TOTALLY REAL SUBMANIFOLDS IN A 6-SPHERE

NORIO EJIRI

ABSTRACT. A 6-dimensional sphere S^6 has an almost complex structure induced by properties of Cayley algebra. We investigate 3-dimensional totally real submanifolds in S^6 and classify 3-dimensional totally real submanifolds of constant sectional curvature.

1. Introduction. It is well known that a 6-dimensional (unit) sphere S^6 admits an almost Hermitian structure, which is a typical example of *Tachibana manifold* or a *nearly Kaehler manifold*.

There are two typical classes among all submanifolds of an almost Hermitian manifold: The one is the class of almost Hermitian Submanifolds and the other is the class of totally real submanifolds.

A. Gray [3] proved that S^6 has no 4-dimensional almost Hermitian submanifolds. On the contrary, S^6 admits totally real submanifolds.

The purpose of this paper is to prove the following.

THEOREM 1. A 3-dimensional totally real submanifold of S^6 is orientable and minimal.

THEOREM 2. Let M be a 3-dimensional totally real submanifold of constant curvature c in S^6 . Then either c = 1 (i.e., M is totally geodesic) or c = 1/16.

The latter case in Theorem 2 is locally equivalent to a minimal immersion $S^{3}(1/16) \rightarrow S^{6}$ defined by spherical harmonics of degree 6 [1].

The author is grateful to Professor K. Ogiue for his useful criticism.

2. Almost Hermitian structures on S^6 . Let e_1, \ldots, e_7 be the standard basis for R^7 . Then the vector cross product in R^7 is defined by the table for $e_j \times e_k$.

TABLE							
j/k	1	2	3	4	5	6	7
1	0	<i>e</i> ₃	$-e_2$	<i>e</i> ₅	-e ₄	e ₇	-e ₆
2	$-e_3$	0	e_1	e ₆	$-e_7$	$-e_4$	<i>e</i> ₅
3	<i>e</i> ₂	$-e_1$	е	$-e_7$	$-e_6$	e ₅	e4
4	$-e_5$	- <i>e</i> ₆	e ₇	0	e_1	e ₂	$-e_3$
5	e ₄	e ₇	e_6	$-e_1$	0	$-e_3$	$-e_2$
6	$-e_7$	e ₄	$-e_5$	$-e_2$	<i>e</i> ₃	0	e_1
7	e ₆	- <i>e</i> ₅	-e ₄	<i>e</i> ₃	<i>e</i> ₂	$-e_1$	0

Received by the editors January 26, 1981.

1980 Mathematics Subject Classification. Primary 53C40, 53C42; Secondary 58D10.

Key words and phrases. Cayley algebra, Tachibana space, nearly Kaehler manifold, totally real submanifold, Killing frame.

© 1981 American Mathematical Society 0002-9939/81/0000-0569/\$02.25

We put $S^6 = \{x \in \mathbb{R}^7; \|x\| = 1\}$ and define an almost complex structure J on S^6 by $JA = x \times A$, where $x \in S^6$ and $A \in T_x S^6$ (the tangent space of S^6 at x). It is easily seen that the Riemannian metric \overline{g} on S^6 induced from \mathbb{R}^7 is a Hermitian metric with respect to J. We denote by $\overline{\nabla}$ the covariant differentiation with respect to the Riemannian connection on S^6 . Then we have the following (cf. for example [2]):

LEMMA 2.1. $(\overline{\nabla}_X J)X = 0$ holds for all vector fields X on S⁶.

An almost Hermitian manifold with this property is called a *Tachibana manifold* or a *nearly Kaehler manifold*.

We define a skew-symmetric tensor field G of type (1, 2) by

$$G(X, Y) = \left(\overline{\nabla}_X J\right) Y.$$

Then we have

LEMMA 2.2. (i) G(X, JY) = -JG(X, Y) and (ii) $(\overline{\nabla}_X G)(Y, Z) = \overline{g}(Y, JZ)X + \overline{g}(X, Z)JY - \overline{g}(X, Y)JZ$ hold for all vector fields X, Y, Z on S⁶.

3. 3-dimensional totally real submanifolds of S^6 . Let (M, g) be a 3-dimensional totally real submanifold of (S^6, J, \overline{g}) . We denote by ∇ the covariant differentiation on M. Then the second fundamental form σ of the immersion is given by

$$(3.1) (X, Y) = \overline{\nabla}_X Y - \nabla_X Y$$

for vector fields X, Y on M. For a normal vector field ξ , we denote by $-A_{\xi}X$ and $\nabla_X^{\perp}\xi$ the tangential and normal components of $\overline{\nabla}_X\xi$ respectively so that

(3.2)
$$\overline{\nabla}_X \xi = -A_{\xi} X + \nabla_X^{\perp} \xi.$$

Then σ and A_{ξ} are related by $g(\sigma(X, Y), \xi) = g(A_{\xi}X, Y)$.

Let R and R^{\perp} be the curvature tensor of ∇ and ∇^{\perp} , respectively. Then the equations of Gauss, Codazzi and Ricci are given respectively by

(3.3)
$$g(R(X, Y)Z, W) = g(X, Z)g(Y, W) - g(X, W)g(Y, Z) + \overline{g}(\sigma(X, Z), \sigma(Y, W)) - \overline{g}(\sigma(X, W), \sigma(Y, Z))$$

(3.4)
$$(\nabla'_X \sigma)(Y, Z) - (\nabla'_Y \sigma)(X, Z) = 0,$$

(3.5)
$$g(R^{\perp}(X, Y)\xi, \eta) - g([A_{\xi}, A_{\eta}]X, Y) = 0,$$

where $(\nabla'_X \sigma)(Y, Z) = \nabla^{\perp}_X \sigma(Y, Z) - \sigma(\nabla_X Y, Z) - \sigma(Y, \nabla_X Z).$

4. Proof of Theorem 1. Let (M, g) be a 3-dimensional totally real submanifold of (S^6, J, \overline{g}) . First of all, we shall prove the following.

LEMMA 4.1. G(X, Y) is normal to M for X, Y tangent to M.

PROOF. From (3.1) and (3.2) we have

$$g((\overline{\nabla}_X J)Y, Z) = g(J\sigma(X, Z), Y) - g(J\sigma(X, Y), Z),$$

$$g((\overline{\nabla}_Z J)X, Y) = g(J\sigma(Z, Y), X) - g(J\sigma(Z, X), Y),$$

$$g((\overline{\nabla}_Y J)Z, X) = g(J\sigma(Y, X), Z) - g(J\sigma(Y, Z), X),$$

760

for X, Y, Z tangent to M. Since \overline{g} is Hermitian with respect to J, $\overline{\nabla}_X J$ is skew-symmetric with respect to \overline{g} . This, together with Lemma 2.1, implies that the left-hand sides of the above three equations are equal to each other. Therefore we have $g((\overline{\nabla}_X J)Y, Z) = 0$, which means G(X, Y) is orthogonal to M. Q.E.D.

By Lemma 2.2(i), we obtain

$$\begin{split} & (\overline{\nabla}_{X}G)(JY, JZ) = \overline{\nabla}_{X}G(JY, JZ) - G(\overline{\nabla}_{X}JY, JZ) - G(JY, \overline{\nabla}_{X}JZ) \\ & = -\overline{\nabla}_{X}G(Y, Z) - G((\overline{\nabla}_{X}J)Y, JZ) - G(J\overline{\nabla}_{X}Y, JZ) \\ & - G(JY, (\overline{\nabla}_{X}J)Z) - G(JY, J\overline{\nabla}_{X}Z) \\ & - \overline{\nabla}_{X}G(Y, Z) + JG(G(X, Y), Z) \\ & + G(\overline{\nabla}_{X}Y, Z) + JG(Y, G(X, Z)) + G(Y, \overline{\nabla}_{X}Z) \\ & = -(\overline{\nabla}_{X}G)(Y, Z) + JG(G(X, Y), Z) + JG(Y, G(X, Z)) \end{split}$$

for X, Y, Z tangent to M. This, combined with Lemma 2.2(ii), implies

$$G(Y, G(Z, X)) + G(Z, G(X, Y)) = g(X, Y)Z - g(X, Z)Y$$

and hence G(X, G(Y, Z)) = g(X, Z)Y - g(X, Y)Z or equivalently

(4.1) JG(X, JG(Y, Z)) = g(X, Z)Y - g(X, Y)Z

for X, Y, Z tangent to M. Since JG(X, Y) is tangent to M by Lemma 4.1, we see from (4.1) that

$$g(JG(X, Y), Y)X - g(JG(X, Y), X)Y = JG(JG(X, Y), JG(X, Y)) = 0.$$

Thus JG(X, Y) is orthogonal to X and Y if X and Y are linearly independent. This property, together with (4.1), implies that M is orientable, because the orientation can be defined by regarding JG(X, Y) as the vector product of X and Y at each point of M.

Next, we shall prove that M is minimal. It follows immediately from (3.1), (3.2) and Lemma 4.1 that

(4.2) $\nabla_X^{\perp} JY = G(X, Y) + J\nabla_X Y$

and

$$(4.3) A_{JX} = -J\sigma(X, Y)$$

hold for X, Y tangent to M. By (3.1), (3.2), (4.2), (4.3) and Lemma 2.2(i), we obtain

$$\begin{split} \big(\overline{\nabla}_X G\big)(Y,Z) &= \overline{\nabla}_X G(Y,Z) - G\big(\overline{\nabla}_X Y,Z\big) - G\big(Y,\overline{\nabla}_X Z\big) \\ &= -A_{G(Y,Z)} X + \overline{\nabla}_X^{\perp} G(Y,Z) - G\big(\overline{\nabla}_X Y,Z\big) - G\big(Y,\overline{\nabla}_X Z\big) \\ &= J\sigma(JG(Y,Z),X) + JG(X,G(Y,Z)) - J(\overline{\nabla}_X JG)(Y,Z) \\ &- G(\sigma(X,Y),Z) - G(Y,\sigma(X,Z)) \end{split}$$

for X, Y, Z tangent to M. This, combined with Lemma 2.2(ii), implies

$$(\nabla_X JG)(Y, Z) = g(X, Y)Z - g(X, Z)Y + G(X, G(Y, Z)) + \sigma(X, JG(Y, Z))$$
$$+ JG(\sigma(X, Y), Z) + JG(Y, \sigma(Z, X)).$$

Taking the normal component, we have

(4.4)
$$\sigma(X, JG(Y, Z)) + JG(\sigma(X, Y), Z) + JG(Y, \sigma(Z, X)) = 0$$

for X, Y, Z tangent to M. Let e_1 , e_2 , e_3 be a local field of orthonormal frames on M. Then we may assume without loss of generality that $JG(e_1, e_2) = e_3$, $JG(e_2, e_3) = e_1$ and $JG(e_3, e_1) = e_2$. Hence we have from (4.4) that the trace of $\sigma = 0$, which implies that M is minimal.

5. Proof of Theorem 2. Let M be a 3-dimensional totally real submanifold of constant curvature c in S^6 . Then the equation (3.3) of Gauss reduces to

(5.1)
$$(1-c)\{g(X,Z)g(Y,W) - g(X,W)g(Y,Z)\} + \bar{g}(\sigma(X,Z),\sigma(Y,W)) - \bar{g}(\sigma(X,W),\sigma(Y,Z)) = 0$$

If c = 1, then M is totally geodesic. Therefore it is sufficient to consider the case c < 1.

Consider a cubic function $f(X) = \overline{g}(\sigma(X, X), JX)$ defined on $\{X \in T_x M; \|X\| = 1\}$. If f attains its maximum at x, then $\overline{g}(\sigma(X, X), JY) = 0$ for Y orthogonal to X and hence $\sigma(X, X)$ is proportional to JX. Therefore, if f is constant, $\sigma(X, X) = 0$ for all X, since M is minimal. Thus f is not constant, since we are considering the case where M is not totally geodesic.

Choose e_1 to be the maximum point of f at each point $x \in M$. By the similar argument to the above, we see that f restricted to $\{X \in T_x M; \|X\| = 1 \text{ and } g(X, e_1) = 0\}$ is not constant. Choose e_2 to be the maximum point of f restricted to $\{X \in T_x M; \|X\| = 1 \text{ and } g(X, e_1) = 0\}$ and choose e_3 so that e_1, e_2, e_3 form an orthonormal frame field. Then we easily see that

(5.2)
$$\overline{g}(\sigma(e_2, e_2), Je_3) = 0.$$

Put $a_i = \bar{g}(\sigma(e_i, e_i), Je_1)$. Then we have $a_1 + a_2 + a_3 = 0$, since M is minimal. We see that $a_1 > 0$, because a_1 is the maximum value for the cubic function f and M is not totally geodesic. Moreover, from (5.1) we have $1 - c + a_1a_2 - a_2^2 = 0$ and $1 - c + a_1a_3 - a_3^2 = 0$, since (4.3) implies that $\bar{g}(\sigma(X, Y), JZ)$ is symmetric in X, Y, Z. Therefore we get

$$(a_1, a_2, a_3) = (2\sqrt{(1-c)/3}, -\sqrt{(1-c)/3}, -\sqrt{(1-c)/3}),$$

which implies that

(5.3)
$$\sigma(e_1, e_1) = 2\sqrt{(1-c)/3} Je_1$$

and

(5.4)
$$\bar{g}(\sigma(X, X), Je_1) = -\sqrt{(1-c)/3}$$

for a unit vector X orthogonal to e_1 . In particular, putting $X = (e_2 + e_3)/\sqrt{2}$, we obtain

(5.5)
$$\bar{g}(\sigma(e_2, e_3), Je_1) = 0.$$

In consideration of (5.2), (5.3), (5.4), (5.5) and minimality of M, we may put $\sigma(e_2, e_2) = -\sqrt{(1-c)/3} Je_1 + \lambda Je_2$, $\sigma(e_3, e_3) = -\sqrt{(1-c)/3} Je_1 - \lambda e_2$, $\sigma(e_2, e_3) = -\lambda Je_3$. Putting $X = W = e_2$ and $Y = Z = e_3$ in (5.1), we obtain

 $\lambda = \sqrt{2(1-c)/3}$. Therefore we have

(5.6)

$$\sigma(e_2, e_2) = -\sqrt{(1-c)/3} Je_1 + \sqrt{2(1-c)/3} Je_2,$$

$$\sigma(e_3, e_3) = -\sqrt{(1-c)/3} Je_1 - \sqrt{2(1-c)/3} Je_2,$$

$$\sigma(e_2, e_3) = -\sqrt{2(1-c)/3} Je_3,$$

which, together with (5.3), (5.4) and (5.5), implies

(5.7)
$$\sigma(e_1, e_2) = -\sqrt{(1-c)/3} Je_2, \quad \sigma(e_1, e_3) = -\sqrt{(1-c)/3} Je_3.$$

Applying the equation (3.4) of Codazzi to (5.3), (5.6) and (5.7), we obtain $\nabla_{e_i} e_i = 0$, $\nabla_{e_1} e_2 = -\nabla_{e_2} e_1 = -\frac{1}{4} e_3$, $\nabla_{e_1} e_3 = -\nabla_{e_3} e_1 = \frac{1}{4} e_2$, $\nabla_{e_2} e_3 = -\nabla_{e_3} e_2 = -\frac{1}{4} e_1$. Therefore we have $R(e_1, e_2)e_1 = 1/16e_2$ and hence c = 1/16.

6. Remarks.

REMARK 1. Let M be a 3-dimensional totally real submanifold of S^6 and σ its second fundamental form. If we put $\tau = -J\sigma$, then τ is a symmetric tensor field of type (1, 2) on M and the equations of Gauss, Codazzi and Ricci can be written in terms of the intrinsic tensor field τ . By identifying the tangent bundle of M with the normal bundle, we can state the fundamental theorem in terms of intrinsic language of M. In particular, using a Killing frame e_1 , e_3 , e_3 on $S^3(1/16)$ (cf. for example [5]), we can give a minimal immersion of $S^3(1/16)$ into S^6 as a totally real submanifold.

REMARK 2. From Moore's theorem [4], we know that the minimum number l for which $S^{3}(c)$ can admit a (nontotally geodesic) minimal immersion into S^{l} is 6. This gives a counterexample for a problem in [1, p. 44].

References

1. M. doCarmo and N. R. Wallach, *Minimal immersions of spheres into spheres*, Ann. of Math. (2) 95 (1971), 43-62.

2. A. Gray, Minimal varieties and almost Hermitian submanifold, Michigan Math. J. 12 (1965), 273-285.

3. _____, Almost complex submanifolds in the six sphere, Proc. Amer. Math. Soc. 20 (1969), 277-279.

4. J. D. Moore, Isometric immersions of space forms into space forms, Pacific J. Math. 40 (1972), 157-166.

5. S. Tanno, Orthonormal frames on 3-dimensional Riemannian manifolds, J. Differential Geom. 11 (1976), 467-474.

DEPARTMENT OF MATHEMATICS, TOKYO METROPOLITAN UNIVERSITY, TOKYO, JAPAN