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ABSTRACT
We can touch things, and our senses tell us when our hands
are touching something. But most computer input devices
cannot detect when the user touches or releases the device
or some portion of the device. Thus, adding touch sensors
to input devices offers many possibilities for novel
interaction techniques. We demonstrate the TouchTrackball
and the Scrolling TouchMouse, which use unobtrusive
capacitance sensors to detect contact from the user’s hand
without requiring pressure or mechanical actuation of a
switch. We further demonstrate how the capabilities of
these devices can be matched to an implicit interaction
technique, the On-Demand Interface, which uses the
passive information captured by touch sensors to fade in or
fade out portions of a display depending on what the user is
doing; a second technique uses explicit, intentional
interaction with touch sensors for enhanced scrolling. We
present our new devices in the context of a simple tax-
onomy of tactile input technologies. Finally, we discuss the
properties of touch-sensing as an input channel in general.
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INTRODUCTION
The sense of touch is an important human sensory channel.
In the present context, we use the term touch quite narrowly
to refer to the cutaneous sense, or tactile perception [16].
During interaction with physical objects, pets or other
human beings, touch (physical contact) constitutes an
extremely significant event. Yet computer input devices,
for the most part, are indifferent to human contact in the
sense that making physical contact, maintaining contact, or
breaking contact provokes no reaction whatsoever from
most software. As such, touch-sensing input devices offer
many novel interaction possibilities.

Touch-sensing devices do not include devices that provide
active tactile or force feedback [22]. These are all output
modalities that allow a device to physically respond to user
actions by moving, resisting motion, or changing texture
under software control. Touch sensing is an input channel;
touch sensing allows the computer to have greater
awareness of what the user is doing with the input device.

    

Fig. 1 Left: The TouchTrackball (a modified Kensington
Expert Mouse) senses when the user touches the ball.
Right: The Scrolling TouchMouse (a modified Microsoft
IntelliMouse Pro) senses when the user is holding the
mouse by detecting touch in the combined palm/thumb
areas. It can also sense when the user touches the wheel,
the areas immediately above and below the wheel, or the
left mouse button.

Of course, certain input devices (such as touchpads,
touchscreens, and touch tablets) that require touch as part of
their normal operation have been available for many years.
In all of these devices, one cannot specify positional data
without touching the device, nor can one touch the device
without specifying a position; hence touch sensing and
position sensing are tightly coupled in these devices. Yet
once it is recognized that touch sensing is an orthogonal
property of input devices that need not be strictly coupled
to position sensing, it becomes clear that there are many
unexplored possibilities for input devices such as mice or
trackballs that can sense one or more independent bits of
touch data (Fig. 1).

We present two examples of interaction techniques that
match these new input devices to appropriate tasks. The
On-Demand Interface dynamically partitions screen real
estate depending on what the user is doing, as sensed by
implicit interaction with touch sensors. For example, when
the user lets go of the mouse, an application’s toolbars are
no longer needed, so we fade out the toolbars and maximize
the screen real estate of the underlying document, thus
presenting a simpler and less cluttered display. By contrast,
we use the touch sensors located above and below the
wheel on the Scrolling TouchMouse to support explicit,
consciously activated interactions; the user can tap on these
touch sensors to issue Page Up and Page Down requests.
Touch sensors allow this functionality to be supported in
very little physical real estate and without imposing undue
restrictions on the shape or curvature of the region to be
sensed. We conclude by enumerating some general
properties of touch sensors that we hope will prove useful
to consider in the design of touch-sensing input devices and
interaction techniques.
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PREVIOUS WORK
Buxton proposes a taxonomy of input devices [3] that
draws a distinction between input devices that operate by
touch (such as a touchpad) versus input devices that operate
via a mechanical intermediary (such as a stylus on a tablet).
Card, Mackinlay, and Robertson [5] extend this taxonomy
but give no special treatment to devices that operate via
touch. These taxonomies do not suggest examples of touch-
sensing positioning devices other than the touchpad,
touchscreen, and touch tablet. Buxton et al. provide an
insightful analysis of touch-sensitive tablet input [4], noting
that touch tablets can sense a pair of signals that a
traditional mouse cannot: Touch and Release. Our work
shows how multiple pairs of such signals, in the form of
touch sensors, can be applied to the mouse or other devices.

For the case of the mouse, we have already introduced one
version of such a device, called the TouchMouse, in
previous work [10]. This particular TouchMouse
incorporated a pair of contact sensors, one for the
thumb/palm rest area of the mouse, and a second for the left
mouse button. This TouchMouse was used in combination
with a touchpad (for the nonpreferred hand) to support two-
handed input. The present paper demonstrates the
TouchTrackball and a new variation of the TouchMouse,
matches these devices to new interaction techniques, and
discusses the properties of touch-sensing devices in general.

Balakrishnan and Patel describe the PadMouse, which is a
touchpad integrated with a mouse [1]. The PadMouse can
sense when the user’s finger touches the touchpad. The
TouchCube [12] is a cube that has touchpads mounted on
its faces to allow 3D manipulations. Rouse [21] uses a
panel with 4 control pads, surrounding a fifth central pad, to
implement a “touch sensitive joystick.” Rouse’s technique
only senses simultaneous contact between the thumb on the
central pad and the surrounding directional pads. Fakespace
sells Pinch Gloves (derived from ChordGloves [17]), which
detect contact between two or more digits of the gloves.

Harrison et al. [7] detect contact with handheld displays
using pressure sensors, and demonstrate interaction
techniques for scrolling and for automatically detecting the
user’s handedness. Harrison et al. also draw a distinction
between explicit actions that are consciously initiated by
the user, versus implicit actions where the computer senses
what the user naturally does with the device.

The Haptic Lens and HoloWall do not directly sense touch,
but nonetheless achieve a similar effect using cameras. The
Haptic Lens [23] senses the depression of an elastomer at
multiple points using a camera mounted behind the
elastomer. The HoloWall [18] uses an infrared camera to
track the position of the user’s hands or a physical object
held against a projection screen. Only objects close to the
projection surface are visible to the camera and thus the
HoloWall can detect when objects enter or leave proximity.

Pickering [20] describes a number of technologies for
touchscreens (including capacitive, infrared (IR) detection
systems, resistive membrane, and surface acoustic wave
detection); any of these technologies could potentially be

used to implement touch-sensing input devices. For
example, when a user grabs a Microsoft Sidewinder Force
Feedback Pro joystick, this triggers an IR beam sensor and
enables the joystick’s force feedback response.

Looking beyond direct contact sensors, a number of non-
contact proximity sensing devices and technologies are
available. Sinks in public restrooms activate when the
user’s hands reflect an IR beam. Burglar alarms and
outdoor lights often include motion detectors or light-level
sensors. Electric field sensing devices [26][24] can detect
the capacitance of the user’s hand or body to allow
deviceless position or orientation sensing in multiple
dimensions. Our touch-sensing input devices also sense
capacitance, but by design we use this signal in a contact-
sensing role. In principle, an input device could incorporate
both contact sensors and proximity sensors based on
electric fields or other technologies.

The following taxonomy organizes the various tactile input
technologies discussed above. The columns are divided into
contact and non-contact technologies, with the contact
category subdivided into touch-sensing versus pressure or
force sensing technologies. The rows of the table classify
these technologies as either discrete (providing an on / off
signal only) or continuous if they return a proportional
signal (e.g., contact area, pressure, or range to a target). A
technology is single-channel if it measures touch, pressure,
or proximity at a single point, or multi-channel if it includes
multiple sensors or multiple points of contact. The table
omits the position and orientation-sensing properties of
input devices as these are handled well by previous
taxonomies [3][5]. The table also does not attempt to
organize the various technologies listed within each cell.

CONTACT NON-CONTACT
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 Table 1 : Classification of tactile input technologies.



TOUCH SENSING: HOW IT WORKS
The touch-sensing input devices described in this paper
employ the circuitry shown in Fig. 2, which senses contact
from the user’s hand– no pressure or mechanical actuation
of a switch is necessary to trigger the touch sensor. The
“touch sensors” are conductive surfaces on the exterior of
the device shell that are applied using conductive paint
(available from Chemtronics [6]). The conductive paint is
then connected internally to the touch sensing circuitry.

The internal circuitry generates a 30 Hz square wave that is
present on the conductive paint pad. The parasitic
capacitance of the user’s hand induces a slight time delay in
this square wave. When this time delay passes a critical
threshold, a Touch or Release event is generated. A
potentiometer (shown in the circuit diagram) allows
adjustment of this threshold to accommodate conductive
surfaces of various sizes; this only needs to be set once
when the circuit is constructed (no calibration step is
required for individual users). To provide a good coupling
with the tactile feedback that the user feels, the capacitance
sensors are set to generate Touch / Release events only and
exactly when the user’s hand actually makes (or breaks)
contact with the surface. Our current prototype sends the
touch data to the host PC’s parallel port.
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Fig. 2 Circuit diagram for a single touch sensor.

When providing multiple touch sensors with the circuit
described above, the 30 Hz square wave can pass through
the user’s body and be picked up by another touch sensor as
a false Touch or Release signal. Thus, to avoid interference,
all devices that the user may be touching at a given time
should be synchronized to the same square wave.

Software Emulation
One could attempt to emulate Touch and Release events
from software based only on the events provided by a
normal mouse. Although this approach may be “good
enough” for some interaction techniques or to support
situations in which a touch-sensing device is not available,

it suffers from two significant drawbacks. First, one cannot
distinguish a user holding the mouse still from a user that
has let go of the mouse; this also implies that one cannot
know with certainty that subsequent mouse motion occurs
because the user just touched the mouse, or because the
user moved the mouse after holding it stationary for some
period of time. A second limitation of software emulation is
that only a single Touch / Release event pair for the entire
input device can be inferred in this way. Without using
actual touch sensors, it is impossible to know precisely
which part(s) of the input device the user is touching, or to
integrate multiple touch-sensitive controls with a device.

TOUCH-SENSITIVE INTERACTION TECHNIQUES
We now discuss specific interaction techniques that use
touch sensors to good advantage. These techniques can be
broadly categorized as implicit techniques, which passively
sense how the user naturally uses an input device, versus
explicit techniques, which require the user to learn a new
way of touching or using the input device.

Implicit Actions Based on Touching an Input Device
Touch sensors can provide applications with information
about the context of the user’s work, at the level of which
input devices the user is currently holding. Implicit actions
use this information to improve the delivery and timeliness
of user interface services, without requiring the user to
learn a new way to use the input device. The user can
benefit from touch sensing without necessarily even
realizing that the device senses when he or she touches it.
The following section demonstrates how this style of
implicit interaction can be used to support the On-Demand
Interface, and presents initial usability testing results for
this technique.

The On-Demand Interface
Limited screen real estate is one of the most enduring
design constraints of graphical user interfaces. Display
resolutions are creeping upward, but quite slowly when
compared to advances in memory and processor speed.
Current market research data suggest that 66% of PC users
are still restricted to a 640x480 pixel display surface [19].

The On-Demand Interface uses touch sensors to derive
contextual information that can be used to make decisions
about the relative importance of different parts of a
graphical interface display. We use the touch sensors
provided by the TouchTrackball and the Scrolling
TouchMouse to determine changes to the current task
context, and thus to dynamically shift the focus of attention
between different layers or portions of the display. It may
be possible to use traditional input events such as mouse
motion or clicks to emulate some aspects of the On-
Demand Interface, but given that the signals from the touch
sensors are reliable, unambiguous, and require little or no
overhead to use, we believe these provide a superior
information source upon which to base the technique.

For example, toolbars can make a large number of
functions “discoverable” and easy to access for the user, but
they have often been criticized because these benefits come
at the cost of permanently consuming screen real estate



[14]. Although some toolbars do provide visual indications
of state (e.g. the current font and point size), most toolbars
display no useful state information when the user is just
looking at a document or entering text with the keyboard.

In the On-Demand Interface, when the user touches or
releases the TouchMouse, the toolbars fade in or fade out
on an as-needed basis using smooth alpha-transparency
animation1. Touching the mouse causes the tool bars to fade
in quickly, while releasing the mouse causes the toolbars to
fade out gradually. The end result is that when the user is
not actively using the toolbars, the screen appears simpler
and less cluttered, while the display real estate allocated to
the document itself is maximized (Fig. 3). In the current
prototype, we leave the toolbar slightly transparent even
when it is faded in so that the user can maintain awareness
of parts of the document that are underneath the toolbar.

We chose to use animations of alpha-transparency rather
than animated motion such as sliding or zooming. Motion
draws the user’s attention, and our design goal is for the
interface to change in a manner that is minimally
distracting. Fading in takes place quickly (over 0.3 seconds)
because the user may be grabbing the mouse with the intent
to select an item from the toolbar; fading out takes place
more gradually (over 2.0 seconds) because we do not want
to draw the user’s attention to the withdrawal of the
toolbars. The toolbars could appear instantaneously, but we
find that instantaneous transitions seem very jarring and
unpleasant, especially given that such a transition will
occur every time the user grabs the mouse.

Note that although it would be possible to fade out all
menus and toolbars, this may not always be appropriate.
Menus serve as reminder for keyboard shortcuts during text
entry, and some toolbars do provide visual indications of
state. However, one can distinguish the size of the toolbar
that is best for interaction with the mouse versus the size of
the toolbar that is necessary to visually display the desired
state information. As seen in Fig. 3, the On-Demand
Interface fades in a compact toolbar, scrollbar, and menu
representation while the toolbars fade out. During our
usability tests, most users did not notice or comment on this
change in appearance, although one user did mention that “I
would expect the Bold icon to stay in the same place.”
                                                          
1 We implemented this prototype using a 3D graphics accelerator to
provide alpha-blending of texture maps; it is not a fully functional
implementation of Microsoft Word.

We also use the touch sensors on the wheel and on the
mouse button of the Scrolling TouchMouse to support a
reading mode of interaction when the user engages the
wheel. Rotating the wheel on a standard IntelliMouse
scrolls the document line-by-line, and we have observed
that users will often keep their finger perched on the wheel
when they pause to read the document. Since the user does
not need the toolbars while using the wheel, the On-
Demand Interface senses initial contact with the wheel and
uses this signal to gradually fade out the toolbars and again
maximize the display real estate allocated to the document.
In our current design, a faint trace of the toolbars remains
visible while in reading mode so that the user can see where
the toolbars will appear upon return to normal mouse usage.
The interface reverts to normal mouse usage when the
user’s index finger returns to and touches the mouse button,
which quickly fades the toolbars back in. Although
accidentally touching the wheel and thus switching to
reading mode might seem to be a problem, during our
usability tests we found this was not a significant issue.
Regarding this point, one test user commented that “I like
that it fades back in kind of quick. So if you had
accidentally touched [the wheel] it’s no big deal.”

Fig. 4 When the user touches the trackball, the ToolGlass
fades in quickly; the toolbars simultaneously fade out.

We use the TouchTrackball to apply the On-Demand
Interface concept to the ToolGlass technique [2], which
provides the user with a set of movable semi-transparent
“click-through” tools that are controlled with a trackball in
the nonpreferred hand. When the user touches the trackball,
the ToolGlass fades in quickly over 0.3 seconds; if the user
is also touching the mouse, the toolbars simultaneously
fade out (Fig. 4). When the user releases the trackball, after
a brief time delay2 the ToolGlass fades out gradually, and if
the user is touching the mouse, the toolbars simultaneously
fade in (over 1.0 second). If the user clicks-through a tool

                                                          
2 This time delay (0.5 seconds) allows one to “reclutch” the trackball
(release and recenter one’s hand on the ball) without undesired
changes to the display.

Fig. 3: When the user releases the mouse, the toolbars fade out to maximize screen real estate for the document.



to initiate a command with the ToolGlass, it fades out
immediately (over 0.2 seconds) and does not fade back in
unless the user moves the trackball or releases and touches
the trackball again.

Informal Usability Evaluation
We conducted informal usability tests of the On-Demand
Interface, which were intended to explore user acceptance
of this technique and to identify usability problems with our
current implementation. We recruited 11 users from an
internal pool of administrative assistants for this study. All
users were familiar with Microsoft Word but none had seen
or tried our touch-sensing input devices before.

For the testing, we implemented the On-Demand Interface
technique in a prototype that fully supported the various
fade in / fade out transitions in response to interacting with
the input devices, but only supported limited interaction
with the document itself (users could click and drag with
the mouse to circle regions of text) and limited keyboard
text entry (as the user typed, text actually appeared in a
small separate box below the main window). Nonetheless,
we feel that this functionality was sufficient to test the
utility of the On-Demand interface concept.

In particular, since we felt that transitions between the
different task contexts recognized by the On-Demand
Interface might result in usability problems, we tried to test
interleaving of the various task contexts as much as
possible. For example, we asked users to highlight a word
with the mouse; then type in some text to replace this; then
click on the Bold icon in the toolbar; then switch back to
typing again, and so on. After performing several structured
tasks of this sort, users were also encouraged to play around
with the interface to get a more thorough feel for what they
did or did not like.

Test users were quite enthusiastic about the ability to see
more of the screen during typing and scrolling tasks, while
at the same time having the toolbar available on short
notice. One user explained that “I like that [the toolbar]
comes up quickly when you need it and you can control
how long it stays up” and that “all the extra stuff isn’t there
when I don’t need it.” Subjective questionnaire ratings on a
1 (disagree) to 5 (agree) scale confirmed these comments:
users reported that the TouchMouse was easy to use and
that they liked seeing more of the document at once
(average rating 4.5 for both questions).

Most users also liked the fading animations that
transitioned between screen layouts. Two users did feel that
the transition from the toolbars to a “clean screen” for text
entry was too slow. One user wanted the toolbar to slide
into place instead of fading. However, it was clear that
transitions between the toolbars and the “clean screen”
were well accepted overall and were not the source of any
significant usability problems; when asked if “switching
between the keyboard and mouse is disconcerting,” users
clearly disagreed (average rating 1.9). Users also felt that
the touch sensors provided an appropriate way to control
these transitions, offering comments such as “I really like
the touch-sensitive – I really like that a lot.”

As noted above, in this prototype we experimented with
leaving the toolbars slightly transparent even when they
were fully faded in to allow some awareness of the
occluded portions of the document. We felt this was a
useful feature, but all 11 users reported that they disliked
the slightly transparent toolbar, and often in no uncertain
terms: one user described it as looking “like a wet
newspaper” while another simply stated, “I hate that!”
Users clearly felt the display should always transition to
fully opaque or fully invisible states. In retrospect, we
realized that this dissatisfaction with semi-transparent
toolbars on top of a text editing application perhaps should
have been expected given that studies of transparent
interfaces have shown text backgrounds lead to relatively
poor performance [8], and we may not have chosen the icon
colors, styles, or transparency levels with sufficient care.

With regard to the TouchTrackball and ToolGlass, users
also generally liked that the ToolGlass faded in when they
touched the trackball: “That’s cool when the ball takes over
the hand commands.” One user did comment that the
appearance of the ToolGlass, and simultaneous
disappearance of the toolbars, was the only transition where
“I felt like too much was going on.”  Perhaps the toolbars
should stay put or fade out more slowly in this case.
Interestingly, in contrast to the strongly negative response
to the slightly see-through toolbars, most users had no
problem with the semi-transparency of the ToolGlass; it
was probably easier to visually separate the foreground and
background layers in this case because the user can move
the ToolGlass. For example, one user mentioned that “It’s
good to see where an action would be and what it would
look like.” A couple of users commented that using two
hands “would definitely take some getting used to,” but in
general users seemed to agree that that “using the trackball
was easy” (average 4.3).

The On-Demand Interface demonstrates a novel application
of touch sensors that dynamically adjusts screen real estate
to get unnecessary portions of the interface out of the user’s
face. Since the initial user feedback has been encouraging,
we plan to add these capabilities to a more fully functional
application and perform further studies of the technique to
determine if additional issues might arise with long-term
use. We are also investigating the appropriateness of the
technique for other interface components such as floating
tool palettes or dialog boxes.

Explicit Actions Based on Touch Sensors
A second general class of interaction techniques uses touch
sensors to allow an input device to express an enhanced
vocabulary of explicit actions, but the user must learn these
new ways of touching or using the input device to fully
benefit from them. Clearly, such actions should have
minimal impact on the way one would normally use the
device, so that the new capabilities do not interfere with the
user’s existing skills for controlling the input device.

The Scrolling TouchMouse
The Scrolling TouchMouse (Fig. 1, right) is a modified
Microsoft IntelliMouse Pro mouse. This mouse includes a



wheel that can be used for scrolling, and an oblong plastic
basin that surrounds the wheel. The wheel can also be
clicked for use as a middle mouse button.

In the previous section, we described how several of the
touch sensors on the Scrolling TouchMouse could be used
for implicit sensing of the user’s task context. In this
section, we describe the use of two touch sensors that we
have added to the basin, one above and one below the
wheel. In addition to the usual line-by-line scrolling
supporting by rolling the wheel, these touch sensors
enhance scrolling actions with several new behaviors:

• Tapping: Tapping the top part of the basin triggers a
Page Up command; tapping the bottom of the basin
triggers a Page Down. The wheel is good for short-
range scrolling, but is less effective for long range
scrolling [25]; the tapping gesture provides an effective
means for discrete scrolling at a larger scale of motion.

• Roll-and-hold: This extends the gesture of rolling the
wheel to support smooth scrolling. Rolling the wheel
until the finger contacts the top touch sensor or the
bottom touch sensor initiates continuous up scrolling or
continuous down scrolling, respectively. The scrolling
starts after a brief delay (0.15 seconds) to prevent
accidental activation from briefly brushing the sensor.

• Reading sensor: We already use the wheel touch
sensor in the On-Demand interface to sense when the
user begins a scrolling interaction. Since IntelliMouse
users often leave their finger perched on the wheel
while reading, an intriguing possibility is that dwell
time on the wheel may prove useful as a predictor of
how much time the user has spent reading content on a
web page, for example. We have not yet tested the
wheel sensor in this role.

We performed informal evaluations with ten test users
recruited from the Microsoft Usability pool; 3 of the 10
users had previously used a mouse including a scrolling
wheel. Test users were asked to scroll to various points
within a long web page containing approximately 10 pages
of content. For this informal study, we did not control the
distances to the various scrolling targets, nor did we test the
interleaving of scrolling with other common mouse tasks; a
future study should address these issues. Our main goals
were to observe user responses to the device, discover some
potential usability problems, and see if touch sensors were
effective for these kinds of interactions.

Users found the tapping feature extremely appealing. When
asked to respond to the statement “Paging up and down
with the TouchMouse was easier than paging with my
current mouse” user responses averaged a 4.6 (again on a 1-
5 scale). One user commented “I really like this, it’s pretty
cool… just tap, tap, tap, done!” while another commented
that “I didn't really see a reason for the wheel. Just touching
the gold [sensor] was easy enough.” One user did feel that
“the tap surface should be larger.”

Several users expected the tapping sensors to support an
additional gesture that we currently have not implemented,
the tap-and-hold. Tapping and then holding one’s finger
would trigger a paging command followed by more rapid
continuous up or down scrolling. One potential problem
with the tap-and-hold is that simply resting one’s finger on
the basin after tapping would now trigger an action. We
plan to experiment with a tap-and-hold gesture to see
whether or not it is genuinely useful.

Problems with the device related to the wheel itself and the
roll-and-hold behavior. When asked to respond to “I liked
the way the wheel on the TouchMouse felt while scrolling,”
user responses averaged a 3.2 (with 3 = neither agree nor
disagree). Several difficulties led to this lukewarm
response. Our touch-sensing modifications to the wheel
made it slightly slippery and harder to turn; this problem
also made it more likely that users would click the wheel by
mistake, and due to a technical glitch, the roll-and-hold did
not work correctly when this happened. Also, the
“continuous” scrolling implemented in our prototype was
jerky and moved too slowly. Users did not like this.
Fortunately, these are not inherent problems and will be
improved in our next design iteration.

Despite the problems with the roll-and-hold mentioned
above, users felt that overall “The TouchMouse was easy to
use for scrolling” (responses averaged 4.1). Users also
clearly liked the concept of having additional scrolling or
paging commands on the mouse (responses averaged 4.8).
In combination with the enthusiastic user response to the
tapping feature, this demonstrates that the Scrolling
TouchMouse successfully employs touch sensors to support
new functionality while occupying a minimum of device
real estate, and without making the device look
significantly more cluttered with physical buttons.

PROPERTIES OF TOUCH-SENSING DEVICES
We now consider the properties of touch sensors and touch
sensing input devices in general. Based on our design
experience, we feel these are useful issues to consider when
designing touch-sensing input devices and interaction
techniques, and hope that they may be suggestive of
additional possibilities.

Similarities between Touch Sensors and Touch Tablets
Although the touch sensors that we use do not sense
positional information, since the geometric arrangement of
sensors is known ahead of time, one can potentially confer
to the mouse properties that, in the past, have normally
been associated with touch tablets. Thus touch sensors have
some properties similar to those of touch tablets as
enumerated by Buxton, Hill, and Rowley [4]. For example:

• No moving parts: Touch sensors have no moving parts.

• No mechanical intermediary: Touch sensors require no
mechanical intermediary to activate them.

• Operation by feel: Touch sensors can be arranged into
regions that act like a physical template on a touch
tablet. The user can feel the touch-sensing regions



(e.g., the Page Up / Down controls on the Scrolling
TouchMouse) without looking at the device or at the
screen. This can reduce the time that would be required
to switch between devices or widgets on the screen.

• Feedback: Touch sensors differ from traditional
pushbuttons in the amount and type of feedback
provided. Compared to a mouse button, for example,
the user does not feel or hear a distinct “click” when a
touch sensor is activated. For cases where a touch
sensor is being used in an implicit role and is not being
used to simulate such devices, however, such feedback
may not be needed or even desired.

Other Properties of Touch Sensors
Touch sensors have a number of additional unique
properties that can be useful to consider in the design of
devices and interaction techniques:

• Accidental activation: Because touch sensors require
zero activation force, they may be prone to accidental
activation due to inadvertent contact. In particular,
when touch sensors are used to trigger explicit actions,
care needs to be taken so that the user can rest his or
her hand comfortably on the device without triggering
an undesired action. Of course, for implicit sensing
applications, “accidental” activation is precisely the
property that makes touch sensors useful.

• Flexible form factor: Unlike a touchpad, which
generally requires a planar form factor, touch sensors
can have an extremely flexible shape; curved surfaces,
uneven surfaces, or even moving parts such as wheels
and trackballs can be touch sensitive. Touch sensors
also have a near zero vertical profile (assuming the
touch-sensing electronics can be located elsewhere),
which allows them to be used in tight spaces that may
not readily accommodate a traditional pushbutton.

• Unobtrusive: Touch sensors can be added to a device
without necessarily making it look complex and
cluttered with buttons. The user may not even have to
be aware that the device incorporates a touch sensor.

• Low overhead to disengage: Some input devices, such
as a puck on a Wacom tablet, can provide In Proximity
and Out Of Proximity signals when the puck is placed
on or removed from the tablet. Although this pair of
events is similar to the Touch and Release events
generated by touch sensors, they are useful for
different things. For example, removing one’s finger
from a touchpad requires considerably less overhead
than lifting a puck from a tablet. Thus, the proximity
signals provided by a tablet and the touch signals
provided by a touch sensor support logically distinct
device states [10].

• Deactivation from software: Touch sensors lend
themselves to deactivation from software, because a
touch sensor does not respond to user input with a
physical “click.” Thus, unlike a pushbutton, a disabled
touch sensor does not offer any false physical feedback

when it is touched, which is useful if the user is in a
context where the action is not valid or if the user does
not want an added feature.

• Additional physical gestures: Some gestures that are
not captured well by pushbuttons, such as tapping or
simply maintaining contact with a portion of the
device, can be captured by touch sensors. A pushbutton
that includes a touch sensor [10] can capture these
gestures, in addition to the traditional click and drag.

Intentional Control vs. Cognitive and Physical Burden
Touch-sensing and proximity-sensing technologies offer an
inherent tradeoff in intentional control versus the cognitive
and physical burden of an input transaction. The
progression from button-click, to touch, to hand-near-
device is potentially accompanied by a decrease in
intentional control by the user, and hence increases the
inferential burden (and error rates) of interpretation. This
means that, although error rates can be minimized by good
design, accidental activation will occur and thus actions
triggered by touch or proximity sensors should have a low
cost from errors of interpretation.

Yet this apparent weakness is also a strength, as a reduction
of intentional control also implies a potential decrease in
the cognitive burden of making explicit decisions to
perform an action. Thus, when used in an implicit role,
touch sensing can provide enhanced device functionality
with little or no added cognitive burden. Touching or letting
go of the device is an inherent part of what the user would
have to do anyway to use the input device, so nothing new
has to be learned by the user in terms of operating the input
device. Touch-sensing devices are capable of sensing the
Touch and Release events that in a manner of thinking have
always been available, but were ignored by traditional
devices such as mice and trackballs.

CONCLUSIONS AND FUTURE WORK
The present work has demonstrated that touch-sensing is an
orthogonal property of input devices that does not
necessarily have to be coupled with position sensing. This
observation suggests new possibilities for touch-sensing
input devices, exemplified by the TouchTrackball and
Scrolling TouchMouse presented herein. We have also
described the hardware needed to actually build touch
sensors in the hope that this will encourage other interface
designers to experiment with our techniques and explore
additional possibilities for touch-sensing devices.

Touch sensors allow some properties that have normally
only been associated with touch tablets to be integrated
with other input devices such as the mouse. Thus, the
touch-sensing mouse provides a set of design properties
that neither traditional mice nor traditional touch tablets can
match. Touch sensors also provide a number of other
unique properties, perhaps the most important of which are
(1) zero activation force, allowing implicit sensing of
“accidental” contact, and (2) great flexibility of form factor
which allows touch sensors to be applied to tight spaces,
curved surfaces, or even moving parts.



When matched to appropriate interaction techniques these
unique properties of touch-sensing input devices allow user
interfaces to effectively support a number of new
behaviors. Our initial usability testing results of the On-
Demand Interface and the Scrolling TouchMouse
demonstrate that touch-sensing devices can provide new
behaviors that users find compelling and useful.

However, much future work is still required. We need to
refine and more formally evaluate the specific interaction
techniques that we have described. Additional study is
needed to better understand and characterize the strengths
and weaknesses of touch sensors. Also, we feel that a more
detailed taxonomy of touch sensing and proximity sensing
devices could help to better understand and explore the
design space. A good taxonomy of such devices should
probably include both sensors and actuators. For that
matter, a more unified treatment including audio I/O
(microphones and speakers), visual I/O (cameras and
displays), and the haptic channels (tactile, force, and
kinesthetic I/O) might be useful to describe a wider range
of existing devices and suggest future possibilities.
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