Supplementary Information

Tough and Highly Stretchable Graphene Oxide/Polyacrylamide Nanocomposite Hydrogels

Ruiqiong Liu, Songmiao Liang, Xiu-Zhi Tang, Dong Yan, Xiaofeng Li, and Zhong-Zhen Yu

State Key Laboratory of Organic-Inorganic Composites, Department of Polymer Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China

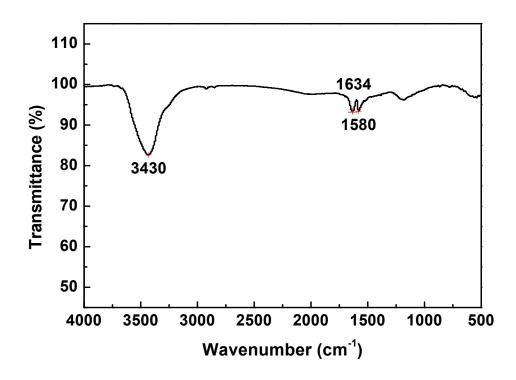
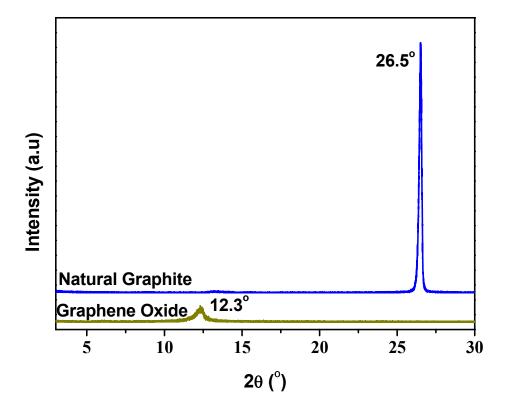
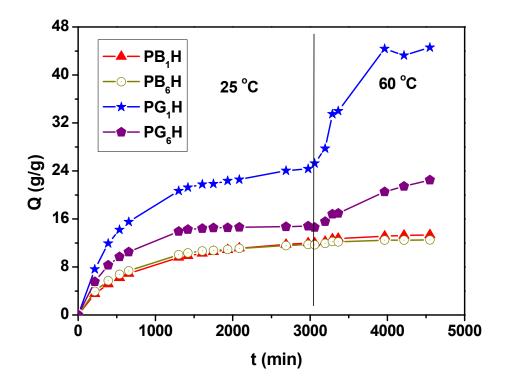




Fig. S1 FT-IR spectrum of natural graphite. The adsorption peak at 1580 cm⁻¹ corresponds to C=C carbonyl stretching. The broad and intense peak at 3430 cm⁻¹ is attributed to H₂O. The peak at 1634 cm⁻¹ is due to the skeletal vibration of graphitic domains or H₂O.

Fig. S2 XRD spectra of natural graphite and graphene oxide. Natural graphite shows a strong diffraction peak at 26.5°, while graphene oxide exhibits a diffraction peak at 12.3°, indicating a complete oxidation of natural graphite.

Fig. S3 Swelling ratios of PB₁H, PB₆H, PG₁H and PG₆H swollen in deionized water for 49 h at 25 °C followed by 28 h at 60 °C.