be totally null. More explicitly, the set of totally null planes is, in
fact, the disjoint union S1

∐

S1, which can be parameterized as follows. For a, b ∈ R,
φ ∈ [0, 2π) and ǫ = ±1, consider the vector in R

2,2 given by

V ǫ
φ (a, b) = (a cosφ+ b sinφ, a sinφ− b cosφ, a,−ǫb) .

Let P ǫ
φ be the plane containing V ǫ

φ (a, b) as a and b vary over R. Then a quick check

shows that P+
φ is self-dual, while P−

φ is anti-self-dual.

An alternative way of visualising the null planes is as follows.

Definition 2.2. The neutral null cone is the set of null vectors in R
2,2:

C = {X ∈ R
2,2 | G(X,X) = 0}.

The null cone is a cone over a torus, in distinction to the lorentz R
3,1 case where

the null cone is a cone over a 2-sphere. To see the torus, simply note that the map
f : R× S1 × S1 → C

f(a, θ1, θ2) = (a cos θ1, a sin θ1, a cos θ2, a sin θ2)

parameterizes the null vectors as a cone.
Since every vector that lies in a totally null plane is null, we can picture a null

plane as a cone over a circle in C. A straight-forward calculation shows that:

Proposition 2.4. A totally null plane is a cone over either a (1,1)-curve or a (1,-
1)-curve on the torus, the former for an α-plane, the latter for a β-plane.
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The Structure 
of the

Neutral Null Cone 

Totally Null Plane

By rotating around the meridian we see that the set of totally null planes is
S1

∐

S1.

2.4 Neutral Kähler surfaces

Let (M,G, J,Ω) be a smooth neutral Kähler 4-manifold. Thus M is a smooth 4-
manifold, G is a neutral metric, while J is a complex structure that is compatible
with G and Ω(·, ·) = G(J ·, ·) is a closed non-degenerate (symplectic) 2-form.

The existence of a unitary frame at a point of M implies that it is possible to
apply the algebra of the last section pointwise on M , and we therefore have S1 ∪ S1

worth of totally null planes at each point. On a compact 4-manifold, the existence of
an oriented 2-dimensional distribution implies topological restrictions on M [6], and
so not every compact 4-manifold admits a neutral Kähler structure. However, the
examples we consider are non-compact and the neutral Kähler structure will be given
explicitly.

On any (pseudo)-Riemannian 4-manifold (M,G) the Riemann curvature tensor
can be considered as an endomorphism of Λ2(M). The splitting Λ2(M) = Λ2

+(M)⊕
Λ2
−(M) with respect to the Hodge star operator ∗ yields a block decomposition of the

Riemann curvature tensor

Riem =













Weyl+ + 1
12R Ric

Ric Weyl− + 1
12R













,

where Ric is the Ricci tensor, R is the scalar curvature and Weyl± are the self- and
anti-self-dual Weyl curvature tensors [1].

Definition 2.3. A (pseudo)-Riemannian 4-manifold (M,G) is anti-self-dual if the
self-dual part of the Weyl conformal curvature tensor vanishes: Weyl+ = 0.

A well-known result of Penrose states:

Theorem 2.5. [8] The α-surfaces of a neutral Kähler 4-manifold (M,G) are inte-
grable iff (M,G) is anti-self-dual.
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3 Neutral Kähler metrics on TN

Let (N, g) be a Riemannian 2-manifold and consider the total space TN of the tangent
bundle to N . Choose conformal coordinates ξ on N so that ds2 = e2udξdξ̄ for
some function u = u(ξ, ξ̄), and the corresponding complex coordinates (ξ, η) on TN
obtained by identifying

(ξ, η) ↔ η
∂

∂ξ
+ η̄

∂

∂ξ̄
∈ TξN.

The coordinates (ξ, η) define a natural complex structure on TN by

J

(

∂

∂ξ

)

= i
∂

∂ξ
J

(

∂

∂η

)

= i
∂

∂η
.

In [4] a neutral Kähler structure was introduced on TN . In the above coordinate
system, the symplectic 2-form is

(3.1) Ω = 2e2uRe
(

dη ∧ dξ̄ + 2η∂ξu dξ ∧ dξ̄
)

,

while the neutral metric G is

(3.2) G = 2e2uIm
(

dη̄dξ − 2η∂ξu dξdξ̄
)

.

Here we have introduced the notation ∂ξ for differentiation with respect to ξ.
note:

When u = 0, we retrieve the neutral Kähler metric on R
4 = TR2, where

ξ = 1
2

[

x1 + x3 + i(x2 + x4)
]

, η = 1
2

[

x2 − x4 + i(−x1 + x3)
]

,

or
x1 = 1

2

[

ξ + ξ̄ + i(η − η̄)
]

, x2 = 1
2

[

−i(ξ − ξ̄) + η + η̄
]

,

x3 = 1
2

[

ξ + ξ̄ − i(η − η̄)
]

, x4 = 1
2

[

−i(ξ − ξ̄)− η − η̄
]

.

Proposition 3.1. The double null basis for (TN,G) is

Θ1 = 2Re(dξ), Θ2 = 2e2uRe (dη + 2η∂ξu dξ) ,

Θ3 = 2Im(dξ), Θ4 = 2e2uIm (dη + 2η∂ξu dξ) .

Proof. A straight-forward check shows that

ds2 = Θ1 ⊗Θ4 −Θ2 ⊗Θ3,

as claimed. �

The coordinate expressions for self-dual and anti-self-dual 2-forms on TN are

Proposition 3.2. If ω ∈ Λ2(TN) = Λ2
+(TN)⊕ Λ2

−(TN), with ω = ω+ + ω−, then

ω+ = a1(dξ ∧ dη + dξ̄ ∧ dη̄) + b1[dξ ∧ dη̄ + dξ̄ ∧ dη + 2(η̄∂ξ̄u− η∂ξu)dξ ∧ dξ̄]
+ ic1(dξ ∧ dη − dξ̄ ∧ dη̄),

ω− = ia2dξ ∧ dξ̄ + ib2[dξ ∧ dη̄ − dξ̄ ∧ dη + 2(η̄∂ξ̄u+ η∂ξu)dξ ∧ dξ̄]
+ ic2(dη ∧ dη̄ + 2η∂ξudξ ∧ dη̄ + 2η̄∂ξ̄udξ̄ ∧ dη + 4ηη̄∂ξu∂ξ̄udξ ∧ dξ̄),

for a1, b1, c1, a2, b2, c2 ∈ R.
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3.1 α-surfaces in TN

We first note that

Proposition 3.3. The neutral Kähler metric G on TN is anti-self-dual.

Proof. A calculation using the coordinate expression (3.2) of the metric shows that
the only non-vanishing component of the conformal curvature tensor is

W
ηη̄

ξξ̄
= i(η∂ξκ− η̄∂ξ̄κ),

where κ is the Gauss curvature of (N, g). Thus, from Proposition 3.2, for any ω+ ∈
Λ2
+(TN), W (ω+) = 0. That is, the metric is anti-self-dual. �

By applying Theorem 2.5 we have:

Corollary 3.4. There exists α-surfaces, i.e. holomorphic Lagrangian surfaces, in
(TN, J,Ω).

3.2 β-surfaces in TN

Proposition 3.5. An immersed surface Σ ⊂ TN is a β-surface iff locally it is given
by (s, t) → (ξ(s, t), η(s, t)) where

ξ = seiC0 + ξ0, η = (teiC0 + η0)e
−2u,

for C0 ∈ R and ξ0, η0 ∈ C.

Proof. By Proposition 3.2 surface f : Σ → TN is a β-surface iff

(3.3) f∗(dξ ∧ dξ̄) = 0, f∗(d(ηe2u) ∧ d(η̄e2u)) = 0,

and

(3.4) f∗(dξ ∧ d(η̄e2u)− dξ̄ ∧ d(ηe2u)) = 0.

The first equation of (3.3) implies that the map (s, t) → ξ(s, t) is not of maximal rank,
and as it cannot be of rank zero (as this would mean that Σ is a fibre of π : TN → N ,
and is therefore an α-surface) it must be of rank 1. By the implicit function theorem
either

ξ(s, t) = ξ(s, t(s)) or ξ(s, t) = ξ(s(t), t).

Without loss of generality, we will assume the former: ξ = ξ(s).
Similarly, the second equation of (3.3) implies that either

ηe2u = ψ(s, t) = ψ(s, t(s)) or ηe2u = ψ(s, t) = ψ(s(t), t).

Here, we must have the latter ηe2u = ψ(t), or else the surface Σ would be singular.
Turning now to equation of (3.4), we have

dξ

ds

dψ̄

dt
=
dξ̄

ds

dψ

dt
.
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By separation of variables we see that

dξ

ds
= e2iC0

dξ̄

ds
,

dψ

ds
= e2iC0

dψ̄

ds
,

for some real constant C0. These can be integrated to

ξ = h1(s)e
iC0 + ξ0, η = (h2(t)e

iC0 + η0)e
−2u,

for complex constants ξ0 and η0 and real functions h1 and h2 of s and t, respectively.
Finally, we can reparameterize s and t so that h1 = s and h2 = t, as claimed. �

3.3 The oriented geodesic spaces TS2 and TH2

In the cases where N = S2 or N = H2 endowed with a metric of constant Gauss
curvature (e2u = 4(1±ξξ̄)−2), the above construction yields the neutral Kähler metric
on the space L(E3) of oriented affine lines or on the space L(E3

1) of future-pointing
time-like lines, in E3 or E3

1 (respectively) [5].
In what follows we consider only the Euclidean case, although analogous results

hold for the Lorentz case. We define the map Φ which sends L(E3) × R to E3 as
follows: Φ takes an oriented line γ and a real number r to that point in E3 which lies
on γ and is an affine parameter distance r from the point on γ closest to the origin.

Proposition 3.6. [4] The map can be written as Φ((ξ, η), r) = (z, t) ∈ C ⊕ R = E3

where the local coordinate expressions are:







z = 2(η−η̄ξ2)+2ξ(1+ξξ̄)r

(1+ξξ̄)2
, t = −2(ηξ̄+η̄ξ)+(1−ξ2ξ̄2)r

(1+ξξ̄)2
,

eta = 1
2 (z − 2tξ − z̄ξ2), r = ξ̄z+ξz̄+(1−ξξ̄)t

1+ξξ̄
.

For α-surfaces, we have

Proposition 3.7. A holomorphic Lagrangian surface in TS2 corresponds to the ori-
ented normals to totally umbilic surfaces in E3 i.e. round spheres or planes.

On the other hand:

Proposition 3.8. A β-surface in TS2 is an affine tangent bundle over a curve of
constant geodesic curvature in (S2, grnd).

Proof. By Proposition 3.5, the β-surfaces are given by

ξ = seiC0 + ξ0, η = (1 + ξξ̄)2(teiC0 + η0).

Clearly this is a real line bundle over a curve on S2. By a rotation this can be
simplified to

ξ = s+ ξ0e
−iC0 , η = (1 + ξξ̄)2(t+ η0e

−iC0),

and after an affine reparameterization of s and t we can set

ξ = s+ iC1, η = (1 + ξξ̄)2(t+ iC2).
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Projecting onto S2 we get the curve ξ = s + iC1 with unit tangent ~T and normal
vector ~N (with respect to the round metric)

~T =
(1 + ξξ̄)

2
√
2

(

∂

∂ξ
+

∂

∂ξ̄

)

, ~N =
i(1 + ξξ̄)

2
√
2

(

∂

∂ξ
− ∂

∂ξ̄

)

.

Considered as a set of vectors on S2, the β-surface is

η
∂

∂ξ
+ η̄

∂

∂ξ̄
= (1 + ξξ̄)2(t+ iC2)

∂

∂ξ
+ (1 + ξξ̄)2(t− iC2)

∂

∂ξ̄

= 2
√
2(1 + ξξ̄)(t~T + C2

~N).

These form a real line bundle over the base curve - which do not pass through the
origin in the fibre of TS2 for C2 6= 0. For C2 = 0, this is exactly the tangent bundle
to the curve. The geodesic curvature of this curve is

g( ~N,∇~T
~T ) = NkT

j(∂jT
k + Γk

jlT
l)

= NkT
j∂jT

k +NkT jT l(2∂jglk − ∂kgjl) =
√
2C1,

which completes the proof. �

A similar calculation establishes:

Proposition 3.9. A β-surface in TH2 is an affine tangent bundle over a curve of
constant geodesic curvature in (H2, ghyp).

We also have the following:

Corollary 3.10. Given an affine plane P in E3, the set L(E2) of oriented lines
contained in P is a β-surface in TS2.

Proof. By Proposition 3.5, the β-surfaces are given by

ξ = seiC0 + ξ0, η = (1 + ξξ̄)2(teiC0 + η0).

Isometries of E3 induce isometries on TS2 and hence preserve β-surfaces. Thus we
can translate and rotate P so that it is vertical and contains the t-axis. Thus we can
consider the β-surface Σ with ξ0 = η0 = 0, and then using the map Φ we find the two
parameter family of oriented lines in E3 to be

z =
2[(1− s4)t+ sr]

1 + s2
eiC0 , t =

−4s(1 + s2)t+ (1− s2)r

1 + s2
.

This is a vertical plane containing the t-axis, and Σ consists of all the oriented lines
in this plane. �

4 Oriented geodesics in hyperbolic 3-space

We briefly recall the basic construction of the canonical neutral Kähler metric on the
space L(H3) of oriented geodesics of H3 - further details can be found in [2].
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Consider the 4-manifold P 1 × P 1 endowed with the canonical complex structure
J = j ⊕ j and complex coordinates µ1 and µ2. If we let ∆ = {(µ1, µ2) : µ1µ̄2 = −1}
then L(H3) = P 1 × P 1 −∆. We introduce the neutral Kähler metric and symplectic
form on L(H3) by

(4.1) G = −i
[

1

(1 + µ1µ̄2)2
dµ1 ⊗ dµ̄2 −

1

(1 + µ̄1µ2)2
dµ̄1 ⊗ dµ2

]

,

and

(4.2) Ω = −
[

1

(1 + µ1µ̄2)2
dµ1 ∧ dµ̄2 +

1

(1 + µ̄1µ2)2
dµ̄1 ∧ dµ2

]

.

Proposition 4.1. A double null basis for (L(H3), G) is

Θ1 = Re

(

dµ1

1 + µ1µ̄2
− dµ2

1 + µ̄1µ2

)

, Θ2 = Re

(

dµ1

1 + µ1µ̄2
+

dµ2

1 + µ̄1µ2

)

,

Θ3 = −Im
(

dµ1

1 + µ1µ̄2
− dµ2

1 + µ̄1µ2

)

, Θ4 = −Im
(

dµ1

1 + µ1µ̄2
+

dµ2

1 + µ̄1µ2

)

.

Proof. A straight-forward computation shows that

ds2 = Θ1 ⊗Θ4 −Θ2 ⊗Θ3,

as claimed �

The coordinate expressions for self-dual and anti-self-dual 2 forms on L(H3) are
easily found to be:

Proposition 4.2. If ω ∈ Λ2(L(H3)) = Λ2
+(L(H

3))⊕Λ2
−(L(H

3)), with ω = ω++ω−,
then

ω+ = (a1+ic1)
dµ1 ∧ dµ2

|1 + µ̄1µ2|2
+(a1−ic1)

dµ̄1 ∧ dµ̄2

|1 + µ̄1µ2|2
+b1

[

dµ1 ∧ dµ̄2

(1 + µ1µ̄2)2
+

dµ̄1 ∧ dµ2

(1 + µ̄1µ2)2

]

,

ω− = −i(a2+c2)
dµ1 ∧ dµ̄1

|1 + µ̄1µ2|2
−i(a2−c2)

dµ2 ∧ dµ̄2

|1 + µ̄1µ2|2
+ib2

[

dµ1 ∧ dµ̄2

(1 + µ1µ̄2)2
− dµ̄1 ∧ dµ2

(1 + µ̄1µ2)2

]

.

4.1 α-surfaces in L(H3)

Once again, the neutral metric on L(H3) is anti-self-dual, indeed, it is conformally
flat, and so there exists α-surfaces in L(H3). These are found to be the normal
congruence to the totally umbilic surfaces in H3:

Proposition 4.3. [3] A smooth surface Σ in L(H3) is totally null iff Σ is the oriented
normal congruence of

1. a geodesic sphere, or

2. a horosphere, or

3. a totally geodesic surface

in H3.
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4.2 β-surfaces in L(H3)

Proposition 4.4. Let Σ be a β-surface in L(H3). Then Σ is a piece of a torus which,
up to isometry, is either

1. L(H2), where H2 ⊂ H3, or

2. C1 ×C2 ⊂ S2 × S2 − ∆̄, where the C1 is a circle given by the intersection of the
2-sphere and a plane containing the north pole, and C2 is the image of C1 under
reflection in the horizontal plane through the origin.

Proof. Let f : Σ → L(H3) be an immersed β-surface. Then for every anti-self-dual
2-form ω− we have f∗ω− = 0. Then we obtain the following equations

(4.3) f∗(dµ1 ∧ dµ̄1) = 0, f∗(dµ2 ∧ dµ̄2) = 0,

(4.4) f∗
(

dµ1 ∧ dµ̄2

(1 + µ1µ̄2)2
− dµ̄1 ∧ dµ2

(1 + µ̄1µ2)2

)

= 0.

The first equation of (4.3) implies that the map (u, v) 7→ µ1(u, v) is not of maximal
rank and since it cannot be of rank zero (otherwise Σ would be an α-surface) it must
be of rank 1. By the implicit function theorem either

µ1(u, v) = µ1(u, v(u)) or µ1(u, v) = µ1(u(v), v).

Without loss of generality, we will assume the former: µ1 = µ1(u).
Similarly, the second equation of (4.3) implies that

µ2(u, v) = µ2(u, v(u)) or µ2(u, v) = µ2(u(v), v).

Here, we must have µ2 = µ2(v), or else the surface Σ would be singular.
The equation (4.4) yields

(4.5) lnµ2 − ln µ̄2 + ln(1 + µ̄1µ2)− ln(1 + µ1µ̄2) = h1(u) + h2(v),

(4.6) ln µ̄1 − lnµ1 + ln(1 + µ̄1µ2)− ln(1 + µ1µ̄2) = w1(u) + w2(v),

for some complex functions h1, h2, w1, w2.
If hi = aie

iφi for i = 1, 2, where a1 = a1(u), φ1 = φ1(u) and a2 = a2(v), φ2 =
φ2(v) are real functions, we obtain

h1(u) = ia1 h2(v) = ia2.

By a similar argument, there are real functions b1 = b1(u) and b2 = b2(v) such that
(4.5) and (4.6) become

(4.7) lnµ2 − ln µ̄2 + ln(1 + µ̄1µ2)− ln(1 + µ1µ̄2) = i(a1(u) + a2(v)),

(4.8) ln µ̄1 − lnµ1 + ln(1 + µ̄1µ2)− ln(1 + µ1µ̄2) = i(b1(u) + b2(v)).
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Finally from combining equations (4.7) and (4.8) we have

ln

(

1 + µ̄1µ2

1 + µ1µ̄2

)

= −2i(f(u) + g(v)).

We are thus led to consider the curves C1, C2 on S2 given locally by non-constant
functions µ1 : R → S2 : u 7→ µ1(u) and µ2 : R → S2 : v 7→ µ2(v) which satisfy

1 + µ1µ̄2 = (1 + µ̄1µ2)e
2i(f+g),

for f = f(u) and g = g(v).
If we switch to polar coordinates µ1 = λ1(u)e

iθ1(u) and µ2 = λ2(v)e
iθ2(v), this

reduces to

(4.9) sin[f(u) + g(v)] = λ1(u)λ2(v) sin[θ1(u)− f(u)− θ2(v)− g(v)].

By a rotation we can set µ2 to zero for some v = v0, that is, λ2(v0) = 0. We find
from equation (4.9) that

sin[f(u) + g(v0)] = 0,

and so letting g0 = g(v0), we conclude that f = −g0. Putting this back into (4.9) we
have

(4.10) sin[g(v)− g0] = λ1(u)λ2(v) sin[θ1(u)− θ2(v)− g(v) + g0].

Thus for a fixed u = u0 we have

λ1(u0)λ2(v) sin[θ1(u0)− θ2(v)− g(v)+ g0] = λ1(u)λ2(v) sin[θ1(u)− θ2(v)− g(v)+ g0],

or, for v 6= v0

(4.11) λ1(u0) sin[θ1(u0)− θ2(v)− g(v) + g0] = λ1(u) sin[θ1(u)− θ2(v)− g(v) + g0].

Differentiating this relationship with respect to v yields

λ1(u0) cos[θ1(u0)− θ2(v)− g(v) + g0] ∂v(θ2 + g)

= λ1(u) cos[θ1(u)− θ2(v)− g(v) + g0] ∂v(θ2 + g).(4.12)

If ∂v(θ2+g) 6= 0, then we can cancel this factor and square both sides of equations
(4.11) and (4.12) to find that λ1 = λ1(u0). However, from the functional relation
in equation (4.10), this means that θ1 is also constant. Thus µ1 would be constant,
which is not true.

We conclude that ∂v(θ2+g) = 0, or equivalently, g(v) = −θ2(v)+g1. Substituting
this back into equation (4.10) we have

sin[θ2(v) + C0] = λ1(u)λ2(v) sin[θ1(u) + C0],

where C0 = g0 − g1.
One solution of this equation is θ1 = θ2 = −C0, which is the case Σ = L(H2),

where H2 ⊂ H3. Otherwise, we can separate variables

sin[θ2(v) + C0)]

λ2(v)
= λ1(u) sin[θ1(u) + C0] = C1 6= 0.
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This yields

µ1 =
C1e

iθ1(u)

sin[θ1(u) + C0]
, µ2 =

sin[θ2(v) + C0]e
iθ2(v)

C1
.

By a rotation of S2 we can set C0 to zero, and with a natural choice of parameteri-
zation of the curves, the final form is

µ1 =
C1e

iu

sinu
, µ2 =

sin v eiv

C1
,

for u, v ∈ [0, 2π).
These are the tori of part (2) in the statement. To see that they are circles note

that if we view S2 in R
3 given by

x =
µ+ µ̄

1 + µµ̄
, y =

−i(µ− µ̄)

1 + µµ̄
, z =

1− µµ̄

1 + µµ̄
,

then the first curve parameterizes the intersection of S2 with the plane y+C1(z−1) =
0, while the second is the intersection with the plane y − C1(z + 1) = 0. �

In the ball model of H3 these 2-parameter families of geodesics can be visualized
as the set of geodesics that begin on a circle on the boundary and end on another
circle of the same radius on the boundary, the two circles having a single point of
intersection, as illustrated below.

-0.4

 0

 0.4

-0.4-0.2 0 0.2 0.4

 0.6

 0.8

 1

References

[1] A. L. Besse, Einstein Manifolds, Springer-Verlag, Berlin 1987.

[2] N. Georgiou and B. Guilfoyle, On the space of oriented geodesics of hyperbolic
3-space, Rocky Mountain J. Math. 40 (2010), 1183–1219.

[3] N. Georgiou and B. Guilfoyle, A characterization of Weingarten surfaces in hy-
perbolic 3-space, Abh. Math. Sem. Univ. Hambg. 80 (2010), 233–253.

[4] B. Guilfoyle and W. Klingenberg, An indefinite Kähler metric on the space of
oriented lines, J. London Math. Soc. 72 (2005), 497–509.

[5] B. Guilfoyle and W. Klingenberg, On Weingarten surfaces in Euclidean and
Lorentzian 3-space, Differential Geom. Appl. 28 (2010), 454–468.



Totally null surfaces in neutral Kähler 4-manifolds 41

[6] F. Hirzebruch and H. Hopf, Felder von Flächenelementen in 4-dimensionalen
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