
UCRL-JC- 134475

PREPRINT

Toward a Common Component Architecture
for High-Performance Scientific Computing

R. Armstrong, D. Gannon, A. Geist, K. Keahey, S. Kohn,
L. McInnes, S. Parker and B. Smolinski

This paper was prepared for submittal to the

8th Institute for Electrical and Electronis Engineers
International Symposium on High Performance Distributed Computing

Redondo Beach, CA
August 341999

June 9,1999

This is a preprint of a paper intended for publication in a journal or proceedings.
Since changes may be made before publication, this preprint is made available with
the understanding that it will not be cited or reproduced without the permission of the
author.

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of
the United States Government. Neither the United States Government nor the
University of California nor any of their employees, makes any warranty, express
or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise, does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the -United States
Government or the Universitv of California. The views and opinions of authors
expressed herein do not necessarily state or reflect those of ihe United States
Government or the University of California, and shall not be used for advertising
or product endorsement purposes.

Toward a Common Component Architecture for High-Performance
Scientific Computing *

Rob Armstrong+ Dennis Gannont Al Geists Katarzyna Keaheyq Scott Kohnll

Lois McInnes** Steve Parker*+ Brent SmolinskiSz

Abstract

This paper describes work in progress to develop a stan-
dardfor interoperability among high-pelformance scienti$c
components. This research stems from growing recognition
that the scientijic community must better manage the com-
plexity of multidisciplinary simulations and better address
scalable performance issues on parallel and distributed ar-
chitectures. Driving forces are the need for fast connec-

tions among components that pegorm numerically inten-
sive work and parallel collective interactions among com-
ponents that use multiple processes or threads. This pa-
per focuses on the areas we believe are most crucial for

such interactions, namely an inteeace dejinition language
that supports scientific abstractions for specifying compo-
nent interjaces and a ports connection model for specifying
component interactions.

1 Introduction

The complexity and resource demands of present day
software systems create the need for more flexible solutions
than those offered by conventional programming styles

*This work has been partially supported by the MICS Division of
the U.S. Department of Energy through the DOE2000 Initiative. For

further information on the Common Component Architecture Forum,
see http://www.acl.lanl.gov/cca-forum or write to cca-
forumQz.ca.sandia.gov.

t Sandia National Laboratory, rob@z _ ca. sandia . gov.

iIndianaUniversity, gannon@cs.indiana.edu

IOak Ridge National Laboratory, geist@msr. epm. ornl . go".

(Advanced Computing Laboratory, Los Alamos National Laboratory,
kate@lanl.gov.

I/Center for Applied Scientific Computing, Lawrence Livermore Na-
tional Laboratory, Livermore, CA 94551, skohnmllnl . gov.

**Mathematics and Computer Science Division, Argonne National Lab-

oratory,mcinnes@mcs.anl.gov.

tt Department of Computer Science, University of Utah,
sparker@taz.cs.utah.edu.

ii Center for Applied Scientific Computing, Lawrence Livermore Na-
tional Laboratory, Livermore, CA 94551, smolinski@llnl . gov.

based on a succession of subroutine calls. Component pro-
gramming, based on encapsulating functionality units and
providing a meta-language specification of their interfaces,
enables us to address these issues. A clear specification of
component outputs as well as inputs enables programmers
to integrate multiple software libraries, which may be de-
veloped by various groups with differing expertise. These
specifications enhance software reusability, since compo-
nents can serve as interchangeable pieces that can be dy-
namically added, removed, or replaced in an ongoing sim-
ulation. Furthermore, meta-language specifications allow
programmers to integrate components developed using dif-
ferent languages or libraries.

These advantages are especially appealing in high per-
formance scientific computing, where high-fidelity, multi-
physics simulations are increasingly complex and often re-
quire the combined expertise of multidisciplinary research
teams working in areas such as mathematical modeling,
adaptive mesh manipulations, numerical linear and non-
linear algebra, optimization, load balancing, computational
steering, parallel I/O, sensitivity analysis, visualization, and
data analysis. Consequently, the reusability and rapid appli-
cation development afforded by component programming
are of particular importance.

There are many differing opinions within the software

community about component definitions [7, 481. We
present some working definitions as preliminaries for fur-
ther discussion.

l A component is an independent unit of software de-

ployment. It satisfies a set of behavior rules and im-
plements standard component interfaces that allow it
to be easily composed with other components. These
behavior rules are often specified as designed patterns
that must be followed when writing the component.

l A component framework defines a set of interfaces
and rules of interaction that govern the communica-

tion among the components connected to the frame-
work [48]. Examples of component frameworks in-
clude JavaBeans [20] and DCOM [46].

l A component architecture encompasses the compo-
nent framework along with other necessary tools, such
as component repositories and composition tools.

In this context, component-based software develop-
ment can be considered a evolutionary step beyond object-
oriented design. Object-oriented techniques have been very
successful in managing the complexity of modern soft-
ware, but they have not resulted in significant amounts
of cross-project code reuse. Sharing object-oriented code
is difficult due to language incompatibilities, the lack of
standardization for inter-object communication, and the

need for compile-time coupling of interfaces. Component-
based software development addresses issues of language
independence-seamlessly combining components writ-
ten in different programming languages-and component
frameworks define standards for communication among
components. Component-based programming supports in-
cremental shifts in parallel algorithms and programming
paradigms that inevitably occur during the lifetimes of sci-
entific application codes.

In addition, since components can be configured to exe-
cute in remote locations, component programming can of-
fer high-level abstractions facilitating the use of remote su-
percomputing resources. Systems such as Legion [30] and
Globus [22] have shown that distributed high-performance
programming can offer enormous potential as a gateway to
the computational grid [23]. Through defining high-level
abstractions, component programming brings us closer to
reducing the programming overhead required to tap into that
potential.

The mainstream computing community has defined
component standards such as CORBA [41], COM [46],
and Java Beans [20] to address similar complexities within
their target applications (see Section 3 for a detailed discus-
sion). Our approach leverages this work where appropriate,
but addresses the distinctly different technical challenges
of large-scale, high-performance scientific simulations. We
have recently established the Common Component Archi-
tecture Forum (CCA) [16], a group whose current mem-
bership is drawn from various Department of Energy na-
tional laboratories and collaborating academic institutions.

A number of different research high-performance compo-
nent architectures have been developed or are currently un-
der development by CCA participants [3,45,27,32,36,37],
and various research projects are considering related de-

sign issues [I, 28, 61. Based on the lessons learned from
these research efforts, we are developing a single high-
performance component interface standard that will enable

interactions among the scientific components that follow
this standard. Additional related work on software de-
sign issues for high-performance scientific computing in-

cludes [10, 8,24, 35, 391.
We recognize two levels of interoperability: component-

level interoperability, for which all the vital functions of any
one architecture are accessible to any compliant component
through a standard interface (e.g., facilities available within
a CORBA ORB), and framework-level interoperability, for
which the frameworks themselves interoperate through a
standardized interface (e.g., inter-ORB communication via
CORBA IIOP). Providing component-level interoperability
requires defining a data and interaction model common for
all components and a small set of indispensable high-level
framework services. In addition, framework-level interop-
erability requires the standardization of a number low-level
services. Since providing a framework-level interoperabil-

ity standard requires a superset of features that need to be
defined for component-level interoperability, our current fo-
cus is on providing the latter and extending it in the future
to include framework-level interoperability features. The
scope of this paper is limited to component-level interoper-
ability.

The remainder of this paper motivates and explains our

approach, beginning in Section 2 with a discussion of some
of the challenges in large-scale scientific computing. Sec-
tion 3 compares our strategy with related work in the main-
stream computing community. Section 4 presents a high-
level view of the CCA standard and provides a roadmap
outlining the relationships among its constituents. The suc-
ceeding two sections describe in detail the parts of the CCA
standard that are most crucial for defining component inter-
actions in high-performance scientific software, namely a
scientific interface definition language and ports with direct-
connect and collective capabilities. Finally, Section 7 out-
lines future directions of work.

2 Motivating Examples

Our work is motivated by collaborations with various

computational science research teams, who are investigat-
ing areas such as combustion [1.5], materials science [49],

climate, accelerator physics, and fusion [44], among many
others. In conjunction with theoretical and experimental re-

search, these simulations are playing increasingly impor-
tant roles in overall scientific advances, particularly in fields
where experimental models are prohibitively costly, time
consuming, or in some cases impossible.

While each of these simulations requires different math-

ematical models, numerical methods, and data analysis
techniques, they could all benefit from infrastructure that
is more flexible and extensible and therefore better able to
manage complexity and change. Designing such tools is
difficult given our target architectures, which range from

clusters of networked workstations to clusters of symmetric
multiprocessors and possibly distributed resources. Addi-
tional challenges arise because of the diversity of our tar-
get software users and developers - scientific researchers,

3

who have different programming paradigm preferences and
widely varying experience in translating scientific abstrac-
tions into large-scale codes.

To enable more concrete discussion of the CCA ap-
proach, we briefly review some challenges arising in chem-
ically reacting flow simulations, which are demanding due
to the requirements for high resolution and complex phys-
ical submodels for turbulence, chemistry, and multiphase
flows. Section 2.1 presents current functionality of a partic-
ular application, while Section 2.2 describes potential en-
hancements that component-based technology could help to
support in interoperable tools for numerics, data analysis,

and domain-specific problem solving infrastructure.

2.1 Computational Hydrodynamics

We consider the CHAD (Computational Hydrodynam-
ics for Advanced Design) application [15, 431, which has
been developed for Auids simulations in the automotive in-
dustry under the Supercomputing Automotive Applications
Partnership CRADA with the United States Council for
Automotive Research and five Department of Energy na-
tional laboratories (Argonne, Los Alamos, Lawrence Liv-
ermore, Oak Ridge, and Sandia). CHAD is the successor
of KIVA [2], which has become a standard tool for device-
level modeling of internal combustion engines. CHAD is
intended for automotive design applications such as com-
bustion, interior airflow (HVAC), under-hood cooling, and
exterior flows; the application was designed from its incep-
tion as parallel code using FORTRAN90 and encapsulation
of nonlocal communication in gather/scatter routines using
the Message Passing Interface (MPI) standard [40].

CHAD computes three-dimensional fluid flows with
chemical reactions and fuel sprays. The current code solves
the single-phase, compressible, Navier-Stokes equations us-
ing an arbitrary Lagrangian-Eulerian (ALE) formulation to
allow a moving mesh; for turbulent flows a standard K - E
turbulence model is employed. The resulting nonlinear sys-
tem may be expressed as

where t indicates time, and qm represent the independent
field variables (pressure, velocity, etc.). The indices 1, m

range over 1,2, . . . N, where N is the number of indepen-

dent field variables. Hybrid unstructured meshes are used to
construct vertex-centric control volumes for use in an edge-

based finite volume discretization scheme.

2.2 Component Challenges and Opportunities

Continuing a trend toward more implicit formula-
tions, CHAD researchers are experimenting with numeri-
cal strategies ranging from explicit through semi-implicit

and even more fully implicit schemes using Newton-type
methods. Increased implicitness helps to overcome stability
and accuracy restrictions on computational timesteps, and
thereby can often help to reduce overall time to solution.

Figure 1 demonstrates some typical interactions among
components for a semi-implicit solution procedure within
a simplified PDE-based numerical model. Parallel numeri-
cal components that use distributed data structures and re-
quire interconnections with low latency and high bandwidth
are represented by the overlayed boxes in the right-hand-

side of the figure. Components for visualization of field
variables, which can often be loosely coupled and differ-
ently distributed than the numerical components, are shown
in the left-hand-side box. While a single diagram cannot
express the richness of interactions within CHAD, nor the
range of functionality needed by the various scientific ap-
plications that motivate this work, this picture does convey

key themes that motivate the CCA approach: (1)fast inter-
actions between components that perform numerically in-
tensive work, as shown by the directly connected ports in
the right-hand-side boxes (see Section 6.2); (2) collective
interactions among components that use multiple processes
or threads; such interactions are needed for both tightly cou-
pled tasks such as solving algebraic systems and loosely
coupled tasks such as visualizing field variables (see Sec-
tion 6.3); and (3) the use of possibly distributed resources
for phases like data analysis and visualization.

Linear solve:

v’jj=Q(voa(“+l))

Local stencil:
“m+u =p+c -f(j)

Figure 1. Schematic Diagram of Component
Interactions

The goals of the CCA forum are to simplify the in-
fusion of new techniques within the lifetimes of existing

applications such as CHAD as well as to facilitate the
construction of new models. Interactions among multi-
ple tools that use current-generation infrastructure typically

3

require labor-intensive translations between interfaces and
data structures. We aim to simplify this process and also
to enable dynamic interactions, since researchers may wish

to introduce new components during the course of ongoing
simulations. For example, a researcher may wish to visu-
alize flow fields on a local workstation by dynamically at-
taching a visualization tool to an ongoing simulation that is
running on a remote parallel machine. Upon observing that
the flow fields are not converging as expected, he may wish
to introduce a new scheme for hierarchical mesh refinement.

The CCA assumes component granularity at the proce-
dural level. This can range from relatively fine granularity
when the procedure is a call to a subroutine implementing
a subtask, to very coarse granularity when the procedure is
associated with an entire parallel application. We note that
developers must carefully consider a computation’s gran-
ularity when determining whether to use abstraction via
component-based (or even simply object-oriented) design.
The overhead of indirection is usually considered too high
for very fine-grained tasks such as a single scalar computa-
tion, but can be adequately amortized for aggregate opera-
tions on a collection of data.

One of the most computationally intensive phases within
the semi-implicit and implicit strategies under consideration
within CHAD is the solution of discretized linear systems of
the form AZ = 6, which are very large (O(l,OOO, 000) or
orders of magnitude higher, even for relatively simple ge-
ometric domains) and have sparse coefficient matrices A.
Preconditioned Krylov methods [25], which can be repre-
sented as ML-,Ax = M~-lb, are among the most ef-
fective solution strategies for such systems. The Equation
Solver Interface Forum [131, is exploring interoperability
issues for algebraic solvers, with a goal of enabling appli-
cations such as CHAD to experiment more easily with mul-
tiple solution strategies and to upgrade as new algorithms
with better latency tolerance or more efficient cache utiliza-
tion are discovered and encapsulated within toolkits. This
area is one of many (e.g., partitioning, mesh management,
discretization, optimization, visualization) that could bene-
fit from component-based infrastructure to facilitate the use
different tools.

3 Relationship to Existing Standards

Component architecture standards such as CORBA [41],

COM [46], and Java Beans [20] have been defined by in-
dustrial corporations and consortia and are used by millions
of users. Unfortunately, these standards do not address the

problems of high-performance scientific computing. None
of the industry standards supports efficient parallel commu-
nication channels between components. What is needed
are abstractions suitable for high-performance computing.
The existence of many successful high-performance lan-

guages and libraries-such as HPC++ [26], PGOMA [4],
ISIS++ [12], SAMRAI [31], and PETSc [5]-testifies to
the fact that such abstractions enable the user to develop
more efficient programs faster. Similarly, we need abstrac-

tions capturing high-performance concepts in component
architectures. For example, PARDIS [37] and PAWS [6]
successfully showed that introducing abstractions for sin-
gle program multiple data (SPMD) computation leads to en-
abling more efficient interactions between SPMD programs.
In this section, we briefly review these industry standards
and evaluate their limitations for high-performance scien-
tific computing.

3.1 Microsoft COM and ActiveX

COM (Component Object Model) is Microsoft’s com-

ponent standard that forms the basis for interoperability
among all Window-based applications. ActiveX [1 l] de-
fines standard COM interfaces for compound documents.
Microsoft has developed a distributed version of COM
called DCOM (Distributed COM) that targets networked
Windows workstations.

COM is targeted towards business objects and does not
include abstractions for parallel data layout or basic scien-
tific computing data types, like complex numbers, and For-
tran style dynamic multi-dimensional arrays. Also, COM
does not easily support implementation inheritance and
multiple inheritance (which are implemented through ag-
gregation or containment). Scientific libraries such as the
ES1 [21] require multiple inheritance and a simple model
for polymorphism, which are not provided by COM.

3.2 Sun JavaBeans and Enterprise JavaBeans

JavaBeans and Enterprise JavaBeans (EJB) are compo-
nent architectures developed by Sun and its partners. They
are based on Sun’s Java Programming language and are
cross-platform competitors to Microsoft’s COM.

Neither JavaBeans nor EJB directly address the issue of
language interoperability and therefore are inappropriate for
the scientific computing environment. Both JavaBeans and
EJB assume that all components are written in the Java lan-
guage. Although the Java Native Interface (JNI) [34] library
supports interoperability with C and C++, using the Java
virtual machine to mediate communication between com-
ponents would incur an intolerable performance penalty on

every inter-component function call.

3.3 OMG CORBA

CORBA (Common Object Request Broker Architecture)

is a distributed object specification supported by the OMG
(Object Management Group), a consortium of over eight

4

hundred partners. CORBA supports the interaction of com-
plex objects written in different languages distributed across

a network of computers running different operating sys-
tems.

CORBA focuses on distributed computing, not high-
performance parallel computing, and therefore existing
CORBA implementations incur unacceptable overheads in
the packing and unpacking of arguments during a function
call. The current CORBA specification does not define a

component model, although a CORBA Beans component
specification is currently under review by the OMB. Like
COM, CORBA does not provide abstractions necessary for
high-performance scientific, such as Fortran style dynamic
multi-dimensional arrays and complex numbers. CORBA
also has a limited object model in that the semantics of
multiple implementation inheritance can lead to ambigui-
ties and method overriding is not supported.

4 Overview of the CCA Standard

We define the Common Component Architecture (CCA)
as a set of standards and their relationships as depicted
in Figure 2. The elements with gray background pertain
to specific implementations of a component architecture,
while the elements with white background depict parts of
the CCA standards necessary for component-level interop-

erability.
As shown in the picture, components interact with

each other and with a specific framework implementa-
tion through standard Application Programming Interfaces
(APIs). Each component defines its inputs and outputs us-
ing a Scientific Interface Definition Language (SIDL); these
definitions can be deposited in and retrieved from a repos-
itory by using the CCA Repository API. In addition, these
definitions can serve as input to a proxy generator that gen-
erates component stubs, which form the component-specific
part of the CCA Ports. Components can use framework
services directly through the CCA Services Interface. The
CCA Configuration API ensures that the components can
collaborate with different builders associated with different
frameworks.

A framework that conforms to these standards-that is,
provides the required CCA services, can express component

functionality using a SIDL, and implements the required
CCA interfaces-is CCA compliant. Different components
require different sets of services to interoperate. For exam-

ple, some may require remote communication while others
may communicate only in the same address space. There-

fore, the CCA standard will define different flavors of com-
pliance; each component will specify a minimum flavor of
compliance required of a framework within which it can in-

teract.

5

I CCA Porte a Part of CCA ports specific to the framework

Repwitoly API Abstract Configuration API

Figure 2. Common Component Architecture

We will now describe the elements of the CCA standard
in some detail:

l The Scientific ZDL (SIDL) is a programming-language-
neutral interface definition language used to describe
component interfaces. The SIDL provides a method
for describing component and framework interfaces
that is independent of the underlying implementation
programming languages. Component descriptions in
SIDL can be deposited into and retrieved from repos-
itories through the Repository Interface. Component
descriptions are used by the proxy generator to pro-
vide the “component stubs” element of communication
Ports.

l CCA Ports define the communication model for all
component interactions. Each component defines one
or more ports using the SIDL to describe the call-
ing interface. Communication links between com-
ponents are implemented by connecting compatible
ports, where port compatibility is defined as object-
oriented type compatibility of the port interfaces as de-
scribed in the SIDL. As shown in Figure 2, each port

has two parts. The first part is a library of framework-
specific but component-independent functionality per-
taining to component interaction (e.g., adding a lis-
tener to an object) and has the same interface for every

component. The second part implements component-
specific but framework-independent functionality; this
part can be automatically generated by a proxy gener-

ator based on the component definition expressed in
SIDL, and is referred to as a component stub. For

example, a component stub may contain marshaling
functions in a distributed environment.

l CCA Services present a framework abstraction that can
be used in the component stub implementation as well

as by the components themselves; this CCA element
provides a clear definition of the minimal services a
CCA framework must implement in order to be CCA
compliant. Two critical concerns guiding this design
are that the services enable high-performance interac-
tions and are sufficiently compact and user friendly to
enable a rapid learning curve for component writers,
many of whom will not be computer scientists. As

such, we have identified that the key CCA services are
creation of CCA Ports and access to CCA Ports, which
in turn enable connections between components.

Additional common facility services to handle nam-
ing, relationship management, error handling, query-
ing, etc., are of course also important, since in practice
many components would need and could share these
facilities. However, because the particular needs of dif-
ferent components and frameworks vary considerably
depending on usage environment, we view these areas
within a secondary service category that is beyond the
scope of this paper.

l The Conjiguration API encompasses the functionality
necessary to support interaction between components
and a builder. This includes functions such as as noti-
fying components that they have been added to a sce-
nario or deleted from it, redirecting interactions be-
tween components, or notifying a builder of a com-
ponent failure.

l The Repository API defines the functionality necessary
to search a framework repository for components (as
defined by the SIDL), as well as to manipulate compo-
nents within the repository.

A reference implementation is tracking the evolution of
the common component architecture. Likewise, several
ongoing computational science projects are experimenting
with the CCA to manage interoperability among compo-
nents developed by different research groups; these expe-
riences will motivate further extensions and refinements to
design.

The following sections discuss features of this architec-
ture that we believe are most critical for high-performance
scientific computing, namely the SIDL and the ports model.
Work on the other portions of the CCA standard is also in
progress, but details are beyond the scope of this paper.

5 The Scientific IDL

The Scientific Interface Definition Language (SIDL) is

a high-level description language used to specify the call-
ing interfaces of software componenls and framework APIs
in the component architecture. SIDL provides language

interoperability that hides language dependencies to sim-
plify the interoperability of components written in differ-
ent programming languages. With the proliferation of lan-
guages used for numerical simulation-such as C, C++ ,

Fortran 77, Fortran 90, Java, and Python--the
lack of seamless language interoperability can be a signifi-
cant barrier to developing reusable scientific components.

For the purposes of our high-performance scientific com-
ponent architecture, SIDL must be sufficiently expressive
to represent the abstractions and data types common in sci-
entific computing, such as dynamically dimensioned mul-
tidimensional arrays and complex numbers. Unfortunately,
no such IDL currently exists, since most IDLs have been
designed for operating systems [18, 191 or for distributed
client-server computing in the business domain [33,41,47].

The basic design of our scientific IDL borrows many
concepts from current standards, such as the CORBA
IDL [41] and the Java programming language [29]. This
approach allows us to leverage existing IDL technology and
language mappings. For example, CORBA already defines
language mappings to C, C++, and Java, and ILU [33]
(which supports the CORBA IDL) defines language map-
pings to Python.

The scientific IDL provides additional capabilities nec-
essary for scientific computing [14,381. It supports object-
oriented semantics with an inheritance model similar to that
of Java with multiple inheritance of abstract interfaces
but single inheritance of implementations. IDL support for
multiple inheritance with method over-riding is essential for
scientific libraries that exploit polymorphism through mul-
tiple inheritance, such as some of solvers under develop-
ment by the Equation Solver Interface [21] group. The IDL
and associated run-time system provide facilities for cross-
language error reporting. We have also added IDL primi-
tive data types for complex numbers and multidimensional
arrays for expressibility and efficiency when mapping to im-
plementation languages.

SIDL also supports reflection and dynamic method in-
vocation, which are important capabilities for a com-
ponent architecture. Interface information for dynami-
cally loaded components is often unavailable at compile-
time; thus, components and the associated composition

tools and frameworks must discover, query, and exe-
cute methods at run-time. The SIDL reflection and dy-
namic method invocation mechanisms are based on the

design of the Java library classes in j ava . lang and
j ava . lang . re f let t . The SIDL compiler automati-
cally generates reflection information for every interface

and class based on its IDL description.

In addition to existing CORBA language mappings,
we are developing both Fortran 77 and Fortran 90
mappings of our scientific IDL to enable scientific program-
mers both to call and to write components in Fortran.

6

The Fortran 77 language mapping is similar to the C
language mapping defined by CORBA except that SIDL in-
terfaces and classes are mapped to Fortran integers in-
stead of opaque data types. The SIDL run-time environment
automatically manages the translation between the For-
tran integer representation and the actual object reference.
The Fortran 9 0 language mapping is still under devel-
opment. Fortran 90 is a particular challenge for scien-
tific language interoperability, since Fortran 9 0 calling
conventions and array descriptors vary widely from com-

piler to compiler.

6 Component Interaction through Ports

Every component architecture is characterized by the

way in which components are composed together into ap-
plications. As introduced in Section 4, CCA Ports can be
considered communication end points that define the con-
nection model for component interactions. Within Figure 1,
ports define the interactions between relatively tightly cou-
pled parallel numerical components, which typically re-
quire very fast communication for scalable performance;
ports also define loosely coupled interactions with possi-
bly remote components that monitor, analyze, and visualize

data.
To address this range of latency requirements, we adopt

a provides/uses interface exchange mechanism, similar to
that within the CORBA 3.0 proposal [42]. This approach
enables connections that do nor impede inter-component
performance, yet allows a framework to create distributed
connections when desired. In the ideal case, an attached
component would react as quickly as an inline function call.
We refer to this situation as direct connection, which is fur-
ther discussed in Section 6.2. Loosely coupled distributed
connections should be available through the very same in-
terface as the tightly coupled direct connections, and with-
out the components needing to be aware of the connection
type. This need arises from the fact that high-performance
components will often be parallel programs themselves. A
parallel component may reside inside a single multiproces-
sor or it may be distributed across many different hosts.

Existing component models have no concept of attaching
two parallel components together, and existing research sys-
tems, such as Cumulvs [28], PAWS [6], and PARDIS [37],
approach this problem in different ways. We therefore in-
troduce a collective port model to enable interoperability

between parallel components, as discussed in Section 6.3.
We briefly survey approaches used for component inter-

actions in other systems. In the Java Beans model [20],

components notify other “listener” components by gener-
ating events. Components that wish to be notified of events
register themselves as “listeners” with the target compo-
nents. In the DCOM model [46], one component calls

the interface functions exported by another. In the pro-
posed CORBA 3 component model, both events and a pro-
vides/uses interface model[42] are used.

6.1 The Basics of CCA Ports

The concept of CCA Ports arises from the data-flow
world, where component interacrions are limited to pipelin-
ing data from one component to the next. CCA Ports
are generalized to admit method calls and return values
along the pipeline, allowing for a richer variety of com-

ponent interactions. Links between components are im-
plemented by a provides/uses (i.e., input/output) interface
design pattern. The CCA Port concept is flexible enough
to allow direct component interface connections for high-
performance, or connections through proxy intermediaries
enabling distributed object interactions. Significantly, in
the CCA model, connecting ports is the responsibility of
the framework; therefore, a particular CCA component may
find itself connected in a variety of different ways depend-
ing on its environment of use.

In the CCA architecture components are linked together
by connecting a “port” interface from one component to a
“port” interface on another. There are two types of ports:

l Provides (or input) port. A Provides port is an interface
that a component provides to others.

l Uses (or output) port. A Uses port interface has meth-
ods that one component wants to call on another com-
ponent.

Provides ports are “listeners” in the sense that they listen
to Uses interfaces (i.e., calls of their functions by another
component). Each Uses port maintains a list of listeners.
To connect one component to another, one simply adds a
Provides (input) port of one component to another’s Uses
(output) port. This approach follows many facets of the pro-
posed CORBA 3.0 design.

When a component calls a member function on one of its
Uses ports, the same member function on each “listening”
Provides port is called. Note that this means one call may

correspond to zero or more invocations on provider compo-
nents. If a value is returned by any of the interface’s meth-
ods, then the user-provider link must be one-to-one.

As introduced in Section 4, all interaction between the

component and its containing framework will occur through
the component’s CCAServices object, which is set by

the containing framework. The component creates and adds
Provides ports to the CCAServices, and registers and re-
trieves Uses ports from the CCAServices. The CCASer-

vices object enables access to the list of Provides and Uses
Ports and can access an individual port by its instance name.
It also implements a method for obtaining the various ports
and registering them with the framework.

We next consider an example of using CCA Ports for
the simulation introduced within Section 2.2. This example
demonstrates the use of the SIDL to express scientific ab-
stractions in component interfaces and illustrates the one
possible approach to using the ports concepts introduced

above.
[Note from Lois: Add example of using ports for one

interaction introduced in Section 2, e.g., solving Ax=b,
or visualizing field variables . . . We need to work out the
details of this at the CCA meeting!]

6.2 Direct-Connect Ports

Much of the reason for adopting the CORBA3-like
uses-provides interface exchange mechanism for connect-
ing CCA components is to enable high-performance com-
puting. Absent the SIDL bindings to UsesPort and Pro-
videsPort interfaces, the overhead for the privilege of
becoming a CCA component is nothing over a direct func-
tion call to the connected object. That is, there is no penalty
for using the uses-provides component connection mecha-
nism proposed in the CCA specification. The cost for the
intervening SIDL binding for language independence is es-
timated to be around a 2-3 function call overhead.

Direct connections between components can be accom-
plished in a variety of ways, with probably the simplest be-
ing to create an object that exports a DirectConnect-
Port interface subclasses both the UsesPort and Pro-
videsPort interfaces. This way the framework gets a
Provides interface from one component and gives that same
interface directly to a connecting component as a Uses in-
terface. Note that with this approach the framework still
retains full control over the connection between compo-
nents. At the framework’s option the provided Direct-
Connect Port can be made a proxy through a separate
UsesPort provided by the framework, without the com-
ponents on either end of the connection needing to know.
(See [9] for additional information and an applet demon-
stration.)

6.3 Collective Ports

Collective ports are an extension of the basic CCA ports

that have been designed to handle interactions among par-
allel components and thereby to free programmers from fo-
cusing on the often intricate implementation-level details of

parallel computations. Classes such as Port Inf o, Pro-
videsPort and UsesPort are accessible from every
thread or process in a parallel component. The CCA stan-

dard does not place any restrictions on how this is enabled
by a particular implementation. For example, in a dis-
tributed memory model a copy of these classes could be
maintained by every process participating in computation,

whereas in shared memory a class could be represented only
once. However, the CCA standard does require that as one
of the CCA services the implementation maintain consis-
tency between those classes.

Collective ports are designed to implement interactions
among parallel components. The creation of a collective
port requires that the programmer specify the mapping of
data (or processes participating) in the operations on this

port. In the most common case the mappings of the input
and output ports match each other. For example, n pro-
cesses or threads in one component are mapped to n pro-
cesses or threads in the other, and in this case data would
not need redistribution between the parallel components. In
the second most common case, a serial component interacts
with a parallel component. The semantics of this interaction
are very similar to broadcast, gather, and scatter semantics
used in collective communication. By having the mapping
be a property of the CCA-port, we are not restricted to
these common cases. Collective ports are defined generally
enough to allow data to be distributed arbitrarily in the con-
nected components.

7 Future Directions

This discussion has introduced the foundation for re-
search by the CCA Forum in defining a common component
architecture that supports the particular needs of the high-
performance scientific computing community that have not
been and will not likely be addressed in existing compo-
nent standards. Key facets of this work are development
of an IDL that supports scientific abstractions for compo-
nent interface specification and definition of a ports con-
nection model that supports collective interactions. This
architecture enables connections that do not impede inter-
component performance, yet allows a framework to create
distributed connections when desired. We will enhance the
CCA design and the corresponding reference implementa-
tion based on feedback from experiments of its use within

several ongoing multi-institution computational science re-
search projects.

Future plans include incorporating support for different
computational models (e.g., SPMD and threaded models)

and extending the definition of CCA ports to accommodate
dynamic interfaces. We are also investigating repository
and services issues, where we plan to leverage capabili-
ties of the mainstream computing community as much as
possible. Once component-level interoperability has been
achieved, we plan to compile a database of actual compo-
nents based on existing applications; such a database will

not only validate our work, but will also provide valuable
feedback on how to improve the standard. Finally, we plan
to address framework-level interoperability.

8

Acknowledgments

The Common Component Architecture (CCA) Forum

was initially inspired by the DOE2000 Initiative [17] and

is motivated by ongoing collaborations with various scien-

tific research groups. We especially thank Tom Canfield for

conveying some of the challenges in device-scale combus-

tion modeling, as discussed in Section 2.

The CCA Forum comprises researchers from national

laboratories within the Department of Energy and collab-

orating academic institutions; current participants are Ar-

gonne National Laboratory, Indiana University, Lawrence

Berkley National Laboratory, Lawrence Livermore Na-

tional Laboratory, Los Alamos National Laboratory, Oak

Ridge National Laboratory, Sandia National Laboratory and

the University of Utah. The results presented here were

developed with the participation of various individuals at

these institutions, including Rob Armstrong, Pete Beckman,

Randal Bramley, Robert Clay, Andrew Cleary, Al Geist,

Paul Hovland, Bill Humphery, Kate Keahey, Scott Kohn,

Lois McInnes, Bill Mason, Carl Melius, Brent Milne, Noel

Nachtigal, Steve Parker, Barry Smith, Steve Smith, Brent

Smolinski, and John Wu. These ideas have been influenced

by laboratory and university software development teams,

some of whose members are represented above.

References

111

PI

131

[41

[51

[61

ALICE Web page. http://www.mcs.anl.gov/alice, Mathe-

matics and Computer Science Division, Argonne National

Laboratory.

A. A. Amsden, P. J. O’Rourke, and T. D. Butler. KIVA-
II: A computer program for chemically reactive flows with
sprays. Technical Report LA-l 1560-MS, Los Alamos Na-

tional Laboratory, May 1989.

R. C. Armstrong and A. Chung. POET (parallel object-
oriented environment and toolkit) and frameworks for sci-

entific distributed computing. In Hawaii International Conf

on System Sci., 1997.

S. Atlas, S. Banerjee, J. Cummings, P. J. Hinker, M. Srikant,

J. V. W. Reynders, and M. Tholbum. POOMA: A High Per-

formance Distributed Simulation Environment for Scientific
Applications. In Supercomputing ‘9.5 Proceedings, Decem-

ber 1995.

S. Balay, W. D. Gropp, L. C. McInnes, and B. F. Smith.

Efficient management of parallelism in object oriented nu-

merical software libraries. In E. Arge, A. M. Bruaset, and

H. P. Langtangen, editors, Modern Software Tools in Scien-

tific Computing, pages 163-202. Birkhauser Press, 1997.

P. H. Beckman, P. K. Fasel, W. F. Humphrey, and S. M.

Mniszewski. Efficient Coupling of Parallel Applications Us-

ing PAWS. In Proceedings of the 7th IEEE International

Symposium on High Performance Distributed Computation,

July 1998.

171

181

[91

UOI

[Ill

I121

[131

[141

1151

I161

[I71

1181

1191

WI
PII

1221

~31

[241

WI

[261

9

M. Broy, A. Deimel, J. Henn, K. Koskimies, F. PlaSil,

G. Pomberger, W. Pree, M. Stal, and C. Szyperski. What

Characterizes a (Software) Component? Software - Con-
cepts and Tools, 19:49-56, 1998.
H. Casanova, J. Dongarra, C. Johnson, and M. Miller. Tools
for Building Distributed Scientific Applications and Net-

work Enabled Servers, 1998. In Computational Grids.
CCA Ports Web page. http://z.ca.sandia.gov/-cca-

forum/gport-spec.
K. M. Chandy, A. Rifkin, P. A. Sivilotti, J. Mandelson,

M. Richardson, W. Tanaka, and L. Weisman. A World-
Wide Distributed System Using Java and the Internet. In

Proceedings of the Fifth IEEE International Symposium on

High Pegormance Distributed Computing. IEEE Computer
Society Press, August 1996.

D. Chappell. Understanding ActiveX and OLE. Microsoft
Press, 1997.
R. L. Clay, K. Mish, and A. B. Williams. ISIS++ Web page.
http://ca.sandia.gov/isis.
R. Clay et al. Equation Solver Interface Working Group

Web page. http://z.ca.sandia.gov/esi.
A. Cleary, S. Kohn, S. Smith, and B. Smolinski. Language

interoperability mechanisms for high-performance scientific

computing. In Proceedings of the SIAM Workshop on
Object-Oriented Methods for Inter-Operable Scient$c and
Engineering Computing, October 1998.
J. P. Collins, P. Colella, and H. M. Glaz. Implicit-explicit

eulerian godunov scheme for compressible flows. J. Comp.

Phys., 116:195-211, 1995.
Common Component Architecture Forum. See
http://www.acl.lanl.gov/cca-forum.
DOE2000 Initiative Web page.
http://www.mcs.anl.gov/DOE2000.
G. Eddon and H. Eddon. Inside Distributed COM. Microsoft

Press, Redmond, WA, 1998.
E. Eide, J. Lepreau, and J. L. Simister. Flexible and opti-

mized IDL compilation for distributed applications. In Pro-

ceedings of the Fourth Workshop on Languages, Compilers,
and Run-time Systems for Scalable Computers, 1998.
R. Englander. Developing Java Beans. O’Reilly, June 1997.
Equations Solver Interface Forum. See
http://z.ca.sandia.gov/esi/.
I. Foster and C. Kesselman. Globus: A Metacomputing In-

frastructure Toolkit. The International Journal of Super-

computer Applications and High Performance Computing,

11(2):115-128, 1997.
I. Foster and C. Kesselman. Computational Grids: State

of the Art and Future Directions in High-Performance Dis-

tributed Computing. Morgan-Kaufman, 1998.
G. Fox and W. Furmanski. Web Technologies in High Per-

formance Distributed Computing, 1998. In Computational

Grids.
R. Freund, G. H. Golub, and N. Nachtigal. Iterative So-

lution of Linear Systems, pages 57-100. Acta Numerica.
Cambridge University Press, 1992.
D. Gannon, P. Beckman, E. Johnson, T. Green, and

M. Levine. HPC++ and the HPC++Lib Toolkit. languages,

Compilation Techniques and Run Time Systems (Recent Ad-

vances and Future Perspectives),To appear.

[27] D. Gannon, R. Bramley, T. Stuckey, J. Villacis, J. Balasubra-
manian, E. Akman, F. Breg, S. Diwan, and M. Govindaraju.

“component architectures for distributed scientific problem
solving”. IEEE Computational Science and Engineering,

5(2):50-63, 1998.
[28] A. Geist, J. Kohl, and P. Papadopoulos. CUMULVS: Provid-

ing Fault Tolerance, Visualization and Steering of Parallel

Applications. The International Journal of Supercomputer
Applications and High Performance Computing, (11):224-

235,1997.
[29] J. Gosling, B. Joy, and G. Steele.

The Java Language Specijcation, July 1996. Available at

http://java.sun.com.
[30] A. S. Grimshaw and W. A. Wulf. Legion - A View From

50,000 Feet. In Proceedings of the 5th IEEE International

Symposium on High Performance Distributed Computation,
August 1996.

[31] R. Hornung and S. Kohn. The use of object-

oriented design patterns in the SAMRAI structured AMR

framework. In Proceedings of the SIAM Workshop
on Object-Oriented Methods for Inter-Operable Scien-

ttjic and Engineering Computing, October 1998. See

http://www.llnl.gov/CASC/SAMFUG.
[32] InDEPS Web page. http://z.ca.sandia.gov/-indeps/, Sandia

National Laboratory.
[33] B. Janssen, M. Spreitzer, D. Larner, and C. Jacobi. ILU

Reference
Manual. Xerox Corporation, November 1997. Available at

ftp://ftp.parc.xerox.com/pub/ilu/ilu.html
1341 JavaSoft. Java Native Interface Spect$cation, May 1997.
[35] A. Joshi, T. Drashansky, J. R. R. andS. Weerawarana, and

E. Houstis. Multiagent simulatin of complex heterogeneous

models in scientific computing. Math. Comput. Simul.,

44:43-59,1997.
[36] K. Keahey, P. Beckman, and J. Ahrens. Ligature:

Component architecture for high-performance applications.
presented at the 1st NASA Workshop on Petiormance-

Engineered Information Systems; to appear in the Interna-

tional Journal of High-Per$ormance and Scientific Applica-
tions, 1998.

[37] K. Keahey and D. Gannon. PARDIS: A Parallel Approach

to CORBA. In Proceedings of the 6th IEEE International

Symposium on High Pe$ormance Distributed Computation,

pages 31-39, August 1997.
[38] S. Kohn and B. Smolinski. Component interoperability ar-

chitecture: A proposal to the common component architec-

ture forum. In preparation, 1999.
[39] D. Kotz and R. Gray. D’ Agents: Mobile Com-

puting at Dartmouth College, visited May 7, 1999.

http:Nagent.cs.dartmouth.edu.
[40] MPI: A message-passing interface standard. International J.

Supercomputing Applications, 8(3/4), 1994.
[41] OMG. The Common Object Request Broker: Architec-

ture and SpecQication. Revision 2.0. OMG Document, June

1995.
[42] OMG. Corba Components. Revision 3.0. OMG TC Docu-

ment orbos/99-02-05, March 1999.
[43] P. J. O’Rourke and M. S. Sahota. A variable explicit/implicit

numerical method for calculating advection on unstructured
meshes. .I. Camp. Phys., 143:312-345, 1998.

[44] W. Park, E. V. Belova, G. Y. Fu, X. Z. Tang, H.-R. Strauss,
and L. E. Sugiyama. Plasma simulation studies using mul-

tilevel physics models. Physics of Plasmas, 6: 1796-1803,

1999.
[45] S. Parker, D. Weinstein, and C. Johnson. The SCIRun com-

putational steering software system. In E. Arge, A. Bruaset,
and H. Langtangen, editors, Modern Software Tools in Sci-
entific Computing, pages l-44. Birkhauser Press, 1997,

[46] R. Sessions. COM and DCOM: Microsoft’s Vision for Dis-
tributed Objects. John Wiley & Sons, 1997.

[47] J. Shirley, W. Hu, and D. Magid. Guide to Writing DCE

Applications. O’Reilly & Associates, Inc., Sebastopol, CA,

1994.
[48] C. Szyperski. Component Software: Beyond Object-

Oriented Programming. ACM Press, New York, 1997.
[49] G. von Laszewski, M.-H. Su, J. A. Insley, I. Foster, C. K.

M. T. John Bresnahan, M. L. Rivers, S. Wang, B. Tieman,
and I. McNulty. Real-time analysis, visualization, and steer-

ing of microtomography experiments at photon sources. In
Proceedings of the Ninth SIAM Conference on Parallel Pro-
cessing for Scientific Computing, March 1999.

10

*This work was performed under the auspices of the U.S. Department of Energy
by Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

