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TOTALLY POSITIVE UNITS AND SQUARES

Abstract Let A' be a finite cyclic extension of the rational number field Q. with

Galois group Ci. K/Q) of order p" for an odd prime p. Armitage and Fröhlich [1]

proved that if the order of 2 modulo p is even and the class number h K of K is odd

then L¿ = L'A:. where tK is the group of units of the ring of integers t\ of K. U¿ is

the group of totally positive units, and Uj- is the group of unit square». The purpose

of this paper is to provide a generalization of this result to a larger class of abclian

extensions of Q 2

1. We begin with some definitions and notation. Let A- be a finite real abelian

extension of Q. We define U£ to be [u E UK: u = k2 mod(4) for some A G c\■}.

and set 11% = U^/U^, where UK is the group of units of the ring of integers c\ of A'

and U/2 is the group of unit squares. Similarly we set U¿ = U¿ /U¿, where U¿ is

the group of totally positive units. It is worth noting at this juncture that the units it

in U£ are precisely those units for which K(ju)/K is ramified at. at most, the

infinite A'-primes when | K : Q | is odd. This fact follows from Hecke [5] and

Kummer theory considerations.

We let FK denote the group of cyclotomic units a la Leopoldt [8]. We caution the

reader that these are not Hasse's circular units. CK (see [4]). FK is a subgroup of UK

related to CK, and Leopoldt has obtained the result | UK: FK\— hKQ0 where QG is

an integer depending on the structure of G(K/Q) and hk is the class number of A'.

For the reader who is interested in an easily understood exposition of Leopoldt's

work in this direction we suggest Oriat's description [10] as an alternative to [8].

Now. F¡~ . F$. FK and F% are defined in an analogous fashion to that of UK.

We let A(l) denote the Hubert class field of K; i.e.. | A'(" : K |= hK; and we let

A'lT) denote the "narrow" class field of A'; i.e.. G(K{ + )/K) is the quotient group of

ideals of c\ modulo totally positive principal ideals. We note that asking when

Uf = U¿ is equivalent to asking when Ä( + l — K{,). This fact, for real K. is the

statement of [7. Theorem 3.1. p. 203]. the proof of which uses the Artin map.

2. To prove the main result we first need two lemmas. The first lemma is provided

in its most general form since it may be of independent interest.

In the following lemma .% denotes the field of 2 elements.
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2Kummer began the investigation of Uk and I)~ for K ~ Q{ir 4 f,, ') where f denotes a primitive

/;th root of unitv. The classification of those p for which U¿ = if remains unsolved. Our main result

advances the solution of this problem as well.
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614 I  HUGHES AND R. MOLLIN

Lemma 1. Let \ Kw : Q\ be odd where K is Galois over Q. Then

(\) dim^lJJ = din% U^ and
(2)i?n(/;=(i),!

Proof. (1) Let {ü,,... ,ün) be an ^-basis of U£ where u, E U^ for / = 1,2.«.

Let K be the subfield of A( + ) such that | K: K| = the 2-power part of | A( + ) : A | .

Since the elements of 1/% are precisely the units of (jk such that K(fu~) is ramified at,

at most, the infinite A-primes then K(fu~[,Jïï2~,...,Jïï^)EK. Moreover, if

K(^u]u2 ■ ■ ■ ur ) = K for some r with 1 =s r < « then m, ■ ■ ■ ur E U¿; i.e., ¿7, • • ■ Ur =

1 which is a contradiction since the ¿7,'s are linearly independent as an iF2-basis for U^.

Now, since hK is odd then by class field theory any quadratic extension of A' in A'

is obtainable by taking roots of units of K. Hence K = K(fuf,..., JW^). Since

| t^ö | = j J^: k\ = \K( + ): A(l) | = | UJ\ we have secured (1).

(2) Let Í #«€ Ug H U£. Since u G U¿ then K(JU)/K is unramified at all

infinite A-primes. By Kummer theory the only other possibility for ramification in

K(fu~)/K is at A-primes above 2. But u E U£ precludes this possibility. Thus K(fu~)

is in K0), contradicting that hK is odd.    Q.E.D.

Lemma 2. Let \ K0) : Q \ be odd where K is abelian over Q. Then /Js^".

Proof. We have | t/¿ : U21 = | UK : U21/| UK : U¿ | . Moreover,

| F* :F2\ = \UK: F21/| UK: F¿ | = | UK: U21 ■ | U2 : F21/| UK: FK\ >\FK:F¿\

= \UK:U2\/\FK:F¿\.

Now we show that \FK: F¿ \ = | UK: U^\ . By Leopoldt [8] (see also [10, Proposition

IV(b), p. 28]) we have that | UK : FK \ is odd because hk is odd (see §1). Now let U'K

denote the group of absolute values of UK; i.e., U'K may be identified with UK/{ i 1}.

Similarly let F'K denote the group of absolute values of FK. Thus U'K may be viewed

as a free Z-module of dimension « — 1 where | K : Q \ = «. Therefore there is a basis

M,, u2,.. .,w„_i for U'K such that ux',...,u^x' is a basis for F'K where the v,'s

are positive integers, and so we have | UK: FK\ — \ U'K: F'K\= t;, ■ • • u„_,. Hence

\UK:U¿\ = \FK:EÍ\.   Q.E.D.
We need one more result in order to prove the main theorem. It is easily seen, and

interesting to note, that a well-known paper by Iwasawa [6] in fact holds for the

narrow class number /i'/1 =| K( + ) : K\ (although [6] is only stated for hK, the proof

holds for hiK¥) mutatis mutandis). The revised result is:

(*) If A/A is a finite Galois extension of number fields and some finite A-prime is

fully ramified in K then hk+) \ h{¿\ Furthermore, if A/A is cyclic p-power and no

other finite prime ramifies in K then p | «'/' implies p | hk+).

As far as h{¿] is concerned, the latter part of (*) is only interesting for p — 2, as

we shall see. From (*) it is immediate that:

(**) If A is a finite real Galois extension of Q and A C K such that G(K/k) is

cyclic of 2-power order with exactly one A-prime ramified in K then Uk — {1} if and

only if DJ = {]}.
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3. The stage is now set for the main result which is a generalization of [1, IV, p. 94]

for the odd class number case. In what follows Q2 denotes the completion of Q at 2.

Theorem. Let K be a real finite abelian extension of Q. Suppose L Q K with \ L : Q \

odd, G(L/Q) — G of exponent n, and G(K/L) cyclic of 2 power order. If K ¥^ L then

we assume that exactly one L-prime ramifies in A. If h, is odd and — 1 is congruent to

a power of 2 modulo n then U^ = U^.

Proof. From (**) it suffices to show that Uf — {1}. From [3, Théorème III.2, p.

187] we have that if F¿ — ©, %Gei (where the e/s are idempotents) is a decomposi-

tion of Fl into simple submodules then F¡° = ©( ^f2Gip(e¡) where \p is the standard

involution of <§fi given by \p(g) = g~] for all g EG. Since h, is odd then by

Lemma 2 we have U¿ at F¿. Hence it follows that Uf is mapped onto U,° under \p.

Now suppose that ^f2Ge is a simple component of §2G corresponding to an

absolutely irreducible character x of G; and let m = the order of x in the group of

absolutely jrreducible characters of G. Then G(Q2(tm)/Q2) is isomorphic to H =

{2,22,.. .,2^} in (Z/mZ)*, where/ = the order of 2 modulo m. Hence — 1 G H if

and only if x is conjugate to x-' if ar"d on'v if 9-fie = <52G>\i(e). Since^l is

congruent to a power of 2 modulo « by hypothesis then we must have Uf = U¡\ By

Lemma 1 we get t/^ = {1}.   Q.E.D.

We note that if — 1 is not a power of 2 modulo « then the theorem fails. For

example if A is the subfield of Q(e29) of degree 7 over Q then hK = 1 but í/¿ ¥= {1}

(see [2, Example 1, p. 380]).

When hK is even the proof of the theorem fails to be valid. For example if

| A: Q\ = 3 where AC ö(e,63) then hK is even, fj ^ {1} and Uj = {1} (see [3,

p. 188 and 2, p. 383]).

4. Applications of the theorem. (1) The Armitage-Fröhlich result [1] for the odd

class number case is immediate.

(2) Let A = Q(ep + e"1). As mentioned above it remains an unsolved problem as

to the determination of those primes p for which U^ = ÍA3. The following, however,

advances the solution. If F E K with | F(l) : Q\ odd and | A : F\ is a 2-power then

whenever — 1 is congruent to a power of 2 modulo the exponent of G(F/Q) we have

^+ = u2.

In particular if p is a Fermât prime then F = Q and so U¿ = Uf2 (see also [9]).

(3) If A is a real subfield of ö(£2") tnen Uk = ^k- This is Weber's theorem (see

[11]). In fact if A is any real cyclic 2-power extension of Q with exactly one ramified

prime A then U^ = U¿ (see also [9]).

(4) If A = Q(fp ) for a prime p = 1 (mod 4) then U¿ = U¿. We note that in the

real quadratic field A = Q(fd) case, asking when l£ = U¿ is equivalent to asking

whether there exists a u E UK with norm — 1 (see [7]). This is currently an unsolved

problem.

5. Open questions. We close with some questions, the answers to which would

provide a means of generating more examples (which are needed to gain evidence for

advancing the theorem).
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Suppose F, and F2 are finite real abelian extensions of Q. It can be easily shown

that Up X Up^ injects into Up F^. A natural question to ask is:

(a) Is Up X Up^ isomorphic to Up Fl or

(b) If (a) has a negative answer then: What restrictions can be made in terms of

the arithmetic of F, and F2 to guarantee that Up X Up and UF f, are isomorphic?

We leave the reader with an example, pertaining to (a) and (b), which we feel is

worth investigating toward the possibility of finding a counterexample to (a) or. at

worst, providing further evidence that (a) has an affirmative answer. Moreover, it

would add to the quite short list of available examples.

Consider the prime p — 18121. Let A be the subfield of Q( ep ) of degree 15 over Q.

Let Ft E K for i - 1,2 with | F, : Q | = 3 and | F2 : Q \ = 5. By Gras [3, Remark 1V.4,

p. 189] hF is odd for i — 1,2. Therefore since — 1 is a power of 2 modulo both 3 and

5, then by our theorem Up = {1} for /' = 1,2. However —1 is not a power of 2

modulo 15. Moreover by Gras [3] hK is even (in fact divisible by 8) so we cannot say

anything about UFF,. Is Upf, = ( 1}?
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