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Abstract. The present article introduces the outdoor activity tour sug-
gestion problem (OATSP). This problem involves finding a closed path
of maximal attractiveness in a transportation network graph, given a
target path length and tolerance. Total path attractiveness is evaluated
as the sum of the average arc attractiveness and the sum of the vertex
prizes in the path. This problem definition takes its rise in the design
of an interactive web application, which suggests closed paths for sev-
eral outdoor activity routing modi, such as mountain biking. Both path
length and starting point are specified by the user. The inclusion of POIs
of some given types enrich the suggested outdoor activity experience.
A fast method for the generation of heuristic solutions to the OATSP
is presented. It is based on spatial filtering, the evaluation of triangles
in a simplified search space and shortest path calculation. It generates
valuable suggestions in the context of a web application. It is a promising
method to generate candidate paths used by any local search algorithm,
which further optimizes the solution.
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1 Introduction

The company RouteYou offers recreational navigation for several outdoor activ-
ity modes such as hiking and mountain biking. This involves maintenance of a set
of transportation network graphs, in which each arc r has a length lr and attrac-
tiveness 0 < ar ≤ 1. The latter parameter models suitability to the applicable
outdoor activity mode, in terms of the arc’s scenic context, physical condition
and relation to traffic. The motive behind the present paper is the design of a
tour suggestion module, which plans attractive round trips for any of the com-
pany’s outdoor activity modes. This module requires that the user chooses an
outdoor activity mode and specifies a target path length and a starting point.
Within some seconds, it returns a closed path, consisting of arcs of optimal at-
tractiveness and satisfies the length and starting point constraints. The desirable
path has some constraints because users tend not to accept paths with a consid-
erable number of self-intersections or with recurring subpaths. Paths in clockwise
direction are usually prefered in countries with right-hand traffic because they
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ease turn traffic manoeuvres. Moreover, the user is able to select one or several
POI types of preference, such that the output path results from a trade-off of arc
attractiveness and the number of contained POIs of the preferred types. Exam-
ples of interesting mode - POI type combinations are hiking with mountains and
motorcycling with scenic viewpoints. Another scenario is that external organi-
zations set the mode and POI types of preference in a customized planner. This
sort of planner aims at promoting a peculiar type of tourism in a specific region
e.g. cycling along the Châteaux of the Loire Valley in France. An extension to
this module is the generation of multiple suggestions. This means that the user
can browse through a set of m path suggestions, for the same set of preferences
and constraints. It involves finding the set of m most attractive tours that are
spatially different.
The next section gives a literature overview of models applied in the domain
of leisure and tourism. Section 3 introduces the OATSP, which formalizes the
tour suggestion problem described above. The approach presented in Section 4
enables generating a set of heuristic solutions to the OATSP in a low computa-
tional time. The following section discusses two sets of individual tours obtained
by this approach. Section 6 is the conclusion of this work.

2 Tour suggestion models for leisure and tourism

The tour suggestion problem for leisure and tourism (TSPLT) involves generat-
ing a path through a transportation network visiting some arcs and/or points of
interest (POIs). The path should optimally match the end user’s preferences or
some general recreational preference, given a set of constraints (adapted from the
itinerary planning problem formulated by Shcherbina and Shembeleva [15]). It
has applications in several subdomains of leisure and tourism. Recreational point-
to-point navigation aims at generating a path from A to B, which is tailored to
a specific recreational navigation mode, such as nordic walking. Individual city
trip planning involves providing a tour schedule along a selection of POIs, sat-
isfying the personal preferences of an individual intending to visit a city for a
certain amount of time. This kind of services are often realized as a web-based
application or a mobile client-server application (e.g. [1, 16]), generating on-the-
fly suggestions for the end user. This is usually not required for applications in
collective tourism planning (bus tour planning, cruise itinerary planning). The
path generated in the TSPLT may be open or closed. In individual city tour
planning for instance, the path is - in most cases - closed. The trip typically
both starts at and ends in the tourist’s hotel, a parking lot or a train station.
A first type of systems model the problem as a shortest path (SP) problem. This
model generates exclusively open paths and focuses on the suitability of the arcs
for a certain purpose. In the most common recreational SP approach, the inverse
suitability is encoded in single arc weights of a directed weighted graph, corre-
sponding to the transportation network. Path generation involves that common
SP algorithms are used to find the path with the lowest cost between two nodes
of this graph. Traditional SP algorithms are Dijkstra [3] and its variants [24] and
A* [6]. The use of single scenic/attractive weights has often been suggested in
this context (e.g. [13, 9]). The company presented in the introduction adapted



this concept by introducing weight attractiveness for a series of recreational rout-
ing modi. Attractiveness also deals with physical conditions and traffic aspects
of the roads. Rogers and Langley [12] model the attractiveness of weights by a
linear combination of criteria that reflect the end user’s preferences. Niaraki and
Kim [11] developed an ontology-based technique that generates network weights
for personalized routing planning. Tarapata [20] states that single-objective func-
tions are not sufficiently adequate to model real SP problems. He presents a clas-
sification of multi-objective shortest path (MOSP) problems, which are used in
other real application domains, such as routing with quality-of-service in com-
puter networks. The author identifies six general solution methods to MOSP
problems, including mathematical optimization and objective function hierar-
chization. Hochmair and Navrath [7] argue that the computation of attractive
routes is generally beyond the ability of SP algorithms, since an SP algorithm
is not able to find a route that maximizes a benefit criterion. However, they
demonstrate the practical value of single criterion SP computation for finding
this type of routes.
A second type of systems use a problem model that trades off POI selection
with time or distance. It originates from the field of Operations Research (OR).
It involves selecting a sequence of POIs from an eventually larger input set of
POIs. This sequence should meet certain preferences and/or must satisfy a set
of constraints. The POI sequence selection is often preceded by a POI filter-
ing mechanism, improving the sequence selection performance. The model takes
into account the travel time or distance between candidate POIs, aided by a pre-
calculated travel time/distance matrix or a heuristic estimation function. The
resulting path is obtained by concatenating precalculated (shortest) paths be-
tween the selected POIs, or by recalculating the complete path using via-points.
The latter approach is useful in order to avoid undesirable U-turns and forbidden
traffic manoeuvres passing through a selected POI. Godart [5] presented a ver-
sion of the traveling salesperson problem (TSP) that integrates activity selection
and lodging availability for trip planning problems. Deitch and Ladany [2] intro-
duced the bus touring problem (BTP). It requires an undirected graph in which
the vertices represent visiting sites and the edges represent connecting scenic
routes. Both edges and vertices have associated attractivity values and require
traveling/visiting times. The goal is to find a (closed path) bus tour of maximal
total attractivity, below a given maximal tour time. The attractivity of recur-
rently visited vertices and edges is only counted once. The authors show that
the BTP can be transformed to the Orienteering Problem (OP). Both Suna and
Lee [19] and Maruyama et al. [10] have built tourist trip recommender systems
based on variants of the prize collecting TSP (PCTSP). The original model min-
imizes the total travel cost minus the sum of the benefit criterion values of the
POIs along the selected path. Suna and Lee integrate a personal interest factor
in the travel cost weights. The two following query models in the field of spatial
databases focus on trip planning with typed locations. Li et al. [8] introduce the
trip planning query, which involves a request for the shortest route from and to
a given point that passes through at least one point of any of the specified set
of location types. The optimal sequenced route query [14] looks for the shortest
path that visits locations according to a specified sequence of POI types. An



example of a POI type sequence for leisure is: (1) hair dresser (2) restaurant (3)
cinema. Vansteenwegen and Van Oudheusden [23] introduced the tourist trip
design problem (TTDP), which is modelled as an OP with time windows. This
model starts from a fully interconnected distance/time-weighted graph in which
the vertices represent POIs with a personalized [18] score. It involves finding the
sequence of POIs that maximizes the total score of the selected POIs, while the
total path weight must not exceed a given value. Each POI can only be visited
once. Moreover, certain POIs are only available within certain time windows (cf.
opening hours). Very good approximate solutions are found with iterated local
search by Vansteenwegen et al. [21, 22]. They have shown the practicability of
the TTDP in city trip planning. All problems in this second class are NP-hard.
Both Shcherbina and Shembeleva [15] and Souffriau and Vansteenwegen [17]
provide a more detailed overview of the models and functionalities of this type
of systems.

3 The outdoor activity tour suggestion problem

The BTP model suits the requirements of company’s tour suggestion module
best. The objective function takes into account both edge and vertex attrac-
tiveness, whereas tour time resides under the constraints. However, the tour
suggestion module requires a target path length instead of a maximal travel
time. This gives rise to a distance window constraint. In order to model the
particular tour suggestion problem, we introduce the OATSP.
This model requires a directed graph G = (V,A), for which
– any arc r ∈ A is an ordered pair (v1, v2) ∈ V 2,
– any arc r ∈ A has an associated attractiveness 0 < ar ≤ 1 and length lr,
– reverse arcs have equal attractiveness and length,
– each vertex v has an associated prize 0 ≤ pv ≤ 1, and,
– a closed path C is a series of arcs, which are circularly subsequent in G. Each

element of A appears at most once in C. Ci denotes the arc at the i-th position
in C. The sets AC ⊆ A and VC ⊆ V consist of the arcs and vertices visited by the
closed path C. The set A′

C contains any arc Ci = (v1, v2) of C that is not preceded
by its reverse arc Cj = (v2, v1) with j < i.

Given a prefered path length lp, length tolerance t and starting vertex vs, a
solution to the OATSP is a closed path C in G satisfying

1. C1 starts in vs

2. (1− t) · lp ≤
∑

r∈AC

lr ≤ (1 + t) · lp
3. ϕ ·

∑

r∈A′

C

(ar · lr)

∑

r∈AC

lr
+

∑

v∈VC

pv is maximal

The parameter ϕ determines the relative importance of arc to node attractive-
ness. This problem is a variant of the PCTSP [4]. This model suits the require-
ments of the tour suggestion module. It is able to suggest closed paths of a target
length and optimal arc and POI attractiveness, by setting the vertex prizes to
the degree of membership to the specified categories. Since recurrent visits to
reverse arcs and nodes are penalized by the objective function, solutions tend to
avoid U-turns and recurring reverse subpaths. The model does not allow recur-
ring arcs. It does allow multiple vertex and reverse arc visits since the starting
vertex or any of the POIs may be located on a subgraph with low connectivity.



Planar self-intersections can be avoided by assigning a low threshold value to
the prizes of vertices that do not belong to any of the specified categories.

4 Approach

A multiple tour suggestion module has been designed for the web application of
the company. It enables generating a set of m heuristic solutions to the OATSP
within a low computational time, in an environment without precalculated paths
nor distances available. The main algorithm starts by determining a feasibility
window (FW). This square area discerns the arcs and nodes reachable in a round
trip through vs given the path length window constraint. The algorithm assumes
that, within the FW, (a) only a few (ranging from none to the order of tens)
vertices v have pv > 0, (b) there is a diversity of attractiveness ar amongst the
arcs r, and, (c) vertices with pv > 0 have a high probability to be located along
trajectories of higher attractiveness than vertices in their local neighbourhoods.
These conditions often hold for the tour suggestion module presented, where
the user selects few POI categories and relatively low values for lp. Moreover, it
assumes low values of ϕ.
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Fig. 1: State diagram of the fast heuristic algorithm for the OATSP.

Fig. 1 shows the state diagram of the main algorithm. In state (1), the FW is
generated in the geographic coordinate plane, such that vs is in the center and
the projected width and height measured through vs, equals lp/e1. If the FW
contains more than n1 feasible POIs (pv > 0), the algorithm continues with
triangle search. Otherwise, the window is enriched by highly attractive vertices
(HAVs), in state (2). HAVs are auxiliary POIs representing the most attractive
arcs in the FW. This phase looks for the maximal value amin for which there
exist at least n3 arcs r with ar ≥ amin. Any vertex that is connected by an arc r
with ar ≥ amin, is an HAV. The maximal attractiveness of the connecting arcs
of an HAV v is denoted av. Next, all HAVs are promoted as POIs, with pv set
to ϕav/#HAV s. If the total number of POIs does not exceed n2, the algorithm
continues with triangle search. Otherwise, the HAVs are subjected to spatial
filtering (state (3)). This involves that all points are categorized into one of the
boxes of the g1 × g1 grid constructed over the window. Only one auxiliary POI
per box is kept, absorbing the sum of pv-values of the other points in the box.
Triangle search in state (4) involves the brute-force evaluation of any directed
triangle made up by vs and any other two POIs within the window. This evalu-
ation consists of two steps. First, a triangle undergoes a fast feasibility check. A



triangle is feasible if its direction is clockwise (in case of right-hand traffic) and
if its perimeter is between (1±t) · lp/e2. Next, an evaluation function computes a
score for a feasible triangle in this simplified window representation. This func-
tion returns a weighted sum of the prizes pv for any of the POIs involved. Prizes
of POIs located at one of the triangle vertices are given double weights. POIs
located on one of the triangle edges generate pv, which decreases as the elliptical
distance to the closest triangle edge increases. If all angles are greater than x1, a
global bonus (∗x2) is granted. When no feasible triangle after HAV promotion,
the algorithm does not return any solution (state (6)). Otherwise, the triangle of
highest score is passed to the SP calculation state. Given a triangle abc, this fifth
state entails finding the concatenation of paths of lowest cost between (a, b), (b, c)
and (c, a) in a graph with arc weights equal to lr/ar. In order to avoid U-turns
and recurring subpaths, the weights of both the forward and available reverse
arcs of the resulting subpath are drastically increased, after each subrouting. If
the concatenated path does not meet the length window constraint, the paths
between (a, b), (b, c) and (c, a) are calculated in a changed order and again con-
catenated. If it still does not meet the constraint, it is rejected after which the
second best triangle is processed, and so on.
The multiple suggestion extension is realized by the integration of a simple com-
petitive learning algorithm in the triangle search. It relies on a triangle distance
function which is defined as follows. The two variable vertices of a triangle are
categorized into one of the boxes of the g2×g2 grid constructed over the window.
The distance between two (clockwise) triangles is the sum of the Manhattan dis-
tance (MD) between the first vertices and the MD between the second vertices
in the grid. Two triangles are called resemblant if one of the MDs is lower than
2. During the brute-force triangle evaluation, the algorithm manages a store of
maximally m prototype solutions. Suppose the current solution does not resem-
ble any prototype solution. If there are less than m prototype solutions, the
current solution enters the store as a new prototype. If the store is full and the
current solution is better than the worst prototype, it replaces the prototype.
Suppose the current solution resembles one or more prototype solutions. If it is
better than the closest prototype, it replaces the prototype. In the end, the m
prototype solutions are passed to the SP calculation state.
Parameter overview. The parameters e1 and e2 should be set to the mini-
mal and average ratio of a SP length to the Euclidean distance in a graph with
arc weights lr/ar. The lower limit n1 and upper limit n2 determine the number
of POIs used for triangle search. Too low numbers can result in a shortage of
feasible triangles, whereas high numbers increase the computational time. n3

determines the number of HAVs used for triangle search, but depends on the
dispersion of arcs of equal attractiveness in the FW. x1 and x2 should be exper-
imentally determined in order to reward less acute-angled triangles, since very
acute angles result in poor tours.

5 Results

The approach introduced in the previous section has been tested for the outdoor
activity mode ‘attractive cycling’. The transportation network graph for this



(a) SN-1: arc attractiveness (b) SN-1: solution #1 (c) SN-1: solution #2

(d) SN-1: solution #3 (e) SN-2: arc attractiveness (f) SN-2: solution #1/#2

Fig. 2: Arc attractiveness map and the three/two best tours in the solution store for
SN-1/SN-2. Each subfigure is shown in the FW, centered around vs. Highly attractive
arcs are depicted by thick green lines, and less attractive arcs by thin blue lines. The
red dots indicate the POIs of the type ‘interesting church’. The best solution of SN-2
is indicated by a solid line.

mode contains both paved and unpaved roads. The OATSP settings are ϕ = 1
and t = 0.30. The remaining parameters are set as follows: e1 = 1.41, e2 = 1.6,
n1 = 5, n2 = 60, n3 = 20, x1 = 40◦, x2 = 1.5, g1 = g2 = 10, and m = 10.
A first experiment, called SN-1, assigns the centre of a medium-sized city in
Belgium as starting vertex vs and sets lp = 30km. No POI category of interest is
specified, so initially any vertex prize pv = 0. Fig. 2 shows the arc attractiveness
map within the FW and the 3 out of 10 tours of highest scores in the solution
store. Most of the arcs within the city are substantially less attractive than the
arcs in the neighbourhood. The arcs in the south of the window, either along
the rivers or within a woody region, have the highest attractiveness. Each of the
top-3 tours visits this region. Any of the 10 tours in the store were assessed by
amateur cyclists as attractive tours. They valued the solution diversity in the
store highly. Experiment SN-2 adds the POI category ‘interesting church’ to the
specifications of SN-1. Each closest vertex to a POI of this category gets pv = 1.
Fig. 2 shows these POIs, and the 2 out of 5 tours of highest scores in the solution
store. One of the POIs is located very close to and to the west of vs. This gives
tours in the west containing this POI, priority over the other tours.
Experiment statistics. In SN-1, 764 HAVs were added to the FW and reduced
to a set of 84. It took 752 ms to evaluate5 84 · 83 triangles (out of which 1256
were feasible). SN-2 only went through states (1), (4) and (5), so no HAVs were
added to a set of 9 POIs. It took only 2 ms to evaluate 9 · 8 triangles. Only 5
out of 13 feasible triangles were considered sufficiently diverse by the competitive
learning algorithm and kept in the solution store. The triangle evaluation scores,
tour lengths and OATSP objective function scores of the 5 best SN-1 and SN-2
results in the solution store are given in Table 1. Specifically in SN-1, the OATSP
objective function equals the attractiveness average of arcs visited by the tour.

5 using PHP (CLI) 5.3.6 in Ubuntu 11.10, with an Intel Core i7-920 Processor.



SN-1 ❉eval.f. tour length OATSP obj.f.
# 1 0.4477 37.6 km 0.8126
# 2 0.3937 34.9 km 0.8316
# 3 0.2998 31.8 km 0.7800
# 4 0.2619 28.6 km 0.7297
# 5 0.2280 30.4 km 0.6826

SN-2 ❉eval.f. tour length OATSP obj.f.
# 1 4.9709 25.1 km 3.7618
# 2 4.9073 30.1 km 3.7265
# 3 4.3079 34.1 km 2.7078
# 4 4.0000 32.3 km 2.7393
# 5 4.0000 25.6 km 2.7660

Table 1: Top-5 result characteristics for both experiments.

The triangle evaluation score correlates with the objective function. Only the
solution of rank 1 has been overestimated. The average arc attractiveness along
the (a, b) subpath of this solution is remarkably lower than the average along
the other subpaths. In the case of SN-2, the OATSP objective function takes
into account both arc and node attractiveness. Only POIs were assigned to the
triangle vertices, and therefore each tour scores at least two. Since no HAVs were
used to calculate the triangle evaluation score, this function is only effective in
predicting the number of POIs contained by a tour.

6 Conclusion

The OATSP, introduced in the present article, involves finding attractive closed
paths in a transportation network graph, tailored for a specific outdoor activity
mode. An experiment showed that the presented algorithm is able to generate
a set of heuristic solutions to the OATSP, satisfying the constraints. The core
of this algorithm is a brute-force triangle evaluation in the FW, containing the
POIs with pv > 0 and a set of auxiliary POIs, constrained to the number of g2

1
.

Although a quadratic number of triangles is evaluated, the evaluation runs in
low computational time. The triangle that receives the best evaluation is passed
to an SP calculation module, prioritizing paths along attractive arcs. The tri-
angle evaluation function has been found an efficient heuristic for the OATSP
objective value of the resulting path. A simple competitive learning algorithm
enables generating m tours of high objective value, which are spatially different.
This algorithm of low computational impact showed to be effective.
Further work includes improving the introduced algorithm and a comparison
with the route quality and computational time of the results generated by a lo-
cal search method. Potential improvements are the introduction of precalculated
paths in the triangle evaluation, the replacement of the brute-force technique by
a heuristic selection of triangles, and, the evaluation of polygons instead of tri-
angles.
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