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TOTALLY UMBILICAL LIGHTLIKE SUBMANIFOLDS
K. L. DucGaL AND D. H. JIN

Abstract

This paper provides new results on a class of totally umbilical lightlike submanifolds
in semi-Riemannian manifolds of constant curvature. We prove that the induced Ricci
tensor of any such submanifold is symmetric if and only if its screen distribution is
integrable.

1. Introduction

The theory of submanifolds of a Riemannian or semi-Riemannian manifold
is well known (see for example, Chen [4] and O’Neill [12]. However, its counter
part of lightlike (null) submanifolds (for which the local and global geometry is
completely different than the non-degenerate case) is relatively new and in a
developing stage ([1, 3, 5-9, 11]). In 1996, the first author and Bejancu published
their work (see Chapters 4 and 5 of [8]) on lightlike submanifolds M of semi-
Riemannian manifolds. They constructed structure equations for four possible
cases of M, proved the fundamental existence theorem for lightlike submanifolds
and found some geometric conditions for the induced connection on M to be a
metric connection. Much of their study was restricted to totally geodesic light-
like submanifolds of semi-Riemannian manifolds. In this paper we study further
the geometry of totally umbilical lightlike submanifolds M.

In Sections 2 and 3, we recall some results for lightlike submanifolds and
their structure equations. In Section 4, we prove several new theorems on M in
semi-Riemannian manifolds of constant curvature. Finally, in Section 5, we find
conditions for the induced Ricci curvature tensor of M to be symmetric. The
paper contains several simple examples.

2. Lightlike submanifolds

Let (M, ) be a real (m + n)-dimensional semi-Riemannian manifold of con-
stant index ¢ such that m,n > 1,1 <¢<m+n—1 and (M,g) an m-dimensional
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submanifold of M. In case g is degenerate on the tangent bundle 7M of M we

say that M is a lightlike submanifold of M [8]. Denote by F(M) the algebra

of smooth functions on M and by I'(E) the F(M) module of smooth sections of

a vector bundle E (same notation for any other vector bundle) over M. The

following range of indices is used:

i, j,k,...e{l,...;r}; abyc,...e{r+1,...,m};
A,B,C,...e{l,....m}; af,p,...e{r+1,...,n}

For a degenerate tensor field ¢ on M, there exists locally a vector field

EeT(TM), & #0, such that g(&, X) =0, for any X e ['(TM). Then, for each
tangent space 7, M we have

T M* ={ueT.M: g(uv)=0, Yoe T,M},

which is a degenerate n-dimension subspace of 7, M. The radical (null) subspace
of TxM, denoted by Rad 7T M, is defined by

Rad T\M = {¢ e T\M;9(¢, X) =0, X e T M}

The dimension of Rad .M = T-M N T M L depends on x e M. The submani-
fold M of M is said to be r-lightlike submanifold if the mapping

Rad TM : xe M — Rad T M

defines a smooth distribution on M of rank r > 0, where Rad TM is called the
radical (null) distribution on M. Following are four possible cases:

Case 1. r-lightlike submanifold. 1 <r < min{m,n}.
CaAsg 2. Co-isotropic submanifold. 1 <r=n<m.
Cask 3. Isotropic submanifold. 1 <r=m<n.

Case 4. Totally lightlike submanifold. 1 <r=m=n.

We refer [8] for notations and details not mentioned in this paper. For
Case 1, there exists a non-degenerate screen distribution S(7M) which is a
complementary vector subbundle to Rad TM in TM. Therefore,

(2.1) TM =Rad TM @ S(TM).

Although S(TM) is not unique, it is canonically isomorphic to the factor vec-
tor bundle 7M /Rad TM. Denote an r-lightlike submanifold by (M,g,S(TM),
S(TM%')), where S(TM*) is a complementary vector subbundle to Rad TM in
TM*. For the dependence of all the induced geometric objects, of M, on
{S(TM),S(TM*)} we refer [8]. Let tr(TM) and ltr(TM) be complementary
(but not orthogonal) vector bundles to TM in TM|M and to Rad TM in
S(TM™') respectively. Then, we obtain
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(2.2) tr(TM) = 1tre(TM) ® S(TM™),
(2.3) TM|,, =TM @ tr(TM)
=(Rad TM @ 1tr(TM)) ® S(TM) @ S(TM™").
Consider the following local quasi-orthonormal field of frames of M along M:
(2.4) {&1, &N, o N Xty ooy Xy Woity oo, Wad

where {&;,...,¢&,} is a lightlike basis of T'(Rad TM), {Ny,...,N,} a lightlike
basis of I'(ltr(TM)), {X,11,..., X} and {W,y1,..., W,} orthonormal basis of
[(S(TM)|«) and T(S(TM™)|%) respectively.

Example 1. Consider a surface (M,g) in R3 given by the equations

1 1

3 1 2 4 1 242

xT=—(x +x7); x"==log(l+ (x —x)7),

Tt =5 log(1 4 (<! -7

where (x',...,x*) is a local coordinate system for Rg. Using a simple procedure

of linear algebra, we choose a set of vectors {U,V,& W} given by

U=V2(1+(x' =x)D0 + (1 + (x' = x)Hd3 + V2(x' — x?)as,
V=v2(1+ (x' =x»)Ho + (1 + (x' = x?)H) 3 — V2(x' — x?)dy,
E=014 0, + V205,

W =2(x*—x"0 + V2(x> = x5 + (1 + (x' — x>)?)ds,

so that TM and TM* are spanned by {U,V} and {& W} respectively. By
direct calculations it follows that Rad T'M is a distribution on M of rank 1 and
spanned by the lightlike vector . Choose S(TM) and S(TM*) spanned by the
timelike vector V' and the spacelike vector W respectively. Then,

1 1 1
Itr(TM) = Span{N = —561 +§62 —&—ﬁ(%},

tr(TM) = Span{N, W},

where N is a lightlike vector such that g(N,&) =1. Thus, M is a 1-lightlike
submanifold of Case 1, with basis {&, N, V, W} of RS along M.

For Case 2, we have Rad TM = TM*. Therefore, S(TM*)= {0} and
from (2.2) tr(TM) =1tr(TM). Thus, (2.3) and (2.4) reduce to

(2.5) TM|,, =TM @ tr(TM) = (TM* @ 1tr(TM)) & S(TM)
(26) {élvu',éraNla~~'3NraXr+1a"'7Xm}~
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Example 2. Consider the unit pseudo sphere S; of Minkowski space
Ri‘ given by the equation —¢> + x> +3p?+z2=1. Cut Sl3 by the hypersurface
t—x=0 and obtain a lightlike surface (M,g) of S} with Rad TM spanned
by a lightlike vector ¢ =0, +0,. Clearly, Rad TM = TM~* and, therefore,
this example belongs to Case 2. Consider a screen distribution S(7M)
spanned by a spacelike vector X =z0, —y0.. Then, we obtain a lightlike
transversal vector bundle tr(7M) = ltr(TM) spanned by N = (—1/2){(1 + £*)d, +
(12 = 1)0y + 2ty0, + 2120} such that g(N,¢&) =1, with a basis {&, N, X} for S}
along M.

For Case 3, we have Rad TM = TM. Therefore, S(TM) = {0}. There-
fore, (2.3) and (2.4) reduce to
(2.7) TM|, = TM @ te(TM) = (TM ® 1tr(TM)) ® S(TM")
(2.8) {&1,.. &N oo o y Ny Wty oo, Wb
Example 3. Suppose (M,g) is a surface of RS given by equations
x> =cosx!, x*=sinx', x°=x
We choose a set of vectors {, &, Uy, Uy} given by
E =014 05, & =0, —sin x'd3 + cos x4,
U = —sin x'0, + 85, U, =cos x'd; + 04,
so that Rad TM = TM = Span{¢&,,¢&,}, TM* = Span{¢, U;, U»}. Therefore,

M belongs to Case 3. Construct two null vectors

1
Ny = E{—az + 55},

Ny, = %{—61 — sin x'03 + cos x164},

such that g(N;, &) =0y for i, j € {1,2} and ltr(TM) = Span{N;, N>}. Let W =
cos x'03 + sin x'0, be a spacelike vector such that S(TM~) = Span{W}. Thus,
{&1,&, N1, N2, W} is a basis of R; along M.

For Case 4, Rad TM = TM = TM*, S(TM)=S(TM~*)={0}. There-
fore, (2.3) and (2.4) reduce to
(2.9) TM|,, = TM & ltr(TM)
(2.10) {&,...,&,Ny,...,N, }.

Example 4. Suppose (M,g) is a surface of Rg given by the equations
1

1
= ra?), xr=—x! X

V2 V2



TOTALLY UMBILICAL LIGHTLIKE SUBMANIFOLDS 53

We choose a set of vectors {«fl,éz, U,V?} given by

¢ = —=03+—=04, & =02+

! 0 ! 0
—=03 ——=04
\f \f V2T V2

251+52+\/_53, V=51—52+\/§54,
so that TM and TM* are spanned by {&|,&,} and {U, V'} respectively. By direct
calculations we check that Span{¢,&} = Span{U, V'}, that is, TM = TM*.
Finally, the two lightlike transversal vector bundles are:

Ny =01+ \/553 + \/5547 Ny =0, + \/553 — \/564,

such that g(N;,&) =0y, i,j=1,2. Thus, M is of Case 4, with a basis
{&,&, N1, N2} of RY along M.

On the existence of a local quasi-orthonormal field of frames of M along
M we state (see Chapter 5 of [8] for its proof) the following main result:

THEOREM 2.1 [8]. Let (M,g,S(TM),S(TM*Y)) be an r-lightlike submanifold
of a semi-Riemannian manifold (M,g). Then there exists a complementary vector
bundle 1tr(TM) of Rad TM in S(TM™*)" and a basis of T(1te(TM)|,) consisting
of smooth sections {N;} of S(TM™*)"|,,, where U is a coordinate neighborhood of
M, such that
(2.11) Jd(Ni, &) =0y, g(Ni, Nj) =0,

where {&1,...,&,} is a lightlike basis of T(Rad TM).

Define locally r differential 1-forms {#,} on I'(TM) by
(2.12) n(X) = g(X,N)), VX e T(TM).
Let P the projection of TM on S(TM) with respect to (2.1). Then,

(2.13) X = PX+Zn )i,

)
for every X e I'(TM). According to (2.3) we put

(2.14) VyY =VyY +h(X,Y),

(2.15) VyV =—-AV,X)+ VsV, VX, Y el (TM),

Vel (t(TM)), {VxY,A(V,X)} and {h(X,Y),VyV} belong to T'(TM) and
[(tr(TM)) respectively. Here V is the metric connection on M but V (torsion-
free) and V* are linear connections on M and tr(TM) respectively.

Suppose S(TM*) # {0}, that is, M is either an r-lightlike or a isotropic
submanifold of M. According to (2.3) we consider the projection morphisms L
and S of tr(TM) on ltr(TM) and S(TM™") respectively. Then (2.14) and (2.15)
become
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(2.16) VY =VyY +h'(X,Y)+h(X,Y),
(2.17) ViV =—AyX + D%V + D}V,
where we put
W(X,Y)=L(h(X,Y)); h(X,Y)=Sh(X,Y)); AvX =AV,X),
DYV =L(ViV)=D'(X,V); DV =S(VyV)=D'X,V).

As h’ and h* are T'(ltr(TM))-valued and T'(S(TM~))-valued respectively, we call
them the lightlike second fundamental form and the screen second fundamental
form of M. In particular, we derive

(2.18) VyN = —AnX + ViN + D*(X,N),
(2.19) VYW = —AwX +ViW + D' (X, W),

for any X e I'(TM), N e T(ltr(TM)) and W e ['(S(TM™')).
Next, suppose S(TM*) = {0}, that is, M is either co-isotropic or totally
lightlike. Then, (2.16) and (2.17) become

(2.20) VyY =VyY + i/ (X, Y),
(2.21) VyN = —AxX + VgN,

for any X,Y e T(TM). We call (2.14), (2.16), (2.20) the Gauss formulae and
(2.15), (2.17)—(2.21) the Weingarten formulae for all cases of a lightlike sub-
manifold M. Using (2.16)-(2.21), (2.3), (2.5), (2.7) and (2.9), we obtain

(2.22) g(h* (X, Y), W) +§(¥, D' (X, W)) = g(AwX, Y),
(2.23) g’ (X, Y),&) +g(¥,h'(X, &) + g(¥,Vx&) =0,
(224) g_(ANXaN/)+g(AN’X7N)):Oa

for any ¢ eT'(Rad TM), W e [(S(TM*')) and N,N’ e [(Itre(TM)).
Next, suppose S(TM) # {0}, that is, M is either r-lightlike or co-isotropic.
Then according to (2.1) we set

(2.25) VyPY = ViPY + h*(X,PY),
(2.26) V&= —A"(&X) + V¥¢,

for any X,Y eI (TM) and ¢eT'(Rad TM), where {VyPY,A*(¢,X)} and
{h*(X,PY),V{&} belong to I'(S(TM)) and I'(Rad TM) respectively. It follows
that V* and V*' are linear connections on S(TM) and Rad TM respectively. By
using (2.16), (2.21), (2.25) and (2.26) we obtain

(2.27) g’ (X, PY),&) = g(A; X, PY)
(2.28) g(h*(X,PY),N) = G(AyX,PY), VX,Y eI (TM)

TueOREM 2.2 [8]. Let (M,g,S(TM),S(TM™)) be an r-lightlike submanifold
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or a co-isotropic submanifold of a semi-Riemannian manifold (M,g). Then the
following assertions are equivalent:

(1) S(TM) is integrable.

(2) h* is symmetric on T'(S(TM)).

(3) An is self-adjoint on T'(S(TM)) with respect to g.

(4) V* is torsion-free linear connection.

Example 5. Let (Rfl+1,g) be a Minkowski spacetime, where

d
g(x,y) = —x0+ Y " xyl ¥x, pe R
=1

Consider a smooth function f : D — R, where D is an open set of R?. Then
M={(x%...,x" e R X" =7, ... x)},

is a hypersurface of R{”l which is called a Monge hypersurface. Let natural
parameterization on M be given by

X0 =700 .. .0, x* =v% ae{0,...,n—1}.
Hence, the natural frames field on M is globally defined by
Opr = fl1Og0 4+ 0unr,  0€{0,....d—1}.
Then, it follows that TM* is spanned by a global vector

d
(2.29) E=0w+ > [lidu
i=1

It is known [8] that M is a lightlike hypersurface if TM* = Rad TM. This
means that £, given by (2.29), must be a null vector field. Hence, there exists
a lightlike Monge hypersurface M, if the function f is a solution of the dif-
ferential equation Zid: W ( f:xf,-)z = 1. The null transversal vector is given by N =
(1/2){—=0. + Zi‘il "0y}, g(N,&) = 1. LetV be the Levi-Civita connection, with
respect to the metric g, on R{*'. Then, for any two vectors X, Y e ['(S(TM)),
the Lie bracket [X, Y] eI'(S(TM)). Indeed,

g_([X, Y],N) = g(VXY - VyX, axo)
= _{g(vaYaxO) - g(Y7VXax0)} =0.

Hence, S(TM) is integrable. Other equivalent assertions follow easily.

3. Structure equations

Let (M,g,S(TM),S(TM*)) be an m-dimensional r-lightlike submanifold of
(m + n)-dimensional semi-Riemannian manifold (M,g). Denote by R, R and R’
the curvature tensors of V,V and V’ respectively. We need following structure
equations (see [8] for details on a complete set of equations):
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R(X,Y)Z=R(X,Y)Z
+Apx,2)Y — Apey, )X
+Apx, )Y — Apy, X
+ (Vxh')(Y, Z) = (Vyh') (X, Z)
+ D/ (X,h*(Y,Z)) — D' (Y,h*(X,Z))
+ (Vxh*)(Y,Z) — (Vyh*)(X, Z)
+ D*(X,h'(Y,Z)) — D*(Y,h' (X, 2Z)),

for any X,Y,Z el (TM). Consider the curvature tensor R of type (0,4).

(3.2)

R(X,Y,PZ PU)=g(R(X,Y)PZ, PU)
+g(h*(Y,PU),h' (X,PZ)) — g(h*(X,PU),h’' (Y, PZ))
+ g(h*(Y,PU),h* (X, PZ)) — g(h*(X, PU),h*(Y, PZ)),
R(X,Y,& PU) = g(R(X, Y)E PU)
(Y, PU), K (X,&)) = g(h* (X, PU), (Y, &))
(Y, PU),h*(X,<)) — g(h*(X, PU), h°(Y, <))
= g((Vyh")(X, PU) — (Vxh')(Y, PU), &)
+g(h*(Y,PU),h*(X, <)) — g(h*(X, PU), h°(Y, <)),
R(X,Y,N,PU) = —G(R(X,Y)PU,N)
+g(AyY,h' (X, PU)) — G(An X, b’ (Y, PU))
+g(h*(Y,PU),D*(X,N)) — g(h*(X,PU),D’(Y,N))
=g((Vy4)(N,X) — (Vx4)(N, Y), PU)
+g(h*(Y,PU),D*(X,N)) — g(h*(X,PU),D*(Y,N)),
g(VyA) (W, X) — (VxA)(W,Y), PU)
+g(h (Y, PU) D/(X,W)) —g(h*(X,PU),D (Y, W))
=g((Vyh*)(X, PU) — (Vxh*)(Y,PU), W)
+g(h'(X,PU), Ay Y) — G(h' (X, PU), AwX),

+g(h*
+g(h

R(X,Y,W,PU) =

R(X,Y,N,&) =GR/ (X, Y)N,¢)
+g(h' (Y, AnX),&) — g(h" (X, AnY), &)
+3(D*(X,N),h*(Y, &) — g(D*(Y,N),h*(X,&))
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=—g(R(X,Y)¢,N)
+g(ANY, h (X)) — (AN Y, h' (Y, &)
+g(D*(X,N),h*(Y, &) = g(D*(Y,N),h*(X,Q)),
X, Y, Uel(TM). Let R* be the curvature tensor of V*'. Then,
(3.7) g(R(X, Y)E, PU) = g((VyA") (S X) — (VxdA")(E, Y), PU),
(3.8) g(R(X,Y)¢,N = g(R"(X,Y)¢, N)
+g(AnY, AX) — g(ANX, ALY).
(39)  g(R(X,Y)PU,N)=g((VxA)(N,Y) = (Vy4)(N, X), PU)
+g(h’ (X, PU), AyY) — g(h’ (Y, PU), AxX)
= g((Vxh*)(Y, PU) — (Vyh")(X, PU),N).
Finally, from (3.6), by using (2.23) and (2.25) we deduce
(3.10) G(R(X, Y)E,N) +G(R'(X,Y)N,&) = g(A:X, Ay Y)
—g(AY, ANX).
Remark 1. For structure equations of Case 2, delete all the components

involving S(TM*). Similarly, one can find the structure equations of the other
two cases.

Remark 2. In the sequel we denote by (M,g) a lightlike submanifold for
which the results hold for all its four cases. Any result which does not hold
for all the cases will be so specified.

4. Totally umbilical lightlike submanifold

Let {N;, W,} be a basis of I'(tr(TM)|,) on a coordinate neighborhood #
of M, where N; e I'(ltr(TM)|,) and W, e T(S(TM™)|,). Then (2.16) becomes

r n
(4.1) VY =VyY + > W(X,Y)N;+ > hi(X, Y)W,
i=1 o=r+1
m<n n
(4.2) VyY =VxY+ > h{(X,Y)N;+ Y hy(X, Y)W,
i=1 oa=m+1

for an r-lightlike or an isotropic submanifold respectively. (2.20) becomes

n<m
(4.3) VY =VyY+ > h{(X,Y)N;
i=1

(4.4) VY =VyY+ > h{(X,Y)N;
i=1

1
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for a co-isotropic and a totally lightlike submanifold respectively. We call {h!}
and {h} the local lightlike second fundamental forms and the local screen second
fundamental forms of M on %. Also (2.18) and (2.19) become

ViNi = —AnX + > py(X)IN; + D (X)W,
Jj=1 a=r+1

Vi W, ——AWX—&-ZVW )N; + Z 0.5(X) Wy,

i=1 p=r+1
(4.5) o
ViNi = —AnX + > py(X)N; + Z T (X)W,
j=1 o=m+1
m<n n
ViWy = —Aw,X + Y vui(X)Ni+ D O.5(X) Wy,
i=1 =m+1

for an r-lightlike and an isotropic submanifold respectively, where
py(X) :g(v,\/’Nhé])v gacfix(X) :g(DS(X,N,'), Wx)a
va(l(X) :g(D/<X7 m),f,), Sﬂgaﬂ(X) :g(v)}VI/fanﬂ)7

and ¢, is the signature of W,. Similarly, (2.21) becomes

(4.6)

.
VyNi = —AnX + > p;(X)N;,

=
(4.7

m<n
V1\’]\71' = _ANfX+ ZPU(X)JVJa

J=1
for a co-isotropic and a totally lightlike submanifold respectively. Then, (2.25)
and (2.26) become

VxPY =ViPY + Y hi(X,PY)E,
i=1

(4.8)
Vyé = AgXJrZﬂ,] )&,

where (X, PY) = g(h*(X,PY),N;) and ﬂl]( ) =g(Vy'&, N;). Using the equa-

tions (2.11) and (4.5)-(4.8) we obtain x;(X) = —p;(X). Thus,
(4.9) Vxéi=—-A4: X - iji(X)é
=1

DerFNITION 1. A lightlike submanifold (M, g) of a semi-Riemannian mani-
fold (M,g) is said to be totally umbilical in M if there is a smooth transversal
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vector field # e I'(tr(TM)) on M, called the transversal curvature vector field
of M, such that, for all X,Y e ['(TM),

(4.10) WX, Y)=#gG(X,Y)
Using (2.16) and (4.1) it is easy to see that M is totally umbilical, if and only
if on each coordinate neighborhood % there exist smooth vector fields H’ e

C(ltr(TM)) and H* € [(S(TM*)), and smooth functions H! e F(Itr(TM)) and
H; € F(S(TM*)) such that
@11) WX, Y)=H'§X,Y), I(X,Y)=HGX,Y)

' W(X.Y) = Hg(X.Y). I(X.Y)=HgX,Y)

for any X, Y e I'(TM). Above definition does not depend on the screen distri-
bution and the screen transversal vector bundle of M. On the other hand, from
the equation (2.22) we obtain the following equation

(4.12) 9w, X, ¥) = el(X, V) + " D (X, W (Y).
i=1

Now replace Y by ¢; and obtain

(4.13) D{(X, W,) = —e,h}(&, X).

Using (2.22), (2.27), (4.11) and (4.13), we conclude (the relations (4.11) trivially
hold in case S(TM) and or S(TM*) vanish)

TueEOREM 4.1.  Let (M, g) be a lightlike submanifold of (M,§). Then M is
totally umbilical, if and only if, on each coordinate neighborhood U there exist
smooth vector fields H’ and H® such that

414 D' (X, W) =0, A:X=H'PX, P(AwX)=cH'PX,
4.14 )

D{(X,W,) =0, A;X=H/PX, P(AyX)=eHPX,
for any X e T(TM), where ¢ is the signature of W e T(S(TM™)).

Example 6. Let M be a surface of R}, of Example 1, given by

1 1

3 1,2 4 1232

xT=—(x +x7); x"==log(l+ (x —x°)7),

Ty = togll + (4 )

where (x!,...,x%) is a local coordinate system for R3. As explained in Example

1, M is a 1-lightlike surface of Case 1 having a local quasi-orthonormal field of
frames {&, N, V, W} along M. Denote by V the Levi-Civita connection on Rj.
Then, by straightforward calculations, we obtain

VVV = 2(1 + (Xl _ x2)2){2(x2 _ Xl)az + \/i(x2 _ xl)a3 + 64},
VeV =0, Vyé& =VyN=0, VXel(TM).



60 K. L. DUGGAL AND D. H. JIN

For this example, the equations (4.11) reduce to
WX, Y) = H'GX, Y); (X, Y) = H§(X, Y)

where 2! and h? are I'(Itr(TM))-valued and I'(S(TM™'))-valued bilinear forms
(see equation (2.16)). Using the Gauss and Weingarten formulae we infer

h'=0; Ay =0; Ay=0; Vx& =0; pi(X)=0;
where for the symbol p; see the equation (4.7). h*(X,&) = 0;

2 1)3
i
VX = X' + X2V e (TM). Since g(V,V)=—(1+ (x' —x2)*) we get

2
(14 (x! =22
Therefore, M is totally umbilical 1-lightlike submanifold of Rj.

H*(V,V)=2; VyV =

W(V,V)=H3§V,V), H*=-

Note that in case M is totally umbilical, then due to (2.27)
(4.15) h(X, &) =0, h(X,&) =0, A'=0, Ayé=0.

THEOREM 4.2. Let (M, g) be an m-dimensional totally umbilical lightlike sub-
manifold of an (m+ n)-dimensional semi-Riemannian manifold of constant cur-

vature (M(¢),§). Then, the functions H{,HS from (4.11) satisfy the following
partial differential equations

G(H) — H{H] +7_ Hipy(&) =0,

k=1
r n
GH) — HiH! + " H/1u(&) + > Hj0p (&) =0,
i=1 p=r+1

(4.16)

r

R(X,Y)Z = {EX+ZH,.’AN,X+ > H;AW,X}g(Y,Z)
i=1

i= a=r+1

r n

- {5Y+ S H{AnY + > HjAw, Y}g(x, Z),
i=1 o=r+1

for any X, Y e T(TM). Moreover,

PX(H})+ Y H{py(PX) =0,
(4.17) -

PX(H)+ > H{tu(PX)+ Y Hj0p(PX)=0.

i=1 o=r+1
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__ Proof. Taking account of (4.9) in (3.3) and (3.5), and using the fact that
M 1is a space of constant curvature we obtain

{X(Hi) L H(S HO(x) + inp,-km}g(Y, PU)
i=1 i=1
- { Y ()~ B S H (V) + iH{pikm}g(xpw o,
i=1 i=1

(4.18) {X(H5>—Hizr:Hfm(XHXr:Hfm(XH Z H/?HBQ(X)}Q(Y,PU)
i=1 i=1

p=r+1

. {m;) S HON + 3 H ()
i=1 i=1

+ > H/‘}'G/;a(Y)}g(X,PU) =0,
p=r+1

for any X,Y,Uel'(TM). Take X =¢; and U =Y eI'(S(TM)) such that
g(Y,Y)#0 on % and using (2.12) we obtain (4.16). Then, (4.17) follows from
(3.1), (4.18), M a space of constant curvature and (4.16). Setting X = PX and
Y = PY in (4.18) and using (2.12) we obtain

{PX(HZ) ¥ inpimPX)}PY
-1

i=

- {PY(H,f) + Z’: H{p,k(PY)}PX,
i=1

{PX(H;) +ZV:H,( Tin(PX) + Z H/‘}'Hﬁ“(PX)}PY
i=1

i= oa=r+1
r n
= {PY(H;) +> H1u(PY)+ > H;@,;a(PY)}PX,
i=1 oa=r+1
Now suppose there exists a vector field X, e I'(TM) such that

)
PX,(H{)+ Y H{py(PX,) #0,
i=1

PX,(H))+ Y H{t(PX,)+ > Hj0p(PX,) #0

i=1 oa=r+1

at each point ue M. Then from the last equations it follows that all vectors
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from the fiber (S(TM)), are collinear with (PX,),. This is a contradiction as
dim((S(TM)),) =n —r. In particular, if r = n, that is, if S(TM) vanishes, then
also we have a trivial contradiction. Hence the equations (4.18) in theorem are
true at any point of %, which completes the proof.

From (3.6), (3.8), (3.10) and M of constant curvature we get

2(Tr(p)) (X, ¥) + 3" H {g(¥, Ay X) — g(X. Ay, V)} = 0
i=1

where Tr(p;) is the trace of the matrix (p;). If (M,g) is an isotropic or a
totally light submanifold, then, we have g(Y, Ay X) = g(X, A4y, Y) =0 for every
X,Y e(TM). Thus, the following holds:

LemMmA 1. Let (M,g) be an isotropic or a totally lightlike submanifold of
a semi-Riemannian manifold (M(¢),g) of constant curvature. Then, the trace of
each p;, defined by (4.6), is closed, i.e., d(Tt(p;)) = 0.

In case H/ #0 and H} # 0 on % we say that M is proper totally umbilical.
From Theorem 2.2 and the last equation we obtain

THEOREM 4.3. Let (M,qg,S(TM)) be a proper totally umbilical r-lightlike or
a co-isotropic submanifold of a semi-Riemannian manifold (M(¢),§) of constant
curvature ¢. Then S(TM) is integrable, if and only if, each 1-form Tr(p;) induced
by S(TM) is closed, i.e., d(Tr(p;)) =0.

Remark 3. In view of Lemma 1, d(Tr(p;)) = 0 trivially holds for a proper
totally umbilical isotropic or a totally lightlike submanifold (M, g).

DeriNITION 2. Let (M,g,S(TM)) be either an r-lightlike or a co-isotropic
submanifold of a semi-Riemannian manifold (M,g). Then, the screen distribu-
tion S(TM) is said to be totally umbilical in M if there is a smooth vector field
A eT'(Rad TM) on M, such that

h*(X,PY) = #g(X,PY) VX,YeT(TM).
S(TM) is totally umbilical, if and only if, on any coordinate neighborhood
U = M, there exist smooth functions K; such that
(4.19) h*(X,PY) = Kig(X,PY) VX,Y eIl (TM).

It follows that A* is symmetric on ['(S(7M)) and hence from Theorem 2.2,
S(TM) is integrable. In case # =0 (A #0) on % we say that S(TM) is
totally geodesic (proper totally umbilical). (2.13) and (4.11) imply

(4.20) P(AyX) = K;PX, h*((,PX)=0, VX eIl(TM).
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In case S(TM) is totally umbilical, we have from (2.1), (2.24) and (4.20)

.
(4.21) AnX = KiPX + > nj(AnX)é,  n(AxnX) = —n;(AnX).
i#j=1

THEOREM 4.4. Let (M,g,S(TM)) be either an r-lightlike or a co-isotropic
submanifold of a semi-Riemannian manifold (M (¢),J) of constant curvature ¢, with
a totally umbilical screen distribution S(TM). If M is also totally umbilical, then,
the mean curvature vectors K; of S(TM) are a solution of the following partial
differential equations

X(Ki) = ZK/‘P/I‘(X) - KiZHj/nj(X)
= =

+ Y H/ni(AnX) + > Hini(Awx) — én(X) =0.
j=1

j o=r+1

Proof. Taking account of (4.19) and (4.21) into (3.4) and using (2.12),
(2.22), (2.24) and M a space of constant curvature we obtain

{X(Ki) - ZKini(X) - K; ZHJ/’?]‘(X) + ZH/'/’?i(AN,-X)
= = =

+ En: Hyni(Aw,x) — Eﬂi(X)}g(Y,PU)

a=r+1

= { Y(K;) — z’: Kip;i(Y) — K; z’: Hn(Y) + Z’: Hn(An,Y)
= =

J=1

+ Zn: Hyni(Aw,y) — 5771-(Y)}9(X,PU)~

a=r+1
Thus by the method of Theorem 4.2 we have the equation in theorem.
COROLLARY 1. Let (M,q,S(TM)) be a totally umbilical co-isotropic light-

like submanifold of a semi-Riemannian manifold (M (¢),q). If S(TM) is totally
geodesic, then ¢ =0, i.e., M is semi-Euclidean.

COROLLARY 2. Under the hypothesis of Corollary 1, V is a metric connection

on M, if and only if, the mean curvature vectors K; of S(TM) are a solution of the
following partial differential equations

X(K;) - ZKiji(X) — o (X) = 0.
j=1
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By the method of Theorem 4.4, using (4.19) and (4.21) into (3.9), and then
(2.12), (2.22), (2.24) and M a space of constant curvature, we obtain

THEOREM 4.5. Let (M(c),g,S(TM)) be a totally umbilical r-lightlike or a
co-isotropic submanifold of constant curvature ¢ of a semi-Riemannian manifold
(M,g). If S(TM) is totally umbilical, then the mean curvature vectors K; of
S(TM) are a solution of the partial differential equations

X(K) — 3 Kipy(X) — K S HLny(X) — en,(X) = 0.
= =

COROLLARY 3. Let (M(c),9,S(TM)) be an r-lightlike or a co-isotropic
submanifold of constant curvature c¢ of a semi-Riemannian manifold (M,g). If
S(TM) is totally geodesic, then ¢ =0, i.e., M is semi-Euclidean.

COROLLARY 4. Under the hypothesis of Theorem 4.5, V on M is metric
connection, if and only if, the mean curvature vectors K; of S(TM) are a solu-
tion of the following partial differential equations

X(K) — 3" Kipy(X) — an,(X) = 0.
=

Using (3.6), the symmetries of the operators Af and Lemma 1, we have

THEOREM 4.6. Let (M(c),g) be a lightlike submanifold of constant curva-
ture ¢ of a semi-Riemannian manifold (M ,g), such that S(TM) is proper totally
umbilical or S(TM) vanishes. Then, d(Tr(p;)) = 0.

Let xe M and & be a null vector of T,M. A plane I1 of T, M is called a
null plane directed by ¢ if it contains &, §,.(&, W) = 0 for any W eIl and there
exists W, € IT such that g(W,, W,) # 0. Following [2], define the null sectional
curvature of IT with respect to & and V, as a real number

172 R( Wa éa éa W)
4.22 K:() =—FFF=—~
where W is an arbitrary non-null vector in I1. Similarly, define the null sectional
curvature K:(IT) of the null plane IT of the tangent space 7, M with respect to &
and V, as a real number

(4.23) K:(TI) = W

Taking into account that both null sectional curvatures do not depend on the
vector W and by using (3.3) and (3.7) we obtain
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(4.24) K:(T) = &(H]) = (H)* + Y Hipu(&) = K(TT)),
k=1

where II; is a null plane directed by &. Thus we have

THEOREM 4.7. Let (M,g) be a totally umbilical lightlike submanifold of a
semi-Riemannian manifold (M,J). Then, both the null sectional curvature func-
tions K:(11;) and K:(T1;) vanish, if and only if, H! is a solution of the partial
differential equation

éi(Hi/) - (Hi/)z + ZH/\{pki(fi) =0.
k=1

From the equation (4.16) in Theorem 4.2 and Theorem 4.7, we obtain

THeOREM 4.8.  Let (M,g) be a totally umbilical lightlike submanifold of a
semi-Riemannian manifold of constant curvature (M,g). Then, both the null sec-
tional curvature functions K:(I1;) and K:(I1;) vanish.

5. Induced Ricci tensor

Consider an m-dimensional lightlike submanifold (M,g) of an (m + n)-
dimensional semi-Riemannian manifold (M, ). Note that /1f,pij and 7;, depend
on the section ¢&eT(Rad TM). Indeed, take fi*:z/;l w;&;, where o are
smooth functions with A = det(o;) # 0 and A4; be the co-factors of o in the
determinant of A. Tt follows that N; = (1/A)> 7, 4;N;. Hence by straight-
forward calculation and using (4.1)-(4.4) and (4.6) we obtain h* = Y77, a;h!.
Denote pj; and 7, by affinely combinations of p; and t;; with coefficients oy, A;;

and X(4;). Moreover,
Tr(p;)(X) = Tr(p;)(X) + X(log A), VX eI (TM).

Thus, using the formula dp(X, Y) = (1/2){X(p(Y)) — Y(p(X)) — p([X, Y])} of a
differential 2-form, we obtain

THEOREM 5.1.  Let (M,g) be a lightlike submanifold of a semi-Riemannian
manifold (M, g). Suppose Tr(p;) and Tr(p;) are 1-forms on U with respect to &;
and &;. Then d(Tr(p;)) = d(Tr(py)) on .

To find local expression of Ricci tensor of M, consider the frames field

{él?"'7ér;N17'"7Nr;Xr+17"'7Xm; VVI’+17"'7 VVn}

on M. Denote by {F4} ={¢&,...,&, Xou1, ..., Xy} the induced frames field on
M. Then,
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Rupcp = §(R(Fp, Fc)Fg, Fx), Ruscp = g(R(Fp, Fc)Fp, Fy),

Rigcp = §(R(Fp, Fc)Fp,N;), Rigcp = §(R(Fp, Fc)Fp, Ny),
(R(Fp, Fc)F, W,), Rupcp = G(R(Fp, Fc)Fp, W),

Rizep = G(R(Fp, Fe)Wy, Ni),  Rixcp = G(R(Fp, Fo) Wy, N;).

Using above we obtain the following local expression for the Ricci tensor:

Ric(X, Y) Z gg(R(X, X) Y, Xp) + > G(R(X, &)Y, Ny).
a,b=r+1 i=

By using the symmetries of curvature tensor and the first Bianchi identity and
taking into account (3.2) and (3.9) we obtain

Ric(X,Y) — Ric(Y, X)
m

= Z gab{g(h*(Xva)J/l/(YvXa))7g_(h*(YaXh)7h/(XaXa))}

a,b=r+1

+ Z{g<A£X7 AN,‘ Y) - g(Ag, Y7 AN,‘X) + g_(R*I(X7 Y)éia Nl)}
i=1
Replacing X, Y by Xy, Xp respectively, using (2.27), (2.28), (4.9) and

r

> G(RM(X, Y)ELN, ——22 (i) (X, Y)&, Ny)

i=1
we have
Ryp — Rpa = 2d(Tr(p;)) (X4, Xp)

where R,p = Ric(Xp, X4). Thus, using Theorem 5.1, we conclude

THEOREM 5.2. Let (M,g,S(TM)) be an r-lightlike or a co-isotropic sub-
manifold of a semi-Riemannian manifold (M,g). Then the Ricci tensor of the
induced connection V on M is symmetric, if and only if, each 1-forms Tr(pg)
induced by S(TM) is closed, ie., on any U = M,

d(Tr(py)) = 0.
Using Theorems 4.3, 4.6 and 5.2, we obtain the following theorem:

THEOREM 5.3. Let (M,g,S(TM)) be a proper totally umbilical r-lightlike or
a co-isotropic submanifold of a semi-Riemannian manifold (M (¢),g) of a constant
curvature ¢. Then, the induced Ricci tensor on M is symmetric, if and only if its
screen distribution S(TM) is integrable.
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COROLLARY 5. Let (M(c),g,S(TM)) be an r-lightlike or a co-isotropic sub-
manifold of constant curvature ¢ of a semi-Riemannian manifold (M, g), such that
S(TM) is proper totally umbilical. Then the Ricci tensor of the induced connec-
tion V on M is symmetric.

Suppose the Ricci tensor of V is symmetric. Theorem 5.3 and Poincare
lemma implies Tr(p;(X)) = X (f), where f is a smooth function. Let A =exp f
and obtain Tr(p;(X)) =0 VX e I'(TM|,). Thus we have

THEOREM 5.4. Let (M,g,S(TM)) be an r-lightlike or a co-isotropic submani-
fold of a semi-Riemannian manifold (M,g). Then Ricci tensor of M is symmetric
and there exists a pair of frames field {£, N} on U such that the corresponding
I-forms Tr(p;) induced by S(TM) vanishes.

Remark 4. Lemma 1 and Theorem 5.2 imply that the induced Ricci tensor
of either an isotropic or a totally lightlike M of M (¢) is always symmetric. This
clarifies the fact that Theorems 5.1-5.4 will trivially hold for an isotropic or
a totally lightlike M, since for these two cases d(Tr(p;)) = 0.

Examples. Minkowski [3], de Sitter [1], Schwarzchild and Robertson-Walker
spacetimes (see [10] and pages 225-230 of [8]) all have lightlike hypersurfaces
with an integrable 2-dimensional screen distribution.
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