Totally Real Submanifolds in a 6-Sphere

SHARIEF DESHMUKH

1. Introduction

On a 6-dimensional unit sphere S^6 , one can construct an almost complex structure using the properties of the Cayley division algebra; we refer to [3] for this construction. Further, it is known that this almost complex structure on S^6 is not integrable and that it is a nearly Kaehler structure on S^6 . Regarding submanifolds of S^6 , it is known that S^6 has no 4-dimensional complex submanifolds [4]. However, S^6 has 3-dimensional totally real submanifolds, which are minimal and orientable [3]. For a compact 3-dimensional totally real submanifold M of S^6 , in [2] it is shown that if the sectional curvatures k of M satisfy $1/16 < k \le 1$, then k = 1, that is, M is totally geodesic. However, there are 3-dimensional compact totally real submanifolds of S^6 some of whose sectional curvatures are greater than 1 (cf. [1, p. 436]).

The object of the present paper is to prove the following.

THEOREM. Let M be a compact 3-dimensional totally real submanifold of S^6 . If k_0 is the infimum of the sectional curvatures of M, then either $4k_0 \le 1$ or M is totally geodesic.

2. Totally Real Submanifolds of S^6

Let J be the almost complex structure defined on S^6 by the properties of the Cayley division algebra, and let g be the standard metric of constant curvature 1 on S^6 . Then we have

(2.1)
$$g(JX, JY) = g(X, Y), \quad (\overline{\nabla}_X J)(X) = 0, \quad X, Y \in \chi(S^6),$$

where $\overline{\nabla}$ is the Riemannian connection on S^6 with respect to g and $\chi(S^6)$ is the Lie algebra of vector fields on S^6 .

Define a tensor field G of the type (1,2) on S^6 by $G(X,Y) = (\overline{\nabla}_X J)(Y)$, $X, Y \in \chi(S^6)$. This tensor field has the following properties:

Received December 7, 1989. Revision received December 17, 1990.

Financially supported by research grant no. (Math/1409/05), Research Center, College of Science, King Saud University.

Michigan Math. J. 38 (1991).

(2.2)
$$G(X,Y)+G(Y,X)=0;$$

(2.3)
$$G(X, JY) + JG(X, Y) = 0;$$

(2.4)
$$(\overline{\nabla}_X G)(Y, Z) = g(Y, JZ)X + g(X, Z)JY - g(X, Y)JZ,$$
$$X, Y, Z \in \chi(S^6).$$

A 3-dimensional submanifold M of S^6 is called a *totally real* submanifold of S^6 if $JTM = T^{\perp}M$, where TM is the tangent bundle and $T^{\perp}M$ is the normal bundle of M. In [3] Ejiri proved that a 3-dimensional totally real submanifold M of S^6 is orientable and minimal, and that G(X, Y) is orthogonal to M for $X, Y \in \chi(M)$, where $\chi(M)$ is the Lie algebra of vector fields on M. We denote by ∇ and ∇^{\perp} the Riemannian connection on M and the connection in the normal bundle $T^{\perp}M$ induced by the connection $\overline{\nabla}$. The formulae of Gauss and Weingarten are given by

$$(2.5) \bar{\nabla}_X Y = \nabla_X Y + h(X, Y)$$

and

$$(2.6) \overline{\nabla}_X \xi = -A_{\xi} X + \nabla_X^{\perp} \xi,$$

where X and Y are vector fields on M and ξ is a normal vector field on M. The second fundamental form h is related to A_{ξ} by

(2.7)
$$g(h(X,Y),\xi) = g(A_{\xi}X,Y),$$

$$(2.8) A_{IX}Y = -Jh(X,Y),$$

and

(2.9)
$$g(h(X,Y),JZ) = g(h(Y,Z),JX).$$

If we denote the curvature tensors of ∇ and ∇^{\perp} by R and R^{\perp} , respectively, then the equation of Codazzi gives

$$(\overline{\nabla}h)(X,Y,Z) = (\overline{\nabla}h)(Y,Z,X),$$

and the equations (2.4), (2.8), and (2.9) give

(2.11)
$$g(R^{\perp}(X,Y)JZ,JW) = g(R(X,Y)Z,W) + g(Z,X)g(Y,W) - g(Z,Y)g(X,W),$$

where $X, Y, Z, W \in \chi(M)$ and $\overline{\nabla}h$ is defined by

$$(\overline{\nabla}h)(X,Y,Z) = \nabla_X^{\perp}h(Y,Z) - h(\nabla_X Y,Z) - h(Y,\nabla_X Z).$$

Using equations (2.4) and (2.10), by a straightforward computation we obtain

(2.12)
$$g((\bar{\nabla}h)(X,Y,Z),JW) - g((\bar{\nabla}h)(X,Y,W),JZ) \\ = g(h(Y,W),G(X,Z)) - g(h(Y,Z),G(X,W)).$$

We also define $\nabla^2 h$ by

$$\begin{split} (\bar{\nabla}^2 h)(X,Y,Z,W) &= \nabla_{\bar{X}}^{\perp}(\bar{\nabla} h)(Y,Z,W) - (\bar{\nabla} h)(\nabla_X Y,Z,W) \\ &- (\bar{\nabla} h)(Y,\nabla_X Z,W) - (\bar{\nabla} h)(Y,Z,\nabla_X W). \end{split}$$

Then $\nabla^2 h$ satisfies the following equation:

(2.13)
$$(\overline{\nabla}^2 h)(X, Y, Z, W) = (\overline{\nabla}^2 h)(Y, X, Z, W) + R^{\perp}(X, Y)h(Z, W) - h(R(X, Y)Z, W) - h(Z, R(X, Y)W).$$

For a unit vector $v \in TM$, we can choose an orthonormal basis $\{e_1, e_2, e_3\}$, with $e_3 = v$, such that $G(e_1, e_2) = Je_3$, $G(e_2, e_3) = Je_1$, and $G(e_3, e_1) = Je_2$ (cf. [3]). Then, using minimality of M and (2.12), we have

(2.14)
$$\sum_{i=1}^{3} g(G(e_{i}, v), (\overline{\nabla}h)(e_{i}, v, v))$$

$$= g(-Je_{2}, (\overline{\nabla}h)(e_{1}, v, v)) + g(Je_{1}, (\overline{\nabla}h)(e_{2}, v, v))$$

$$= g((\overline{\nabla}h)(v, v, e_{2}), Je_{1}) - g((\overline{\nabla}h)(v, v, e_{1}), Je_{2})$$

$$= -g(h(v, e_{1}), e_{1}) - g(h(v, e_{2}), e_{2})$$

$$= -g(h(e_{1}, e_{1}) + h(e_{2}, e_{2}), Jv)$$

$$= g(h(v, v), Jv).$$

3. Proof of the Theorem

Let UM be the unit tangent bundle of M and let UM_p be the fiber over $p \in M$. Define a smooth function $f: UM \to R$ by f(v) = g(h(v, v), Jv). Since UM is compact, f attains a maximum at a unit vector v tangent to M at a point p. For any $u \in UM_p$, let $\alpha(t) = (\gamma(t), v(t))$, $t \in (-\delta, \delta)$ be a smooth curve in UM such that $\gamma(t)$ is the unique geodesic in M with $\gamma(0) = p$ and $\gamma'(0) = u$; let $\gamma(t)$ be the parallel vector field along γ with $\gamma(t) = v$. Then we have

$$0 = df_v(u) = \left(\frac{d}{dt}\right)_{t=0} g(h(v(t), v(t)), Jv(t))$$
$$= g((\overline{\nabla}h)(u, v, v), Jv) + g(h(v, v), G(u, v))$$

and

(3.1)
$$0 \ge d_v^2 f(u, u) = g((\bar{\nabla}^2 h)(u, u, v, v), Jv) + 2g((\bar{\nabla} h)(u, v, v), G(u, v)) + g(h(v, v), (\bar{\nabla}_u G)(u, v)),$$

where we have used the fact that $\nabla_X Y = \overline{\nabla}_X Y - h(X, Y)$ and that G(h(X, Y), Z) is tangent to M for X, Y, Z tangent to M. Now, using (2.4), (2.9), (2.10), (2.11), and (2.13), we have

$$d^{2}f_{v}(u, u) = g((\overline{\nabla}^{2}h)(v, v, u, u), Jv) + 2R(u, v; v, Jh(u, v)) + R(u, v; u, Jh(v, v)) + g(h(u, u), Jv) - g(u, v)g(h(u, v), Jv) + 2g((\overline{\nabla}h)(u, v, v), G(u, v)) + g(u, v)g(h(v, v), Ju) - g(h(v, v), Jv).$$
(3.2)

The function f restricted to the fiber UM_p attains a maximum at v. Thus, if $\beta(t)$, $t \in (-\delta, \delta)$, is a curve in UM_p with $\beta(0) = v$, $\|\beta'(t)\| = 1$, and $\beta'(0) = u$, then realising UM_p as S^2 and using (2.9) we obtain

(3.3)
$$0 = d(f|_{UM_p})_v(u) = \left(\frac{d}{dt}\right)_{t=0} g(h(\beta(t), \beta(t)), J\beta(t))$$
$$= 3g(h(v, v), Ju)$$

and

(3.4)
$$0 \ge d^2(f|_{UM_p})(u, u) = 6g(h(\beta'(0), v), J\beta'(0)) + 3g(h(v, v), J\beta''(0)) = 6g(h(u, v), Ju) - 3g(h(v, v), Jv)).$$

Since (3.3) is true for any unit vector u orthogonal to v, we have h(v, v) = f(v)Jv and thus, in light of (2.9), we see that v is an eigenvector of A_{Jv} corresponding to the eigenvalue f(v). Now we can choose an orthonormal basis $\{u_1, u_2, u_3\}$ of T_pM (the tangent space of M at p) which diagonalizes A_{Jv} such that $u_3 = v$. If $A_{Jv}u_i = \rho_i u_i$, i = 1, 2, then using h(v, v) = f(v)Jv and $h(u_i, v) = \rho_i Ju_i$ in (3.4) yields

(3.5)
$$f(v) - 2\rho_i \ge 0, \quad i = 1, 2.$$

Now, adding the equations (3.2) over basis vectors $\{u_1, u_2, v\}$ and using (2.9), (2.14), and (3.1) as well as minimality, we obtain

(3.6)
$$0 \ge \sum_{i=1}^{3} d^2 f_v(u_i, u_i) = \sum_{i=1}^{2} K(v, u_i) (f(v) - 2\rho_i) - f(v),$$

where $K(v, u_i)$ is the sectional curvature of the plane section spanned by $\{v, u_i\}$. If k_0 is the infimum of the sectional curvatures of M, then using (3.5) together with $\rho_1 + \rho_2 = -f(v)$ in (3.6) yields $(4k_0 - 1) f(v) \le 0$. Also, since f(v) is the maximum value of the cubic function f, we have $f(v) \ge 0$ (this also follows from (3.5) and the minimality).

Thus we get that either $4k_0 \le 1$ or f(v) = 0. In case f(v) = 0, as f(v) is the maximum value of f, we get $f(u) \le 0$ for all $u \in UM$, and this together with the formula f(-u) = -f(u) gives f(u) = 0, $u \in UM$. Using the standard polarization formula

$$6g(h(u_1, u_2), Ju_3) = f(u_1 + u_2 + u_3) - f(u_2 + u_3) - f(u_1 + u_3)$$
$$- f(u_1 + u_2) + f(u_1) + f(u_2) + f(u_3),$$

which is valid for any symmetric cubic form, we obtain g(h(u, v), Jw) = 0, $u, v, w \in UM$, that is, M is totally geodesic.

ACKNOWLEDGMENTS. The author wishes to thank the referee for many helpful suggestions, and Professor M. Abdullah Al-Rashed for his kind help.

References

1. F. Dillen, L. Verstraelen, and L. Vrancken, On problems of U. Simon concerning minimal submanifolds of the nearly Kaehler 6-sphere, Bull. Amer. Math. Soc. (N.S.) 19 (1988), 433-438.

- 2. F. Dillen, B. Opozda, L. Verstraelen, and L. Vrancken, *On totally real 3-dimensional submanifolds of the nearly Kaehler 6-sphere*, Proc. Amer. Math. Soc. 99 (1987), 741–749.
- 3. N. Ejiri, *Totally real submanifolds in a 6-sphere*, Proc. Amer. Math. Soc. 83 (1981), 759–763.
- 4. A. Gray, Almost complex submanifolds of the six sphere, Proc. Amer. Math. Soc. 20 (1969), 277-279.

Department of Mathematics College of Science King Saud University Riyadh 11451 Saudi Arabia