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TOTALLY REAL SUBMANIFOLDS IN A 6-SPHERE
NORIO EJIRI

ABSTRACT. A 6-dimensional sphere S° has an almost complex structure induced by
properties of Cayley algebra. We investigate 3-dimensional totally real submani-
folds in S and classify 3-dimensional totally real submanifolds of constant
sectional curvature.

1. Introduction. It is well known that a 6-dimensional (unit) sphere S¢ admits an
almost Hermitian structure, which is a typical example of Tachibana manifold or a
nearly Kaehler manifold.

There are two typical classes among all submanifolds of an almost Hermitian
manifold: The one is the class of almost Hermitian Submanifolds and the other is
the class of totally real submanifolds.

A. Gray [3] proved that S has no 4-dimensional almost Hermitian submanifolds.

On the contrary, S¢ admits totally real submanifolds.

The purpose of this paper is to prove the following.

THEOREM 1. A 3-dimensional totally real submanifold of S® is orientable and
minimal.

THEOREM 2. Let M be a 3-dimensional totally real submanifold of constant
curvature c in S®. Then either ¢ = 1 (i.e., M is totally geodesic) or ¢ = 1/16.

The latter case in Theorem 2 is locally equivalent to a minimal immersion
S3(1/16) — S*® defined by spherical harmonics of degree 6 [1].
The author is grateful to Professor K. Ogiue for his useful criticism.

2. Almost Hermitian structures on S°. Let ¢, . . ., e, be the standard basis for
R’. Then the vector cross product in R is defined by the table for ¢, X ¢,.

TABLE
Jj/k 1 2 3 4 5 6 7

1 0 e, —-e, es —e, e, —eg
2 —e; 0 e € —e, —e, es
3 e, —e, e —ey —eg es e,
4 —es —€¢ e 0 e e, —e;
5 e, ey € —e, 0 —e, —e,
6 —e, e, —es -e, e, 0 e
7 € —es —e, e; e, -e,
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We put S¢ = {x € R’; ||x|| = 1} and define an almost complex structure J on
SbyJA = x X A, where x € S®and 4 € T,S°® (the tangent space of S° at x). It
is easily seen that the Riemannian metric g on S° induced from R’ is a Hermitian
metric with respect to J. We denote by V the covariant differentiation with respect
to the Riemannian connection on S, Then we have the following (cf. for example

[2):
LeMMA 2.1. (V,J)X = 0 holds for all vector fields X on S°.
An almost Hermitian manifold with this property is called a Tachibana manifold

or a nearly Kaehler manifold.
We define a skew-symmetric tensor field G of type (1, 2) by

G(X, Y) = (V,J)Y.
Then we have
LemMma 2.2. (i) G(X, JY) = -JG(X, Y) and

(i) (VxGXY, Z) = (Y, JZ)X + &(X, Z)JY — &(X, Y)JZ
hold for all vector fields X, Y, Z on S°.

3. 3-dimensional totally real submanifolds of S°. Let (M, g) be a 3-dimensional
totally real submanifold of (S, J, g). We denote by V the covariant differentiation
on M. Then the second fundamental form o of the immersion is given by

(3.1 X, Y)=V,Y-V,Y

for vector fields X, Y on M. For a normal vector field £, we denote by —4,.X and
V¢ the tangential and normal components of V £ respectively so that

(3.2) Vi =-A4.X + Vit

Then o and A4, are related by g(a(X, Y), §) = g(4.X, Y).
Let R and R be the curvature tensor of V and V<, respectively. Then the
equations of Gauss, Codazzi and Ricci are given respectively by

g(R(Xa Y)zZ, W) = g(X, Z)g( Y, W) - g(X’ W)g( Y, Z)

33

( ) +§(°(X’ Z)’ O(Y’ W)) —§(0(X, W)’ U(Y, Z))’
(34) (Vyo)(Y, Z) — (Vyo)(X, Z) =0,
(3:5) g(R(X, Y)¢ ) — g([ 4 4,]X, Y) =0,

where (Vyo)(Y, Z) =Via(Y, Z) — o(V, Y, Z) — o(Y, V4 Z).

4. Proof of Theorem 1. Let (M, g) be a 3-dimensional totally real submanifold of
(S8, J, 8). First of all, we shall prove the following.

LeMMA 4.1. G(X, Y) is normal to M for X, Y tangent to M.

Proor. From (3.1) and (3.2) we have
2((VxI)Y, Z) = g(Jo(X, Z), Y) - g(Jo(X, Y), Z),

g((V2J)X, Y) = g(Jo(2Z, Y), X) — g(Jo(Z, X), Y),
g((VyJ)Z, X) = g(Jo(Y, X), Z) — g(Jo(Y, Z), X),
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for X, Y,Z tangent to M. Since g is Hermitian with respect to J, VXJ is
skew-symmetric with respect to g. This, together with Lemma 2.1, implies that the
left-hand sides of the above three equations are equal to each other. Therefore we
have g((V,J)Y, Z) = 0, which means G(X, Y) is orthogonal to M. Q.E.D.

By Lemma 2.2(i), we obtain

(VxG)(JY,JZ) = V4G(UY,JZ) — G(VyJY,JZ) - G(JY, V,JZ)
= -V,G(Y,2) - G((VxJ)Y,JZ) - G(JV,Y,JZ)
- G(7Y, (V,J)Z) - G(JY, IV, Z)
-V,G(Y, Z) + JG(G(X, Y), Z)
+G(VyY, Z) + JG(Y, G(X, 2)) + G(Y, V,Z)
= - (VxG)(Y, Z2) + JG(G(X, Y), Z) + JG(Y, G(X, Z))
for X, Y, Z tangent to M. This, combined with Lemma 2.2(ii), implies
G(Y,G(Z, X))+ G(Z,G(X, Y)) = g(X,Y)Z — g(X, Z)Y
and hence G(X, G(Y, Z)) = g(X, Z)Y — g(X, Y)Z or equivalently
4.1) JG(X,JG(Y, Z2)) = g(X,Z)Y — g(X, Y)Z

for X, Y, Z tangent to M. Since JG(X, Y) is tangent to M by Lemma 4.1, we see
from (4.1) that
g(JG(X,Y), Y)X — g(JG(X, Y),X)Y = JG(JG(X, Y),JG(X, Y)) =0.

Thus JG(X, Y) is orthogonal to X and Y if X and Y are linearly independent. This
property, together with (4.1), implies that M is orientable, because the orientation
can be defined by regarding JG(X, Y) as the vector product of X and Y at each
point of M.

Next, we shall prove that M is minimal. It follows immediately from (3.1), (3.2)
and Lemma 4.1 that

4.2) ViJY = G(X, Y) + JV, Y
and
4.3) Ay = -Jo(X, Y)

hold for X, Y tangent to M. By (3.1), (3.2), (4.2), (4.3) and Lemma 2.2(i), we obtain
(VxG)(Y, Z) = VyG(Y, Z) — G(VxY, Z) — G(Y, V,Z)
= —Agr.z)X + ViG(Y, Z) — G(V,Y, Z) - G(Y,V,Z)
= Jo(JG(Y, Z), X) + JG(X, G(Y, Z)) — J(V,JG)(Y, Z)
-G(o(X, Y), Z) - G(Y,0(X, Z))
for X, Y, Z tangent to M. This, combined with Lemma 2.2(ii), implies
(VxJG)Y,Z) =g(X, Y)Z — g(X, Z)Y + G(X, G(Y, 2)) + o(X,JG(Y, Z))

+JG(o(X, Y), Z) + JG(Y, o(Z, X)).

Taking the normal component, we have

(4.4) o(X, JG(Y, Z)) + JG(o(X, Y), Z) + JG(Y, 0(Z, X)) =0
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for X, Y, Z tangent to M. Let ¢, e,, e; be a local field of orthonormal frames on
M. Then we may assume without loss of generality that JG(e,, e;) = e3, JG(e,, €;)
= e, and JG(e;, ;) = e,. Hence we have from (4.4) that the trace of ¢ = 0, which
implies that M is minimal.

S. Proof of Theorem 2. Let M be a 3-dimensional totally real submanifold of
constant curvature ¢ in S Then the equation (3.3) of Gauss reduces to

(1 = o){&(X, Z)g(Y, W) — g(X, W)g(Y, Z)}

+g(o(X, Z), o(Y, W)) — g(o(X, W), a(Y, Z)) = 0.
If ¢ = 1, then M is totally geodesic. Therefore it is sufficient to consider the case
c<l

Consider a cubic function f(X) = g(o(X, X), JX) defined on {X € T M; || X||
= 1}. If f attains its maximum at x, then g(o(X, X), JY) = O for Y orthogonal to X
and hence o(X, X) is proportional to JX. Therefore, if f is constant, o(X, X) =0
for all X, since M is minimal. Thus f is not constant, since we are considering the
case where M is not totally geodesic.

Choose e, to be the maximum point of f at each point x € M. By the similar
argument to the above, we see that f restricted to {X € T M; || X| =1 and
2(X, e;) = 0} is not constant. Choose e, to be the maximum point of f restricted to
{X € TM; |X| =1 and g(X, e;) = 0} and choose e, so that e,, e,, e; form an
orthonormal frame field. Then we easily see that

(5.2) g(a(ey €;), Je;) = 0.

Put g, = g(o(e, ¢), Je,). Then we have a, + a, + a; = 0, since M is minimal. We
see that a, > 0, because q, is the maximum value for the cubic function f and M is
not totally geodesic. Moreover, from (5.1) we have 1 — ¢ + a,a, — a = 0 and
1 — ¢+ aa;, — a2 =0, since (4.3) implies that g(a(X, Y), JZ) is symmetric in
X, Y, Z. Therefore we get

(5.1)

(apaya)) = (2V(1 - )/3,-V(1-¢)/3,-V(1-0)/3),

which implies that

(5.3) o(e, e) =2V (1 - c¢)/3 Je

and

(5.4) 2(o(X, X),Je)) = -V (1 — ¢)/3

for a unit vector X orthogonal to e,. In particular, putting X = (e, + €;)/ V2, we
obtain

(5.5) g(o(ey, €5), Je,) = 0.

In consideration of (5.2), (5.3), (5.4), (5.5) and minimality of M, we may put
o(ey €) = ~V (1 = c)/3 Je, + Me,, o(es, e) = -V (1 — ¢)/3 Je, — ey,
o(ey, €;) = —AJe;. Putting X = W=e¢, and Y=Z = ¢, in (5.1, we obtain
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A= \/2_(—1—7)/3 . Therefore we have
o(ey &) = -V (1= ¢)/3 Je, +V2(1 - ¢)/3 Je,,
(5.6) o(es, &) = -V (1= ¢)/3 Je, = V21 = ¢)/3 Je,,
o(ey ) = —m Jes,

which, together with (5.3), (5.4) and (5.5), implies

(57) o(ep,e)=-V(1—c)/3Je;, ole,e3)=-V(1-c)/3 Je,.

Applying the equation (3.4) of Codazzi to (5.3), (5.6) and (5.7), we obtain V¢, = 0,

Voe,=-V,e,=-3e, V,e;=-V e, =%e, V, e;=-V, e, =—1e,. Therefore
we have R(e,, e,)e; = 1/16e, and hence ¢ = 1/16.
6. Remarks.

REMARK 1. Let M be a 3-dimensional totally real submanifold of S and o its
second fundamental form. If we put 7 = —Jo, then 7 is a symmetric tensor field of
type (1, 2) on M and the equations of Gauss, Codazzi and Ricci can be written in
terms of the intrinsic tensor field 7. By identifying the tangent bundle of M with
the normal bundle, we can state the fundamental theorem in terms of intrinsic
language of M. In particular, using a Killing frame e,, e;, e; on S3(1/16) (cf. for
example [5]), we can give a minimal immersion of S3(1/16) into S° as a totally real
submanifold.

REMARK 2. From Moore’s theorem [4], we know that the minimum number / for
which $3(c) can admit a (nontotally geodesic) minimal immersion into S’ is 6. This
gives a counterexample for a problem in [1, p. 44].
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