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TOTALLY REAL SUBMANIFOLDS IN A 6-SPHERE

NORIO EJIRI

Abstract. A 6-dimensional sphere S6 has an almost complex structure induced by

properties of Cayley algebra. We investigate 3-dimensional totally real submani-

folds in S6 and classify 3-dimensional totally real submanifolds of constant

sectional curvature.

1. Introduction. It is well known that a 6-dimensional (unit) sphere S6 admits an

almost Hermitian structure, which is a typical example of Tachibana manifold or a

nearly Kaehler manifold.

There are two typical classes among all submanifolds of an almost Hermitian

manifold: The one is the class of almost Hermitian Submanifolds and the other is

the class of totally real submanifolds.

A. Gray [3] proved that S6 has no A-dimensional almost Hermitian submanifolds.

On the contrary, S6 admits totally real submanifolds.

The purpose of this paper is to prove the following.

Theorem 1. A 3-dimensional totally real submanifold of S6 is orientable and

minimal.

Theorem 2. Let M be a 3-dimensional totally real submanifold of constant

curvature c in S6. Then either c = 1 (i.e., M is totally geodesic) or c = 1/16.

The latter case in Theorem 2 is locally equivalent to a minimal immersion

53(1/16) -» S6 defined by spherical harmonics of degree 6 [1].

The author is grateful to Professor K. Ogiue for his useful criticism.

2. Almost Hermitian structures on S6. Let ex, . . ., e7 be the standard basis for

R 7. Then the vector cross product in R7 is defined by the table for e¡ X ek.

Table

j/k 1

1 0 e-, -e

2 -e3 0

3 e-,

e3 -e2 e5 -e4 e7 -e6

-e-,

-ex e -e-,

-e

4 -e5 -e6 e-, 0 ex e2

5 e4 e7 e6 -ex 0 -e3

6 -e7 e4 -es -e2 e3 0 ex

7 e6 -e5 -e. e-, e, -e, 0

2
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We put S6={xGÄ7;||x|| = l) and define an almost complex structure J on

S6 by JA = x X A, where x G S6 and A G TXS6 (the tangent space of S6 at x). It

is easily seen that the Riemannian metric g on S6 induced from 7?7 is a Hermitian

metric with respect to J. We denote by V the covariant differentiation with respect

to the Riemannian connection on S6. Then we have the following (cf. for example

[2]):

Lemma 2.1. (VXJ)X = 0 holds for all vector fields X on S6.

An almost Hermitian manifold with this property is called a Tachibana manifold

or a nearly Kaehler manifold.

We define a skew-symmetric tensor field G of type (1, 2) by

G(X, Y) = (Vxj) Y.

Then we have

Lemma 2.2. (i) G(X, JY) = -JG(X, Y) and

(ii) <yxG)(Y, Z) = g(Y, JZ)X + g(X, Z)JY - g(X, Y)JZ
hold for all vector fields X, Y, Z on S6.

3. 3-dimensional totally real submanifolds of S6. Let (M, g) be a 3-dimensional

totally real submanifold of (S6, J, g). We denote by V the covariant differentiation

on M. Then the second fundamental form a of the immersion is given by

(3.1) (X,Y) = VXY-VXY

for vector fields X, Y on M. For a normal vector field |, we denote by -A^X and

Vx£ the tangential and normal components of V^| respectively so that

(3.2) VJ = -AtX + VH.

Then a and Ai are related by g(o(X, Y), £) = g(A(X, Y).

Let R and R x be the curvature tensor of V and Vx, respectively. Then the

equations of Gauss, Codazzi and Ricci are given respectively by

g(R(X, Y)Z, W) = g(X, Z)g( Y, W) - g(X, W)g( Y, Z)

+ g(o(X, Z), o(Y, W)) - g(o(X, W), o(Y, Z)),

(3.4) (V»( Y, Z) - (V'yo)(X, Z) = 0,

(3.5) g(R ±(X, Y)i r,) - g([A(, A„]X, Y) = 0,

where (V'xo)(Y, Z)=V£o(Y, Z) - o(VxY, Z) - o(Y, VXZ).

4. Proof of Theorem 1. Let (M, g) be a 3-dimensional totally real submanifold of

(S6, J, g). First of all, we shall prove the following.

Lemma 4.1. G(X, Y) is normal to M for X, Y tangent to M.

Proof. From (3.1) and (3.2) we have

g((Vxj)Y, Z) = g(Jo(X, Z), Y) - g(Jo(X, Y), Z),

g((Vzj)X, Y) = g(Jo(Z, Y), X) - g(Jo(Z, X), Y),

g((VYj)Z, X) = g(Jo(Y, X), Z) - g(Jo(Y, Z), X),
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for X, Y, Z tangent to M. Since g is Hermitian with respect to J,  VXJ is

skew-symmetric with respect to g. This, together with Lemma 2.1, implies that the

left-hand sides of the above three equations are equal to each other. Therefore we

have g((yxJ) Y, Z) = 0, which means G(X, Y) is orthogonal to M.   Q.E.D.

By Lemma 2.2(i), we obtain

(VXG)(JY, JZ) = VXG(JY, JZ) - G(VXJY, JZ) - Oily, VxJZ)

= -VXG(Y, Z) - G((VxJ)Y,JZ) - G(JVXY,JZ)

- g(jy, (vxj)z) - g(jy, jvxz)
_

~VXG(Y,Z) + JG(G(X,Y),Z)

+ G(VXY, Z) + JG(Y, G(X, Z)) + G(Y, VxZ)

= - (VXG)(Y, Z) + JG(G(X, Y), Z) + JG(Y, G(X, Z))

for X, Y, Z tangent to M. This, combined with Lemma 2.2(h), implies

G(Y, G(Z, X)) + G(Z, G(X, Y)) = g(X, Y)Z - g(X, Z)Y

and hence G(X, G(Y, Z)) = g(X, Z)Y - g(X, Y)Z or equivalently

(4.1) JG(X, JG(Y, Z)) = g(X, Z)Y- g(X, Y)Z

for X, Y, Z tangent to M. Since JG(X, Y) is tangent to M by Lemma 4.1, we see

from (4.1) that

g(JG(X, Y), Y)X - g(JG(X, Y), X) Y = JG(JG(X, Y), JG(X, Y)) = 0.

Thus JG(X, Y) is orthogonal to X and F if A' and Y are linearly independent. This

property, together with (4.1), implies that M is orientable, because the orientation

can be defined by regarding JG(X, Y) as the vector product of X and Y at each

point of M.

Next, we shall prove that M is minimal. It follows immediately from (3.1), (3.2)

and Lemma 4.1 that

(4.2) VpY = G(X, Y) + JVXY

and

(4.3) AJX = -Jo(X, Y)

hold for X, Y tangent to M. By (3.1), (3.2), (4.2), (4.3) and Lemma 2.2(i), we obtain

(VXG)(Y, Z) = VXG(Y, Z) - G(VXY, Z) - G(Y, VxZ)

= -A^Z)X + VJ;G(Y, Z) - G(VxY, Z) - G(Y, VXZ)

= Jo(JG(Y, Z), X) + JG(X, G(Y, Z)) - J(VXJG)(Y, Z)

-G(o(X,Y),Z)-G(Y,o(X,Z))

for X, Y, Z tangent to M. This, combined with Lemma 2.2(h), implies

(VXJG)(Y, Z) = g(X, Y)Z - g(X, Z)Y+ G(X, G(Y, Z)) + o(X, JG(Y, Z))

+ JG(o(X, Y), Z) + JG(Y, o(Z, X)).

Taking the normal component, we have

(4.4) o(X, JG( Y,Z)) + JG(o(X, Y), Z) + JG( Y, o(Z, X)) = 0
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for X, Y, Z tangent to M. Let ex, e2, e3 be a local field of orthonormal frames on

M. Then we may assume without loss of generality that JG(ex, e^ = e3, JG(e2, e3)

= ex and JG(e3, ex) = e2. Hence we have from (4.4) that the trace of o = 0, which

implies that M is minimal.

5. Proof of Theorem 2. Let M be a 3-dimensional totally real submanifold of

constant curvature c in S6. Then the equation (3.3) of Gauss reduces to

(5 1)      (1 ~ C){g(X' Z)g(y' W) '■ g{X' W)g(Y> Z))
+ g(o(X, Z), o(Y, W)) - g(o(X, W), o(Y, Z)) = 0.

If c = 1, then M is totally geodesic. Therefore it is sufficient to consider the case

c < 1.

Consider a cubic function f(X) = g(o(X, X), JX) defined on {X G TXM; \\X\\

= 1}. If/attains its maximum at x, then g(o(X, X), JY) = 0 for Y orthogonal to X

and hence o(X, A') is proportional to JX. Therefore, if / is constant, o(X, X) = 0

for all X, since M is minimal. Thus / is not constant, since we are considering the

case where M is not totally geodesic.

Choose ex to be the maximum point of / at each point x G M. By the similar

argument to the above, we see that / restricted to {X G TXM; \\X\\ = 1 and

g(X, ex) = 0} is not constant. Choose e2 to be the maximum point of/restricted to

{X G TXM; ||AT|| = 1 and g(X, ex) = 0} and choose e3 so that ex, e2, e3 form an

orthonormal frame field. Then we easily see that

(5.2) g(o(e2, e2), Je3) = 0.

Put a¡ = g(o(e¡, e¡), Jex). Then we have a, + a2 + a3 = 0, since M is nrinimal. We

see that ax > 0, because a, is the maximum value for the cubic function/and M is

not totally geodesic. Moreover, from (5.1) we have 1 — c + axa2 — a\ = 0 and

1 — c + axa3 — a\ = 0, since (4.3) implies that g(o(X, Y), JZ) is symmetric in

X, Y, Z. Therefore we get

(ax, a2, a3) = (2V(1 - c)/3 , -V (1 - c)/3 , -V (1 - c)/3 ),

which implies that

(5-3) o(ex, ex) = 2V(1 - c)/3 Jex

and

(5-4) g(o(X, X), Jex) = - V (1 - c)/3

for a unit vector X orthogonal to e,. In particular, putting X = (e2 + e3)/V2 , we

obtain

(5-5) g(o(e2, e3), Jex) = 0.

In consideration of (5.2), (5.3), (5.4), (5.5) and minimality of M, we may put

a(e2, e2) = -V(l — c)/3 Jex + XJe2, o(e3, e3) = -V(1 — c)/3 Jex — Xe2,

o(e2, e3) = -XJe3.  Putting X = W = e2  and   Y = Z = e3  in  (5.1),  we  obtain
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X = V2(l — c)/3 . Therefore we have

o(e2, e2) = -V (1 - c)/3 Jex + V2(l - c)/3 7e2,

(5.6) ff(e3, e3) = -V (1 - c)/3 Jex - V2(l - c)/3 7e2,

o(e2, e3) = -V2(l - c)/3 Je3,

which, together with (5.3), (5.4) and (5.5), implies

(5.7)      o(ex, e2) = - V (1 - c)/3 7e2,       o(ex, e3) = - V (1 - c)/3 Je3.

Applying the equation (3.4) of Codazzi to (5.3), (5.6) and (5.7), we obtain Vee¡ = 0,

Vee2 = -Veex = -\e3, Vee3 = -Veex =\e2, Vee3 = -Vee2 = -\ex. Therefore

we have R(ex, e2)ex = l/16e2 and hence c = 1/16.

6. Remarks.

Remark 1. Let M be a 3-dimensional totally real submanifold of S6 and o its

second fundamental form. If we put r = -Jo, then r is a symmetric tensor field of

type (1, 2) on M and the equations of Gauss, Codazzi and Ricci can be written in

terms of the intrinsic tensor field t. By identifying the tangent bundle of M with

the normal bundle, we can state the fundamental theorem in terms of intrinsic

language of M. In particular, using a Killing frame ex, e3, e3 on S3(l/16) (cf. for

example [5]), we can give a minimal immersion of S\ 1/16) into S6 as a totally real

submanifold.

Remark 2. From Moore's theorem [4], we know that the niinimum number / for

which S3(c) can admit a (nontotally geodesic) minimal immersion into S' is 6. This

gives a counterexample for a problem in [1, p. 44].
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