Totally Real Submanifolds in a 6-Sphere
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1. Introduction

On a 6-dimensional unit sphere S® one can construct an almost complex
structure using the properties of the Cayley division algebra; we refer to [3]
for this construction. Further, it is known that this almost complex structure
on S°%is not integrable and that it is a nearly Kaehler structure on S, Re-
garding submanifolds of S¢, it is known that S° has no 4-dimensional com-
plex submanifolds [4]. However, S has 3-dimensional totally real submani-
folds, which are minimal and orientable [3]. For a compact 3-dimensional
totally real submanifold M of S, in [2] it is shown that if the sectional cur-
vatures k of M satisfy 1/16 < k <1, then k=1, that is, M is totally geodesic.
However, there are 3-dimensional compact totally real submanifolds of 56
some of whose sectional curvatures are greater than 1 (cf. [1, p. 436]).
The object of the present paper is to prove the following.

THEOREM. Let M be a compact 3-dimensional totally real submanifold of
SS. If kg is the infimum of the sectional curvatures of M, then either 4ky=<1
or M is totally geodesic.

2. Totally Real Submanifolds of §¢

Let J be the almost complex structure defined on S by the properties of the
Cayley division algebra, and let g be the standard metric of constant curva-
ture 1 on S8 Then we have

@.1) gUX,JY)=g(X,Y), (VxJ)(X)=0, X,Yex(S%,

where V is the Riemannian connection on S° with respect to g and x(S°) is
the Lie algebra of vector fields on S°.

Define a tensor field G of the type (1,2) on S®by G(X,Y)=(VxJ)(Y),
X, Ye x(S%). This tensor field has the following properties:
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2.2) G(X,Y)+G(Y,X)=0;

(2.3) G(X,JY)+JG(X,Y)=0;

2.4) (VxG)(Y,Z)=g(Y,JZ) X +g(X, Z)JY—g(X,Y)JZ,
X,Y, Zex(S°).

A 3-dimensional submanifold M of S¢is called a totally real submanifold
of SOif JTM = T*M, where TM is the tangent bundle and 7+M is the nor-
mal bundle of M. In [3] Ejiri proved that a 3-dimensional totally real sub-
manifold M of S®is orientable and minimal, and that G(X, Y) is orthogonal
to M for X,Y e x(M), where x(M) is the Lie algebra of vector fields on M.
We denote by V and V+ the Riemannian connection on M and the connec-
tion in the normal bundle 7*M induced by the connection V. The formulae
of Gauss and Weingarten are given by

(2.5) VyY=VyY+h(X,Y)
and
(2.6) VX‘E:-—AEX-i—V)%E,

where X and Y are vector fields on M and £ is a normal vector field on M.
The second fundamental form # is related to A, by

2.7 g(n(X,Y),£)=8(A; X,Y),
(2.8) Aj;xY=—-Jh(X,Y),

and

(2.9) g(h(X,Y),JZ)=g(h(Y, Z),JX).

If we denote the curvature tensors of V and V+ by R and R*, respectively,
then the equation of Codazzi gives

(2.10) (Vh)(X,Y,Z)=(Vh)(Y, Z, X),
and the equations (2.4), (2.8), and (2.9) give
g(RYNX,Y)IZ,JW)=g(R(X,Y)Z,W)+g(Z,X)g(Y, W)
—8(Z,Y)g(X, W),
where X,Y, Z, We x(M) and Vh is defined by
(VA)(X,Y,Z)=V3h(Y,Z)—h(VxY, Z)— h(Y,Vx Z).

@2.11)

Using equations (2.4) and (2.10), by a straightforward computation we
obtain
g(Vh)(X,Y,Z),JW)—g((Vh)(X,Y,W),JZ)
=g(h(Y,W),G(X,Z))—g(h(Y,Z), G(X,W)).
We also define V24 by
(V2h)(X,Y, Z, W)=V Vh) (Y, Z,W)—(Vh)(VxY, Z, W)
—(VR)(Y,VxZ,W)—(VI)(Y, Z,Vx W).

(2.12)
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Then V2# satisfies the following equation:
(V2h)(X,Y,Z,W)=(V*h)(Y,X,Z,W)+R X, Y)h(Z,W)

(2.13)
—h(R(X,Y)Z,W)—h(Z,R(X,Y)W).

For a unit vector v e TM, we can choose an orthonormal basis {e,, e,, e;},
with e;=v, such that G(ey, e;) =Je;, G(ey, e3)=Je;, and G(ez, e)) =Je,
(cf. [3]). Then, using minimality of M and (2.12), we have

3
> 8(G(e;, v), (Vh)(e;, v, 0))

=1 = g(=Jey, (Fh) (ey, v, 0)) + g(Jey, (Vh) (e, v, )
= g((Vh) (v, v, &), Je;) — g((Vh) (v, v, e)), Jey)
=—g(h(v, e)), e))—g(h(v, ey), €y)
= —g(h(ey, e))+h(ey, e3), J)
=g(h(v,v), Jv).

(2.14)

3. Proof of the Theorem

Let UM be the unit tangent bundle of M and let UM, be the fiber over pe
M. Define a smooth function f: UM — R by f(v) = g(h(v, v), Jv). Since UM
is compact, f attains a maximum at a unit vector v tangent to M at a point
p.Forany ue UM, let a(t) = (y(¢), v(¢)), ¢ € (—9, 6) be a smooth curve in
UM such that vy(¢) is the unique geodesic in M with y(0) = p and y’(0) = u;
let v(¢) be the parallel vector field along v with v(0) =v. Then we have

d
0=df,(u)= (5;) Og(h(v(z‘), v(1)), Ju(t))
=

=g((Vh)(u, v, v), Jv) +g(h(v, v), G(u, v))
and

0=d2f(u,u)=g((Vh)(u,u,v,v),Jv)
+2g((Vh)(u, v,v), G(u, v)) + g(h(v, v), (V,G)(u, v)),

where we have used the fact that V, Y=V, Y—h(X,Y) and that G(h(X,Y), Z)
is tangent to M for X, Y, Z tangent to M. Now, using (2.4), (2.9), (2.10),
(2.11), and (2.13), we have

d?f,(u, u)=g((V2h) (v, v, u, u), Jv) +2R(u, v;v, Jh(u, v))
+ R(u, v; u, Jh(v, v))+ g(h(u, u), Jv)
—g(u,v)g(h(u,v), Jv)+2g((Vh)(u, v,v), G(u, v))
+g(u, v)g(h(v,v), Ju)—g(h(v,v), Jv).

The function f restricted to the fiber UM  attains a maximum at v. Thus,
if B(¢), te (-4, 9), is a curve in UM, with 3(0) =v, |8’(¢)| =1, and B’(0)=
u, then realising UM, as S? and using (2.9) we obtain

3.1)

(3.2)
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d
0=d(f|un,)u(u)= (d_t> Og(h(ﬁ(t),ﬁ(l‘)),fﬁ(t))
=

(3.3)
= 3g(h(v,v), Ju)
and
3.4) 0=d*(f IUMp)(u: u)==6g(h(p'(0), v), JB'(0))+3g(h(v, v), JB"(0))

=6g(h(u, v),Ju)—3g(h(v,v), Jv)).

Since (3.3) is true for any unit vector # orthogonal to v, we have A(v, v) =
S(v)Jv and thus, in light of (2.9), we see that v is an eigenvector of A4,
corresponding to the eigenvalue f(v). Now we can choose an orthonormal
basis {u;, u,, us} of T, M (the tangent space of M at p) which diagonalizes
Ay, such that us=v. If A u;=p;u;, i=1,2, then using A(v, v) = f(v)Jv
and h(u;, v) = p;Ju; in (3.4) yields

3.5) f()=2p;20, i=1,2.

Now, adding the equations (3.2) over basis vectors {u,, u,, v} and using
(2.9), (2.14), and (3.1) as well as minimality, we obtain

3 2
(6 0= 3 u)= 3T K, u)(f0)=20) =),

where K(v, u;) is the sectional curvature of the plane section spanned by
{v, u;}. If kyis the infimum of the sectional curvatures of M, then using (3.5)
together with p;+ p,=—f(v) in (3.6) yields (4k,—1) f(v) =0. Also, since
S(v) is the maximum value of the cubic function f, we have f(v) =0 (this
also follows from (3.5) and the minimality).

Thus we get that either 4k,<1 or f(v)=0. In case f(v) =0, as f(v) is the
maximum value of f, we get f(u) <0 for all ue UM, and this together with
the formula f(—u)=—f(u) gives f(u)=0, ue UM. Using the standard
polarization formula

6g(h(uy, uy), Jus) = f(uy+uz+us) — fuy+us) — f(uy+us)
— fluy+uy) + f(uy) + f(uy) + f(us),

which is valid for any symmetric cubic form, we obtain g(4#(u, v), Jw)=0,
u,v,we UM, that is, M is totally geodesic.
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