
ar
X

iv
:c

s/
04

03
03

8v
1

 [
cs

.L
G

]
 2

3
M

ar
 2

00
4

Technical Report IDSIA-04-04 20 March 2004

Tournament versus Fitness Uniform Selection

Shane Legg
IDSIA

Galleria 2, CH-6928,
Manno-Lugano, Switzerland

Email: shane@idsia.ch

Marcus Hutter
IDSIA

Galleria 2, CH-6928,
Manno-Lugano, Switzerland

Email: marcus@idsia.ch

Akshat Kumar
Indian Institute of Technology

Guwahati
India

Email: akshat@iitg.ernet.in

Abstract

1In evolutionary algorithms a critical parameter that
must be tuned is that of selection pressure. If it is
set too low then the rate of convergence towards the
optimum is likely to be slow. Alternatively if the se-
lection pressure is set too high the system is likely to
become stuck in a local optimum due to a loss of di-
versity in the population. The recent Fitness Uniform
Selection Scheme (FUSS) is a conceptually simple but
somewhat radical approach to addressing this problem
— rather than biasing the selection towards higher fit-
ness, FUSS biases selection towards sparsely populated
fitness levels. In this paper we compare the relative
performance of FUSS with the well known tournament
selection scheme on a range of problems.

1 Introduction

The standard selection schemes used in evolutionary al-
gorithms (such as tournament, ranking, proportional,
truncation selection, and so on) all focus the selection
pressure towards individuals of higher fitness in the
population. The rational being that these individuals
are the most likely to produce offspring (either by mu-
tation or crossover or both) that belong to still higher
fitness levels. For many problems this is often a valid
assumption, however for difficult, deceptive and highly
multi-modal functions the path towards the global op-
timum is rarely smooth (by “deceptive” we mean in the
general rather than the technical sense). In these cases
it is important that we explore the solution space very
carefully before becoming too committed to any subset
of solutions that appears to be promising. In order to
do this we must not focus too much of our search en-
ergy on only the most fit individuals. In particular we
must ensure that we keep some less fit individuals in
the population in case we need to use them to initialize
a new direction of exploration should we become stuck
in a local optimum.

For standard selection schemes this is controlled by
appropriately setting the parameters that govern the
selection pressure on the individuals. If this pressure
is set too high the evolutionary algorithm (EA) will

1This work was supported by SNF grant 2100-67712.02.

converge quickly but possibly to a local optimum, while
if it is set too low the system will converge only very
slowly, if at all. It is often the case that this can only
be done through a process of experimentation with the
particular problem at hand.

Many systems have been devised to help prevent this
problem by ensuring that the population maintains a
certain degree of diversity. Significant contributions
in this direction are fitness sharing [1], crowding [2]
and local mating [3]. The Fitness Uniform Selection
Scheme (FUSS) [4] is another proposed solution to this
problem which is well suited for very difficult optimiza-
tion problems. The key idea is to preserve genetic di-
versity in the population by using the fitness of indi-
viduals to estimate their similarity. The beauty of this
approach is that it is simple to implement, problem
intrinsic and also representation independent.

In this paper we present the first experimental in-
vestigations into the performance of FUSS. Our goal is
to develop a better understanding of its performance
characteristics in practice and in particular how it com-
pares to a standard selection scheme which favors fit
individuals.

Section 2 briefly explains how the relative fitness
of individuals can be used to define a simple metric
that provides us with some indication of the similarity
of individuals. In Section 3 we discuss the definition
of the fitness uniform selection scheme for both dis-
crete and continuous valued fitness functions. We also
outline some of its key theoretical properties and con-
trast these with standard selection schemes. Section
4 details our experimental setup. Section 5 examines
the performance of FUSS and tournament selection on
an artificially constructed deceptive optimization prob-
lem. We compare our results to the behavior predicted
in [4]. The performance of FUSS and tournament se-
lection is then examined on a set of randomly gener-
ated integer valued functions in Section 6. In Section
7 we detail the performance of FUSS and tournament
selection on both artificial and real traveling salesman
problems. In Section 8 we examine the set covering
problem, an NP hard optimization problem which has
many real world applications. For our final test in Sec-
tion 9 we compare FUSS and tournament selection on
random maximum CNF3 SAT problems and graph col-
oring problems which have been expressed in the CNF

1

http://arxiv.org/abs/cs/0403038v1

2 Shane Legg & Marcus Hutter & Akshat Kumar, Technical Report, IDSIA-04-04

Figure 1: Evolution of the population under FUSS versus standard selection schemes (STD): STD may get
stuck in a local optimum if all unfit individuals were eliminated too quickly. In FUSS, all fitness levels remain
occupied with “free” drift within and in-between fitness levels, from which new mutants are steadily created,
occasionally leading to further evolution in a more promising direction.

form. These are also NP hard optimization problems.
Section 10 contains a brief summary of our results and
possible avenues for future research.

2 Using Fitness to Measure Sim-
ilarity

There are many ways to measure the similarity of in-
dividuals in a population. If the individuals are bi-
nary coded one might use the Hamming distance as
a similarity relation. This distance is consistent with
a mutation operator which flips a few bits. It pro-
duces Hamming-similar individuals, but recombination
(like crossover) can produce very dissimilar individuals
w.r.t. this measure. In any case, genotypic similar-
ity relations, like the Hamming distance, depend on
the representation of the individuals as binary strings.
Individuals with very dissimilar genomes might actu-
ally be functionally (phenotypically) very similar. For
instance, when most bits are unused (like introns in
GP), they can be randomly disturbed without affect-
ing the property of the individual. For specific prob-
lems at hand, it might be possible to find suitable
representation-independent functional similarity rela-
tions. On the other hand, in genetic programming,
for instance, it is in general undecidable, whether two
individuals are functionally similar.

FUSS takes a different approach. The distance be-
tween two individuals i and j with fitness f(i) and f(j)
is defined as

d(i, j) := |f(i) − f(j)|.

The distance is based solely on the fitness function,
which is provided as part of the problem specifica-
tion. It is independent of the coding/representation
and other problem details, and of the optimization
algorithm (e.g. the genetic mutation and recombina-
tion operators), and can trivially be computed from
the fitness values. If we make the natural assumption

that functionally similar individuals have similar fit-
ness, they are also similar w.r.t. the distance d. On
the other hand, individuals with very different cod-
ing, and even functionally dissimilar individuals may
be d-similar, but we will see that this does not matter.
For instance, individuals from different local optima of
equal height are d-similar.

Armed with this simple measure of similarity be-
tween individuals we can now define a selection scheme
that aims to preserve diversity in the population.

3 Fitness Uniform Selection
Strategy (FUSS)

The idea behind FUSS is that we should focus the se-
lection pressure towards fitness levels which have rela-
tively few individuals rather than on the highest fitness
levels. In this way fitness levels which are difficult to
reach are thoroughly explored and on no fitness level
does the population size decrease towards extinction
(see Figure 1). Thus FUSS preserves genetic diver-
sity more actively than the standard selection schemes
which tend to drive the populations on lower fitness lev-
els to zero. Moreover, parts of the fitness space which
are interesting, in the sense that they are difficult to
reach, are focused on, rather than easy to reach ar-
eas which are already well represented in the popula-
tion. This approach might seem counter intuitive as we
are not even attempting to increase the average fitness
of the population! The point is that for optimization
problems we are usually only interested in finding a
single individual with the highest possible fitness —
having low average fitness is not in itself a problem.

For general real-valued fitness functions FUSS is de-
fined as follows: A uniform random number is chosen
in the interval [fmin, fmax], where fmax and fmin are
the maximum and minimum fitness values in the cur-
rent population. Then the individual with fitness near-
est to this number is chosen (see Figure 2). If this is

Tournament versus Fitness Uniform Selection 3

Figure 2: If the lowest/highest fitness values in the cur-
rent population P are fmin/max, FUSS selects a fitness
value f uniformly in the interval [fmin, fmax], then, the
individual i ∈ P with fitness nearest to f is selected
and a copy is added to P , possibly after mutation and
recombination.

ambiguous one of the nearest individuals is chosen at
random. In the case of integer valued fitness functions
this is equivalent to selecting a fitness level at random
from the set {fmin, fmin + 1, . . . , fmax} and then ran-
domly selecting an individual within that fitness level
if the level is occupied. If the level is empty, higher
and lower fitness levels are progressively searched until
a non empty level is found at which time a random
individual is selected.

While the probability of selecting each fitness level
is equal, the probability of then selecting a given indi-
vidual within a fitness level depends on the population
of that level. For example, if an individual belongs to
a fitness level with 50 members its selection probabil-
ity is twice as high as an individual that belongs to a
fitness level with 100 members. It is easy to see that
under a selection scheme based on the FUSS approach,
the proportion of individuals at each fitness level tends
towards the fraction 1

|F | , where |F | is the number of

fitness levels as depicted in Figure 3. See [4] for a more
detailed description.

While this preserves a greater degree of population
diversity than the standard selection schemes, it comes
at the cost of a potential loss of performance due to
the large number of selections from low fitness levels.
Thus the currently highest parts of the fitness space
are now searched more slowly than under a standard
selection scheme. In the worst case FUSS will slow
the performance of the system down by a factor of |F |.
However for significantly deceptive problems the loss of
performance due to becoming stuck in a local optimum
for a long period of time is a much more significant cost
than a potential factor of |F |. It is for these problems
that the author of [4] expects the strengths of FUSS to
become evident.

At first glance it might appear that there is little
pressure on selecting highly fit individuals under FUSS.
Usually this is not the case as the most fit individuals

Figure 3: Effects of ranking=tournament and fitness
uniform (FUSS) selection on the fitness distribution in
a generation based EA. The left/right diagrams depict
fitness distributions before/after applying the selection
schemes depicted in the middle diagrams.

in a population are typically quite rare. If these in-
dividuals start to make up a significant proportion of
the total population this indicates that this part of the
space has been significantly searched and thus is more
likely to be an evolutionary dead end. In this case
FUSS will, by its nature, automatically move selection
pressure away from these highly fit individuals and fo-
cus its search energy on lower fitness levels that have
fewer individuals. In this way the selection intensity
varies dynamically with the evolution of the popula-
tion. Clearly this is preferable to the situation where
we must manually fix the selection pressure for a par-
ticular optimization problem in order to prevent the
system from becoming stuck in local optima.

4 GA Test System

We have implemented a GA test system in Java on
a PC running Linux. The selection schemes include
FUSS and the standard tournament selection scheme.
With tournament selection we randomly pick a group
of individuals and then select the fittest individual from
this group. The size of the group is called the tourna-
ment size and it is clear that the larger this group is the
more likely we are to select a highly fit individual from
the population. A tournament size of 2 is commonly
used in practice as this often provides sufficient selec-
tion intensity on the most fit individuals. In our tests
we have used tournament sizes of 2, 5 and 15 which
we will refer to as TOUR2, TOUR5 and TOUR15 re-
spectively. This should provide some insight into how
different levels of selection intensity affect performance
in different problems.

We have chosen to compare FUSS with tournament
selection as this scheme is simple to understand and im-

4 Shane Legg & Marcus Hutter & Akshat Kumar, Technical Report, IDSIA-04-04

plement and is also one of the most widely used. Also
we consider it to be roughly representative of other
standard selection schemes which favor the fitter indi-
viduals in the population; indeed in the case of tourna-
ment size 2 it can be show that tournament selection
is equivalent to the linear ranking selection scheme [5,
Sec.2.2.4]. At some point in the future we may im-
plement other standard selection schemes to broaden
our comparison, however we expect the performance of
these schemes to be at best comparable to tournament
selection when used with a correctly tuned selection
intensity.

The GA model we have chosen is the so called
“steady state” model as opposed to the more usual
“generational” model. In a generational GA at each
generation we select an entirely new population based
on the old population. The old population is then sim-
ply discarded. Under the steady state model that we
use, individuals are only selected one at a time: We
select an individual, then with a certain probability we
select another and cross the two to produce a new in-
dividual, and then with another probability we mutate
the result. We will refer to the probability of cross-
ing as the crossover probability and the probability of
mutating following a cross as the mutate probability.
In the case where no crossover took place the individ-
ual is always mutated to insure that we are not sim-
ply adding a clone of an existing individual into the
population. Finally an individual must be deleted in
order to keep the population size constant. How this
is done is important as it can bias the population in a
way that is similar to the selection scheme. We have
chosen to simply delete a random individual from the
population which is a common neutral strategy used in
steady state GAs.

The number of generations in a generational GA is
roughly equivalent to the number of iterations in a
steady state GA divided by the population size. We
have used this approximation here when reporting the
number of generations on graphs etc. Unfortunately
the theoretical understanding of the relationship be-
tween the two types of GA is quite poor. It has been
shown that under the assumption of no crossover the
effective selection intensity using tournament selection
with size 2 is approximately twice as strong under a
steady state GA as it is with a generational GA [6].
As far as we are aware a similar comparison for sys-
tems with crossover has not been performed, though
we would not expect the results to be significantly dif-
ferent. While steady state GAs have certain advan-
tages, the fact that generational GAs are more common
means that we may in the future test FUSS under this
model also.

The important free parameters to set for each test

are the population size, and the crossover and muta-
tion probabilities mentioned above. Our default is to
have both the crossover and mutation probabilities set
to 0.5. For each problem we conducted some prelim-
inary experiments to establish reasonable settings for
these variables. Often the effect of these variables on
performance was not particularly strong, though it was
always worth checking to be sure. More importantly,
the relative performance of the selection schemes re-
mained quite stable. For population sizes less than
500 performance tended to degrade for difficult prob-
lems where the potential solution space was large. To
avoid this our experiments have been performed with
populations of 1,000 individuals or more. For each test
the parameters were the same for each selection scheme
— indeed the only difference was which subroutine in
the code was used to select individuals. This ensures
that our comparison was fair.

In order to generate reliable statistics we ran each
test multiple times; typically 20 or 30 times. From
these runs we then calculated the average performance
for each selection scheme. We also computed the sam-
ple standard deviation and from this the standard error
in our estimate of the mean. This value was then used
to generate the 95% confidence intervals which appear
on the graphs.

5 A Deceptive 2D Problem

The first problem we examine is the simple but highly
deceptive 2D problem for which the performance of
FUSS was theoretically analyzed in [4]. The setup of
the test is quite simple. The space of individuals is the
unit square [0, 1]× [0, 1]. On this space narrow regions
I1 := [a, a + δ] × [0, 1] and I2 := [0, 1] × [b, b + δ] for
some a, b, δ ∈ [0, 1] are defined. Typically δ is chosen
so that it is much smaller than 1 and thus I1 and I2

do not occupy much of the domain space. The fitness
function is defined to be,

f(x, y) =

1 if (x, y) ∈ I1\I2,

2 if (x, y) ∈ I2\I1,

3 if (x, y) 6∈ I1 ∪ I2,

4 if (x, y) ∈ I1 ∩ I2.

✻

✲

4

3 1 3

33

2 2

1

xδa

δ
b

1

1
y f(x, y)

The example has sort of an XOR structure, which is
hard for many optimizers.

For this problem we set up the mutation operator to
randomly set either the x or y position of an individ-
ual and the crossover to take the x position from one
individual and the y position from another to produce
an offspring.

Tournament versus Fitness Uniform Selection 5

0.010.1
Delta

0.01

0.1

1

10

100

1000

10000

G
en

er
at

io
ns

 T
o

Fi
nd

 M
ax TOUR5

TOUR2
RAND
FUSS

Deceptive 2D Problem

Figure 4: As predicted FUSS scales significantly bet-
ter than both tournament selection and random search
for this problem. Also, increasing selection pressure in
tournament selection (TOUR2 vs. TOUR5) degraded
performance.

Under these operators this is a very deceptive and
difficult optimization problem. The size of the domain
for which the function is maximized is just δ2 which
is very small for small values of δ. Moreover the lo-
cal maxima at fitness level 3 covers most of the space
and the only way to reach the global maximum is by
leaving this local maxima and exploring the space of
individuals with lower fitness value of 1 or 2. For such
a problem FUSS should in theory perform much better
than either random search or more standard selection
schemes.

For this test we set the maximum population size
to 10,000 and ran each scheme for each delta value 20
times. With a steady state GA it is usual to start with
a full population of random individuals. However for
this particular problem we reduced the initial popula-
tion size down to just 10 in order to avoid the effect of
doing a large random search when we created the initial
population and thereby distorting the scaling. Usually
this might create difficulties due to the poor genetic
diversity in the initial population. However due to the
fact that any individual can mutate to any other in just
two steps this is not a problem in this situation. Initial
tests indicated that reducing the crossover probability
from 0.5 to 0.25 improved the performance slightly and
so we have used this setting. For comparison random
search (RAND) was also implemented. The results of
these tests appear in Figure 4.

As expected higher selection pressure on the most fit
individuals is clearly a disadvantage for this problem.
With low selection pressure (TOUR2) tournament se-

lection performs slightly worse than random search
while with medium selection pressure (TOUR5) per-
formance was in the order of 20 times slower than ran-
dom search. With high selection pressure (TOUR15)
the test became infeasible to compute. Our results con-
firm the theoretical scaling factors of 1

δ2 for RAND and
TOUR2, and 1

δ for FUSS, as predicted in [4].

6 Random Functions

In order to gain a better understanding of how FUSS
performs relative to tournament selection in more gen-
eral problem settings we tested the selection schemes
on a set of randomly generated functions. In this case
the domain of each function was the 4 dimensional hy-
per cube [0, 1]4. To create each random function we
randomly generated 16 cuboids of 4 dimensions inside
the domain space. The function value of a point inside
the domain space was then taken to be the number
of random cuboids that contained the point. Thus,
depending on where the random cuboids where, the
range of the function could be anything from {0, 1} to
{0, 1, . . . , 16}. This process of building up functions
using cuboids allowed the functions to be quite com-
plex and multi modal while still keeping some rough
continuity. In order to make the optimization prob-
lem a little more tractable we limited the width of the
cuboids in any one dimension to be in the range [0.2, 1].
While this limited the minimum size of each random
cuboid, two or more cuboids could still form arbitrar-
ily small intersections and thus the domain region in
which a function achieves its maximal value could still
be extremely small.

In the first test we generated 100 random func-
tions and precomputed each function’s global maxi-
mum value by using the cuboid position information
used to construct the function. For each function
we then ran both FUSS and TOUR2 10 times and
computed for each the average number of generations
needed to find the global maximum. This produced 100
data points corresponding to the 100 random functions.

We first tested TOUR2 as we expected the prob-
lem to be relatively deceptive and thus higher selection
pressure would be a disadvantage. The population size
for these tests was set at 10,000. The results are plot-
ted in Figure 5.

We see that FUSS typically manages to find the
global maximum 2 to 20 times faster than TOUR2,
with 10 being about average. We then compared FUSS
with TOUR5. The results of this test are plotted in
Figure 5.

Interestingly the performance of tournament selec-
tion improved to the extent that it was then roughly
equivalent to FUSS. Typically a tournament size of 2

6 Shane Legg & Marcus Hutter & Akshat Kumar, Technical Report, IDSIA-04-04

0.01 0.1 1 10 100
FUSS Generations

0.01

0.1

1

10

100

T
O

U
R

2
G

en
er

at
io

ns

0.01 0.1 1 10 100

0.01

0.1

1

10

100

Random Functions

0.01 0.1 1 10 100
FUSS Generations

0.01

0.1

1

10

100

T
O

U
R

5
G

en
er

at
io

ns
0.01 0.1 1 10 100

0.01

0.1

1

10

100

Random Functions

Figure 5: FUSS finds the global maximum typically ten times faster than tournament selection with low
selection pressure (left diagram). With increased selection pressure, tournament reaches, but does not pass the
performance of FUSS (right diagram).

is sufficient selection pressure for most problems. This
performance improvement due to increased selection
pressure indicates that tournament selection wasn’t be-
coming significantly stuck in local optima and thus
these random function problems where not as decep-
tive as we had anticipated. We increased selection pres-
sure further by testing TOUR15, but no further per-
formance gains were to be had.

While the strength of FUSS is in dealing with very
difficult and deceptive optimization problems, this re-
sult demonstrates that even for problems where greater
selection pressure is an advantage the performance of
FUSS can remain competitive. FUSS also had the ad-
vantage that no parameter tuning was required in order
to achieve optimum performance for this problem.

7 Traveling Salesman Problem

To find the shortest Hamiltonian cycle (path) in a
graph of N vertices (cities) connected by edges of cer-
tain lengths is a difficult optimization problem. In
the following we present preliminary results of a sim-
ple evolutionary TSP optimizer with standard selec-
tion (here tournament selection) and with FUSS. There
are highly specialized (evolutionary) algorithms finding
paths less than one percent longer than the optimal
path for up to 107 cities [7, 8, 9, 10]. Whether FUSS
could further improve these algorithms will be studied

elsewhere. Here, we are just interested in the perfor-
mance of FUSS compared to tournament selection on a
difficult optimization problem that has real world ap-
plications.

The mutation and crossover operators we used were
quite simple. Mutation was done by simply switch-
ing the position of two of the cities in the solution.
For crossover we used the common partial mapped
crossover technique [11].

The first test was carried out on a set of TSP prob-
lems with random distance matrices. There were 50
TSP problems in total each with 20 cities. The distance
between any two cities was chosen uniformly from the
interval [0, 1]. This is a particularly deceptive form of
the TSP problem as the usual triangle inequality rela-
tion does not hold. For example, the distance between
cities A and B might be 0.1, between cities B and
C 0.2, and yet the distance between A and C might
be 0.8. The problem still has some structure though
as efficient partial solutions tend to be useful building
blocks for efficient complete tours. For this test we
used a population size of 5,000 and the default muta-
tion and crossover rates of 0.5. The results appear in
Figure 6.

We see here that the selection intensity with TOUR2
is too low for the system to converge in a reasonable
number of generations. On the other hand the selection
intensity under TOUR15 is too high and causes the sys-

Tournament versus Fitness Uniform Selection 7

0 100 200 300 400
Generations

2

3

4

5

M
in

im
al

 T
ou

r
L

en
gt

h

TOUR2
TOUR5
TOUR15
FUSS

Traveling Salesman Problem - Random

0 5 10 15 20
Generations

30

40

50

60

M
in

im
um

 T
ou

r
L

en
gt

h TOUR2
TOUR5
TOUR15
FUSS

Traveling Salesman Problem - Sahara

Figure 6: FUSS performs well in both artificial and real TSP problems. For the random TSP problem FUSS
converges much faster than TOUR2 but also manages to avoid becoming stuck in a local optimum like TOUR15.
In the real TSP problem FUSS again has close to the optimal selection intensity.

tem to become stuck in a local optimum. TOUR5 has
about the correct selection intensity for this problem.
FUSS outperforms both TOUR2 and TOUR15 and is
very close to TOUR5 at the end of the run.

We also tested the system on a number of real TSP
problems based on the location of real cities from var-
ious countries around the world [12]. For these tests
the population size was set at 5,000. Based on experi-
mentation we increased the crossover probability to 1.0
and the probability of mutation was reduced to 0.2 for
better performance. The results were averaged over a
total of 5 runs. The results for the “Sahara” dataset
are shown in Figure 6.

Here we see that a higher level of selection intensity is
appropriate. FUSS again performs significantly better
than TOUR2 and also a little better than TOUR5. At
the end of the run FUSS has converged to the same
level as both TOUR5 and TOUR15 which is again a
positive result for FUSS.

We tested the system on a number of other datasets
under various other parameter settings for population
size, rate of mutation and crossover etc. and obtained
similar results. Nevertheless a fuller analysis compar-
ing other possible mutation and crossover operations
and parameters settings will need to be done before
more substantive conclusions are possible.

8 Set Covering Problem

The set covering problem (SCP) is a reasonably well
known NP-complete optimization problem with many
real world applications. Let M ∈ {0, 1}m×n be a bi-

nary valued matrix and let cj > 0 for j ∈ {1, . . . n} be
the cost of column j. The goal is to find a subset of the
columns such that the cost is minimized. Define xj = 1
if column j is in our solution and 0 otherwise. We
can then express the cost of this solution as

∑n
j=1 cjxj

subject to the condition that
∑n

j=1 mijxj ≥ 1 for
i ∈ {1, . . .m}.

Our system of representation, mutation operators
and crossover follow that used by Beasley [13]. We
compared the performance of FUSS with tournament
selection on a number of standard test problems [14].
For these tests we set the population size to 5,000,
crossover probability to 1.0, the mutation probability
to 0.5 and averaged the performance of the systems
over 30 runs on each problem.

The results in Figure 7 were based on the “SCP49”
and “SCP41” datasets. Here the performance of FUSS
is less impressive. For SCP49 FUSS performs better
than TOUR2 however the rate of convergence is still
too low. SCP41 is an easy problem with TOUR15
converging in just 4 generations. Nevertheless FUSS
is converging very slowly, if at all. It is interesting
that FUSS performs poorly on this relatively easy prob-
lem when its performance was strong on more difficult
problems such as random TSP and the deceptive 2D
problem presented earlier. We will look more closely
into the reasons for this in the next section.

8 Shane Legg & Marcus Hutter & Akshat Kumar, Technical Report, IDSIA-04-04

0 5 10 15 20
Generations

500

1000

1500

2000

2500

So
lu

tio
n

C
os

t

TOUR2
TOUR5
TOUR15
FUSS

Set Covering Problem 49

0 5 10 15 20 25 30
Generations

0

500

1000

1500

2000

2500

3000

So
lu

tio
n

C
os

t

TOUR2
TOUR5
TOUR15
FUSS

Set Covering Problem 41

Figure 7: In SCP49 FUSS converges more quickly than TOUR2 but is still too slow. SCP41 is an easy problem
as TOUR15 find the optimum very quickly however for some reason FUSS becomes stuck far from the optimum.

9 Maximum CNF3 SAT

Maximum CNF3 SAT is a well known NP hard opti-
mization problem [15] that has been extensively stud-
ied. A three literal conjunctive normal form (CNF)
logical equation is a boolean equation that consists
of a conjunction of clauses where each clause con-
tains a disjunction of three literals. So for example,
(a ∨ b ∨ ¬c) ∧ (a ∨ ¬e ∨ f) is a CNF3 expression. The
goal in the maximum CNF3 SAT problem is to find an
instantiation of the variables such that the maximum
number of clauses evaluate to true. Thus for the above
equation if a = F , b = T , c = T , e = T , and f = F

then just one clause evaluates to true and thus this in-
stantiation gets a score of one. Achieving significant
results in this area would be difficult and this is not
our aim; we are simply using this problem as a test to
compare FUSS and tournament selection.

Our test problems have been taken from the SATLIB
collection of SAT benchmark tests [16]. The first test
was performed on 30 instances of randomly generated
CNF3 forumlae with 150 variables and 645 clauses
which are all known to be satisfiable. The second test
was performed on 30 instances of “flat” 3 colorable
graph coloring problems with 50 vertices and 115 edges
which have been expressed in CNF form. The graph
coloring problems have a slightly different structure as
the clauses contain either 2 or 3 literals.

Our mutation operator simply flips one boolean vari-
able and the crossover operator forms a new individual
by randomly selecting for each variable which parent’s
state to take. The population size was set to 10,000
and the crossover and mutation probabilities were left

at the default setting of 0.5. The test was run 30 times
for each selection method. The results for both tests
appear in Figure 8.

In both tests we see that the maximum fitness under
FUSS initially climbs very rapidly. Closer inspection
showed that it climbs even more rapidly than TOUR15
for the first 0.5 generations. This indicates that FUSS
has an extremely high selection intensity to start with,
much higher than even TOUR15. After this period
FUSS starts to slow down. It appears to become either
stuck in a local optimum or the selection intensity falls
dramatically, either way, it is then easily passed by
the tournament selection schemes. We also tested the
system with controlled backbone CNF problems from
the same set of benchmark tests and obtained similar
results.

We can explain this behavior by considering a simple
example. Consider a situation where there is a large
number of individuals in a small band of fitness lev-
els, say 10,000 with fitness values ranging from 50 to
70. Add to this population one individual with a fit-
ness value of 73. Thus the total fitness range is now
24. Whenever FUSS picks a random point from 72 to
73 inclusive this single individual with maximal fitness
will be selected. That is, the probability that the sin-
gle fittest individual will be selected is 2/24 = 0.083.
Now compare this to TOUR15, a selection scheme with
high selection intensity. Under TOUR15 the probabil-
ity that the fittest individual is selected is the same as
the probability that it is picked for the sample of 15
elements used for the tournament, that is, 15/10000 =
0.0015. Thus we can see that in this simple example
the probability of selecting the fittest individual under

Tournament versus Fitness Uniform Selection 9

0 50 100 150 200
Generations

600

610

620

630

640

M
ax

 C
la

us
es

 S
at

is
fi

ed

TOUR2
TOUR5
TOUR15
FUSS

CNF3 SAT Benchmark

0 50 100 150 200
Generations

500

510

520

530

540

M
ax

 C
la

us
es

 S
at

is
fi

ed

TOUR2
TOUR5
TOUR15
FUSS

CNF Graph Coloring

Figure 8: In the CNF3 SAT benchmark with 150 variables and 645 clauses the performance of FUSS was slightly
below the performance of tournament selection. The graph coloring problem shows a similar result.

FUSS is over 50 times higher than what it is under
TOUR15. This effectively gives FUSS an extremely
high selection intensity and would likely result in a very
rapidly rising maximal fitness value. If a mutant de-
rived from our highly fit individual had a fitness value
higher than 73 then the situation would become much
more extreme causing the system to rapidly explore
this evolutionary path and fill the higher fitness levels
with many highly related individuals in the process.

Once a high level of fitness is reached and further
progress becomes difficult the distribution of individ-
uals across the fitness range balances out. When this
happens the selection probability for individuals at the
highest fitness levels converges towards 1

|P | where |P | is

the size of the population. Thus the selection intensity
becomes very low, much lower than under TOUR15.
This explains why FUSS becomes stuck after its initial
rapid rise in maximal fitness.

Further experiments have been carried out to test
whether these difficulties are responsible for the perfor-
mance problems we have seen. While FUSS is suited
for problems where it is difficult to directly measure
and thus control diversity, in the CNF problems we
are able measure diversity quite easily by computing
hamming distance. Doing so reveals that the diver-
sity in the total population remains very high under
FUSS over the evolution of the system, much higher
than under the tournament selection schemes. This is
what we would expect to see given that FUSS main-
tains a broad set of both fit and unfit individuals in
the population. However if we look at the genetic di-
versity in the top 10% of the population we see that
diversity under FUSS falls very rapidly and is gener-

ally significantly worse than under the tournament se-
lection scheme. Thus while we have succeeded in pre-
serving diversity in the population as a whole, among
the fittest individuals in the population diversity is ac-
tually rather poor. This is consistent with the scenario
described above where FUSS tends to over exploit a
very small number of fit individuals in the population.

10 Conclusions & Future Re-
search Directions

Theoretical analysis suggests that FUSS should be able
to outperform standard selection schemes in some sit-
uations, in particular on highly deceptive optimization
problems. Our results for a deceptive 2D optimization
problem and for TSP problems confirm this. However
we have also observed cases where FUSS has perfor-
mance difficulties. Further analysis indicates that this
is due to the greedy nature of FUSS selection in the
early stages of the system’s evolution. While total ge-
netic diversity was very strong, diversity among the
most fit individuals was poor due to the nature of our
selection scheme. This suggests that while fitness can
be used to control diversity, our current method of do-
ing so is inadequate. We are currently investigating al-
ternates to FUSS which achieve diversity across fitness
levels while not exploiting small groups of fit individu-
als too heavily in the process. Our results so far have
been encouraging with diversity being strong both in
the population as a whole and among fit individuals.

10 Shane Legg & Marcus Hutter & Akshat Kumar, Technical Report, IDSIA-04-04

References

[1] D. E. Goldberg and J. Richardson. Genetic al-
gorithms with sharing for multi-modal function
optimization. In J. J. Grefenstette, editor, Pro-
ceedings of the 2nd International Conference on
Genetic Algorithms and their Applications, pages
41–49, Cambridge, MA, July 1987. Lawrence Erl-
baum Associates.

[2] K. de Jong. An analysis of the behavior of a
class of genetic adaptive systems. Dissertation Ab-
stracts International, 36(10), 5140B, 1975.

[3] R. J. Collins and D. R. Jefferson. Selection in
massively parallel genetic algorithms. In R. K.
Belew and L. B. Booker, editors, Proceedings of
the Fourth International Conference on Genetic
Algorithms, San Mateo, CA, 1991. Morgan Kauf-
mann Publishers.

[4] M. Hutter. Fitness uniform selection to preserve
genetic diversity. In X. Yao, editor, Proceedings
of the 2002 Congress on Evolutionary Compu-
tation (CEC-2002), pages 783–788, Washington
D.C, USA, May 2002. IEEE.

[5] M. Hutter. Implementierung eines
Klassifizierungs-Systems. Master’s the-
sis, Theoretische Informatik, TU München,
1991. 72 pages with C listing, in German,
http://www.idsia.ch/∼marcus/ai/pcfs.htm.

[6] Alex Rogers and Adam Prügel-Bennett. Mod-
elling the dynamics of a steady-state genetic algo-
rithm. In Wolfgang Banzhaf and Colin Reeves, ed-
itors, Foundations of Genetic Algorithms 5, pages
57–68. Morgan Kaufmann, San Francisco, CA,
1999.

[7] S. Lin and B. W. Kernighan. An effective heuristic
for the travelling salesman problem. Operations
Research, 21:498–516, 1973.

[8] O. Martin and S. Otto. Combining simulated an-
nealing with local search heuristics. Annals of Op-
erations Research, 63:57–75, 1996.

[9] D. S. Johnson and A. McGeoch. The traveling
salesman problem: A case study. In E. H. L. Aarts
and J. K. Lenstra, editors, Local Search in Combi-
natorial Optimization, Discrete Mathematics and
Optimization, chapter 8, pages 215–310. Wiley-
Interscience, Chichester, England, 1997.

[10] D. Applegate, W. Cook, and A. Rohe. Chained
Lin-Kernighan for large traveling salesman
problems. Technical report, Department

of Computational and Applied Mathemat-
ics, Rice University, Houston, TX, 2000.
http://www.isye.gatech.edu/∼wcook/papers/
chained lk.ps.

[11] D. Goldberg and R. Lingle. Alleles. Loci and the
traveling salesman problem. In Proceedings of the
International Conference on Genetic Algorithms
and their Applications, pages 154–159. Lawrence
Erlbaum Associates, 1985.

[12] D. Applegate, R. Bixby, V. Chvátal, and
W. Cook. National traveling salesman problems.
http://www.math.princeton.edu/tsp/world/ coun-
tries.html, 2003.

[13] J. Beasley and P. Chu. A genetic algorithm for
the set covering problem. European Journal of
Operational Research, 94:392–404, 1996.

[14] J. Beasley. Or-library.
http://mscmga.ms.ic.ac.uk/jeb/orlib/scpinfo.html,
2003.

[15] P. Crescenzi and V. Kann. A com-
pendium of NP optimization problems.
http://www.nada.kth.se/∼viggo/problemlist/
compendium.html, 2003.

[16] Holger H. Hoos and Thomas Stützle. SATLIB: An
Online Resource for Research on SAT. In T. Walsh
I.P.Gent, H.v.Maaren, editor, SAT 2000, pages
283–292. IOS press, 2000.

http://www.idsia.ch/~marcus/ai/pcfs.htm
http://www.isye.gatech.edu/~wcook/papers/
http://www.math.princeton.edu/tsp/world/
http://mscmga.ms.ic.ac.uk/jeb/orlib/scpinfo.html
http://www.nada.kth.se/~viggo/problemlist/

	Introduction
	Using Fitness to Measure Similarity
	Fitness Uniform Selection Strategy (FUSS)
	GA Test System
	A Deceptive 2D Problem
	Random Functions
	Traveling Salesman Problem
	Set Covering Problem
	Maximum CNF3 SAT
	Conclusions & Future Research Directions

