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Abstract 

This paper describes work in progress to develop a stan- 
dardfor interoperability among high-pelformance scienti$c 
components. This research stems from growing recognition 
that the scientijic community must better manage the com- 
plexity of multidisciplinary simulations and better address 
scalable performance issues on parallel and distributed ar- 
chitectures. Driving forces are the need for fast connec- 

tions among components that pegorm numerically inten- 
sive work and parallel collective interactions among com- 
ponents that use multiple processes or threads. This pa- 
per focuses on the areas we believe are most crucial for 

such interactions, namely an inteeace dejinition language 
that supports scientific abstractions for specifying compo- 
nent interjaces and a ports connection model for specifying 
component interactions. 

1 Introduction 

The complexity and resource demands of present day 
software systems create the need for more flexible solutions 
than those offered by conventional programming styles 
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based on a succession of subroutine calls. Component pro- 
gramming, based on encapsulating functionality units and 
providing a meta-language specification of their interfaces, 
enables us to address these issues. A clear specification of 
component outputs as well as inputs enables programmers 
to integrate multiple software libraries, which may be de- 
veloped by various groups with differing expertise. These 
specifications enhance software reusability, since compo- 
nents can serve as interchangeable pieces that can be dy- 
namically added, removed, or replaced in an ongoing sim- 
ulation. Furthermore, meta-language specifications allow 
programmers to integrate components developed using dif- 
ferent languages or libraries. 

These advantages are especially appealing in high per- 
formance scientific computing, where high-fidelity, multi- 
physics simulations are increasingly complex and often re- 
quire the combined expertise of multidisciplinary research 
teams working in areas such as mathematical modeling, 
adaptive mesh manipulations, numerical linear and non- 
linear algebra, optimization, load balancing, computational 
steering, parallel I/O, sensitivity analysis, visualization, and 
data analysis. Consequently, the reusability and rapid appli- 
cation development afforded by component programming 
are of particular importance. 

There are many differing opinions within the software 

community about component definitions [7, 481. We 
present some working definitions as preliminaries for fur- 
ther discussion. 

l A component is an independent unit of software de- 

ployment. It satisfies a set of behavior rules and im- 
plements standard component interfaces that allow it 
to be easily composed with other components. These 
behavior rules are often specified as designed patterns 
that must be followed when writing the component. 

l A component framework defines a set of interfaces 
and rules of interaction that govern the communica- 

tion among the components connected to the frame- 
work [48]. Examples of component frameworks in- 
clude JavaBeans [20] and DCOM [46]. 



l A component architecture encompasses the compo- 
nent framework along with other necessary tools, such 
as component repositories and composition tools. 

In this context, component-based software develop- 
ment can be considered a evolutionary step beyond object- 
oriented design. Object-oriented techniques have been very 
successful in managing the complexity of modern soft- 
ware, but they have not resulted in significant amounts 
of cross-project code reuse. Sharing object-oriented code 
is difficult due to language incompatibilities, the lack of 
standardization for inter-object communication, and the 

need for compile-time coupling of interfaces. Component- 
based software development addresses issues of language 
independence-seamlessly combining components writ- 
ten in different programming languages-and component 
frameworks define standards for communication among 
components. Component-based programming supports in- 
cremental shifts in parallel algorithms and programming 
paradigms that inevitably occur during the lifetimes of sci- 
entific application codes. 

In addition, since components can be configured to exe- 
cute in remote locations, component programming can of- 
fer high-level abstractions facilitating the use of remote su- 
percomputing resources. Systems such as Legion [30] and 
Globus [22] have shown that distributed high-performance 
programming can offer enormous potential as a gateway to 
the computational grid [23]. Through defining high-level 
abstractions, component programming brings us closer to 
reducing the programming overhead required to tap into that 
potential. 

The mainstream computing community has defined 
component standards such as CORBA [41], COM [46], 
and Java Beans [20] to address similar complexities within 
their target applications (see Section 3 for a detailed discus- 
sion). Our approach leverages this work where appropriate, 
but addresses the distinctly different technical challenges 
of large-scale, high-performance scientific simulations. We 
have recently established the Common Component Archi- 
tecture Forum (CCA) [16], a group whose current mem- 
bership is drawn from various Department of Energy na- 
tional laboratories and collaborating academic institutions. 

A number of different research high-performance compo- 
nent architectures have been developed or are currently un- 
der development by CCA participants [3,45,27,32,36,37], 
and various research projects are considering related de- 

sign issues [I, 28, 61. Based on the lessons learned from 
these research efforts, we are developing a single high- 
performance component interface standard that will enable 

interactions among the scientific components that follow 
this standard. Additional related work on software de- 
sign issues for high-performance scientific computing in- 

cludes [ 10, 8,24, 35, 391. 
We recognize two levels of interoperability: component- 

level interoperability, for which all the vital functions of any 
one architecture are accessible to any compliant component 
through a standard interface (e.g., facilities available within 
a CORBA ORB), and framework-level interoperability, for 
which the frameworks themselves interoperate through a 
standardized interface (e.g., inter-ORB communication via 
CORBA IIOP). Providing component-level interoperability 
requires defining a data and interaction model common for 
all components and a small set of indispensable high-level 
framework services. In addition, framework-level interop- 
erability requires the standardization of a number low-level 
services. Since providing a framework-level interoperabil- 

ity standard requires a superset of features that need to be 
defined for component-level interoperability, our current fo- 
cus is on providing the latter and extending it in the future 
to include framework-level interoperability features. The 
scope of this paper is limited to component-level interoper- 
ability. 

The remainder of this paper motivates and explains our 

approach, beginning in Section 2 with a discussion of some 
of the challenges in large-scale scientific computing. Sec- 
tion 3 compares our strategy with related work in the main- 
stream computing community. Section 4 presents a high- 
level view of the CCA standard and provides a roadmap 
outlining the relationships among its constituents. The suc- 
ceeding two sections describe in detail the parts of the CCA 
standard that are most crucial for defining component inter- 
actions in high-performance scientific software, namely a 
scientific interface definition language and ports with direct- 
connect and collective capabilities. Finally, Section 7 out- 
lines future directions of work. 

2 Motivating Examples 

Our work is motivated by collaborations with various 

computational science research teams, who are investigat- 
ing areas such as combustion [1.5], materials science [49], 

climate, accelerator physics, and fusion [44], among many 
others. In conjunction with theoretical and experimental re- 

search, these simulations are playing increasingly impor- 
tant roles in overall scientific advances, particularly in fields 
where experimental models are prohibitively costly, time 
consuming, or in some cases impossible. 

While each of these simulations requires different math- 

ematical models, numerical methods, and data analysis 
techniques, they could all benefit from infrastructure that 
is more flexible and extensible and therefore better able to 
manage complexity and change. Designing such tools is 
difficult given our target architectures, which range from 

clusters of networked workstations to clusters of symmetric 
multiprocessors and possibly distributed resources. Addi- 
tional challenges arise because of the diversity of our tar- 
get software users and developers - scientific researchers, 
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who have different programming paradigm preferences and 
widely varying experience in translating scientific abstrac- 
tions into large-scale codes. 

To enable more concrete discussion of the CCA ap- 
proach, we briefly review some challenges arising in chem- 
ically reacting flow simulations, which are demanding due 
to the requirements for high resolution and complex phys- 
ical submodels for turbulence, chemistry, and multiphase 
flows. Section 2.1 presents current functionality of a partic- 
ular application, while Section 2.2 describes potential en- 
hancements that component-based technology could help to 
support in interoperable tools for numerics, data analysis, 

and domain-specific problem solving infrastructure. 

2.1 Computational Hydrodynamics 

We consider the CHAD (Computational Hydrodynam- 
ics for Advanced Design) application [15, 431, which has 
been developed for Auids simulations in the automotive in- 
dustry under the Supercomputing Automotive Applications 
Partnership CRADA with the United States Council for 
Automotive Research and five Department of Energy na- 
tional laboratories (Argonne, Los Alamos, Lawrence Liv- 
ermore, Oak Ridge, and Sandia). CHAD is the successor 
of KIVA [2], which has become a standard tool for device- 
level modeling of internal combustion engines. CHAD is 
intended for automotive design applications such as com- 
bustion, interior airflow (HVAC), under-hood cooling, and 
exterior flows; the application was designed from its incep- 
tion as parallel code using FORTRAN90 and encapsulation 
of nonlocal communication in gather/scatter routines using 
the Message Passing Interface (MPI) standard [40]. 

CHAD computes three-dimensional fluid flows with 
chemical reactions and fuel sprays. The current code solves 
the single-phase, compressible, Navier-Stokes equations us- 
ing an arbitrary Lagrangian-Eulerian (ALE) formulation to 
allow a moving mesh; for turbulent flows a standard K - E 
turbulence model is employed. The resulting nonlinear sys- 
tem may be expressed as 

where t indicates time, and qm represent the independent 
field variables (pressure, velocity, etc.). The indices 1, m 

range over 1,2, . . . N, where N is the number of indepen- 

dent field variables. Hybrid unstructured meshes are used to 
construct vertex-centric control volumes for use in an edge- 

based finite volume discretization scheme. 

2.2 Component Challenges and Opportunities 

Continuing a trend toward more implicit formula- 
tions, CHAD researchers are experimenting with numeri- 
cal strategies ranging from explicit through semi-implicit 

and even more fully implicit schemes using Newton-type 
methods. Increased implicitness helps to overcome stability 
and accuracy restrictions on computational timesteps, and 
thereby can often help to reduce overall time to solution. 

Figure 1 demonstrates some typical interactions among 
components for a semi-implicit solution procedure within 
a simplified PDE-based numerical model. Parallel numeri- 
cal components that use distributed data structures and re- 
quire interconnections with low latency and high bandwidth 
are represented by the overlayed boxes in the right-hand- 

side of the figure. Components for visualization of field 
variables, which can often be loosely coupled and differ- 
ently distributed than the numerical components, are shown 
in the left-hand-side box. While a single diagram cannot 
express the richness of interactions within CHAD, nor the 
range of functionality needed by the various scientific ap- 
plications that motivate this work, this picture does convey 

key themes that motivate the CCA approach: (1)fast inter- 
actions between components that perform numerically in- 
tensive work, as shown by the directly connected ports in 
the right-hand-side boxes (see Section 6.2); (2) collective 
interactions among components that use multiple processes 
or threads; such interactions are needed for both tightly cou- 
pled tasks such as solving algebraic systems and loosely 
coupled tasks such as visualizing field variables (see Sec- 
tion 6.3); and (3) the use of possibly distributed resources 
for phases like data analysis and visualization. 

Linear solve: 

v’jj=Q(voa(“+l)) 

Local stencil: 
“m+u =p+c -f(j) 

Figure 1. Schematic Diagram of Component 
Interactions 

The goals of the CCA forum are to simplify the in- 
fusion of new techniques within the lifetimes of existing 

applications such as CHAD as well as to facilitate the 
construction of new models. Interactions among multi- 
ple tools that use current-generation infrastructure typically 
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require labor-intensive translations between interfaces and 
data structures. We aim to simplify this process and also 
to enable dynamic interactions, since researchers may wish 

to introduce new components during the course of ongoing 
simulations. For example, a researcher may wish to visu- 
alize flow fields on a local workstation by dynamically at- 
taching a visualization tool to an ongoing simulation that is 
running on a remote parallel machine. Upon observing that 
the flow fields are not converging as expected, he may wish 
to introduce a new scheme for hierarchical mesh refinement. 

The CCA assumes component granularity at the proce- 
dural level. This can range from relatively fine granularity 
when the procedure is a call to a subroutine implementing 
a subtask, to very coarse granularity when the procedure is 
associated with an entire parallel application. We note that 
developers must carefully consider a computation’s gran- 
ularity when determining whether to use abstraction via 
component-based (or even simply object-oriented) design. 
The overhead of indirection is usually considered too high 
for very fine-grained tasks such as a single scalar computa- 
tion, but can be adequately amortized for aggregate opera- 
tions on a collection of data. 

One of the most computationally intensive phases within 
the semi-implicit and implicit strategies under consideration 
within CHAD is the solution of discretized linear systems of 
the form AZ = 6, which are very large (O(l,OOO, 000) or 
orders of magnitude higher, even for relatively simple ge- 
ometric domains) and have sparse coefficient matrices A. 
Preconditioned Krylov methods [25], which can be repre- 
sented as ML-,Ax = M~-lb, are among the most ef- 
fective solution strategies for such systems. The Equation 
Solver Interface Forum [ 131, is exploring interoperability 
issues for algebraic solvers, with a goal of enabling appli- 
cations such as CHAD to experiment more easily with mul- 
tiple solution strategies and to upgrade as new algorithms 
with better latency tolerance or more efficient cache utiliza- 
tion are discovered and encapsulated within toolkits. This 
area is one of many (e.g., partitioning, mesh management, 
discretization, optimization, visualization) that could bene- 
fit from component-based infrastructure to facilitate the use 
different tools. 

3 Relationship to Existing Standards 

Component architecture standards such as CORBA [41], 

COM [46], and Java Beans [20] have been defined by in- 
dustrial corporations and consortia and are used by millions 
of users. Unfortunately, these standards do not address the 

problems of high-performance scientific computing. None 
of the industry standards supports efficient parallel commu- 
nication channels between components. What is needed 
are abstractions suitable for high-performance computing. 
The existence of many successful high-performance lan- 

guages and libraries-such as HPC++ [26], PGOMA [4], 
ISIS++ [12], SAMRAI [31], and PETSc [5]-testifies to 
the fact that such abstractions enable the user to develop 
more efficient programs faster. Similarly, we need abstrac- 

tions capturing high-performance concepts in component 
architectures. For example, PARDIS [37] and PAWS [6] 
successfully showed that introducing abstractions for sin- 
gle program multiple data (SPMD) computation leads to en- 
abling more efficient interactions between SPMD programs. 
In this section, we briefly review these industry standards 
and evaluate their limitations for high-performance scien- 
tific computing. 

3.1 Microsoft COM and ActiveX 

COM (Component Object Model) is Microsoft’s com- 

ponent standard that forms the basis for interoperability 
among all Window-based applications. ActiveX [ 1 l] de- 
fines standard COM interfaces for compound documents. 
Microsoft has developed a distributed version of COM 
called DCOM (Distributed COM) that targets networked 
Windows workstations. 

COM is targeted towards business objects and does not 
include abstractions for parallel data layout or basic scien- 
tific computing data types, like complex numbers, and For- 
tran style dynamic multi-dimensional arrays. Also, COM 
does not easily support implementation inheritance and 
multiple inheritance (which are implemented through ag- 
gregation or containment). Scientific libraries such as the 
ES1 [21] require multiple inheritance and a simple model 
for polymorphism, which are not provided by COM. 

3.2 Sun JavaBeans and Enterprise JavaBeans 

JavaBeans and Enterprise JavaBeans (EJB) are compo- 
nent architectures developed by Sun and its partners. They 
are based on Sun’s Java Programming language and are 
cross-platform competitors to Microsoft’s COM. 

Neither JavaBeans nor EJB directly address the issue of 
language interoperability and therefore are inappropriate for 
the scientific computing environment. Both JavaBeans and 
EJB assume that all components are written in the Java lan- 
guage. Although the Java Native Interface (JNI) [34] library 
supports interoperability with C and C++, using the Java 
virtual machine to mediate communication between com- 
ponents would incur an intolerable performance penalty on 

every inter-component function call. 

3.3 OMG CORBA 

CORBA (Common Object Request Broker Architecture) 

is a distributed object specification supported by the OMG 
(Object Management Group), a consortium of over eight 
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hundred partners. CORBA supports the interaction of com- 
plex objects written in different languages distributed across 

a network of computers running different operating sys- 
tems. 

CORBA focuses on distributed computing, not high- 
performance parallel computing, and therefore existing 
CORBA implementations incur unacceptable overheads in 
the packing and unpacking of arguments during a function 
call. The current CORBA specification does not define a 

component model, although a CORBA Beans component 
specification is currently under review by the OMB. Like 
COM, CORBA does not provide abstractions necessary for 
high-performance scientific, such as Fortran style dynamic 
multi-dimensional arrays and complex numbers. CORBA 
also has a limited object model in that the semantics of 
multiple implementation inheritance can lead to ambigui- 
ties and method overriding is not supported. 

4 Overview of the CCA Standard 

We define the Common Component Architecture (CCA) 
as a set of standards and their relationships as depicted 
in Figure 2. The elements with gray background pertain 
to specific implementations of a component architecture, 
while the elements with white background depict parts of 
the CCA standards necessary for component-level interop- 

erability. 
As shown in the picture, components interact with 

each other and with a specific framework implementa- 
tion through standard Application Programming Interfaces 
(APIs). Each component defines its inputs and outputs us- 
ing a Scientific Interface Definition Language (SIDL); these 
definitions can be deposited in and retrieved from a repos- 
itory by using the CCA Repository API. In addition, these 
definitions can serve as input to a proxy generator that gen- 
erates component stubs, which form the component-specific 
part of the CCA Ports. Components can use framework 
services directly through the CCA Services Interface. The 
CCA Configuration API ensures that the components can 
collaborate with different builders associated with different 
frameworks. 

A framework that conforms to these standards-that is, 
provides the required CCA services, can express component 

functionality using a SIDL, and implements the required 
CCA interfaces-is CCA compliant. Different components 
require different sets of services to interoperate. For exam- 

ple, some may require remote communication while others 
may communicate only in the same address space. There- 

fore, the CCA standard will define different flavors of com- 
pliance; each component will specify a minimum flavor of 
compliance required of a framework within which it can in- 

teract. 
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Repwitoly API Abstract Configuration API 

Figure 2. Common Component Architecture 

We will now describe the elements of the CCA standard 
in some detail: 

l The Scientific ZDL (SIDL) is a programming-language- 
neutral interface definition language used to describe 
component interfaces. The SIDL provides a method 
for describing component and framework interfaces 
that is independent of the underlying implementation 
programming languages. Component descriptions in 
SIDL can be deposited into and retrieved from repos- 
itories through the Repository Interface. Component 
descriptions are used by the proxy generator to pro- 
vide the “component stubs” element of communication 
Ports. 

l CCA Ports define the communication model for all 
component interactions. Each component defines one 
or more ports using the SIDL to describe the call- 
ing interface. Communication links between com- 
ponents are implemented by connecting compatible 
ports, where port compatibility is defined as object- 
oriented type compatibility of the port interfaces as de- 
scribed in the SIDL. As shown in Figure 2, each port 

has two parts. The first part is a library of framework- 
specific but component-independent functionality per- 
taining to component interaction (e.g., adding a lis- 
tener to an object) and has the same interface for every 

component. The second part implements component- 
specific but framework-independent functionality; this 
part can be automatically generated by a proxy gener- 

ator based on the component definition expressed in 
SIDL, and is referred to as a component stub. For 

example, a component stub may contain marshaling 
functions in a distributed environment. 

l CCA Services present a framework abstraction that can 
be used in the component stub implementation as well 



as by the components themselves; this CCA element 
provides a clear definition of the minimal services a 
CCA framework must implement in order to be CCA 
compliant. Two critical concerns guiding this design 
are that the services enable high-performance interac- 
tions and are sufficiently compact and user friendly to 
enable a rapid learning curve for component writers, 
many of whom will not be computer scientists. As 

such, we have identified that the key CCA services are 
creation of CCA Ports and access to CCA Ports, which 
in turn enable connections between components. 

Additional common facility services to handle nam- 
ing, relationship management, error handling, query- 
ing, etc., are of course also important, since in practice 
many components would need and could share these 
facilities. However, because the particular needs of dif- 
ferent components and frameworks vary considerably 
depending on usage environment, we view these areas 
within a secondary service category that is beyond the 
scope of this paper. 

l The Conjiguration API encompasses the functionality 
necessary to support interaction between components 
and a builder. This includes functions such as as noti- 
fying components that they have been added to a sce- 
nario or deleted from it, redirecting interactions be- 
tween components, or notifying a builder of a com- 
ponent failure. 

l The Repository API defines the functionality necessary 
to search a framework repository for components (as 
defined by the SIDL), as well as to manipulate compo- 
nents within the repository. 

A reference implementation is tracking the evolution of 
the common component architecture. Likewise, several 
ongoing computational science projects are experimenting 
with the CCA to manage interoperability among compo- 
nents developed by different research groups; these expe- 
riences will motivate further extensions and refinements to 
design. 

The following sections discuss features of this architec- 
ture that we believe are most critical for high-performance 
scientific computing, namely the SIDL and the ports model. 
Work on the other portions of the CCA standard is also in 
progress, but details are beyond the scope of this paper. 

5 The Scientific IDL 

The Scientific Interface Definition Language (SIDL) is 

a high-level description language used to specify the call- 
ing interfaces of software componenls and framework APIs 
in the component architecture. SIDL provides language 

interoperability that hides language dependencies to sim- 
plify the interoperability of components written in differ- 
ent programming languages. With the proliferation of lan- 
guages used for numerical simulation-such as C, C++ , 

Fortran 77, Fortran 90, Java, and Python--the 
lack of seamless language interoperability can be a signifi- 
cant barrier to developing reusable scientific components. 

For the purposes of our high-performance scientific com- 
ponent architecture, SIDL must be sufficiently expressive 
to represent the abstractions and data types common in sci- 
entific computing, such as dynamically dimensioned mul- 
tidimensional arrays and complex numbers. Unfortunately, 
no such IDL currently exists, since most IDLs have been 
designed for operating systems [ 18, 191 or for distributed 
client-server computing in the business domain [33,41,47]. 

The basic design of our scientific IDL borrows many 
concepts from current standards, such as the CORBA 
IDL [41] and the Java programming language [29]. This 
approach allows us to leverage existing IDL technology and 
language mappings. For example, CORBA already defines 
language mappings to C, C++, and Java, and ILU [33] 
(which supports the CORBA IDL) defines language map- 
pings to Python. 

The scientific IDL provides additional capabilities nec- 
essary for scientific computing [ 14,381. It supports object- 
oriented semantics with an inheritance model similar to that 
of Java with multiple inheritance of abstract interfaces 
but single inheritance of implementations. IDL support for 
multiple inheritance with method over-riding is essential for 
scientific libraries that exploit polymorphism through mul- 
tiple inheritance, such as some of solvers under develop- 
ment by the Equation Solver Interface [21] group. The IDL 
and associated run-time system provide facilities for cross- 
language error reporting. We have also added IDL primi- 
tive data types for complex numbers and multidimensional 
arrays for expressibility and efficiency when mapping to im- 
plementation languages. 

SIDL also supports reflection and dynamic method in- 
vocation, which are important capabilities for a com- 
ponent architecture. Interface information for dynami- 
cally loaded components is often unavailable at compile- 
time; thus, components and the associated composition 

tools and frameworks must discover, query, and exe- 
cute methods at run-time. The SIDL reflection and dy- 
namic method invocation mechanisms are based on the 

design of the Java library classes in j ava . lang and 
j ava . lang . re f let t . The SIDL compiler automati- 
cally generates reflection information for every interface 

and class based on its IDL description. 

In addition to existing CORBA language mappings, 
we are developing both Fortran 77 and Fortran 90 
mappings of our scientific IDL to enable scientific program- 
mers both to call and to write components in Fortran. 
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The Fortran 77 language mapping is similar to the C 
language mapping defined by CORBA except that SIDL in- 
terfaces and classes are mapped to Fortran integers in- 
stead of opaque data types. The SIDL run-time environment 
automatically manages the translation between the For- 
tran integer representation and the actual object reference. 
The Fortran 9 0 language mapping is still under devel- 
opment. Fortran 90 is a particular challenge for scien- 
tific language interoperability, since Fortran 9 0 calling 
conventions and array descriptors vary widely from com- 

piler to compiler. 

6 Component Interaction through Ports 

Every component architecture is characterized by the 

way in which components are composed together into ap- 
plications. As introduced in Section 4, CCA Ports can be 
considered communication end points that define the con- 
nection model for component interactions. Within Figure 1, 
ports define the interactions between relatively tightly cou- 
pled parallel numerical components, which typically re- 
quire very fast communication for scalable performance; 
ports also define loosely coupled interactions with possi- 
bly remote components that monitor, analyze, and visualize 

data. 
To address this range of latency requirements, we adopt 

a provides/uses interface exchange mechanism, similar to 
that within the CORBA 3.0 proposal [42]. This approach 
enables connections that do nor impede inter-component 
performance, yet allows a framework to create distributed 
connections when desired. In the ideal case, an attached 
component would react as quickly as an inline function call. 
We refer to this situation as direct connection, which is fur- 
ther discussed in Section 6.2. Loosely coupled distributed 
connections should be available through the very same in- 
terface as the tightly coupled direct connections, and with- 
out the components needing to be aware of the connection 
type. This need arises from the fact that high-performance 
components will often be parallel programs themselves. A 
parallel component may reside inside a single multiproces- 
sor or it may be distributed across many different hosts. 

Existing component models have no concept of attaching 
two parallel components together, and existing research sys- 
tems, such as Cumulvs [28], PAWS [6], and PARDIS [37], 
approach this problem in different ways. We therefore in- 
troduce a collective port model to enable interoperability 

between parallel components, as discussed in Section 6.3. 
We briefly survey approaches used for component inter- 

actions in other systems. In the Java Beans model [20], 

components notify other “listener” components by gener- 
ating events. Components that wish to be notified of events 
register themselves as “listeners” with the target compo- 
nents. In the DCOM model [46], one component calls 

the interface functions exported by another. In the pro- 
posed CORBA 3 component model, both events and a pro- 
vides/uses interface model[42] are used. 

6.1 The Basics of CCA Ports 

The concept of CCA Ports arises from the data-flow 
world, where component interacrions are limited to pipelin- 
ing data from one component to the next. CCA Ports 
are generalized to admit method calls and return values 
along the pipeline, allowing for a richer variety of com- 

ponent interactions. Links between components are im- 
plemented by a provides/uses (i.e., input/output) interface 
design pattern. The CCA Port concept is flexible enough 
to allow direct component interface connections for high- 
performance, or connections through proxy intermediaries 
enabling distributed object interactions. Significantly, in 
the CCA model, connecting ports is the responsibility of 
the framework; therefore, a particular CCA component may 
find itself connected in a variety of different ways depend- 
ing on its environment of use. 

In the CCA architecture components are linked together 
by connecting a “port” interface from one component to a 
“port” interface on another. There are two types of ports: 

l Provides (or input) port. A Provides port is an interface 
that a component provides to others. 

l Uses (or output) port. A Uses port interface has meth- 
ods that one component wants to call on another com- 
ponent. 

Provides ports are “listeners” in the sense that they listen 
to Uses interfaces (i.e., calls of their functions by another 
component). Each Uses port maintains a list of listeners. 
To connect one component to another, one simply adds a 
Provides (input) port of one component to another’s Uses 
(output) port. This approach follows many facets of the pro- 
posed CORBA 3.0 design. 

When a component calls a member function on one of its 
Uses ports, the same member function on each “listening” 
Provides port is called. Note that this means one call may 

correspond to zero or more invocations on provider compo- 
nents. If a value is returned by any of the interface’s meth- 
ods, then the user-provider link must be one-to-one. 

As introduced in Section 4, all interaction between the 

component and its containing framework will occur through 
the component’s CCAServices object, which is set by 

the containing framework. The component creates and adds 
Provides ports to the CCAServices, and registers and re- 
trieves Uses ports from the CCAServices. The CCASer- 

vices object enables access to the list of Provides and Uses 
Ports and can access an individual port by its instance name. 
It also implements a method for obtaining the various ports 
and registering them with the framework. 



We next consider an example of using CCA Ports for 
the simulation introduced within Section 2.2. This example 
demonstrates the use of the SIDL to express scientific ab- 
stractions in component interfaces and illustrates the one 
possible approach to using the ports concepts introduced 

above. 
[Note from Lois: Add example of using ports for one 

interaction introduced in Section 2, e.g., solving Ax=b, 
or visualizing field variables . . . We need to work out the 
details of this at the CCA meeting!] 

6.2 Direct-Connect Ports 

Much of the reason for adopting the CORBA3-like 
uses-provides interface exchange mechanism for connect- 
ing CCA components is to enable high-performance com- 
puting. Absent the SIDL bindings to UsesPort and Pro- 
videsPort interfaces, the overhead for the privilege of 
becoming a CCA component is nothing over a direct func- 
tion call to the connected object. That is, there is no penalty 
for using the uses-provides component connection mecha- 
nism proposed in the CCA specification. The cost for the 
intervening SIDL binding for language independence is es- 
timated to be around a 2-3 function call overhead. 

Direct connections between components can be accom- 
plished in a variety of ways, with probably the simplest be- 
ing to create an object that exports a DirectConnect- 
Port interface subclasses both the UsesPort and Pro- 
videsPort interfaces. This way the framework gets a 
Provides interface from one component and gives that same 
interface directly to a connecting component as a Uses in- 
terface. Note that with this approach the framework still 
retains full control over the connection between compo- 
nents. At the framework’s option the provided Direct- 
Connect Port can be made a proxy through a separate 
UsesPort provided by the framework, without the com- 
ponents on either end of the connection needing to know. 
(See [9] for additional information and an applet demon- 
stration.) 

6.3 Collective Ports 

Collective ports are an extension of the basic CCA ports 

that have been designed to handle interactions among par- 
allel components and thereby to free programmers from fo- 
cusing on the often intricate implementation-level details of 

parallel computations. Classes such as Port Inf o, Pro- 
videsPort and UsesPort are accessible from every 
thread or process in a parallel component. The CCA stan- 

dard does not place any restrictions on how this is enabled 
by a particular implementation. For example, in a dis- 
tributed memory model a copy of these classes could be 
maintained by every process participating in computation, 

whereas in shared memory a class could be represented only 
once. However, the CCA standard does require that as one 
of the CCA services the implementation maintain consis- 
tency between those classes. 

Collective ports are designed to implement interactions 
among parallel components. The creation of a collective 
port requires that the programmer specify the mapping of 
data (or processes participating) in the operations on this 

port. In the most common case the mappings of the input 
and output ports match each other. For example, n pro- 
cesses or threads in one component are mapped to n pro- 
cesses or threads in the other, and in this case data would 
not need redistribution between the parallel components. In 
the second most common case, a serial component interacts 
with a parallel component. The semantics of this interaction 
are very similar to broadcast, gather, and scatter semantics 
used in collective communication. By having the mapping 
be a property of the CCA-port, we are not restricted to 
these common cases. Collective ports are defined generally 
enough to allow data to be distributed arbitrarily in the con- 
nected components. 

7 Future Directions 

This discussion has introduced the foundation for re- 
search by the CCA Forum in defining a common component 
architecture that supports the particular needs of the high- 
performance scientific computing community that have not 
been and will not likely be addressed in existing compo- 
nent standards. Key facets of this work are development 
of an IDL that supports scientific abstractions for compo- 
nent interface specification and definition of a ports con- 
nection model that supports collective interactions. This 
architecture enables connections that do not impede inter- 
component performance, yet allows a framework to create 
distributed connections when desired. We will enhance the 
CCA design and the corresponding reference implementa- 
tion based on feedback from experiments of its use within 

several ongoing multi-institution computational science re- 
search projects. 

Future plans include incorporating support for different 
computational models (e.g., SPMD and threaded models) 

and extending the definition of CCA ports to accommodate 
dynamic interfaces. We are also investigating repository 
and services issues, where we plan to leverage capabili- 
ties of the mainstream computing community as much as 
possible. Once component-level interoperability has been 
achieved, we plan to compile a database of actual compo- 
nents based on existing applications; such a database will 

not only validate our work, but will also provide valuable 
feedback on how to improve the standard. Finally, we plan 
to address framework-level interoperability. 
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