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Abstract. We show that nondegenerate Delaunay triangulations satisfy a combina- 

torial property called 1-toughness. A graph G is 1-tough if for any set P of vertices, 

c (G - P )  < I GI, where c(G - P) is the number of components of the graph obtained 

by removing P and all attached edges from G, and I GI is the number of vertices in G. 

This property arises in the study of Hamiltonian graphs: all Hamiltonian graphs are 

1-tough, but not conversely. We also show that all Delaunay triangulations T satisfy 

the following closely related property: for any set P of vertices the number of interior 

components of T -  P is at most IPI - 2, where an interior component of T -  P is a 

component that contains no boundary vertex of T. These appear to be the first 

nontrivial properties of a purely combinatorial nature to be established for Delaunay 

triangulations. We give examples to show that these bounds are best possible and are 

independent of one another. We also characterize the conditions under which a 

degenerate Delaunay triangulation can fail to be 1-tough. This characterization leads 

to a proof that all graphs that can be realized as polytopes inscribed in a sphere are 

1-tough. One consequence of the toughness results is that all Delaunay triangulations 

and all inscribable graphs have perfect matchings. 

1. Introduction 

The connect ion between Delaunay triangulations and Hamil tonian graphs has 

been a question of  some interest. In his thesis, Shames  posed a variant  o f  the 

question by asking whether every Delaunay triangulation contained a traveling 

salesman cycle for its sites [45]. The answer to this question was shown to  be 

negative in [19]. The question of  when Delaunay triangulations are Hamil tonian 
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has arisen in the contexts of pattern recognition and shape representation [38], 

[43]. Consider the problem of constructing a "reasonable" simple curve through a 

given planar set of points. One approach that has been suggested is to construct the 

Delaunay triangulation of the points, and then to construct a cycle through this 

triangulation either by "growing" a single triange [43] or by "sculpting" the 

convex hull [8]. These algorithms will be successful only if the Delaunay triangula- 

tion has a Hamiltonian cycle. 

It has been shown [20], [22] that not all nondegenerate Delaunay triangula- 

tions are Hamiltonian.1 A degenerate example was presented in [31]. Nevertheless, 
O'Rourke and Boissonnat both report that their algorithms appear to work in 

practice. In fact, Boissonnat has run a number of simulations with randomly 

generated point sets containing up to 2000 points, and all his examples have yielded 

Hamiltonian Delaunay triangulations [9]. Thus there is evidence that Delaunay 

triangulations are Hamiltonian with high probability. In this paper we establish 

two results that may partially explain this phenomenon. 
The simplest way to construct a non-Hamiltonian triangulation is to draw a 

graph such as the one in Fig. 1.1(a), and then to argue as follows. Suppose there 

were a Hamiltonian cycle. Every time the cycle passed from one of the dark vertices 

to another, it would have to pass through one of the light vertices (A, B, and C), 

visiting a different one each time. Since there are four dark vertices, and only three 

light vertices, this is impossible, so the graph must be non-hamiltonian. An 

argument essentially similar to this has been used to prove the non-Hamiltonicity 

of triangulations arising in several different contexts [5], [31], [36], [47]. The key 

property used in the preceding argument, that of 1-touohness, was first identified by 

Chv~tal [13]. A graph is 1-touoh if, for any k, removing k vertices splits the graph 

into at most k components. It is easy to show that any Hamiltonian graph is 1- 

tough, essentially by the above argument. The converse is not true, even for 

triangulations. Examples of non-Hamiltonian, 1-tough maximal planar graphs 

appear in [22], [23], and [40]. The connection between Hamiltonicity and 

toughness is discussed in [7], [13] and [14]. 
In Section 3 of this paper we show that all nondegenerate Delaunay triangula- 

tions are 1-tough (Theorem 3.2). This result partially explains why constructing 

non-Hamiltonian Delaunay triangulations has been somewhat difficult. It is, to our 

knowledge, the first property of a purely combinatorial (graph-theoretical) nature 

to be established for Delaunay triangulations. 

For any value of k, it is easy to construct a triangulation with the property that 

removing k vertices splits it into 2k - 2 components. The construction is as follows. 

Start with any triangulation T having k vertices, and insert new vertices, one inside 

each triangle and one just outside each segment of the convex hull. Add segments 

to T to create a new triangulation, U. It follows from Euler's formula that 2k - 2 

new vertices have been added. If the k vertices of the original triangulation are 

removed from U, each of the new vertices will become a separate component. This 

construction, which is illustrated for k = 5 in Fig. 1.1(b), shows that general 

triangulations can fail rather badly to be 1-tough. 

1 A Delaunay triangulation is nondegenerate if there is no ambiguity in its construction, degenerate 
otherwise. A more precise definition is given in the next section. 
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(b) 

Fig. 1.1. Examptes of triangulatons that are not I-tough. (a) Removing .4, B, and C splits this graph 

into four components. (b) An example of a triangulation that can be split into 2k - 2 components by 

removing k vertices, for k = 5. 

Related to the l-toughness result is Theorem 3.1, which says that removing k 

vertices can split a Delaunay triangulation into at most k - 2 components that do 

not contain a boundary vertex of the triangulation. In Section 4 we give examples 

to show that neither this result nor the 1-toughness result implies the other, and 

that neither result can be sharpened. 
In Section 5 we show that when the nondegeneracy assumption is removed, 

1-toughness "almost" still holds, and we can characterize the circumstances under 

which it fails (Therorem 5.3). This leads to a proof, in Section 6, that graphs 

inscribable in a sphere are 1-tough. In Section 7 we show that all Delaunay 

triangulations and inscribable graphs have perfect matchings. In the final section 

we discuss some open problems. 

Much has been written in recent years about the eifident construction and 

applications of Delaunay triangulations and Voronoi diagrams. References to this 
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literature can be found in the books [26] and [44] and the survey paper [34]. More 
closely related to the spirit of this paper is research directed at proving geometric 

properties of Delaunay triangulations. Shames' thesis [45] discussed the applica- 
bility of Delaunay triangulations and Voronoi diagrams to many problems in 
computational geometry and raised several interesting questions. The relationships 
among the greedy triangulation, the minimum-weight triangulation, and the 

Delaunay triangulation are examined in [12], [33] and [35]-[37]. It is shown in 
[1] that a Delaunay triangulation need not contain a minimum-weight perfect 

matching. Geometric characterizations of Voronoi diagrams and some generaliza- 

tions are given in [2], [3] and [28]. Dobkin et al. have shown that the shortest path 
connecting two vertices in a Delaunay triangulation is at most a constant multiple 

of the Euclidean distance between them [25]; recently, Keil and Gutwin have 
improved the constant [32]. De Floriani et aL have shown [17] that given any 
point in a Delaunay triangulation, it is possible to order the triangles so that any 

ray from the point intersects the triangles in increasing order. Edelsbrunner [27] 

has generalized this property to d dimensions. 
While the concept of toughness was initially introduced primarily because of its 

connection with Hamiltonicity, it has recently been of interest as a measure of 
vulnerability of a network [4]. Thus Theorem 3.2 can be viewed as a statement 

about the fault-tolerance properties of networks configured as Delaunay triangula- 
tions, complementing the results bounding path lengths in such networks in [25] 

and [32]. Bauer et al. have shown that recognizing 1-tough graphs is NP-hard [6]. 
Dawes and Rodrigues have shown [16] that all k-connected, k-regular graphs are 

1-tough. 

2. Mathematical Preliminaries 

The number of elements of a set S is denoted by [St. Except as noted, we use the 
same graph-theoretical terminology as [10]. For a graph G, V(G) represents the set 

of vertices of G, f Gl = 1V(G)J, and c(G) represents the number of components of G. 
If P ~_ V(G), the subgraph of G induced by P, denoted G[P], is the graph with 
vertex-set P in which two vertices are joined by an edge if they are joined by an edge 

in G. The graph G - P is obtained from G by removing the set P (and all edges with 

at least one endpoint in P). 
A walk in G is a sequence of two or more (not necessarily distinct) vertices such 

that each pair of consecutive vertices is connected by an edge. A path is a walk in 

which all vertices are distinct. A cycle is a walk Po"'Pn in which Po = P~ but the 
vertices are otherwise distinct. A Hamiltonian cycle in a graph G is a cycle that visits 
each vertex of G. A graph is Hamiltonian if it contains a Hamiltonian cycle. A graph 

G is t-tough [13] if, for any P ~_ V(G), t.c(G - P) <__ IPt. In particular, G is 1-tough 

if, for any P ~ V(G), c(G - P) < IPI. 
A planar graph is a graph that can be drawn in the plane so that its vertices are 

points of the plane and such that if two edges intersect, they do so only at a 

common endpoint. A plane graph is a graph that is already drawn in such a 
fashion. By Fary's theorem (see, for example, [41]), there is no loss of generality in 
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Fig. 2.1. Classification of edges and components in plane graphs. 

assuming that all edges in a plane graph are line segments. A plane graph separates 

its complement (i.e., the rest of the plane) into regions, which are called faces. The 

unique unbounded face is called the exterior face, and all other faces are called 

interior faces. Two plane graphs are combinatorially equivalent if there is a bijection 

between the vertices, edges, and faces which preserves all incidence relations and 

the identity of the exterior face. If v is the number of vertices in a plane graph, e the 

number of edges, and f the number of interior faces, then Euler'sformula asserts 

that in a connected plane graph, e = v + f - 1. 

The set of all edges that are incident with a face is called the boundary of the face. 

(Notice, since a face is a subset of the complement of the graph, it does not contain 

its boundary.) The boundary of the exterior face is called the boundary of the graph. 

An edge is called an exterior edge if it is only incident to the exterior face; a 

boundary edge if it is incident to the exterior face and an interior face; and an 

interior edge if it is incident only to interior faces (which may or may not be 

distinct). If P ~ V(G), a component of G - P is an interior component if it does not 

contain any vertex on the boundary of G and a boundary component if it contains at 

least one vertex on the boundary of G. For  example, if G is the graph of Fig. 2.1, BD 
is an interior edge of G, AC is a boundary edge, and G has no exterior edges. If 

P = {.4, B, C, D, E, J, K}, then {A J, C J, CK, DK, JK} is the set of interior edges of 

G[P], {AB, AC, BD, CD} is the set of boundary edges of G[P], and DE is the only 

exterior edge of G[P]. Here {H} is an interior component of G - P and {I, L} is a 

boundary component of G - P. 

A 2-connected plane graph T is called a triarujulation if every interior face is 

bounded by a triangle and the boundary of T is a convex polygon. A triangulation 

T is called a maximal planar graph if, in addition, the boundary of T is a triangle. 

An elementary triangle is a triangle that is the boundary of a face. For  example, in 

Fig. 1.1(a), ABD is an elementary triangle but ABC is not. If X Y Z  is an elementary 

triangle, we say that vertex Y, or angle X YZ, is opposite the edge XZ. 

Let S be a set of distinguished points in the plane, which we call sites. We assume 

throughout this paper than not all sites are collinear. 2 For  each s e $, the Voronoi 

2 This assumption is merely a convenience. If we consider the collinearity of all points of S to be a 

form of degeneracy, then Theorem 5.3 still holds. Moreover, if such a set S arises in the proof of Theorem 

6.2, the argument given there still works. 
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region V(s) generated by s is the set of points closer to s than to any other site. The 

collection of all Voronoi regions generated by sites of S is called the Voronoi 
diagram generated by S. The Voronoi dual of S is defined to be the straight-line 

geometric dual of the Voronoi diagram• If no more than three Voronoi regions 

meet at any point in the Voronoi diagram generated by S, then the Voronoi dual of 

S is a triangulation, called the Delaunay triangulation of S; in this case, the 

Delaunay triangulation and the Voronoi dual are said to be nondegenerate. An 

example nondegenerate Voronoi diagram and the corresponding Delaunay trian- 

gulation are shown in Fig. 2.2. If the Voronoi dual is degenerate O.e• if more than 
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(a) A Voronoi diagram. (b) The corresponding Delaunay triangulation. 
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three Voronoi regions intersect), then a Delaunay triangulation is any triangula- 

tion obtained by adding edges to the Voronoi dual. The following characterization 

of Delaunay triangulations follows easily from the "General Lemma" of [18]. 

(Here, and throughout the paper, /~(-) represents the measure of an angle in 

degrees.) 

Fact 2.1. A triangulation is a Delaunay triangulation if and only if, whenever 

ABC and ABD are two elementary triangles, the angles ACB and ABD satisfy the 

inequality 

#(ACB) + #(ADB) < 180. (2.1) 

A Delaunay triangulation is nondegenerate iff all inequalities (2.1) are strict. 

3. Toughness Conditions for Delaunay Triangulations 

In this section we prove the following two theorems concerning the structure of 

Delaunay triangulations: 

Theorem 3.1. Let Tbe a Delaunay triangulation and let P ~_ V(T). Then T - P has 

at most I PI - 2 interior components. 

Theorem 3.2. Let T be a nondegenerate Delaunay triangulation and let P ~_ V(T). 

Then T -  P has at most IP] components. In other words, T is 1-tough. 

Theorem 3.1 does not require nondegeneracy, while Theorem 3.2. does. In 

Section 5 we examine the circumstances under which a degenerate Delaunay 

triangulation can fail to be 1-tough. The conclusion of Theorem 3.1 is a property 

that depends only on the combinatorial structure of T, and l-toughness of a 

graph is invariant under isomorphism (and hence under combinatorial equiva- 

lence). So both these theorems describe necessary properties that a triangulation 

must satisfy if it has a combinatorially equivalent realization as a Delaunay 

triangulation. 

3.1. Proof of  Theorem 3.1 

Let T be a triangulation and let P ~_ V(T). We classify the interior of T[P] into 

two types. Interior faces with no vertices of T -  P in their interior are called good 

faces, and interior faces with one or more vertices of T -  P in their interior are 

called bad faces. Good and bad faces are illustrated in Fig. 3.1(a) and (b). Each 

interior component of T - P is contained in some bad face of TIP].  The proof of 

Theorem 3.1 proceeds in three stages. First we establish (Lemma 3.5) that if TIP]  is 
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(c) (d) 

Fig. 3.1. Good and bad faces. (a) A triangulation T, with P ~_ V(T) indicated by light circles. (b) The 
good and bad faces of T[P], labeled with G and B, respectively. (c) Type 1 and type 2 angles. (d) Type 1, 

type 2, and type 3 angles. 

connected, then the number of interior components of T -  P is equal to the 

number of bad faces. We then show that in a Delaunay triangulation the number of 

bad faces of T -  P cannot exceed Iel - 2, provided T[P] is connected (Lemma 

3.8). Finally, we show that the requirement that T[P] be connected is unnecessary. 

Before beginning the proof we introduce some basic topological facts and 

definitions. Our discussion is informal; for a rigorous treatment of the topology of 

the plane see [39]. In general, the boundary of a face is not necessarily a cycle, nor 

need it be connected (Fig. 3.2). A counterclockwise traversal (resp. clockwise 
traversal) of a component of a boundary of a face F is a closed walk such that the 

edge PiP2 appears in the walk if and only if( l)  Pl and P2 belong to that component 
of the boundary ofF,  and (2) F is the face to the left (resp. right) of the directed edge 

PlP2. For example, the three components of the boundary of face 2 in Fig. 3.2, 

expressed as counterclockwise traversals, are RHIR, JKJ, and BQALAB. A simple 
face of a plane graph is a face with the property that, for any closed curve lying 

entirely within the face, either all vertices of the graph are inside the curve or all 

vertices of the graph are outside the curve. In the graph of Fig. 3.2, faces 1, 3, and 4 

and the exterior face are simple, but face 2 is not simple. 
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q) 

)B 

Fig. 3.2. Faces in plane graphs 

Let G be a plane graph, and let G 1 and G 2 be components of G. Suppose some 

face F of G has the following property: it is possible to draw a dosed curve in F 

such that G1 lies inside the curve, but it is not possible to draw a closed curve in F 

such that G 2 lies inside the curve. Then we say that G2 surrounds G~. For example, 
in Fig. 3.2, the component cntaining the vertices {A, B, C, D, E, L, M, N, P, Q} 

surrounds the other two components. The topological properties of the plane 

needed in this section can be summarized as follows: 

Fact 3.3. Let G be a plane graph. (a) If G is connected, all faces of G are simple. 

(b) The boundary of any simple face of G is connected. (c) If G 1 and G 2 are 

components of G and G 1 surrounds G2, then G 2 does not surround GI. 

Let F be any interior face of a planar graph G. It follows immediately from Fact 

3.3(c) that there is a unique component of the boundary of F that is not surrounded 

by any other component of the boundary of F. We call this component the outer 
boundary of F. Thus, in Fig. 3.2, AQBALA is a clockwise traversal of the outer 

boundary of face 2. If T[P] is connected, then it follows from Fact 3.3(a) and (b) 

that the boundary of any face is connected, so the outer boundary of a face is the 

boundary of the face in this case. 
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As we indicated above, our first goal is to establish that, in a triangulation, the 

number of interior components of T -  P is equal to the number of bad faces of 

TIP]. The key observation is the following lemma. 

Lemma 3.4. I f  T is a triangulation, P ~_ V(T), and TIP] is connected, then any two 

vertices that lie inside (i.e., in the topological interior of) a common interior face of 

TIP] can be connected by a path (in T, and hence in T -  P) lying entirely inside that 

face. 

Proof. Let F be an interior face of T, and let w and x be two vertices lying inside F. 

Since T is connected, and the boundary of F is connected (by Fact 3.3(a) and (b)), it 

follows that w and x may be joined by a path H that remains on or inside F. We 

must show that II can be chosen to be strictly inside F. It suffices to establish the 

following claim: if y and z are two vertices inside F, each of which is adjacent to a 

vertex of T lying on the boundary of F, then there is a walk from y to z lying 

entirely inside F. To establish the claim, let v be a neighbor of y that is on the 

boundary of F, and consider the following algorithm: 

p,=y;  

q x= v; 

repeat 

r ~= counterclockwise(p, q); 

if r is inside F then 

output edge (pr); 

p ,= r; 

else 

q ~= r; 

endif;  

until  p = z;  

Here, the function counterclockwise(p, q) (resp. clockwise(p, q)) returns the unique 

vertex r such that qr is the first edge encountered after pq when moving 

counterclockwise (resp. clockwise) about q. The crucial observation about the 

algorithm is that since T is a triangulation and pq is not a boundary edge, 

counterclockwise(p, q) = clockwise(q, p), so the loop preserves these invariants: 

(1) q is on the boundary of F, 

(2) p is inside F, 

(3) pq is an edge of T, and 

(4) after the call to counterclockwise, pr and qr are edges of Z 

Also, q runs through the vertices of a clockwise traversal of the boundary of F. It 

follows that p runs through the set of vertices of T -  P that are inside F and 

adjacent to vertices of TIP] on the boundary of F. In particular, p ultimately takes 

on the value z, so the algorithm terminates and the output is a path from y to z 

consisting entirely of vertices inside F. This establishes the claim, and hence the 

lemma. [] 
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In a graph that is not a triangulation, a single face of TIP] can contain more than one 

Lemma 3.5. Suppose Tis a triangulation, P ~_ V(T), and T[P,I is connected. Each 

bad interior face of T[ P,l contains exactly one component o f T -  P. Furthermore, any 

good interior face of T[P,I is bounded by a triangle. 

Proof. Let F be an interior face of T[P'I, and let p 1 and P2 be two adjacent vertices 

of P such that the edge pl P2 forms a portion of the boundary of F. Assume, without 

loss of generality, that F is to the left of PtP2. Let x = clockwise(p~, P2). If F does 
not contain a vertex of T - P (i.e., i fF is a good face), then x e P, which implies that 

F is bounded by the triangle pip2 x and thus proves the second assertion of the 

lemma. By Lemma 3.4, the vertices of T -  P inside F (if there are any) all belong to 

the same component of T -  P, which proves the first assertion. [] 

Notice that Lemmas 3.4 and 3.5 can fail if T is not a triangulation. For example, 

let Tbe the graph of Fig. 3.3. If P = {A, B, C, D}, the face of T[P] bounded by the 

cycle ABCD contains two components of T - P, namely {E} and {E'}, and there is 

no path from E to E' lying entirely inside this face. Lemmas 3.4 and 3.5 remain true 

if the requirement that T[P,I be connected is dropped, but we do not use this fact. 

Lemma 3.5 implies that Theorem 3.1 will follow (for T[P,I connected) if we can 

bound the number of bad faces in a Delaunay triangulation. In order to do this, we 

associate with each good and bad face of T[P,I certain distinguished angles. The 

distinguished angles are those angles that are opposite an edge of T[P]. More 

precisely: 

• For each good face (which must be bounded by a triangle, by Lemma 3.5), we 

distinguish the three internal angles of the triangle. We call these type 1 angles. 

• For each bad face, we distinguish all angles of the form AXB, where AB is an 

edge of the face boundary, and X is a vertex of T - P inside the face such that 

triangle AXB is an elementary triangle of T. We call these type 2 angles. 

The type 1 and type 2 angles are illustrated in Fig. 3.1(c). Some important 

properties of the type 1 and type 2 angles are contained in the following two 

lemmas. 



586 M.B. Dillencourt 

Lemma 3.6. Let Tbe a triangulation with P ~_ V(T). Each interior edge of TIP] is 

opposite two distinguished angles, and each boundary edge of TIP] is opposite one 

distinguished angle. 

Proof. Let PIP2 be any interior edge of TIP]. Then, by definition, the faces on 

either side of this edge are interior faces. Hence there are vertices on either side of 

the edge, say a and b, such that p~ap2 and plbp2 are elementary triangles of T. If 

a e P, then p~ ap2 is a type 1 angle, otherwise it is type 2, and similarly for angle 

Pl bp2. This proves the first half of the lemma. The proof of the second half is 

similar. []  

Lemma 3.7. I f  T is a triangulation, P ~_ V(T), and TIP] is connected, the sum of 

the type 2 angles associated with a given bad face of TIP] is at least 360 °. Equality 

holds if and only if the face contains exactly one vertex of T -  P in its interior. 

Proof. (See Fig. 3.4.) Let F be any bad face of TIP]. Let PlP2""PmPl be a 

counterclockwise traversal of the boundary of F, and let ri be the vertex to the left 

of pip~+ ~ such that p~r~p~+ ~ is an elementary triangle of T (where subscripts are 

taken modulo m). Since F is a bad face, each ri e T -  P. Notice that the vertices {ri} 

and {p~} need not all be distinct, as illustrated in Fig. 3.4 where r 3 = r4 and P4 = P6- 

A simple continuity argument combined with the well-known formula for the sum 

of the interior angles of polygons yields 

~ l.t(piPi+lPi+2) = 180(m - 2). (3.1) 
i = l  

P3 & 

r 2 

I'1 

& 

Fig. 3.4. Proof of Lemma 3.7. 
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For all i, if we move clockwise about Pi+l from the edge P~+IPi to the edge 

P~+~Pi+2, we encounter edge pi+lr~ either before or simultaneously with edge 

Pi+ Irt+ 1- Hence, 

#(r~+ lPi+ lP~+ 2) + #(r~Pi+ tP~) < #(PiPi+ tPi+ 2). (3.2) 

By (3.1) and (3.2), 

~#(p i r ip i  + 1 ) = ~ { 180 -- ( # ( r i p i p  i + 1 ) + #(r iPi  + i Pi))} 
i=1 i=1 

----- ~ {180 --  (I,t(rt+tp~+ipi+2) + #(r~p~+lp~))} 
i=l 

> 1 8 0 m -  ~ #(PiPi+lPi+2) 
i=1 

= 1 8 0 m -  180 (m-  2) 

= 360. 

This proves the first statement. Equality holds in (3.2) if and only if ri = r~+ 1. 

Hence the sum of the type 2 angles is exactly 360 ° if and only if r i = rl+ 1 for all i, 

which proves the second statement. [] 

Lemma 3.8. Let Tbe a Delaunay triangulation, let P c V(T), and assume TIP] is 

connected. Then T -  P can have at most [PI - 2 interior components. 

Proof. By Lemma 3.5, it is enough to show that T[P] can have at most IPI - 2 

bad faces. The proof is essentially a counting argument. We establish a lower 

bound on the total value of the distinguished angles in terms of the number of bad 

faces of T[P]. We then establish an upper bound on the same quantity, using the 

Delaunay triangulation characterization of Fact 2.1. By comparing these two 

bounds, we are able to derive the required bound on the number of bad faces. 

Let g be the number of good faces, and let b be the number of bad faces. Let d 

denote the total measure of all distinguished angles. Each good face contributes 

three distinguished angles of total measure 180 ° (by Lemma 3.5), and each bad face 

contributes several distinguished angles of total measure at least 360 ° (by Lemma 

3.7). Hence 

d > 180.g + 360.b. (3.3) 

Let f b e  the number of interior faces of T[P] ( s o f  = b + g). Let e be the number of 

edges of TIP]. By Euler's formula, we have 

e=lP[  + f -  l=lPJ + b + g -  1. (3.4) 
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Define two distinguished angles to be paired if they are opposite a common edge. 

A distinguished angle is unpaired if it is not paired with another distinguished angle. 

For  example, in Fig. 3.1(a), angles XZYand XWYare paired with each other, while 

angle VXZ is unpaired. Since T is a Delaunay triangulation, the sum of two paired 

distinguished angles is at most 180 ° . Each unpaired angle is less than 180 ° , as it is 

an interior angle in a triangulation. Since only interior components of TIP] are 

being considered, not all distinguished angles are paired, as any distinguished angle 

facing a boundary edge of T[P] is unpaired. Since the distinguished angles are 

exactly those angles that face an edge of T[P] (by Lemma 3.6), it follows that 

d < 180.e. (3.5) 

Combining (3.3), (3.4), and (3.5) we have 

180-0 + 360.b < 180(IPI + b + O - 1), 

which simplifies to 

b < ]PI - 1. (3.6) 

Since b and IPI are integers, b _< IPI - 2. []  

To prove Theorem 3.1 we need only prove that Lemma 3.8 remains true if we 

drop the assumption that TIP] is connected. The proof is by induction on the 

number of components of TIP]. Lemma 3.8 establishes the result when this 

number is 1. 

Assume TIP] hasj  components, wherej  > 1. It follows from Lemma 3.3(c) that 

some component of T[Pi does not surround any other component of P. Let Po be 

the set of vertices of this component of TIP], and let P'  be the set obtained by 

deleting Po from P. Then, by Lemma 3.8, T -  Po has at most IPot - 2 interior 

components, so by removing Po from P we are decreasing the number of interior 

components of T -  P by at most 1Pol - 2. Hence 

ct(T- P) < ci(T- P') + IPol - 2, (3.7) 

where q ( T -  P) represents the number of interior components of T -  P. Since 

TIP'] has j - 1 components, it follows from the inductive hypothesis that 

ci(T- P') < Ie'l - 2. (3.8) 

By (3.7) and (3.8), 

ci(T- P) ~ IP'I - 2 + IPol - 2 = IPI - 4 < IP1 - 2, 

which completes the proof of Theorem 3.1. 
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3.2. Proof of Theorem 3.2. 

Theorem 3.1 establishes a bound on the number of interior components of T - P. 

To prove Theorem 3.2, it is necessary to obtain a bound on the number of 

boundary components of T- -  P as well. This is achieved by introducing a new type 

of distinguished angle, to supplement the type 1 and type 2 angles defined in 

Section 3.1. We define a type 3 angle to be an angle of the form AXB, where AXB is 

an elementary triangle of T, A and B are vertices of P, and X is a vertex of a 

boundary component of T -  P. Type 3 angles are illustrated in Fig. 3.1(d). The 

following lemma, which is analogous to Lemma 3.7, establishes a lower bound on 

the total measure of all type 3 angles in an arbitrary triangulation. 

L e m m a  3.9. Let T be a triangulation, and let P c_ V(T). Then the sum of the 

measures of all type 3 angles o f T  - P is at least 180(Cb -- 2), where cb is the number 

of boundary components of T -  P. Moreover, if equality holds, then 

(a) each boundary component of T - P consists of exactly one vertex, and 

(b) if  p ~ P is on the convex hull of T, then the two consecutive segments of the 

convex hull of T that meet at p form an angle of exactly 180 °. 

Proof. For each boundary component Q of T -  P, define the p-boundary of Q to 

be the unique walk PoP~'"P,+I through T[P], such that each edge of the walk is 

the base of an elementary triangle whose apex is a vertex of Q to the left of the edge. 

Define the q-boundary of Q to be the unique walk qoq~"'q,+ ~ from the first vertex 

of the p-boundary to the last vertex of the p-boundary, such that every vertex 

(except the first and last vertices) is in Q and such that each edge of the walk is the 

base of a triangle whose apex is a vertex of P to the right of the edge. (Notice that 

Po = qo and P,+I = qs+l, but it is not necessarily true that r = s.) The p-boundary 

and q-boundary are illustrated in Fig. 3.5, where r = 5 and s = 6. 

Let g be the sum of the measures of the type 3 angles of Q. The first step in the 

proof is to establish a bound for g in terms of the total measure of the angles at 

vertices of Q along the q-boundary, namely: 

ct >_ ~ lt(qj_~q#qj+t) - -  180(s  - 1). (3 .9)  
j= l  

Definc II to be the walk from Po to p,+t that alternates between the p-boundary 

and the q-boundary in such a way that the angles at the vertices belonging to Q arc 

precisely the distinguished angles. In Fig. 3.5, for example, H is the walk 

Po q x P~ q2 P2 qa Pa q4P4q4Ps q6P6. The path H can be obtained from the q-boundary 

by performing the following step for j = 1 . . . . .  s - 1: 

(,) Replace edges q#qj+l by the edges q#p' and P'qj+l, where p' is the (unique) 

vertex on the p-boundary to the right of the edge qjqj+ i such that qlP'q#+ ~ is 

an elementary triangle of T. 
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q7 

Fig. 3.5. Illustration of p-boundaries and q-boundaries. The shaded triangles indicate the area below 

the q-boundary and above the walk lq used in the derivation of (3.9). The type 3 angles are as illustrated. 

Each time (.)  is performed, the total measure of all angles on the walk at vertices 

belonging to Q is reduced by an amount less than 180 ° (namely, by the sum of the 

measure of angles P'qiqi+ I and P'qi+ 1 q j). Since the q-boundary is transformed into 
H by performing (,)  s - I times, (3,9) follows. If equality holds in (3.9), then s = 1, 

which means that the component Q consists of a single vertex. 

The next step in the proof consists of constructing a polygon, which we call R, 

obtained by taking the convex hull of V(T) (with the vertices enumerated in 

clockwise order) and "cutting across it" with q-boundaries. That is, if vl . . . . .  vn, vl 

is an enumeration of the vertices of the convex hull of 1,'(1"), then, for each pair vi 

and vj of vertices that form the opposite ends of a q-boundary, replace the path 

v i ' "  v i with the corresponding q-boundary. 

The polygon R has two kinds of vertices--vertices of P that are on the convex 

hull of V(T),  and vertices of T -  P that lie on q-boundaries. Assume that there are 

n~ vertices of T - P  along the q-boundary of component number k, and let 

n = ~.~= 1 n~. Let //6 be the sum of the internal angles of R at vertices of the 

q-boundary of component number k, and let p = ~,"=:/~k (i.e.,//is the sum of the 

measures of all internal angles of R at vertices of T - P). Since all vertices of R that 

are not vertices of T -  P are convex vertices (i.e., their interior angles with respect 

to the polygon R do not exceed 180°), it follows that 

p > 180(n - 2). (3.10) 
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Let ~k be the sum of the measures of all type 3 angles at vertices in boundary 

component number k. Applying (3.9) to each boundary component of T -  P and 

then summing over all boundary components, we obtain 

Cb Cb 

Y -> 2 - 180(n  - 11} 
k = l  k = l  

¢b 

=/~-180 2 (nk-l) 
k = l  

=/~ - 180(n - Cb). 

Hence, by (3.10), we have 

Cb 

ak > 180(n -- 2) -- 180(n -- Cb) = 180(Cb - -  2), (3.11) 
k = l  

which proves the first conclusion of Lemma 3.9. 

To prove the second conclusion, observe that if quality holds in (3.11), it must 

hold in (3.10) and in all applications of (3.9). It was remarked earlier in the proof 

that if equality holds in (3.9), the boundary component Q contains exactly one 

vertex. If equality holds in (3.10), then each angle of R occurring at a vertex of P 

must be a 180 ° angle. The result follows from these observations. [ ]  

As before, we first establish Theorem 3.2 under the additional assumption that 

TIP] is connected. 

Lemma 3.10. Let T be a nondegenerate Delaunay triangulation, and suppose 

P ~_ V(T) with TIP] connected. Then T -  P has at most IPI components. 

Proof. The proof is quite similar to the proof of Lemma 3.8. Let b be the number 

of bad faces of TIP-I, let g be the number of good faces of TIP], and let c b be the 

number of boundary components of T - P. By Lemma 3.5, the number of interior 

components of T -  P is given by b, so it suffices to show that Cb + b < IPI. 

As before, let d be the total measure of all distinguished angles (i.e., all angles of 

types, 1, 2, and 3). Each good face contributes three type 1 angles of total measure 

180. Each bad face contributes several type 2 angles of total measure at least 360. 

By Lemma 3.9, the total measure of all the type 3 angles is at least 180 (c b - 2). 

Hence, 

d > 180(0 + 2b + Cb -- 2). (3.12) 

Let e be the number of edges of TEP]. Using the same argument as in the proof of 

Lemma 3.8, we have 

e = IPI + b + g -  1 (3.13) 
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and 

d < 180-e. (3.14) 

Combining (3.12), (3.13), and (3.14), we have 

180(g + 2b + c b - 2) < 180(IPI + b + g - 1), 

which simplifies to 

b + c u < ]P] + 1. (3.15) 

Since b, c b, and IP[ are integers, b + Cb < iPI, which was to be proved. [] 

Notice that while nondegeneracy was not necessary to get strict inequality in 

(3.6), nondegeneracy must be assumed to obtain strict inequality in (3.15). This is 

because, when type 3 angles are included, it is possible for all distinguished angles 

to be paired. Hence, if T is degenerate, the strict inequality in (3.14), and hence in 

(3.15), may become an equality. The toughness properties of degenerate Delaunay 

triangulations are investigated in Section 5. 

To complete the proof of Theorem 3.2, we need only show that the assumption 

that T[P] is connected in Lemma 3.10 is not essential. The proof is similar to the 

final step in the proof of Theorem 3.1, with the following difference. When we 

remove the set Po from P, we merge at most [Po[ components into at least one, so 

the analog of (3.7) is 

c ( T -  P) < c ( T -  P') + [Po[ - 1. 

When we combine this with the inductive hypothesis that c ( T - P ' ) <  IP'I, we 

obtain 

c ( T -  P) < [P'I + lPol - I = IP! - 1, 

which completes the proof. 

4. Examples 

In this section we present some examples to show that Theorems 3.1 and 3.2 are 

independent of one another and that they are the best possible results. 

Figure 4.1 shows a triangulation that fails to satisfy the conclusion of Theorem 

3.1, because removing A, B, C, and D splits it into three internal components. Since 

the triangulation is 1-tough (in fact, it is Hamiltonian), this shows Theorem 3.1 is 

not implied by Theorem 3.2. Other examples of 1-tough, maximal planar graphs 

that fail to satisfy the conclusion of Theorem 3.1 can be found in [23] and [40]. 

Conversely, the example in Fig. 1.1(a), which is not 1-tough, satisfies the conclusion 
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A 

C 

120 

90 

30 

Fig. 4.1. A 1-tough triangulation that fails to satisfy the Fig. 4.2. Theorems 3.1 and 3.2 are 
conclusion of Theorem 3.1. both sharp. 

of Theorem 3.1. These examples show that Theorems 3.1 and 3.2 are indeed 

independent of one another. 

The triangulation in Fig. 4.2 shows that neither Theorem 3.1 nor Theorem 3.2 

can be improved. It is easy to verify that the figure satisfies the hypotheses of Fact 

2.1, which shows that it is a nondegenerate Delaunay triangulation. Removing the 

three vertices A, B, and C separates the triangulation into three components, one of 

which is interior. Hence, bounds on the number of,:omponents proved in Section 3 

can be attained. 

5. Toughness Conditions for Degenerate Delaunay Triangulations and 

Voronoi Duals 

We now examine the conditions under which degenerate Delaunay triangulations 

and Voronoi duals can fail to be 1-tough. We use the results of this section in our 

proof that all inscribable graphs are 1-tough. It is important to keep in mind the 
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v w 

Fig. 5.1. A Voronoi dual that is not l-tough. 

difference between a Voronoi dual and a Delaunay triangulation in the degenerate 
case: a Voronoi dual is the dual of a Voronoi diagram, while a Delaunay 

triangulation is a triangulation obtained by adding edges (in some arbitrary 
fashion) to a Voronoi dual. 

A degenerate Voronoi dual need not be 1-tough. An example is provided by the 

Voronoi dual D shown in Fig. 5.1. This example originally appeared in [311. The 
set S of generating sites consist of the vertices of an equilateral triangle, the 
midpoints of the sides, and the centroid. It fails to be 1-tough because removing the 

three midpoints of the sides separates it into four components. This graph has 
several features worth noting. Let P be the set consisting of the three midpoints of 

the sides. The graph is "almost" 1-tough, because c ( D -  P ) =  IPI + 1. Each 
component ofD - P consists of a single vertex. Each point of P is on a line segment 
connecting two points of S - P (i.e., no point of P is an extreme point of S). We 

show that these properties are characteristic of Voronoi duals that fail to be 1- 
tough (Theorem 5.3). First we show that the corresponding properties hold for 
Delaunay triangulations. 

Lemma 5.1. Let T be a Delaunay trianffulation, and suppose there exists a set 

P ~_ V(T) such that c ( T -  P) > [P[. Then Tis  degenerate. Moreover, the following 

properties hold: 

(a) c ( T -  P) = IPI + 1. 

(b) All components of T -  P consi:h of a single vertex. 

(c) No point of P is an extreme point of V(T). 

Proof. It follows immediately from Theorem 3.2 that T is degenerate. The 
remaining properties of T and P follow from an analysis of the conditions that 

cause the various inequalities in Section 3 to become equalities, which we sketch. 
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Nondegeneracy was used only to get strict inequality in (3.14) and (3.15). In the 

degenerate case, the inequality (3.15) becomes an equality, which proves (a). If 

equality holds in (3.15), it also holds in (3.12), which in turn means it holds in all 
applications of Lemmas 3.7 and 3.9. The last sentence of Lemma 3.9 then implies 

(c) and also implies that (b) holds for boundary components for T -  P. The final 

assertion of Lemma 3.7 implies that (b) holds for interior components of T - P as 

well. [] 

In order to show that the conclusion of Lemma 5.1 also holds for a non-l-tough 

Voronoi dual, we show that any non-l-tough Voronoi dual can be completed to a 

non-l-tough Delaunay triangulation by adding edges. This is a consequence of the 

following, somewhat more general lemma. 

Lemma 5,2. Let G be any plane oraph with the property that every interior face is a 

convex region and no three vertices on the boundary of a common interior face are 

collinear. Let P c_ V(G). Then it is possible to add edoes to G to obtain a 

trianoulation T in such a way that c ( T -  P) = c(G - P). 

Proof. The proof proceeds by induction on the length of the longest cycle 

bounding an interior face of G. If this number is 3, then G is a triangulation, and 

there is nothing to prove. If this length is n > 3, let F be an interior face of G 

bounded by a cycle of length n. Choose a new edge as follows. If the boundary of F 

contains two nonconsecutive vertices of P, join them by an edge. Otherwise, the 

boundary of F must contain vertices belonging to only one component of G - P, in 

which case any edge connecting two nonconsecutive vertices on the boundary of F 

may be chosen. Because of the convexity condition on the faces, the edge may be 
taken to be a line segment. Thus the chosen edge splits F into two smaller faces, 

each of which is convex and has no three collinear vertices on its boundary, and 

preserves the number of components of G - P. Apply this process to each interior 

face bounded by a cycle of length n to obtain a graph H such that c(H - P) = 

c(G - P). The result then follows by induction. [] 

Theorem 5.3. Let D be a Voronoi dual, and suppose there exists a set P c_ V(D) such 

that c(D - P) > I P[. Then 

(a) c ( D -  P) = tPI + i. 

(b) All components of  D - P consist of  a single vertex. 

(c) No point of  P is an extreme point of V(D). 

Proof. Since the boundary of each interior face of D is a polygon inscribed in a 

circle, each interior face is convex and no three vertices on the boundary of a single 

face are collinear. So by Lemma 5.2, edges can be added to D to create a degenerate 

Delaunay triangulation Tin such a way that the number of components ofD - P is 

unchanged. Properties (a), (b), and (c) then follow from the corresponding 

properties for T, established in Lemma 5.1. [] 
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There is one case in which the conclusions of Theorem 5.3 (and Theorem 3.2) 

can be strengthened. 

Theorem 5.4. Let S be a set of sites with exactly three sites on the convex hull. l f D 

is the Voronoi dual generated by S, and P c_ S, then c(D - P) < IPI - 1. 

Proof. Let P ~_ S be given, and let Tbe a Delaunay triangulation derived from the 

Voronoi dual D as described in Lemma 5.2. Since there are only three sites on the 

boundary of T, there can be only one boundary component of T - -  P. By Theorem 

3.1, there can be at most IPI - 2 interior components of T - P. Hence c(D - P) < 

c ( T -  P) < IPI - 1. [] 

6. Toughness Conditions for Inscribable Graphs 

A graph is said to be inscribable if it can be represented as the edges and vertices of 

a three-dimensional convex polytope inscribed in a sphere. A graph so represented 

is said to be inscribed. In this section we show that any inscribable graph is 1-tough. 

There is a strong connection between inscribable graphs and Voronoi duals that 

was apparently first discovered by Brown [11]. To describe this connection, we 

need to introduce the notion of a farthest-point Voronoi diagram. The definition of 

this structure is analogous to the definition of the Voronoi diagram as presented in 

Section 2, except that the region associated with each site is the set of points that 

are farther from that site than from any other. These diagrams are described more 

fully in [26] and [44]. The farthest-point Voronoi dual is a graph in which sites are 

connected if and only if their corresponding regions in the farthest-point Voronoi 

diagram share a common boundary. 

The connection between inscribable graphs and Voronoi duals is based on a 

geometrical transformation known as spherical inversion. Let B be a sphere with 

center C and radius p. If P is any point (other than C), then the inversion of P in B, 

denoted by !a(P), is the point on the ray CP whose distance from C is p2/d(C, P). 

Point In(C) is defined to be the "point at infinity." Some basic properties of 

spherical inversion are proved in [15]. Brown's discovery was as follows. Given a 

set of sites in the plane, embed the plane in Euclidean 3-space, invert the sites in a 

sphere whose center does not lie in the plane, and compute the convex hull of the 

images of the sites (which can be easily shown to lie on a common sphere). Then 

two images of sites (on the sphere) are joined by an edge of the convex hull if and 

only if the corresponding sites are joined by an edge of either the Voronoi dual or 

the farthest-point Voronoi dual (of the given set of sites). An equivalent statement 

is the following: 

Lemma 6.1. Any inscribable graph is isomorphic to a graph consisting of a set of 

planar sites, the edges of its Voronoi dual, and the ed#es of its farthest-point Voronoi 

dual. 
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Theorem 6.2. Any inscribable graph is 1-tough. 

Proof. By Lemma 6.1, it is sufficient to show that i fS is any set of sites in a plane, 

and if G is the graph obtained by connecting two sites if they are joined by an edge 

of either the Voronoi dual or the farthest-point Voronoi dual, then G is 1-tough. 

Let D be the Voronoi dual of S and let P ~_ S. We must show c(G - P) < [PI- 

Since G is obtained from D by adding edges to it, c(G - P) < c(D - P), so we only 

have to worry about the case c(D - P) > IPI. Let O be any minimal enclosing circle 

of S. Since the disk bounded by O is strictly convex 1-29] and has O as its set of 

extreme points, any point of 0 c~ S must be an extreme point of S. Hence, by 

Theorem 5.3(c), the only sites that can be on O are those belonging to S - P. By 

Theorem 5.3(b), each such site represents a separate component of D - P. Since 

any two consecutive sites along 0 will be joined by an edge in the farthest-point 

Voronoi dual, it follows from Theorem 5.3(a) that 

c ( G -  P) < c ( D -  P ) =  IP[ + 1. (6.1) 

Since P was an arbitrary subset of S and both sides of (6.1) are integers, the 

1-toughness of G follows. [] 

Theorem 6.2 cannot be strengthened without adding additional hypotheses, as 

there exist inscribable graphs G for which c ( G -  P ) =  IPI. A simple example is 

provided by a cube, which is clearly inscribable and has eight vertices. It is easy to 

find four vertices (namely any vertex v, and the three vertices opposite v on the 

three faces of the cube to which v belongs) whose removal separates the cube into 

four components. 

Theorem 6.2 strengthens a result proved in [29, p. 285] and attributed there to 

Steinitz. This result, stated in its dual form, is the following: 

Theorem 6.3. I f  G is an inscribable graph, then an independent set o f  vertices o f  G 

can have at most I Gt/2 elements. 

(I ~_ V(G) is independent if no two vertices in I are joined by an edge.) Suppose that 

G did have an independent set of vertices I with t l l >  IGI/2. Let P = V(G) - 1. 

Then each vertex in V would be a separate component of G - P, so IPt < 111 = 

c(G - P), which would imply that G was not 1-tough. It follows by contraposition 

that Theorem 6.2 implies Theorem 6.3. 

Figure 6.1 shows that Theorem 6.2 is stronger than Theorem 6.3. Removing the 

six light vertices splits the graph into seven components, so it is not 1-tough, and 

hence not inscribable by Theorem 6.2. However, the graph has 16 vertices, and no 

independent set can contain more than seven vertices. The proof follows from three 

easily verified facts. No independent set can contain more than two of the light 

vertices. If an independent set contains even one light vertex, it can contain at most 

four dark vertices. No independent set can contain more than seven dark vertices. 
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Fig. 6.1. Theorem 6.2 can be used to prove that this graph is not  inscribable in a sphere, but Theorem 

6.3 cannot, 

7. Perfect Matchings in Delaunay Triangulations 

In [421, the question was raised whether every Delaunay triangulation has a 

perfect matching. This question is answered in the affirmative in Theorem 7.2 

below. A perfect matching in a graph G with I GJ = n is a set of ln/2]  disjoint edges 

( / - ]  denotes the floor function). If I GI is even, a perfect matching in G is called a 

1-factor. The following lemma is a restatement of Tutte's classical theorem 

characterizing graphs with 1-factors [46]. 

Lemma 7.1. Let G be a araph, and suppose that, for each P ~_ V(G), 

co(G - P) <_ IPI + 1, (7.1) 

where co(G - P) is the number of components of G - P that have odd cardinality. 

Then G has a perfect matchinff. 

Proof. The usual statement of Tutte's theorem is that if co(G - P) < IP] for all 

P _~ V(G), then G has a 1-factor. IflGI is even, then Co(G - P) - IPl must be even, 

which implies that strict inequality holds in (7.1) and hence there is a 1-factor 

by Tutte's theorem. If lGl is odd, create a new graph G' by adding a new vertex x 

to G and connecting x to all vertices of G, and observe that G' satisfies the hy- 

pothesis of Tutte's theorem. It follows that G' has a 1-factor, so G has a perfect 

matching. [] 
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Theorem 7.2. Every Delaunay trianoulation has a perfect matchino. 

Proof. Let T be a Delaunay triangulation and let P _~ V(T). By Theorem 3.2 and 

Lemma 5.1, co(T-- P) < c(T - P) ~ IPt + 1, so T has a perfect matching by 

Lemma 7.1. [] 

The same argument shows that all degenerate Voronoi duals (and hence all 

inscribable graphs) have perfect matchings. 

8. Final Remarks 

In this paper we have proved several results about the combinatorial structure of 

Delaunay triangulations and inscribable graphs. In particular, we have shown that 

nondegenerate Delaunay triangulations are 1-tough and that degenerate Voronoi 

duals can fail to be l-tough only under very special circumstances. We have also 

shown that all inscribable graphs are 1-tough. One consequence of our results is 

that all Delaunay triangulations, whether degenerate or not, and all inscribable 

graphs have perfect matchings. 

There are several open questions related to the results of this paper, such as 

whether it is indeed true that "most"  Delaunay triangulations are Hamiltonian 

(probabilistically, asymptotically as the number of sites tends to infinity), and 

whether there is a polynomial-time algorithm for recognizing Hamiltonian De- 

launay triangulations. Some empirical data related to the first question is presented 

in 121]. 
It is unknown whether the conclusions of Theorems 3.1 and 3.2 are (jointly) 

sufficient to guarantee that a triangulation has a combinatoriaUy equivalent 

realization as Delaunay triangulation. It is shown in [24] that any inner triangula- 

tion of a polygon has such a realization, but this sufficient condition is much more 

restrictive than the conclusions of Theorems 3.1 and 3.2. The closely related 

problem of characterizing all inscribable graphs is a long-standing open problem. 

A brief history of this problem can be found in [10]. 
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