TOTALLY REAL SUBMANIFOLDS IN A 6-SPHERE

NORIO EJIRI

Abstract

A 6-dimensional sphere S^{6} has an almost complex structure induced by properties of Cayley algebra. We investigate 3-dimensional totally real submanifolds in S^{6} and classify 3-dimensional totally real submanifolds of constant sectional curvature.

1. Introduction. It is well known that a 6-dimensional (unit) sphere S^{6} admits an almost Hermitian structure, which is a typical example of Tachibana manifold or a nearly Kaehler manifold.

There are two typical classes among all submanifolds of an almost Hermitian manifold: The one is the class of almost Hermitian Submanifolds and the other is the class of totally real submanifolds.
A. Gray [3] proved that S^{6} has no 4-dimensional almost Hermitian submanifolds.

On the contrary, S^{6} admits totally real submanifolds.
The purpose of this paper is to prove the following.
Theorem 1. A 3-dimensional totally real submanifold of S^{6} is orientable and minimal.

Theorem 2. Let M be a 3-dimensional totally real submanifold of constant curvature c in S^{6}. Then either $c=1$ (i.e., M is totally geodesic) or $c=1 / 16$.

The latter case in Theorem 2 is locally equivalent to a minimal immersion $S^{3}(1 / 16) \rightarrow S^{6}$ defined by spherical harmonics of degree $6[1]$.

The author is grateful to Professor K. Ogiue for his useful criticism.
2. Almost Hermitian structures on S^{6}. Let e_{1}, \ldots, e_{7} be the standard basis for R^{7}. Then the vector cross product in R^{7} is defined by the table for $e_{j} \times e_{k}$.

Table

j / k	1	2	3	4	5	6	7
1	0	e_{3}	$-e_{2}$	e_{5}	$-e_{4}$	e_{7}	$-e_{6}$
2	$-e_{3}$	0	e_{1}	e_{6}	$-e_{7}$	$-e_{4}$	e_{5}
3	e_{2}	$-e_{1}$	e	$-e_{7}$	$-e_{6}$	e_{5}	e_{4}
4	$-e_{5}$	$-e_{6}$	e_{7}	0	e_{1}	e_{2}	$-e_{3}$
5	e_{4}	e_{7}	e_{6}	$-e_{1}$	0	$-e_{3}$	$-e_{2}$
6	$-e_{7}$	e_{4}	$-e_{5}$	$-e_{2}$	e_{3}	0	e_{1}
7	e_{6}	$-e_{5}$	$-e_{4}$	e_{3}	e_{2}	$-e_{1}$	0

Received by the editors January 26, 1981.
1980 Mathematics Subject Classification. Primary 53C40, 53C42; Secondary 58D10.
Key words and phrases. Cayley algebra, Tachibana space, nearly Kaehler manifold, totally real submanifold, Killing frame.

We put $S^{6}=\left\{x \in R^{7} ;\|x\|=1\right\}$ and define an almost complex structure J on S^{6} by $J A=x \times A$, where $x \in S^{6}$ and $A \in T_{x} S^{6}$ (the tangent space of S^{6} at x). It is easily seen that the Riemannian metric \bar{g} on S^{6} induced from R^{7} is a Hermitian metric with respect to J. We denote by $\bar{\nabla}$ the covariant differentiation with respect to the Riemannian connection on S^{6}. Then we have the following (cf. for example [2]):

Lemma 2.1. $\left(\bar{\nabla}_{X} J\right) X=0$ holds for all vector fields X on S^{6}.
An almost Hermitian manifold with this property is called a Tachibana manifold or a nearly Kaehler manifold.

We define a skew-symmetric tensor field G of type $(1,2)$ by

$$
G(X, Y)=\left(\bar{\nabla}_{X} J\right) Y
$$

Then we have
Lemma 2.2. (i) $G(X, J Y)=-J G(X, Y)$ and
(ii) $\left(\bar{\nabla}_{X} G\right)(Y, Z)=\bar{g}(Y, J Z) X+\bar{g}(X, Z) J Y-\bar{g}(X, Y) J Z$
hold for all vector fields X, Y, Z on S^{6}.
3. 3-dimensional totally real submanifolds of S^{6}. Let (M, g) be a 3-dimensional totally real submanifold of $\left(S^{6}, J, \bar{g}\right)$. We denote by ∇ the covariant differentiation on M. Then the second fundamental form σ of the immersion is given by

$$
\begin{equation*}
(X, Y)=\bar{\nabla}_{X} Y-\nabla_{X} Y \tag{3.1}
\end{equation*}
$$

for vector fields X, Y on M. For a normal vector field ξ, we denote by $-A_{\xi} X$ and $\nabla_{X}^{\perp} \xi$ the tangential and normal components of $\bar{\nabla}_{X} \xi$ respectively so that

$$
\begin{equation*}
\bar{\nabla}_{X} \xi=-A_{\xi} X+\nabla_{X}^{\perp} \xi \tag{3.2}
\end{equation*}
$$

Then σ and A_{ξ} are related by $g(\sigma(X, Y), \xi)=g\left(A_{\xi} X, Y\right)$.
Let R and R^{\perp} be the curvature tensor of ∇ and ∇^{\perp}, respectively. Then the equations of Gauss, Codazzi and Ricci are given respectively by

$$
\begin{array}{lr}
\text { (3.3) } & g(R(X, Y) Z, W)=g(X, Z) g(Y, W)-g(X, W) g(Y, Z) \\
& +\bar{g}(\sigma(X, Z), \sigma(Y, W))-\bar{g}(\sigma(X, W), \sigma(Y, Z)), \\
\text { (3.4) } & \left(\nabla_{X}^{\prime} \sigma\right)(Y, Z)-\left(\nabla_{Y}^{\prime} \sigma\right)(X, Z)=0 \\
\text { (3.5) } & g\left(R^{\perp}(X, Y) \xi, \eta\right)-g\left(\left[A_{\xi}, A_{\eta}\right] X, Y\right)=0 \tag{3.5}\\
\text { where }\left(\nabla_{X}^{\prime} \sigma\right)(Y, Z)=\nabla_{X}^{\perp} \sigma(Y, Z)-\sigma\left(\nabla_{X} Y, Z\right)-\sigma\left(Y, \nabla_{X} Z\right)
\end{array}
$$

4. Proof of Theorem 1. Let (M, g) be a 3-dimensional totally real submanifold of ($S^{\mathbf{6}}, J, \bar{g}$). First of all, we shall prove the following.

Lemma 4.1. $G(X, Y)$ is normal to M for X, Y tangent to M.
Proof. From (3.1) and (3.2) we have

$$
\begin{aligned}
& g\left(\left(\bar{\nabla}_{X} J\right) Y, Z\right)=g(J \sigma(X, Z), Y)-g(J \sigma(X, Y), Z), \\
& g\left(\left(\bar{\nabla}_{Z} J\right) X, Y\right)=g(J \sigma(Z, Y), X)-g(J \sigma(Z, X), Y), \\
& g\left(\left(\bar{\nabla}_{Y} J\right) Z, X\right)=g(J \sigma(Y, X), Z)-g(J \sigma(Y, Z), X),
\end{aligned}
$$

for X, Y, Z tangent to M. Since \bar{g} is Hermitian with respect to $J, \bar{\nabla}_{X} J$ is skew-symmetric with respect to \bar{g}. This, together with Lemma 2.1, implies that the left-hand sides of the above three equations are equal to each other. Therefore we have $g\left(\left(\bar{\nabla}_{X} J\right) Y, Z\right)=0$, which means $G(X, Y)$ is orthogonal to M. Q.E.D.

By Lemma 2.2(i), we obtain

$$
\begin{aligned}
\left(\bar{\nabla}_{X} G\right)(J Y, J Z)= & \bar{\nabla}_{X} G(J Y, J Z)-G\left(\bar{\nabla}_{X} J Y, J Z\right)-G\left(J Y, \bar{\nabla}_{X} J Z\right) \\
= & -\bar{\nabla}_{X} G(Y, Z)-G\left(\left(\bar{\nabla}_{X} J\right) Y, J Z\right)-G\left(J \bar{\nabla}_{X} Y, J Z\right) \\
& -G\left(J Y,\left(\bar{\nabla}_{X} J\right) Z\right)-G\left(J Y, J \bar{\nabla}_{X} Z\right) \\
& -\bar{\nabla}_{X} G(Y, Z)+J G(G(X, Y), Z) \\
& +G\left(\bar{\nabla}_{X} Y, Z\right)+J G(Y, G(X, Z))+G\left(Y, \bar{\nabla}_{X} Z\right) \\
= & -\left(\bar{\nabla}_{X} G\right)(Y, Z)+J G(G(X, Y), Z)+J G(Y, G(X, Z))
\end{aligned}
$$

for X, Y, Z tangent to M. This, combined with Lemma 2.2(ii), implies

$$
G(Y, G(Z, X))+G(Z, G(X, Y))=g(X, Y) Z-g(X, Z) Y
$$

and hence $G(X, G(Y, Z))=g(X, Z) Y-g(X, Y) Z$ or equivalently

$$
\begin{equation*}
J G(X, J G(Y, Z))=g(X, Z) Y-g(X, Y) Z \tag{4.1}
\end{equation*}
$$

for X, Y, Z tangent to M. Since $J G(X, Y)$ is tangent to M by Lemma 4.1, we see from (4.1) that

$$
g(J G(X, Y), Y) X-g(J G(X, Y), X) Y=J G(J G(X, Y), J G(X, Y))=0
$$

Thus $J G(X, Y)$ is orthogonal to X and Y if X and Y are linearly independent. This property, together with (4.1), implies that M is orientable, because the orientation can be defined by regarding $J G(X, Y)$ as the vector product of X and Y at each point of M.

Next, we shall prove that M is minimal. It follows immediately from (3.1), (3.2) and Lemma 4.1 that

$$
\begin{equation*}
\nabla_{X}^{\perp} J Y=G(X, Y)+J \nabla_{X} Y \tag{4.2}
\end{equation*}
$$

and

$$
\begin{equation*}
A_{J X}=-J \sigma(X, Y) \tag{4.3}
\end{equation*}
$$

hold for X, Y tangent to M. By (3.1), (3.2), (4.2), (4.3) and Lemma 2.2(i), we obtain

$$
\begin{aligned}
\left(\bar{\nabla}_{X} G\right)(Y, Z)= & \bar{\nabla}_{X} G(Y, Z)-G\left(\bar{\nabla}_{X} Y, Z\right)-G\left(Y, \bar{\nabla}_{X} Z\right) \\
= & -A_{G(Y, Z)} X+\nabla_{X}^{\perp} G(Y, Z)-G\left(\bar{\nabla}_{X} Y, Z\right)-G\left(Y, \bar{\nabla}_{X} Z\right) \\
= & J \sigma(J G(Y, Z), X)+J G(X, G(Y, Z))-J\left(\nabla_{X} J G\right)(Y, Z) \\
& -G(\sigma(X, Y), Z)-G(Y, \sigma(X, Z))
\end{aligned}
$$

for X, Y, Z tangent to M. This, combined with Lemma 2.2(ii), implies

$$
\begin{aligned}
\left(\nabla_{X} J G\right)(Y, Z)= & g(X, Y) Z-g(X, Z) Y+G(X, G(Y, Z))+\sigma(X, J G(Y, Z)) \\
& +J G(\sigma(X, Y), Z)+J G(Y, \sigma(Z, X))
\end{aligned}
$$

Taking the normal component, we have

$$
\begin{equation*}
\sigma(X, J G(Y, Z))+J G(\sigma(X, Y), Z)+J G(Y, \sigma(Z, X))=0 \tag{4.4}
\end{equation*}
$$

for X, Y, Z tangent to M. Let e_{1}, e_{2}, e_{3} be a local field of orthonormal frames on M. Then we may assume without loss of generality that $J G\left(e_{1}, e_{2}\right)=e_{3}, J G\left(e_{2}, e_{3}\right)$ $=e_{1}$ and $J G\left(e_{3}, e_{1}\right)=e_{2}$. Hence we have from (4.4) that the trace of $\sigma=0$, which implies that M is minimal.
5. Proof of Theorem 2. Let M be a 3-dimensional totally real submanifold of constant curvature c in S^{6}. Then the equation (3.3) of Gauss reduces to

$$
\begin{align*}
& (1-c)\{g(X, Z) g(Y, W)-g(X, W) g(Y, Z)\} \tag{5.1}\\
& \quad+\bar{g}(\sigma(X, Z), \sigma(Y, W))-\bar{g}(\sigma(X, W), \sigma(Y, Z))=0
\end{align*}
$$

If $c=1$, then M is totally geodesic. Therefore it is sufficient to consider the case $c<1$.

Consider a cubic function $f(X)=\bar{g}(\sigma(X, X), J X)$ defined on $\left\{X \in T_{x} M ;\|X\|\right.$ $=1\}$. If f attains its maximum at x, then $\bar{g}(\sigma(X, X), J Y)=0$ for Y orthogonal to X and hence $\sigma(X, X)$ is proportional to $J X$. Therefore, if f is constant, $\sigma(X, X)=0$ for all X, since M is minimal. Thus f is not constant, since we are considering the case where M is not totally geodesic.

Choose e_{1} to be the maximum point of f at each point $x \in M$. By the similar argument to the above, we see that f restricted to $\left\{X \in T_{x} M ;\|X\|=1\right.$ and $\left.g\left(X, e_{1}\right)=0\right\}$ is not constant. Choose e_{2} to be the maximum point of f restricted to $\left\{X \in T_{x} M ;\|X\|=1\right.$ and $\left.g\left(X, e_{1}\right)=0\right\}$ and choose e_{3} so that e_{1}, e_{2}, e_{3} form an orthonormal frame field. Then we easily see that

$$
\begin{equation*}
\bar{g}\left(\sigma\left(e_{2}, e_{2}\right), J e_{3}\right)=0 \tag{5.2}
\end{equation*}
$$

Put $a_{i}=\bar{g}\left(\sigma\left(e_{i}, e_{i}\right), J e_{1}\right)$. Then we have $a_{1}+a_{2}+a_{3}=0$, since M is minimal. We see that $a_{1}>0$, because a_{1} is the maximum value for the cubic function f and M is not totally geodesic. Moreover, from (5.1) we have $1-c+a_{1} a_{2}-a_{2}^{2}=0$ and $1-c+a_{1} a_{3}-a_{3}^{2}=0$, since (4.3) implies that $\bar{g}(\sigma(X, Y), J Z)$ is symmetric in X, Y, Z. Therefore we get

$$
\left(a_{1}, a_{2}, a_{3}\right)=(2 \sqrt{(1-c) / 3},-\sqrt{(1-c) / 3},-\sqrt{(1-c) / 3})
$$

which implies that

$$
\begin{equation*}
\sigma\left(e_{1}, e_{1}\right)=2 \sqrt{(1-c) / 3} J e_{1} \tag{5.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{g}\left(\sigma(X, X), J e_{1}\right)=-\sqrt{(1-c) / 3} \tag{5.4}
\end{equation*}
$$

for a unit vector X orthogonal to e_{1}. In particular, putting $X=\left(e_{2}+e_{3}\right) / \sqrt{2}$, we obtain

$$
\begin{equation*}
\bar{g}\left(\sigma\left(e_{2}, e_{3}\right), J e_{1}\right)=0 \tag{5.5}
\end{equation*}
$$

In consideration of (5.2), (5.3), (5.4), (5.5) and minimality of M, we may put $\sigma\left(e_{2}, e_{2}\right)=-\sqrt{(1-c) / 3} J e_{1}+\lambda J e_{2}, \quad \sigma\left(e_{3}, e_{3}\right)=-\sqrt{(1-c) / 3} J e_{1}-\lambda e_{2}$, $\sigma\left(e_{2}, e_{3}\right)=-\lambda J e_{3}$. Putting $X=W=e_{2}$ and $Y=Z=e_{3}$ in (5.1), we obtain
$\lambda=\sqrt{2(1-c) / 3}$. Therefore we have

$$
\begin{align*}
& \sigma\left(e_{2}, e_{2}\right)=-\sqrt{(1-c) / 3} J e_{1}+\sqrt{2(1-c) / 3} J e_{2}, \\
& \sigma\left(e_{3}, e_{3}\right)=-\sqrt{(1-c) / 3} J e_{1}-\sqrt{2(1-c) / 3} J e_{2}, \tag{5.6}\\
& \sigma\left(e_{2}, e_{3}\right)=-\sqrt{2(1-c) / 3} J e_{3},
\end{align*}
$$

which, together with (5.3), (5.4) and (5.5), implies

$$
\begin{equation*}
\sigma\left(e_{1}, e_{2}\right)=-\sqrt{(1-c) / 3} J e_{2}, \quad \sigma\left(e_{1}, e_{3}\right)=-\sqrt{(1-c) / 3} J e_{3} . \tag{5.7}
\end{equation*}
$$

Applying the equation (3.4) of Codazzi to (5.3), (5.6) and (5.7), we obtain $\nabla_{e_{i}} e_{i}=0$, $\nabla_{e_{1}} e_{2}=-\nabla_{e_{2}} e_{1}=-\frac{1}{4} e_{3}, \quad \nabla_{e_{1}} e_{3}=-\nabla_{e_{3}} e_{1}=\frac{1}{4} e_{2}, \quad \nabla_{e_{2}} e_{3}=-\nabla_{e_{3}} e_{2}=-\frac{1}{4} e_{1}$. Therefore we have $R\left(e_{1}, e_{2}\right) e_{1}=1 / 16 e_{2}$ and hence $c=1 / 16$.

6. Remarks.

Remark 1. Let M be a 3-dimensional totally real submanifold of S^{6} and σ its second fundamental form. If we put $\tau=-J \sigma$, then τ is a symmetric tensor field of type (1,2) on M and the equations of Gauss, Codazzi and Ricci can be written in terms of the intrinsic tensor field τ. By identifying the tangent bundle of M with the normal bundle, we can state the fundamental theorem in terms of intrinsic language of M. In particular, using a Killing frame e_{1}, e_{3}, e_{3} on $S^{3}(1 / 16)$ (cf. for example [5]), we can give a minimal immersion of $S^{3}(1 / 16)$ into S^{6} as a totally real submanifold.

Remark 2. From Moore's theorem [4], we know that the minimum number l for which $S^{3}(c)$ can admit a (nontotally geodesic) minimal immersion into S^{l} is 6 . This gives a counterexample for a problem in [1, p. 44].

References

[^0]Department of Mathematics, Tokyo Metropolitan University, Tokyo, Japan

[^0]: 1. M. doCarmo and N. R. Wallach, Minimal immersions of spheres into spheres, Ann. of Math. (2) 95 (1971), 43-62.
 2. A. Gray, Minimal varieties and almost Hermitian submanifold, Michigan Math. J. 12 (1965), 273-285.
 3. ___, Almost complex submanifolds in the six sphere, Proc. Amer. Math. Soc. 20 (1969), 277-279.
 4. J. D. Moore, Isometric immersions of space forms into space forms, Pacific J. Math. 40 (1972), 157-166.
 5. S. Tanno, Orthonormal frames on 3-dimensional Riemannian manifolds, J. Differential Geom. 11 (1976), 467-474.
