
Touchless Monitoring of Breathing Function
Ramya Murthy∗, Ioannis Pavlidis†, and Panagiotis Tsiamyrtzis‡

∗ Department of Computer Science, University of Houston, Houston, Texas
Email: rnmurthy@mail.uh.edu

† Department of Computer Science, University of Houston, Houston, Texas
Email: ipavlidi@mail.uh.edu

‡Department of Statistics, University of Athens, Athens, Greece
Email: pt@aueb.gr

Abstract— We have developed a novel method for non-contact
measurement of breathing function. The method is based on
statistical modeling of dynamic thermal data captured through an
infrared imaging system. The expired air has higher temperature
than the typical background of indoor environments (e.g., walls).
Therefore, the particles of the expired air emit at a higher
power than the background, a phenomenon which is captured
as a distinct thermal signature in the infrared imagery. There
is significant technical difficulty in computing this signature,
however, because the phenomenon is of very low intensity and
transient nature. We use an advanced statistical algorithm based
on the method of moments and the Jeffrey’s divergence measure
to address the problem. So far, we were able to compute correctly
the breathing waveforms for ten (10) subjects at distances ranging
from 6-8 feet. The results were checked against concomitant
ground-truth data collected with a traditional contact sensor. The
technology is expected to find applications in the next generation
of touchless polygraphy and in preventive health care.

I. INTRODUCTION

Monitoring of breathing function has applications among
others in polygraphy, sleep studies, sport training, preventing
sudden death syndrome in neonates, and patient monitoring.
Various contact measurement methods have been developed
for estimating the breathing rate of a subject. George B.
Moody, et al. developed a contact modality in which numerous
Electrocardiogram (ECG) electrodes and sensors are attached
to the subject [1]. The principle of operation is based on the
fact that the heart rate is typically modulated by breathing,
a phenomenon known as sinus arrhythmia [2]. Therefore, a
signal corresponding to the heart function contains breath
information, which is filtered out using band-pass filters.

As an improvement over the ECG method, the BioMatt
method [3] was developed in Finland by a group of researchers
who were studying sleep disorders. BioMatt performs mea-
surements of vital signs, such as breathing and cardiac activity
without electrodes. Initially, BioMatt could not distinguish
motion that was due to breathing versus cardiac activity or
body movement. Later, Larson developed a signal processing
technique to separate out the components of the BioMatt signal
[4].

The nasal temperature probe [5] is another contact modality,
which contains a thermistor measuring nasal air temperature
variation as an indication of breathing. The abdominal strain
gauge transducer [6], which is strapped around the subject’s

chest, measures the change in thoracic or abdominal circum-
ference while breathing. The disadvantage of all the aforemen-
tioned technologies is that they require close contact with the
subject, which in certain cases may be quite uncomfortable
and awkward (e.g., abdominal transducer).

A more subject-friendly method is photoplethysmography
[7], where near-infrared light is emitted into the skin. The
amount of backscattered light corresponds to the variation of
the blood volume. As in ECG, the breath waveform is sepa-
rated from the cardiac signal. However, using heart function
as a basis for acquiring the breathing waveform is unreliable
since sinus arrhythmia is not present in all individuals. Control
of cardiac activity by breathing depends on the age and
medications administered to subjects.

A touchless but active technology called Radar Vital Signs
Monitor (RVSM) [8] was developed in 1996 to monitor the
performance of Olympic athletes. The RVSM measures breath
at distances of up to 15 feet behind an 8 inch hollow concrete
or wooden wall. It detects breathing-induced movement of the
chest based on the Doppler effect. The disadvantage of this
technique is that motion artifacts corrupt breath signals.

In 2000, infrared imaging proved its potential in deception
detection when thermal image analysis was used by Pavlidis
et al. to detect facial patterns of stress at a distance [9]. A
little later Pavlidis et al. used thermal imaging to compute
periorbital perfusion as a replacement of the corresponding
polygraph channel that uses finger contact sensing [10]. The
proposed use of infrared imaging for computing breathing
function may also replace the corresponding polygraph chan-
nel that uses abdominal transducing. Incremental replacement
of contact channels may prove very effective in the field
of polygraphy, where it is essential that subjects feel as
comfortable as possible during examination.

In this paper, we describe a second-order statistical method
to estimate in a contact-free manner the breathing rate of
human subjects using thermal video sequences. We provide
a brief overview of breathing physiology in Section II. In
Section III we describe how we select and track the region of
interest in the scene, where our breathing computation applies.
In Section IV we describe the statistical computation that we
employ to determine the breathing rate. In Sections V and VI
we discuss the experimental setup and results respectively. We
conclude the paper in Section VII.



II. BREATHING FUNCTION

In our study, we are interested in monitoring breathing
using infrared imaging. The breathing cycle consists of in-
spiration, expiration, and post-expiratory pause [11]. During
quiet breathing, inspiration begins due to negative pressure
created inside the chest cavity by the contraction of the
diaphragm. Expiration is a passive process where the air flow
occurs due to the elastic recoil property of the lungs. The
post-expiratory pause is caused when there is equalization of
the pressures inside the lungs and the atmosphere. Breathing
cycle is defined as the time interval between the beginning of
inspiration and the end of post-expiratory pause. Our method
lumps together inspiration and post-expiratory pause, since the
thermal signatures of these two are almost identical (Fig. 1).
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Fig. 1. Typical temperature distributions for the three breathing phases:
expiration, post-expiratory pause, and inspiration.

III. SEGMENTING AND TRACKING THE REGION OF

INTEREST

First, we segment skin from no-skin regions using Otsu’s
adaptive thresholding algorithm [13]. Since we image the
profile view of a subject, we consider the tip of the nose the as
rightmost point of the facial skin region. A point at a certain
distance from the nose tip is taken as an anchor point for the
region of interest (ROI) R. For our application scenario (50
mm lens and subject at 6-8 feet) we have found experimentally
that a region R of 21 × 9 pixels gives good results (see Fig.
2). The statistical computation applies within this region only.
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Fig. 2. Visualization and ROI selection in the air flow region for (a)
inspiration and (b) expiration.

IV. STATISTICAL METHODOLOGY

Our methodology includes two distinct phases: training and
testing. Training is performed on an individual basis. In the
region of interest R, we monitor the temperatures during the
first few breathing cycles. Specifically, during training the
user marks the frames that belong to a full breathing cycle
(inspiration + expiration). The marking is real-time thanks to
an appropriately designed Graphical User Interface (GUI) and
is based on feedback from our visualization algorithm. Our
software computes the mean temperature T̄k in the region R
for every frame k of the training sequence. Then, it indexes
the maximum T̄kmax and minimum T̄kmin mean values as well
as the mean value T̄(kmax+kmin)/2 that lies midway in the
timeline between the two. We consider all the temperature
values lying between T̄kmin and T̄(kmax+kmin)/2 in the time-
line as the inspiration distribution. We also consider all the
temperature values lying between T̄(kmax+kmin)/2 and T̄kmax

in the timeline as the expiration distribution. Furthermore, we
consider that the inspiration and expiration distributions are
Normal and compute their means and variances accordingly.
We repeat this process for two more full breathing cycles and
average the inspiration and expiration means and variances for
all three training cycles.

During the testing phase we represent at time t each pixel
xt in region R as a mixture of two distributions:

f(xt) ∼ πi,tN(µi,t, σ
2
i,t) + πe,tN(µe,t, σ

2
e,t) (1)

where,
πi,t + πe,t = 1. (2)

N(µi,t, σ
2
i,t) is the Normal inspiration distribution,

N(µe,t, σ
2
e,t) is the Normal expiration distribution, and

πi,t and πe,t are their respective weights in the mixture.
In the beginning of the testing phase (t = 0) the distributions

for inspiration and expiration are equiprobable πi,0 = πe,0 =
0.5 and are parameterized by the respective means and vari-
ances that we computed during the training phase. Therefore,
every pixel in region R is represented as having the following
starting distribution:

f(x0) ∼ 0.5N(µi,0, σ
2
i,0) + 0.5N(µe,0, σ

2
i,0) (3)

At time t > 0 and for pixel xt we compare the incoming
temperature value from the sensor with the available distribu-
tion from the previous frame at time t−1. For this comparison
to be effective we consider that the incoming temperature
θxt can be associated to a Normal distribution gt with mean
µg,t = θxt

and variance σ2
g,t equal to the square of the

camera’s sensitivity.
We compute the Jeffrey’s divergence measures [12] between

the incoming distribution gt and the available inspiration fi,t−1

and expiration fe,t−1 distributions respectively. Specifically:
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and
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We consider that the incoming distribution is closer to the
available distribution that features the minimum Jeffrey’s di-
vergence measure. We call this the winning distribution fw,t−1

and the other the losing distribution fl,t−1. Based on this
information we update the parameters of the mixture following
the method of moments. Specifically, we update the weights
for both distributions and the mean and variance of the winning
distribution. The mean and variance of the losing distribution
remain the same.

The weights of the winning and losing distribution are
updated as follows:

πw,t = (1 − ρ)πw,t−1 + ρ, (6)

πl,t = (1 − ρ)πl,t−1. (7)

The mean and variance of the winning distribution are updated
as follows:

µw,t = (1 − ρ)µw,t−1 + ρµg,t, (8)

σ2
w,t = (1−ρ)σ2

w,t−1 +ρσ2
g,t +ρ(1−ρ)(µg,t−µw,t−1)2. (9)

The parameter ρ is a learning parameter that is computed from
the following formula [14]:

ρ = e
− 1

2

� 1
2 (µg,t−µw)

σw

�2

. (10)

The pixel xt is given the label of the distribution with the
highest updated weight. A count is kept of the number of
inspiration Ci,t and expiration Ce,t pixels in region R at time
t. If Ci,t > Ce,t the frame is labelled as inspiration. Otherwise,
the frame is labelled as expiration. Once the first full cycle
is detected, the breathing rate is computed using the time
stamps of all the frames in the cycle. From that point on the
breathing rate is continuously updated every time a breathing
cycle is completed. The software displays the breathing rate
in cycles/min.

V. EXPERIMENTAL SETUP

We used a cooled mid-wave infrared Phoenix camera with
a spectral range of 3.0-5.0 µm (Indigo, Goleta, CA). The
FPA of the camera is 640 × 512 and has thermal sensitivity
of 0.0250C. We used an external black body (Santa Barbara
Infrared, Santa Barbara, CA) to calibrate the camera in the
temperature range 28.0 - 38.0 oC. We recorded data in a dimly
lit room to avoid problems with reflections. Infrared video
frames were acquired at a rate of 31 frames per second.

We captured the profile view of the subjects’ face from a dis-
tance of 6-8 feet. A piezo strap transducer wrapped around the
subject’s diaphragm was measuring the thoracic circumference
during inspiration and expiration and was sending the signal

TABLE I

COMPARISON OF COMPUTED AND GROUND TRUTH BREATHING RATE.

Subject Ground Truth Computed % Accuracy

Number Rate Rate

1 29.29 29.80 98.25

2 33.7 36.68 91.15

3 24.91 24.29 97.02

4 35.15 37.11 94.42

5 14.51 16.85 83.87

6 12.9 13.53 95.11

7 17.59 20.09 85.78

8 19.35 20.45 94.31

9 12.88 14.50 87.47

10 17.58 18.87 92.66

to a PowerLab/4SP vital signs monitor (ADI Instruments,
Australia). This was the gold standard that we used for ground
truth.

VI. EXPERIMENTAL RESULTS

We recorded thermal video clips of 10 subjects during rest
and after a light and moderate exercise regime. We have
compared the average breathing rate from the ground truth
data with that from the computed values and found that our
breathing rate computation algorithm conforms to the ground
truth rate at 92% (see Table I).
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Fig. 3. Comparison of the ground truth and computed breathing signals.

The ground truth signal has output proportional to the
expansion (signal rise) and relaxation (signal fall) of the
breathing monitor belt during inspiration and expiration re-
spectively. The computed signal has output labelled as either
inspiration or expiration. To make comparison between ground
truth data and algorithmic results easier, we have digitized
both signals by assigning a zero level signal to inspiration
and a positive level signal to expiration. In addition, we have
assigned a negative signal level to frames used for acquiring
training data. Fig. 3 shows the comparison between the ground
truth and computed signals. As one can observe, there is phase
shift between the two signals. Three primary factors account
for this phase shift:



1) Imperfect (manual) synchronization of the beginning of
the two recordings (infrared video and monitor belt).

2) The monitor belt records ground truth data at the di-
aphragm level while our algorithm classifies air flow at
the nasal-mandibular level.

3) There is a mismatch of recording frequencies. Our
infrared camera records at 31 frames per second while
the monitor belt samples at 100 times per second.

We have countered the third factor by averaging three
consecutive ground truth samples for every video frame. We
have countered the first two factors by shifting the computed
signal by the necessary amount.

VII. CONCLUSION

In conclusion, breathing function is one of the major indica-
tors of an individual’s health. It can be used to predict various
life threatening disorders like sudden infant death syndrome
and heart attacks. It is also used in sleep studies to detect
sleep apnea. Finally, it is one of the psycho-physiological
channels in polygraph examinations. Various modalities have
been developed to measure breathing rate. Almost all the
legacy methods require contact and hence they compromise
the subject’s comfort and mobility. Moreover, measurements
by these methods are corrupted either by movement artifacts
or by their dependence on other physiological variables, like
heart rate. We have proposed a method that is based on infrared
imaging and statistical computation to measure passively
breathing rate at a distance. The method has the potential to
provide a unique capability for sustained monitoring of chronic
or acute breathing problems by overcoming the deficiencies of
the existing measurement modalities. It also opens the way for
the next generation touchless polygraphy that will not affect
the subject’s psycho-physiology.
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