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Tourmaline studies have been an integral part of science and scientific exploration for centuries and continue to flourish 
today. In the 19th century, the curious pyroelectric and piezoelectric properties of this mineral attracted the attention of 

scientists who considered tourmaline central to a grand unification of the theories of heat, electricity and magnetism. 
The common occurrence of tourmaline in granites and granitic pegmatites was widely known at that time, but, subse-

quently, tourmaline was discovered in a great range of igneous, metamorphic and sedimentary rocks and a variety of 

ore deposits, including hydrothermal systems. The chemical complexity of this mineral became more fully established 
and “appreciated” by the end of the 19th century. 

In the early- and mid-20th century, tourmaline studies greatly expanded as a consequence of the (1) exploration of wider 
ranges of geological settings, (2) development of instrumentation to characterize the chemical and physical properties of 
minerals and (3) the applications that derived from these studies. In clastic sedimentary rocks, tourmaline was identified as 
one of the most important heavy minerals and became a means to estimate maturity of the clastic sediment, to determine 

provenance and to make stratigraphic correlations. The crystallography of tourmaline was more fully understood and 

the overall structure and general structural formula was known by the 1960–1970’s. Applications of tourmaline relied 

originally on its piezoelectric properties that became increasingly important during the 20th century. One application, 

developed after World War I, was the detection and measurement of conventional and atomic explosion pressures based 
on tourmaline’s piezoelectric properties. 

Tourmaline studies have expanded in breadth and greatly increased in number since 1977, when micro-analytical and 
crystallographic/spectroscopic instrumentation became widely available. Petrologically, tourmaline has become a valuable 

petrogenetic indicator mineral in rocks and sediments due to its occurrence in most rock types, its extreme P–T range 
of stability, from the near surface to the deepest levels of the crust, its capacity to attain a chemical signature during the 

evolution of the rock in which it is formed, its ability to retain that chemical imprint, and its capability to provide specific 
information on the time, temperature and fluid history of its host rock. More recent studies have greatly expanded the 
conceptual framework of its internal structure and have dramatically increased the number of tourmaline species from 

4 to 33. The future of tourmaline studies is promising with many new and exciting possibilities that will continue to 
influence scientific inquiry well into the future.
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Tourmaline 1997, 22 tourmaline papers were published 

in conference special issues of the European Journal 

of Mineralogy and the Journal of the Czech Geological 

Society. To highlight the acceleration of the rate and 

diversity of tourmaline studies following Tourmaline 

1997, an extensive, but not comprehensive, review of the 
literature shows that from 1707 to 1996 (over 290 years) 
there were 1215 papers published on tourmaline. In con-

trast, in 1997–2017 there were 1353 papers published on 
tourmaline at the time of this writing (Fig. 1). 

At the 20-year anniversary of Tourmaline 1997, a 

follow-up conference, the Tourmaline 2017 International 

Symposium, was held at the same location in Czech Re-

public, and served as a venue to reflect on the remarkable 
progress of tourmaline research since 1997. Addition-

ally, the conference participants anticipated the future 

1. Introduction

Tourmaline studies have contributed greatly to the ad-

vancement of science since the late 18th century and they 

continue to impact science today. These studies have 

become increasingly prominent in the last 40 years, and 

especially in the last 20 years. A dramatic “punctuated 

evolution” in tourmaline investigations coincided with 

the Tourmaline 1997 International Symposium on Tour-

maline held in Nové Město na Moravě, Czech Republic. 
This Symposium brought together 78 active, as well as 

budding, tourmaline researchers from throughout the 

world. During the meeting, 50 presentations covered a 

wide range of topics such as mineralogy, crystallogra-

phy, petrology, experimental tourmaline synthesis, geo-

chemistry, and economic geology. As a direct result of 
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directions of tourmaline studies to be carried out by new 

generations of tourmaline investigators. 

This contribution highlights the history of tourmaline 

studies with particular attention to the use of this mineral 

in the evolution of scientific thought, the ever-increasing 
range of tourmaline research with selected key develop-

ments that have advanced the understanding and utility 

of tourmaline as a scientific tool, and concludes with 
speculations about possible future directions in tourma-

line investigations. 

2. Tourmaline studies from antiquity to 
1900

Tourmaline has been integral to the advancement of 

science for several hundred years. Much of the early 
interest in tourmaline was related to its electrical prop-

erties – i.e. tourmaline’s ability to acquire a differential 
surface charge on heating/cooling (pyroelectricity) or 
when pressure is applied along the c axis (piezoelectric-

ity) of the crystal. 
In Western literature, the earliest known reference to a 

material considered to be tourmaline appears in the work 

of the Greek naturalist Theophrastus (c. 372–287 BC) in 
De lapidibus (“On Stones”). In this work, he describes 
a gemstone, lyngurium, that has the color of electrum 

(yellow) and when heated attracts ash, straw, leaves, and 
small pieces of copper and iron. Theophrastus compares 

the properties of lyngurium to amber, but it is most likely 

that lyngurium is a variety of tourmaline (e.g. Walton 
2001). The term tourmaline is considered to be derived 

from the Sinhalese word turmali, a term used by the gem 

dealers of Ceylon (currently Sri Lanka) to refer to unclas-

sified mixed-colored stones (Henry and Dutrow 2012b).
Tourmaline has been used as a gemstone since at least 

the Middle Ages, sometimes inadvertently. For example, 
the 14th century Czech crown of Saint Wenceslas, made 

for the Holy Roman Emperor Charles IV, featured a large 
red “ruby”. This stone is now known to be a red tour-

maline (Hyršl and Neumanová 1999; Henry and Dutrow 
2012b). Tourmaline’s use as a gemstone was intermittent 
until the late 19th century when the Dowager Empress 
Ts’u Hsi of China popularized pink tourmaline as a 
gemstone (e.g. Fisher 2008; Pezzotta and Laurs 2011). 
However, the electrical effects that tourmaline exhibits 
are what caught the attention of the scientific community. 

In early 18th-century Europe, as traders returned from 
Asia, they noted the fascinating electrical properties 

of tourmaline fragments found among rough precious 

stones. Dutch traders gave this material the name ash-

entrekker (“ash puller”) because of its ability to attract 
ashes from pipes when the stone was heated or cooled. 

In a 1707 account, Johann Georg Schmidt describes 

tourmaline as having “the property of not only attracting 

the ashes from the warm or burning coals, as the magnet 

does iron, but also repelling them again… “ (Lang 2004). 
Carl von Linné (Linnaeus) further enhanced the scientific 

Fig. 1 Numbers of papers published on 

various aspects of tourmaline from an exten-

sive, but not comprehensive, bibliographic 

database compiled by the authors. The data 

are plotted from 1900 to 2017, but publica-

tions include those going back to 1707. The 

dots are the numbers of papers published in 

a given year. The solid line represents the 

yearly number of papers averaged over three 

consecutive years. The shaded area indicates 

the last 20 years, showing the dramatic in-

crease in interest, utility and advancements 

using tourmaline during that time frame.
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status of tourmaline by giving it the name lapis electri-

cus (“electric stone”) in 1747 – a clear reference to the 
electrical properties of tourmaline (Gautschi 2002). In 
1756, systematic scientific investigations by Franz Aepi-
nus established the nature of its electrical properties by 

showing that heated tourmaline crystals acquire opposite 

charges at opposite ends (faces) – a property later termed 
pyroelectricity by David Brewster in 1824 (Home 1976; 
Lang 2004). Shortly thereafter, in 1766, Johann Wilcke 
heightened tourmaline’s significance by suggesting that 
tourmaline’s properties may lead to a grand unification of 
the theories of heat, electricity and magnetism (Dietrich 
1985). In the late 19th century, tourmaline was found to 

also exhibit piezoelectric properties, i.e. differential elec-

trical charges developed at opposite poles when the crys-

tal was subjected to stress along the c axis. The brothers 
Pierre and Jacques Curie first publicized this phenomenon 
for a small group of materials, including tourmaline, in 

1880 (Lang 2004). The electrical properties observed in 
tourmaline had a major influence on physics in the 19th 

and early 20th centuries, and would later have significant 
and interesting societal applications.

The 19th century also brought the beginning of an 

understanding of the complex chemical composition of 
tourmaline. Although the first known analysis of a tour-
maline species, schorl, was presented in 1785 (Wiegleb 
1785), an important constituent of the mineral was miss-

ing because it was not until 1808 that the element boron 

was discovered. Some of the early-defined tourmaline 
species such as schorl and dravite were chemically 

characterized with a variety of wet chemical techniques 

(e.g. Klaproth 1810; Tschermak 1884). As the 19th cen-

tury progressed, the analytical approaches improved and 

the wide range of elements that can be incorporated in 

tourmaline became known. Commensurate with these 

chemical advancements, crystallographers attempted to 

develop a general structural formula (e.g. Gruner 1820; 
Riggs 1888; Scharizer 1889; Penfield and Foote 1899). 
The full appreciation, and exasperation, of the chemical 
complexity of tourmaline was ultimately expressed in the 
statement by John Ruskin (1894) when he described the 
chemistry of tourmaline as… “on the whole, the chem-

istry of it is more like a medieval doctor’s prescription, 

than the making of a respectable mineral”. He went on 
to state “but it may, perhaps, be owing to the strange 

complexity of its make, that it has notable habit which 
makes it, to me, one of the most interesting minerals”.

The other aspect of tourmaline that was considered 

prior to the 20th century was its lithologic associations. 

The common association of tourmaline with granites and 

granitic pegmatites was widely known at that time (e.g. 
Hamlin 1873; Scharizer 1889). In addition, other as-

sociations such as schists and tin ores were documented 

(e.g. Collins 1883; Patton 1899). Thus, its widespread 

occurrence in numerous rock types was beginning to be 

recognized.

3. Tourmaline studies from 1900 to 1977

Tourmaline studies greatly expanded in the early-to-mid 
20th century. This expansion was primarily in response 
to the recognition of its occurrence in diverse geological 

settings and to the development of more accurate instru-

mentation allowing characterization of the chemical and 

physical properties of minerals. The ending year of 1977 

was chosen as a time marker because it was twenty years 

prior to the Tourmaline 1997 meeting and it marked a 

great expansion in the number and variety of tourmaline 
studies in the modern era (Fig. 1). 

3.1. Electrical properties of tourmaline

Piezoelectric properties of tourmaline became increas-

ingly important during the 20th century. One application 

that was developed after World War I was the detection 

and measurement of explosion pressures (Keys 1921, 
1923). This application became increasingly important 
as World War II arrived and the search for low-Fe tour-
malines, used in underwater blast-detection devices, led 

to significant international intrigue in obtaining quality 
tourmalines during the war years (e.g. Frondel 1948; 
Switzer 1974; Dietrich 1985). Subsequent to World War 
II, tourmaline-based piezoelectric pressure sensors con-

tinued to be used and improved with applications related 

to shock wave, explosion and blast detection (including 
atomic detonations) in environments up to 700 °C (e.g. 
Dietrich 1985; Tressler et al. 1998; Zu et al. 2016).

3.2. Petrologic associations of tourmaline

In the early and mid-20th century, the number of lithologic 

associations of tourmaline continued to increase as it 

was found in a wider range of igneous, metamorphic and 

sedimentary rocks as well as in a variety of ore deposits. 

In fact, there are many more rock types that do contain 

tourmaline than those rock types that do not contain 

tourmaline.

3.2.1. Igneous and metamorphic rocks

Tourmaline was largely considered a mineral found in 

‘hard rocks’. Its existence in an expanding array of igne-

ous and metamorphic rocks was noted in the early- and 

mid-20th century and includes some associations that 

might be considered relatively unusual as well as unex-

pected. Orbicular concentrations of tourmalines were first 
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described in leucogranites from several different localities 
(e.g. Watson 1902; Tilley 1919; Edwards 1936). In addi-
tion, tourmalines were identified in increasingly diverse 
lithologic settings that included: tourmaline–corundum 

rocks (Scrivener 1910), serpentinites (Duparc and Siggs 
1914; LaCroix 1914), marbles or contact-metamorphic 
calc-silicate rocks (Bruce 1917; Tilley 1951), iron for-
mations (Slawson 1936), shear zones (Kramer and Allen 
1954), stylolites in sandstones (Heald 1955), blueschists 
(Branche and Ropert 1956), eclogites (Smith 1971), and 
granulites (Schreyer et al. 1975). In addition, tourmalin-

ization of country rocks proximal to boron-rich litholo-

gies, such as tin deposits or fractionating granitic pegma-

tites, was more frequently described (e.g. Irving 1937; 
Slivko 1955; Hutchison and Leow 1963; Hall 1971). 

3.2.2. Sedimentary rocks and diagenesis

With the development of the petrographic microscope, 

small detrital tourmaline was discovered in sediments 

and sedimentary rocks in the 19th century (e.g. Wethered 
1888), but important observations were made and their 
applications established in the 20th century. Tourmaline 

was identified as one of the most common heavy min-

erals, together with zircon and rutile. These minerals 

became significant because of their mechanical and 

chemical stability in clastic sedimentary environments 

(e.g. Brown 1929). Furthermore, determination of the 
relative ratios of zircon : tourmaline : rutile, the ZTR in-

dex, became a useful and widespread method to estimate 
the maturity of a clastic sediment (Hubert 1962). 

One of the early provenance studies used the optical 

properties of detrital tourmaline to source the clastic 

grains to the Dartmoor granite, United Kingdom (Bram-

mall 1926). This approach became increasingly refined to 
include information on the grain size, degrees of rounding 

and types of mineral inclusions. Ultimately, these obser-

vations on tourmaline led to an important method to make 

stratigraphic correlations (Krynine 1946).
Authigenic tourmaline nucleating on detrital tourma-

line grains was described in weakly metamorphosed Bo-

livian shales (Brammall 1921), and was later found with 
greater frequency as it became recognized (e.g. Spencer 
1925; Stow 1932; Alty 1933). Acicular, probably authi-
genic, tourmaline was further discovered in salt deposits 

and in the cap-rock of a salt dome from Louisiana (Brown 
1931; Popov and Sadykhov 1962). 

3.2.3. Ore deposits

In the early 20th century, tourmaline had been known to 

be an important gangue mineral associated with many 

types of hydrothermal ore deposits. The near-universal 

association of cassiterite with tourmaline became a given 

for most tin deposits (e.g. MacAlister 1903; Spencer 
1907). Later, the tin–tourmaline associations were further 
reinforced in the well-known tin deposits of Cornwall and 

Bolivia (e.g. Gordon 1944; Hall 1971). As more types of 
ore deposits were identified, more tourmaline associa-

tions were found. Gold-bearing tourmaline–quartz veins 

were discovered cutting medium-grade schists in Ontario, 

Canada (Means 1914). Copper-bearing tourmaline brec-

cia pipes were characterized in north and central Chile 

(Sillitoe and Sawkins 1971). Within the cinnabar deposits 
of Arizona, Lausen (1926) found a close relation between 
tourmaline and quartz in metamorphic country rocks.

3.3. Crystal morphology, crystal chemistry, 
and crystallography

During this period, the size and morphological vari-

ability of tourmaline was found to be striking. Although 

elongate, prismatic crystals are the most common 

morphology, equant or tabular crystals are found (e.g. 
Dietrich 1985). Very large tourmaline crystals of more 
than a meter had been found in granitic pegmatites (e.g. 
Termier 1907; Jahns 1953). In contrast, small authigenic 
tourmaline of a few micrometers was also discovered. 

Even tourmalines with fibrous morphology, as first noted 
by Iyengar (1937), added to the morphological variability. 
Another morphological variation was observed when 

tourmaline was partially replaced by other minerals, such 

that alteration is face specific and occurs most dramati-
cally on the antilogous pole of the crystal.

Prior to 1977, most tourmaline analyses for major and 

minor elements were done using wet-chemical analytical 

methods (e.g. Peck 1964; Povondra and Čech 1976). The 
wet-chemical approach has the advantage that it allows 

direct analysis of light elements in addition to the differ-
ent oxidation states of transition elements. However, this 
“bulk” sample technique has the disadvantages that it is 

slow, requires exacting analytical skills, has an averaging 
effect that will mask chemical zoning, and may introduce 
compositional errors if the tourmaline contains signifi-

cant amounts of mineral/fluid inclusions. Spectrographic 
analytical approaches, while valuable, were used to a 

lesser extent (e.g. Jedwab 1962; Power 1968). Electron-
microprobe analysis of tourmaline became more common 

in the 1970s, but there were relatively few studies using 

this approach (e.g. Donnay 1969; Jan et al. 1972).
The crystallography of tourmaline was the focus of 

many studies throughout the early- and mid-20th century. 

The space group and unit cell, initially investigated by 

Kulaszewski (1921), were based on a hexagonal lattice, 
but Buerger and Parrish (1937) established that the unit 
cell for tourmaline is better related to a rhombohedral 

symmetry with a space group of R3m. The structural for-

mula was disputed for much of earlier part of the century, 
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were found in the Barberton district of South Africa (Hall 
1918). Vanadium-bearing dravitic tourmaline was initially 
reported in black quartz–graphite hornfels from Uzbeki-

stan (Badalov 1951). Elevated Ni contents were found in 
tourmaline from metamorphosed mantle ultramafic rocks 
(Jan et al. 1972). Significant amounts of Zn were found in 
tourmalines from some Li-rich pegmatites (e.g. Jedwab 
1962) and fluorine-rich tourmalines were identified with 
increasing frequency (e.g. Němec 1969). The number of 
tourmaline species has greatly expanded since 1977 and 
by the end of 2017 includes 33 species (Fig. 2).

3.4. High-resolution microscopy, spectroscopy 
and thermodynamics

With the development of a variety of high-resolution 

microscopic and spectroscopic instrumentation meth-

ods in the mid-20th century, many of the structural and 

bonding characteristics of tourmaline were examined. 
The first high-resolution microscopic investigations of 
tourmaline were undertaken on buergerite (Iijima et al. 
1973). Mössbauer spectroscopy of tourmaline became a 
method to evaluate the Fe3+/Fe2+ ratios without having 

to rely on wet-chemical analytical techniques (Zheludev 
and Belov 1967; Marfunin et al. 1970; Hermon et al. 
1973). The connections among color, chemistry and 
crystallography in tourmaline came to be understood 

(e.g. Carobbi and Pierucchini 1947; El-Hinnawi and 
Hofmann 1966; Manning 1968). Infrared spectroscopic 
studies of tourmaline began providing insights into the 

local bonding characteristics of tourmaline, particularly 

the O–H bonds (e.g. Plyusnina et al. 1969; Vierne and 

but the overall structure of tourmaline was reasonably 

well known by the 1960s and 1970s (e.g. Hamburger 
and Buerger 1948; Belov and Belova 1949; Donnay and 
Buerger 1950; Donnay and Barton 1972; Buerger et al. 
1962). 

Based on these crystallographic studies, an early 
general formula for tourmaline-group minerals was con-

sidered to be: Na (Mg,Fe,Mn,Li,Al)3 Al
6
 Si

6
O

18
 (BO3)3 

(OH,F)
4
. By the 1960s, schorl, dravite and elbaite were 

the only tourmaline species (e.g. Deer et al. 1962), al-
though uvite had been described earlier by Kunitz (1929). 

In 1958, the International Mineralogical Association 
(IMA) was founded and soon instituted two Commissions 
to formalize internationally agreed-upon procedures for 

naming and classifying minerals. These two Commis-

sions were combined in 2006 as the Commission on New 

Minerals, Nomenclature and Classification (CMNMC) 
with the mandate “to ensure that strict procedures are 

followed before new mineral species can be established 

and before redefinitions and changes to nomenclature can 
be applied. The CNMNC also coordinates the procedures 
for classification of minerals.” By the end of 1977, the 
IMA Commissions had recognized six tourmaline spe-

cies, i.e. it “grandfathered” names for the tourmaline 

species schorl, dravite, elbaite and uvite [redefined as 
fluor-uvite in 2011] and recognized buergerite [redefined 
as fluor-buergerite in 2011] and liddicoatite [redefined as 
fluor-liddicoatite in 2011] as tourmaline species (Henry 
et al. 2011). 

During this period, as more tourmalines were analysed, 

some relatively unexpected elements were discovered as 
important constituents in tourmaline. Cr-rich tourmalines 

Fig. 2 Number of tourmaline species from 1958 

through 2017. Four tourmaline species were “grand-

fathered” prior to 1958. After IMA was founded, 
commissions established procedures to name and 

classify tourmaline species. Two key concepts altered 

how the tourmaline structural formula was expressed 
and species defined: (1) F was found to be restricted 
to the O(1) anion site and the O(1) and O(3) anion 
sites are considered crystallographically distinct, and 

(2) some cations exhibit order-disorder in the Y and 

Z sites (Hawthorne et al.1993). The original general 
structural formula was modified to include distinct an-

ion groups, V [≡O(3)] and W[≡O(1)] (Hawthorne and 
Henry 1999; Henry et al. 2011). The order-disorder 
influence on nomenclature is illustrated with the 

redefinition of ferridravite as povondraite as a conse-

quence of the ordering of Mg on the Z site (Walenta 
and Dunn 1979; Grice et al. 1993). The dashed lines 
represent significant events: the definition of the new 
general formula for tourmaline (Hawthorne and Henry 
1999) and the publication of the first comprehensive 
tourmaline nomenclature accepted by IMA-CNMNC 
(Henry et al. 2011). The latter report redefined mul-
tiple earlier tourmaline species for nomenclature 

consistency. The shaded area represents the time after 

the Tourmaline 1997 International Symposium.
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3.7. Experimental mineralogy and petrology

The shortage of tourmaline for use in piezoelectric devices 

during and immediately after World War II sparked the 

quest to synthesize tourmaline, and essentially launched 

tourmaline experimental studies (Frondel et al. 1947). Early 
investigations strictly emphasized synthesis of high-quality 

tourmaline crystals and crystals with a specific range of 
cations (e.g. Frondel and Collette 1957; Taylor and Terell 
1967; Tomisaka 1968; Ushio and Sumiyoshi 1971). 

Limited experimental investigation of the pressure–
temperature (P–T) stability of tourmalines was pursued at 
this time also. Robbins and Yoder (1962) were the first to 
experimentally determine that dravite is stable to 865 °C 
at 200 MPa and 925 °C at 500 MPa. 

4. Tourmaline studies from 1977 to 2017

Tourmaline studies have expanded in breadth and greatly 
increased in number since 1977 (Fig. 1). This fact is 
partly a consequence of new and improved instrumenta-

tion available for tourmaline interrogation. It is also a 

consequence of important developments in understanding 

of the nature of tourmaline and its utility as a petrogenetic 

indicator mineral. 

4.1. Tourmaline petrologic associations and 
petrogenetic implications

By the 21st century, tourmaline occurrences were well 

established in a wide range of igneous, metamorphic 

and sedimentary rock types (almost wherever boron was 
available to combine with its other necessary constitu-

ents). However, its geologic utility was only enhanced 
once its capacity to record significant chemical events 
associated with the evolution of lithologic environments 

was recognized (e.g. Henry and Dutrow 1996). Several 
key features of tourmaline enable it to be a much more 

valuable petrogenetic indicator in rocks and sediments 

than had been realized in the early- and mid-20th century.

4.1.1. Extensive tourmaline stability range

Tourmaline has an extreme stability range, one of the 
largest of crustal minerals (e.g. van Hinsberg et al. 
2011a). Tourmaline is found in many low P–T environ-

ments (i.e. ~1 MPa, < 150 °C) such as: the calcitic cap 
rocks associated with active salt domes in the Gulf of 

Mexico, the Karaha-Telaga Bodas geothermal system 
of Indonesia (~190 °C, ~3 MPa), and the gas fields in 
Wyoming where tourmaline is a pore-filling authigenic 
mineral (Gautier 1979; Henry et al. 1999; Moore et al. 
2004; Henry and Dutrow 2012a). At the other extreme, 

Brunel 1970). An initial nuclear magnetic resonance 
(NMR) study yielded information on charge distribution, 
coordination and chemical bonding in tourmaline (Tsang 
and Ghose 1973). Raman spectroscopy, a powerful tool 
to investigate structural properties of minerals, was slow 

to be applied because of the complexity of tourmaline, 
but a few tourmaline Raman spectroscopic studies were 

conducted prior to 1977 (e.g. Hibben 1939). However, 
Griffith (1969) made initial progress by systematizing Ra-

man shifts in tourmalines related to the vibrations modes 

within the rings of SiO
4
 tetrahedra.

The only theoretical investigation of the thermody-

namics of tourmalines prior to 1977 was by Govorov 

(1971). This study estimated thermodynamic parameters 
and found that when they are used in thermodynamic 

calculations, the resulting theoretical stability fields agree 
with the synthesis experiments of Frondel and Collette 
(1957).

3.5. Fluids associated with tourmaline  
development

The compositions of aqueous fluids were first found 

to be fundamental factors in tourmaline stability. The 

experiments of Frondel and Collette (1957) showed that 
schorlitic tourmaline is not formed in aqueous fluids 
that are strongly alkaline and that its growth is inhibited 

in aqueous solutions with high contents of Ca, Mg, and 
Fe relative to Al and Si.

Tourmaline also serves as a convenient host for fluid 
inclusions. Early studies of fluid inclusions in tourma-

lines elucidated that in the highly fractionated Li-rich 
pegmatites of the Black Hills, South Dakota, USA, aque-

ous fluids with varying amounts of dissolved salts were 
trapped (Weis 1953). Using these inclusions, formation 
temperatures estimated for the pegmatite were less than 

500 °C (Weis 1953), one of the first suggestions of low-
temperature pegmatite formation.

3.6. Geochronology using tourmaline

In the mid-20th century, geochronologic studies using 

tourmalines were limited to K–Ar and 40Ar–39Ar investi-

gations. In the initial considerations of the potential for 

the K–Ar geochronological approach, there was concern 
as to its feasibility because of the typically low contents 

of K at the X site and the suspicion that there was reten-

tion of excess Ar in the tourmaline structure. Significant 
excess Ar would result in anomalously old apparent K–Ar 
ages (Damon and Kulp 1958; Dalrymple and Lanphere 
1969). Early application of the 40Ar–39Ar approach using 

tourmaline was ostensibly better than predicted and, in 

some cases, provided geologically meaningful ages (Fitch 
and Miller 1972). 
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tourmaline is found at high-tem-

perature (>850 °C) and at ultra-
high pressure (UHP) conditions 
(>4 GPa) (e.g. van Hinsberg et al. 
2011b). Natural UHP occurrences 
of tourmaline include: the Dora 

Maira (Alps), a locality where 
dravitic tourmaline and coesite 

are included in pyropic garnet; 
in Erzgebirge (Czech Republic/
Germany), where oxy-schorlitic 
tourmaline is found in an eclogitic 

unit that contains coesite and dia-

mond and the Kokchetav Massif 
(Kazakhstan), where diamonds 
are included in an unusual K-dominant magnesian tour-
maline, maruyamaite (Ota et al. 2008b; Ertl et al. 2010; 
Dutrow and Henry 2011; Lussier et al. 2016). 

The general stability of tourmaline in various fluid 
compositions is also wide, but more limited. Tourmaline is 

stable in acid-to-neutral aqueous solutions, but is unstable 

in alkaline aqueous solutions or where the activities of the 

cations (including B) and anions in coexisting solutions are 
unfavourable (e.g. Henry and Dutrow 1996; Dutrow et al. 
1999; Dutrow and Henry 2016). The implication is that 
tourmaline may be a stable mineral at almost all crustal 

P–T conditions, but destabilization within these conditions 

is predominantly controlled by the destabilizing composi-

tions of the coexisting fluid phase. 

4.1.2. Tourmaline’s capacity to retain  
a chemical signature

Undeformed tourmaline appears to have extremely slow 
volume diffusion such that once formed, tourmaline 

retains the evolving chemical signatures (e.g., Henry 
and Dutrow 1996; von Goerne et al. 1999; van Hinsberg 
and Schumacher 2011). Such a feature is best shown by 
the spectacular, fine color banding in some pegmatitic 
tourmalines. Diffusional compositional adjustments may 
occur in tourmalines that are deformed at relatively 

high temperatures, probably through a dislocation-creep 

mechanism (Büttner 2005; Büttner and Kasemann 2007). 
Consequently, once a chemical signature is embedded in 

the tourmaline, it is preserved unless the tourmaline is 

deformed or is replaced by other minerals or other gen-

erations of tourmaline in response to reactive fluids (e.g. 
Dutrow and Henry 2000; Henry et al. 2004).

4.1.3. Tourmaline as an active participant in 
chemical equilibria in rocks

Tourmalines that form in igneous and metamorphic rocks 

typically develop chemical characteristics that reflect an 

approach to chemical equilibrium at various stages of 

development in the host rocks. This feature was initially 

demonstrated by Henry and Guidotti (1985) who showed 
that in near-isothermal staurolite-zone metapelitic rocks 

from NW Maine (USA), Mg–Fe and Na–Ca partitioning 
form a systematic array between the rims of tourmaline 

and those of coexisting minerals, i.e. chemical equilib-

rium was approached. Thus, tourmaline has predictable 

and systematic element partitioning with other minerals 

in the rock. Table 1 presents examples of relative element 
partitioning for tourmaline coexisting with selected miner-
als. Such data provide general guidance as to tourmaline’s 

chemical response in rock-buffered systems. Not surpris-

ingly, B strongly partitions into tourmaline relative to 
coexisting minerals in most metapelitic rocks. However, 
B can be present in muscovite in minor, but significant, 
concentrations (e.g. ~200 µg/g, Henry and Dutrow 1996). 
Consequently, the breakdown of muscovite in metamor-

phic rocks can release B to serve as an internal source 
of this element for growth of additional tourmaline (e.g. 
Henry and Dutrow 1996). Tourmaline also partitions Mg, 
Na, F and Co more effectively than the coexisting minerals 
chronicled in Tab. 1. In a somewhat counterintuitive man-

ner, Li partitions into several other metamorphic pelitic 
minerals more effectively than tourmaline (e.g. Dutrow et 
al. 1986). Therefore, the formation of Li-rich tourmaline 
in these environments requires that the local rock system 

evolves in such a way that those minerals that more fa-

vorably partition Li are not present. Element-partitioning 
information continues to be determined and is now defined 
for a number of trace as well as major elements (van Hins-

berg et al. 2017). Overall, these data imply that tourmaline 
is an active participant in evolving igneous and metamor-

phic rock systems (e.g. Henry and Dutrow 1996, 2001; 
Novák et al. 2011). However, in most instances tourmaline 
is an accessory or minor mineral that reflects the local 
chemical environment, but does not generally control it. 

Because tourmaline can form at essentially all grades 
of metamorphism, the composition of the tourmaline 

Tab. 1 Select relative element partitioning involving tourmaline and coexisting minerals, mostly in 
metapelitic rocks*

Element:
B: tourmaline >> muscovite > sillimanite > biotite, plagioclase > staurolite, garnet
Mg: tourmaline > cordierite > chlorite > biotite > staurolite > garnet
Na: tourmaline > plagioclase
Ca: plagioclase > tourmaline

Li: staurolite > chlorite > cordierite > biotite > muscovite > tourmaline, garnet, chloritoid

F: tourmaline > biotite > muscovite
Cr: chromite > tourmaline > margarite > muscovite > corundum
Ni: talc > tourmaline > staurolite > muscovite > gahnite
Co: tourmaline > staurolite > muscovite > gahnite
Zn: gahnite > staurolite > tourmaline > muscovite
LREE: average continental crust > tourmaline

*Data sources: Henry and Dutrow (1996, 2001)
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crystallized at any given metamorphic stage reflects the 

local reactions and the element partitioning with coex-

isting minerals and fluids. Tourmaline that is formed at 

different stages is likely to be chemically responsive to 

the minerals and mineral compositions at each stage, 

and the tourmaline will become chemically zoned. This 

zoning can take on numerous forms, such as continu-

ous growth zoning, oscillatory zoning or discontinuous 

zoning, reflecting dissolution and reprecipitation. The 

chemical responsiveness of tourmaline provides a gen-

eral conceptual framework to interpret chemical zoning 

in tourmaline. However, as discussed subsequently, 
incorporation of elements on different faces may not 

be equivalent and this adds a level of complexity to 
the interpretation of chemical zoning (e.g. Lussier and 
Hawthorne 2011).

Where igneous and metamorphic fluids are reactive 

components of rock systems, tourmaline responds to 

changing fluid composition in a systematic and pre-

dictable manner such that transient fluid compositions 

can be recovered from the tourmaline chemistry (e.g. 
Henry and Dutrow 2012a; Dutrow and Henry 2016; van 
Hinsberg et al. 2017; Dutrow and Henry this volume). 
The implication is that tourmaline may provide the only 

chemical record of B-bearing fluids that pass through 
the rocks.

4.1.4. Asymmetric growth, compositional 
polarity and sector zoning in  
tourmaline

At low-to-moderate temperatures, up to ~650 °C, tour-
malines grow asymmetrically and disparate ions may be 

differentially incorporated on distinct tourmaline faces, 
i.e. the crystal can develop sector zoning (e.g. Henry and 
Dutrow 1996; Sperlich et al. 1996; van Hinsberg et al. 

2006). The asymmetric polar growth and compositional 
differences observed in tourmaline reflect its non-cen-

trosymmetric nature (R3m), with all of the apices of the 
SiO

4
 tetrahedra pointing toward the –c pole of the crystal 

(Fig. 3). Electrically, this polar character is responsible 
for the pyroelectric and piezoelectric properties exhibited 
by tourmaline. Morphologically, this asymmetry is mani-
fested in hemimorphically distinct faces at the +c and –c 

poles and, at relatively low temperatures, by preferential 

growth of tourmaline at the +c pole (e.g. Dietrich 1985; 
Henry and Dutrow 1996). Chemically, this polarity is 
reflected by simultaneous incorporation of ions of dif-
ferent compositions at different tourmaline faces. Henry 
and Dutrow (1996) and Sperlich et al. (1996) described 
significant compositional differences between the +c- 

and –c-pyramidal faces (they termed – compositional 
polarity) for tourmalines that formed in low-temperature 
metasediments. For example, Henry and Dutrow (1996) 
noted that at chlorite-zone conditions (~450 °C) in tour-
maline grains with contemporaneous growth on different 
faces, Al and X☐ are preferentially incorporated at the 

pyramidal faces of the +c pole whereas Ca, Na and Ti 

are preferentially incorporated at the pyramidal faces of 

the –c pole. These compositional differences diminish as 
metamorphic grade increases and disappear at roughly 

staurolite-zone conditions (Fig. 4). This differential 
interfacial element partitioning must be considered in 

petrologic studies involving tourmalines developed at 

moderate-to-low temperatures, particularly when dealing 

with intermineral element partitioning.

One of the more compelling applications of the tem-

perature dependence exhibited by compositional polarity 
(sector zoning) is that it can be used to determine tem-

perature during various growth stages of metamorphic 

tourmaline. Using the compositional polarity data of 

Henry and Dutrow (1996), van Hinsberg and Schumacher 
(2007a) developed an empirical intramineral element-
partitioning thermometer involving the sectors at +c, –c 

and a (the prismatic sector) of metamorphic tourmaline. 
Based on partitioning of Ca and Ti among these sectors, 
they quantified the thermometer for a range of tempera-

tures (up to ~650 °C). Thus, temperature histories can be 
recovered based on individual tourmaline grains spanning 

prograde, peak and retrograde metamorphic growth (e.g. 
van Hinsberg et al. 2011b). 

4.1.5. Detrital tourmaline as a provenance 
indicator in clastic sediments and  
sedimentary rocks

Detrital tourmaline, a mechanically and chemically 

refractory heavy mineral likely present in most clastic 

sediments or sedimentary rocks, is a significant reposi-
tory of information on the rock in which it originally 

Fig. 3 Crystal-structure representation showing a portion of the tour-

maline structure viewed perpendicular to the c-axis. Apices of the 
tetrahedra (TO

4
) comprising the six-membered ring point in the same 

direction, –c, to produce the crystallographic asymmetry. Important 

polyhedra and sites are labelled. Octahedra, YO
6
 and ZO

6
, are shown 

together with the BO
3
 triangle and the X, O(1) and O(3) sites are lo-

cated. This representation was generated using CrystalMaker® software.
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formed and, consequently, the provenance of the clastic 

sediment. Using tourmaline data from the literature, 

Henry and Guidotti (1985) developed diagrams in the 
chemical subsystems Al–Fe–Mg and Ca–Fe–Mg to define 
regions diagnostic of specific source-rock types (Fig. 5). 
Consequently, based on a relative small amount of chemi-

cal data from detrital tourmaline grains, the host-rock 

environment/provenance can be constrained (e.g. Henry 
and Dutrow 1992). This approach has been used in prov-

enance studies in over 150 publications. 

4.1.6. Ore deposits

Prior to the Tourmaline 1997 Symposium, the common 

occurrence of tourmaline as a gangue mineral associated 

with ores was well known and 

tourmaline chemical character-

istics were defined for many types of ore deposits (e.g. 
Slack 1980, 1996). Since that time, tourmaline-associated 
ore deposits have been a topic of sophisticated chemical 

and isotopic investigations, with particular focus on the 

interaction of tourmaline with fluids and its utility to 
define the evolution of ore-forming fluids (e.g. Slack 
and Turnbull 2011; Trumbull et al. 2011). Such work has 
shown that tourmaline may provide important informa-

tion on ore-forming processes and ultimately may be 

developed as a useful prospecting tool.

4.1.7. Tourmaline through geologic time

Boron is considered the “quintessential crustal element” 
such that when it becomes available to the rock system, it 

Fig. 4 Growth zoning of tourmaline in 

a staurolite-zone metapelite from NW 

Maine, USA. a – Schematic drawing of 

three generations of tourmaline growth 

zones developed on a detrital core (dc) 
from a staurolite-zone metapelite (see 
Fig. 9a in Henry and Dutrow 1996). The 
crystal is oriented parallel to the c-axis. 
Numbers represent the individual zones 

and white areas are quartz inclusions. 

Note the asymmetric growth of zones 

1 and 2 preferentially toward the +c 

direction of the crystal. b – Progres-

sive compositional trajectories for each 

growth zone in terms of Al vs. Mg/(Mg 
+ Fe). The direction and magnitude 
of the compositional zoning within 

the zone is indicated by solid arrows. 

Open symbols represent compositions 

at the +c pole and closed symbols at 

the –c pole. The zone-1 analyses are 

squares, zone-2 analyses are triangles 

and zone-3 analyses are diamonds. The 
compositions of the overgrowths proxi-
mal to the detrital core are at the tail of 

the solid black arrows and represent a 

distinct difference between the + zone 
and – zone, i.e. compositional polarity. 

The zone-2 arrows are significantly 

closer to each other and the -zone-3 
analyses overlap. The directions of 

the compositional trends (arrows) are 
distinctly different between zones 1 

and 2 and are interpreted as being a 

consequence of tourmaline growth as-

sociated with different metamorphic 

reactions at lower-grade metamorphism. 

The zone-3 analyses, interpreted as 
growth at staurolite-zone conditions, 

represent a complete convergence of 

polar compositions during the final 

stage of growth (modified after Henry 
and Dutrow 1996).
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is likely to form tourmaline under most crustal conditions 

(Grew 2017). Tourmaline is known to have been part of 
the rock record going back to at least the Eoarchean, 
as it is found in 3.7–3.8 Ga metasediments of the Isua 
Supracrustal Belt, Greenland (Boak and Dymek 1982; 
Grew et al. 2011; Mishima et al. 2016). Consequently, 
tourmaline is an important mineral throughout nearly the 

entire geologic record on Earth.

4.1.8. Comprehensive metamorphic rock 
history from a single tourmaline

With the advances in petrologic tourmaline studies over 

the last 20 years, it is now possible to define the entire 
evolutionary history (and prehistory) of a metamorphic 
rock with a tourmaline grain that incorporates and retains 

chemical and textural information at different stages of 
metamorphism. A particularly good illustration of such 

a petrologic approach was presented by van Hinsberg 
et al. (2011b) who traced developmental response of 
tourmaline though the geologic history of an evolving 

clastic metasedimentary rock cycle from (1) its initial 
crystallization in a hypothetical igneous environment 

and its later weathering and incorporation into a clastic 

sediment through (2) burial, subduction and prograde 
metamorphism to (3) retrograde metamorphism, uplift 
and erosion. Such an approach has been successfully ap-

plied in several studies that define the tectonic evolution 
of metamorphic rocks of, for example, the Haut-Allier 
region, Massif Central, France, and the Tauern Window 
in the eastern Alps (van Hinsberg and Schumacher 2011; 
Berryman et al. 2017).

4.2. Crystallography, crystal chemistry and 
nomenclature of tourmaline 

Knowledge of the crystal chemistry of tourmaline has 
progressed significantly since 1977 and the structural 
formula has advanced accordingly. The general chemi-

cal formula of tourmaline was modified to X Y3 Z
6
  

Si
6
 (BO3)3 O

18
 (V)3 (W) where X = Na, Ca, K or  

□ (vacancy); Y = Al, Li, Fe2+, Mg, Mn2+, Fe3+, V3+, Cr3+, 

Ti4+; Z = Al, Mg, Cr3+,V3+ and Fe3+; T = Si, Al, B; V = 
OH–, O2– ; and W = F–, O2–, OH– (Hawthorne and Henry 
1999). X, Y, Z, T and B represent groups of cations that 
occupy the X, Y, Z, T and B sites, respectively, in the R3m 

tourmaline structure – note that the designated sites are 

italicized. The V-group anions occupy the O(3) anionic 
crystallographic site and the W-group anions the O(1) 
crystallographic site. The H ions occupy the H1 and H3 
sites (e.g. Gatta et al. 2014).

Two developments significantly changed the way in 
which crystallography and crystal chemistry of tourma-

line was considered and tourmaline is currently classified. 
Those are: (1) distinctions were made among the O(1) 
and O(3) anion sites, and (2) order–disorder phenomena 
involving cations across multiple cationic sites were 

demonstrated.

4.2.1. Changing views of the OH-bearing 
anion sites

The OH-bearing sites, O(1) and O(3), are crystallographi-
cally distinct and the constituent anions of OH–, O2– and 

F– order differently among these sites. The O(1) site 

Fig. 5 Diagram correlating tourmaline 

compositions with source-rock type 

using the molar Al–Fe–Mg subsystem. 
This binary representation uses the 

original Henry and Guidotti (1985) 
data to define the rock-type boundaries. 
Italicized names represent locations of 

select tourmaline end-member species.
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exclusively contains all of the F– in tourmaline and pref-

erentially incorporates O2– relative to OH– (e.g. Robert 
1992). The O(3) site is typically dominated by OH–, but 

can be occupied by dominant O2–, although this is less 

common. Thus, there are 

two distinct OH-bearing 
anion sites and they can 

each have different anion 
dominance i.e. OH–, O2– or 

F– at the O(1) site and OH– 

or O2– dominance at the 

O(3) site. Each of these 
variants justifies a series 
of new tourmaline species 

(Hawthorne and Henry 
1999; Henry et al. 2011). 

4.2.2. Order–disorder 
in tourmaline

Local bond-valence re-

quirements mandate that 

only certain short-range 

arrangements are stable 

(Hawthorne et al. 1993). 
Order–disorder reactions 

may be operative and 

these will control the ac-

tual position of cations in 

the tourmaline structure 

(e.g. Hawthorne 1996). 
This feature is most acute 

where O2– is located at the 

O(1) site, e.g. in Li-poor 
tourmalines, where Mg is 
typically disordered at the 

Z site (up to 2 Mg apfu) 
and Al at the Y site with 

the local arrangement of 

Y-site cations of YMgYAlYAl (e.g. Hawthorne 2016). 
This order–disorder phenomenon influenced the (im)
proper classification of ferridravite, initially described 
as a tourmaline with all Mg at the Y site (Walenta and 

a

b

General tourmaline species – O(1)-site (W anions)

Tourmaline primary groups – X-site

Fig. 6 Ternary systems for pri-

mary groups used for general 

tourmaline-species designation 

(modified after Henry et al. 
2011). a – Ternary system for 

the primary-tourmaline groups 

based on the dominant occupancy 

of the X site. Note that alkali-

group tourmaline can be Na- or 

K-dominant. b – Ternary system 

for a general tourmaline series 

based on the anion occupancy of 

the O(1) site (≡W anions). Note 
that the anions are either 2– (O2–) 
or 1– (OH– or F–) such that oxy 
species require more than 50% 

O2– occupancy at this site.
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Dunn 1979). Ferridravite was subsequently found to 
exhibit significant amounts of Mg at the Z site, and this 

led to the redefinition and its renaming as a new species, 
povondraite (Grice and Ercit 1993; Grice et al. 1993). 
Although only one example is presented here, order–dis-

order is a significant consideration in tourmaline-species 
definitions.

4.2.3. Tourmaline species and classification 
schemes

With the new crystallographic constraints in place, a 

robust means of classification for tourmaline-group 

minerals became possible. Hawthorne and Henry (1999) 
proposed a preliminary tourmaline-classification scheme 
that included the general structural formula presented 

above and applied the new crystallographic restrictions. 

They suggested that tourmaline should be divided into 

three primary groups based on the dominant occupancy 

of the X site, the alkali group (Na or K), the calcic group, 
and the X-site vacant group (Fig. 6a). Further, they sug-

gested that the dominant anions at the OH-bearing sites, 
O(1) [≡W anions] and O(3) [≡V anions], form the basis 
for additional secondary groups (Fig. 6b). At that time, 
the number of accepted tourmaline species increased to 

13 (Fig 2). 
A more thorough investigation of tourmaline nomen-

clature occurred with the formation of the Subcommittee 

on Tourmaline Nomenclature (STN), chaired by Milan 
Novák. The STN ultimately published an IMA-CNMNC-
approved nomenclature for tourmaline minerals now 

recognized as a supergroup (Henry et al. 2011). In this 
comprehensive assessment, tourmaline is considered a 

supergroup mineral because it contains multiple mineral 

groups, but all have the same structure and are chemi-

cally similar minerals, i.e. the three X-site-based primary 

groups (Fig. 6a). A guideline used to define tourmaline 
species was the dominant-valency rule; it states that in 
a relevant site the dominant ion of the dominant valence 

state is used for nomenclature purposes (Hatert and Burke 
2008). A relevant application of this rule is represented 
by the ternary diagram defining secondary groups related 
to the O(1) site (≡W anions), i.e. hydroxyl-, fluor- and 
oxy-species tourmalines (Fig. 6b). An additional consid-

eration, termed valency-imposed double-site occupancy, 

occurs where heterovalent coupled substitutions take 

place at single or multiple sites such that end-members 

are produced in which two ions occupy a single site e.g. 

elbaite (Li+
1.5

Al3+
1.5

 in the Y site). With these consider-
ations in place, the number of tourmaline species has 

increased greatly and now includes 33 species (Fig. 2). 
Table 2 gives the currently accepted tourmaline species 

organized such that each primary group is further subdi-

vided into a series of convenient subspecies that have a 

common generic formula. 

Another aspect of the nomenclature effort was to de-

velop graphical representations to express the important 
substitutional mechanisms in tourmaline and to provide 

a general method to classify and visualize multicompo-

nent tourmaline compositions (Henry et al. 2011). Two 
examples, given in Fig. 7, are the Fe–Mg–2Li ternary for 
alkali-group, aluminous hydroxy-tourmaline species and 
the YZR2+/(YZR2+ + 2 Li) vs. Ca/(Ca + Na + K) diagram for 
aluminous tourmalines with low X☐. Recently, a series of 

studies have expanded the number of Cr- and V-bearing 
oxy-species and these compositions created a need for 
additional diagrams (e.g. Bosi et al. 2012, 2014, 2017; 
Bačík et al. 2013; Reznitskii et al. 2014). Based on the 
amount of Cr, V, Al and Fe3+ cations at the combined Y 

and Z sites for each of the end-member species, an up-

dated set of classification diagrams is generated for sodic 
oxy-tourmalines that contain significant amounts of Cr, 
V and Fe3+ (Fig. 8). 

4.2.4. Tourmaline trace elements

With the increasingly common measurements of trace 

elements in tourmaline at the micrometer scale, these ele-

ments have become important tracers of the evolution of 

the rocks and fluids interacting with tourmaline. A few 
examples follow. Ratios of Ba, Th, La and Sm in tourma-

line have been used to model subduction-zone fluids and 
their impact on arc-magmatism signatures (van Hinsberg 
et al. 2017). Trace amounts of Sr, Sc, V, Ni, Pb, Zr, Ta, 
Nb, Cr, Ga and Sn and rare-earth elements in tourmaline 

have been used as proxies for mineralizing fluids in ore 
deposits and in other rock environments (e.g. Duchoslav 
et al. 2017; Hazarika et al. 2017; Hong et al. 2017; Kal-
liomäki et al 2017). Chlorine contents in tourmaline are 
used to establish the unusual hydrothermal setting for 

altered dioritic porphyries associated with a gold deposit 

(Bačík et al. 2015).

4.3. Isotope geochemistry and geochronology

Prior to the Tourmaline 1997 Symposium, much of the 

isotopic work involved bulk-mineral B, O, H isotopes on 
tourmaline and coexisting minerals to make inferences 
on topics such as formation temperatures or fluid sources 
(e.g. Palmer 1991; Kotzer et al. 1993). With improved 
instrumentation and in situ analytical techniques (e.g. 
SIMS), isotopic information on tourmaline has been gath-

ered with higher spatial resolution for a greater array of 

isotopic systems: B, O, H, Si, Mg, Li, Sr, Nd, Pb, K(Ar) 
and Cu (e.g. Marschall and Jiang 2011). This wide range 
of isotopic possibilities has many potential and intrigu-
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Tab. 2 IMA-CMNMC-approved tourmaline species (as of December, 2017)

General formula: (X) (Y
3
) (Z

6
) T

6
O

18
(BO

3
)

3
(V)

3
(W)

Alkali group species (23 species)

Subgroup 1 *R1+ R2+

3
R3+

6
R4+

6
O

18
(BO

3
)

3
**S1–

3
S1–

Dravite Na Mg3 Al
6

Si
6
O

18
(BO3)3 (OH)3 (OH)

Fluor-dravite Na Mg3 Al
6

Si
6
O

18
(BO3)3 (OH)3 (F)

Schorl Na Fe2+
3 Al

6
Si

6
O

18
(BO3)3 (OH)3 (OH)

Fluor-schorl Na Fe2+
3 Al

6
Si

6
O

18
(BO3)3 (OH)3 (F)

Tsilaisite Na Mn2+
3 Al

6
Si

6
O

18
(BO3)3 (OH)3 (OH)

Fluor-tsilaisite Na Mn2+
3 Al

6
Si

6
O

18
(BO3)3 (OH)3 (F)

Chromium-dravite Na Mg3 Cr
6

Si
6
O

18
(BO3)3 (OH)3 (OH)

Vanadium-dravite Na Mg3 V
6

Si
6
O

18
(BO3)3 (OH)3 (OH)

Subgroup 2 R1+ R1+

1.5
R3+

1.5
R3+

6
R4+

6
O

18
(BO

3
)

3
S1–

3
S1–

Elbaite Na Li
1.5

Al
1.5

Al
6

Si
6
O

18
(BO3)3 (OH)3 (OH)

Fluor-elbaite Na Li
1.5

Al
1.5

Al
6

Si
6
O

18
(BO3)3 (OH)3 (F)

Subgroup 3 (Y–Z order/disorder) R1+ R3+

3 
to R2+

2
R3+ R3+

4
R2+

2 
to R3+

6
R4+

6
O

18
(BO

3
)

3
S1–

3
S2–

Oxy-dravite Na Al
2
Mg Al

5
Mg Si

6
O

18
(BO3)3 (OH)3 (O)

Oxy-schorl Na Fe2+
2
Al Al

6
Si

6
O

18
(BO3)3 (OH)3 (O)

Povondraite Na Fe3+
3 Fe3+

4
Mg

2
Si

6
O

18
(BO3)3 (OH)3 (O)

Bosiite Na Fe3+
3 Al

4
Mg

2
Si

6
O

18
(BO3)3 (OH)3 (O)

Chromo-alumino-povondraite Na Cr3 Al
4
Mg

2
Si

6
O

18
(BO3)3 (OH)3 (O)

Oxy-chromium dravite Na Cr3 Cr
4
Mg

2
Si

6
O

18
(BO3)3 (OH)3 (O)

Oxy-vanadium dravite Na V3 V
4
Mg

2
Si

6
O

18
(BO3)3 (OH)3 (O)

Vanadio-oxy-chromium dravite Na V3 Cr
4
Mg

2
Si

6
O

18
(BO3)3 (OH)3 (O)

Vanadio-oxy-dravite Na V3 Al
4
Mg

2
Si

6
O

18
(BO3)3 (OH)3 (O)

Maruyamaite K MgAl
2

Al
5
Mg Si

6
O

18
(BO3)3 (OH)3 (O)

Subgroup 4 R1+ R1+R3+

2
R3+

6
R4+

6
O

18
(BO

3
)

3
S1–

3
S2–

Darrellhenryite Na LiAl
2

Al
6

Si
6
O

18
(BO3)3 (OH)3 (O)

Subgroup 5 R1+ R3+

3
R3+

6
R4+

6
O

18
(BO

3
)

3
S2–

3
S1–

Olenite Na Al3 Al
6

Si
6
O

18
(BO3)3 (O)3 (OH)

Fluor-buergerite Na Fe3+
3 Al

6
Si

6
O

18
(BO3)3 (O)3 (F)

Calcic group species (6 species)

Subgroup 1 R2+ R2+

3
R3+

5
R2+ R4+

6
O

18
(BO

3
)
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S1–

3
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Uvite Ca Mg3 Al
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Mg Si
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O
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(BO3)3 (OH)3 (OH)
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5
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O
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(BO3)3 (OH)3 (F)
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5
Mg Si

6
O
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(BO3)3 (OH)3 (OH)

Subgroup 2 R2+ R1+

2
R3+ R3+

6
R4+

6
O

18
(BO

3
)

3
S1–

3
S1–

Fluor-liddicoatite Ca Li
2
Al Al

6
Si

6
O

18
(BO3)3 (OH)3 (F)

Subgroup 3 R2+ R2+

3
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6
R4+

6
O
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(BO

3
)

3
S1–

3
S2–
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6
Si

6
O
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(BO3)3 (OH)3 (O)

Subgroup 4 R2+ R2+

3
R3+

6
R4+

5
R3+O

18
(BO

3
)

3
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3
S1–

Adachiite Ca Fe2+
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6
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(BO3)3 (OH)3 (OH)

X-site vacant group species (4 species)
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)
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S1–
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Magnesio-foitite  Mg
2
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3
)

3
(OH)

3
(OH)
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6
Si
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3
)

3
(OH)

3
(OH)
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3
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3
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6
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3
(OH)

3
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* R is a generic designation of a cation of the indicated charge

** S is a generic designation of an anion of the indicated charge

***X-site vacancy ☐
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ing applications; for instance, provenance for some gem 
tourmalines can be deciphered. 

One of the areas of isotope studies, in the nascent 

stages, is related to geochronology using tourmaline. The 

geological utility includes, for example, an investigation 
of 206Pb/204Pb to identify the time of tourmaline formation 

relative to the metamorphic and subsequent deformational 

events (Duncan et al. 2006). Geologically meaningful 
40Ar–39Ar ages of tourmaline are 

becoming a useful geochrono-

logical tool to decipher a range 

of tectonic events (e.g. Bea et 
al. 2009; Pesquera et al. 2009; 
Martinez-Martinez et al. 2010). 

4.4. Experimental  
   mineralogy and  
   petrology

Earlier experimental investiga-

tions of tourmaline largely con-

centrated on synthesis of spe-

cific tourmaline compositions 

(e.g. von Goerne et al. 1999). 
Limited experimental investi-
gations of the upper P–T stabil-

ity range of tourmaline were 

done, but these experiments 
were rarely reversed (e.g. Fron-

del et al. 1947; Rosenberg et al. 
1986; Henry and Dutrow 1990; 
Werding and Schreyer 1996; 
London 2011). After 1997, 
experimental  studies were 
expanded to: (1) obtain data 
that allow estimation of aque-

ous fluid compositions based 

on tourmaline X-site com-

position (e.g. von Goerne et  
al. 2001, 2011; Berryman et al. 
2015, 2016), (2) examine trace-
element partitioning between 

tourmaline and melt (van Hins-

a

b

Fig. 7 Examples of tourmaline diagrams 
that can be used to visualize chemical 

variations and to guide classification. 
a – Tourmaline Fe2+–Mg–2Li subsystem 
for sodic–aluminous–hydroxy-tourma-

line species. Note that this ternary is 

updated from the diagram that appeared 

in Henry et al. (2011). b – Diagram 

useful for establishing appropriate tour-

maline subgroups within the aluminous 

alkali and calcic groups (modified after 
Henry et al. 2011). YZR2+ represents the 

total number of divalent cations at the Y 

and Z site. Determination of subgroups 

1–4 uses a combination of the plotting 

parameters and the dominant anion of 

the dominant valency on the O(1) site.
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berg 2011), (3) establish boron isotopic fractionation 
involving tourmaline (e.g. Meyer et al. 2008; Marschall 
et al. 2009), and (4) to define possible boron release in 
subduction zones (e.g. Ota et al. 2008a). 

Due to the lack of measured thermodynamic data on 

tourmaline, until recently most studies approximated 
thermodynamic parameters for tourmaline using a vari-

ety of methods (e.g. Dutrow et al. 1999; Garofalo et al. 
2000; van Hinsberg and Schum-

acher 2007b). However, there 
are a small number of studies 

reporting measurements for the 

thermodynamic properties of a 

variety of tourmaline species 

(e.g. Ogorodova et al. 2012). 
Estimated tourmaline thermo-

dynamic data have permitted 

calculation of fluid composi-

tions in equilibrium with tour-

maline (e.g. Dutrow et al. 1999; 
Kister et al. 2005)

5. Current trends and 
future possibilities

Tourmaline studies have contin-

ued and will continue to prog-

ress and take advantage of new 

and improved instrumentation, 

but it is the unexpected de-

velopments that are the most 

exciting. A few speculations are 
presented in this section.

Petrologic and ore-deposit 

studies will likely refine meth-

ods in which the pressure– tem-

perature–time relations of tour-

maline growth will be determined with a greater degree 

of precision. The compositions of fluids interacting with 
tourmaline will be better constrained. Advances in high-

spatial resolution of trace elements and isotopes will be 

measured using tools such as LA-ICPMS, SIMS, and 
LIBS. More accurate determinations of clastic-sediment 
provenance will result through improved analytical 

techniques and more advanced chemometric and statisti-

a

b

Fig. 8 Sodic oxy-tourmalines in the 
Al–Cr–V–Fe3+ subsystem where oxy-
tourmaline implies >0.5 O2– apfu on 

the O(1) site. The ternaries include 
trivalent cations at both the Y and Z 

sites to remove issues of uncertainty 

associated with order-disorder across 

these sites. End-member compositions 
are designated by the semi-circles along 

the triangle borders. Each species has a 
range of compositions that are labelled 

within the ternary systems. a – Sodic 

oxy-tourmalines in the Al–Cr–V sub-

system at low Fe3+. b – Sodic oxy-tour-
malines in the Al–Cr–Fe3+ subsystem 

at low V. The species “vanadio-ferric-
povondraite” is an inferred one and has 

yet to be described.
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cal methods. Current and future studies in the isotopic 

realm will take advantage of the greatly improved 

spatial resolution to address fluid evolution associated 
with tourmaline growth (e.g. Duncan et al. 2006; Slack 
and Trumbull 2011), and P–T evolution using isotopic 
geothermobarometry (e.g. Dutrow et al. 2017). Research 
advances will likely target tourmaline characteristics as 

exploration tools for ore deposits. 
Current and future directions of crystallographic 

studies will enhance understanding of the local environ-

ments in the tourmaline structure through complementary 

high-resolution X-ray diffraction and spectroscopic (e.g. 
FTIR, Raman, etc.) studies, and atom-probe studies to 
detect clustering, interface properties and potentially 

geochronology. Fourier-transform infrared, Raman and 
MAS-NMR spectroscopies of a “probe” ion such as OH– 

or isotope such as 27Al will provide insights into the local 

structural arrangements in tourmaline (e.g. Hawthorne 
2016; Watenphul et al. 2016). There is currently broad 
agreement of band assignments in the vibrational spectra, 

but additional investigations will likely yield more spe-

cific assignments for the local arrangements in tourmaline 
(Hawthorne 2016). The amounts and locations of Fe2+ and 

Fe3+ in the tourmaline structures will be determined with 

greater accuracy from Mössbauer and synchrotron-based 
XANES studies (e.g. Cempírek et al. 2006; Andreozzi et 
al. 2008; Levy et al. 2017). 

There will certainly be discoveries of several new 

tourmaline species. Potential new species could include 

K-dominant tourmaline with a range of Y-site composi-
tions, likely in UHP terrains, as well as K-dominant 
povondraite, Pb-dominant dravite, and Ni-dominant 

tourmaline. Stabilization of these potential new species 

is dependent on P–T–fluid and on the partitioning of the 
relevant cations with the coexisting minerals.

As materials science becomes increasingly important 

to technological advancements, there are several applica-

tions that take advantage of the synergistic optical and 

electrical properties of tourmaline. These uses include 

applications such as acoustic wave sensors, photocataly-

sis, modification of glass properties and hazardous-waste 
remediation (e.g. Wang et al. 2014; Xu et al. 2014; Yu et 
al. 2016; Zhang et al. 2016; Zu et al. 2016). The future of 
these types of applications is promising, but large-scale 

deployment is uncertain.

Discovery of tourmaline on other planets may be 

just a matter of time. Based on relatively limited data 
on the bulk boron contents and B/Be ratios of Mars and 
Venus, these planets are considered to be more enriched 
in boron than Earth (Shearer and Simon 2017). If these 
planets or their moons exhibit processes that fraction-

ate boron in sufficient quantities, tourmaline may well 

be found in these extraterrestrial environments in the 
future.
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