
Being able to recognize previously acquired informa-
tion is one of the best-studied abilities in the memory lit-
erature, an ability often referred to as item memory (for a 
review, see Malmberg, 2008). But being able to recognize 
something that was previously encountered represents 
only a part of a more elaborated faculty. People can often 
also remember the origin and specific characteristics of 
previously encountered stimuli, an ability that is often 
referred to as source memory (Johnson, Hashtroudi, & 
Lindsay, 1993). Experiments on source memory involve 
the discrimination of one or more characteristics of pre-
viously studied items, such as whether a given item was 
spoken by a female voice (Source A) or by a male voice 
(Source B). Just as for item memory, source judgments 
can be collected using a binary responses format (e.g., 
respond “male” or “female”) or by means of a rating 
scale expressing graded degrees of confidence in a source 
ascription.

Source memory is usually not studied separately from 
item memory (for an exception, see DeCarlo, 2003a). 
Prior to the source judgment, participants typically judge 
whether the item was previously presented or not. Tradi-
tionally, source judgments are requested only for items 
judged old. The joint assessment of item and source 
memory has two main advantages. First, it permits a com-
prehensive assessment of memory performance in differ-
ent populations, such as young and healthy individuals 
(e.g., Dodson & Shimamura, 2000; Johnson, Kounios, & 
Reeder, 1994), elderly individuals (e.g., Spencer & Raz, 

1995), and specific clinical populations (e.g., Multhaup 
& Balota, 1997). Second, it allows one to investigate how 
the processes underlying both judgments interact—for 
example, in shaping guessing biases (Bayen, Nakamura, 
Dupuis, & Yang, 2000; Johnson & Raye, 1981; Meiser, 
Sattler, & von Hecker, 2007; Riefer, Hu, & Batchelder, 
1994)—affecting overall performance.

One approach to studying source memory is the source-
monitoring model proposed by Batchelder and colleagues 
(Batchelder & Riefer, 1990; Batchelder, Riefer, & Hu, 
1994; Riefer et al., 1994), a discrete-state model that has 
successfully been used to distinguish source memory 
from both item memory and several guessing processes 
involved (but see Kinchla, 1994). This model has been 
further developed and extended to deal with different as-
pects of item and source memory, such as distractor de-
tection (Bayen, Murnane, & Erdfelder, 1996), multiple 
source dimensions (Klauer, Ehrenberg, & Wegener, 2003; 
Meiser, 2005; Meiser & Bröder, 2002), and partial mem-
ory states (Dodson, Holland, & Shimamura, 1998; Klauer 
& Wegener, 1998).

Distinguishing Between Source Memory Models 
by Means of ROC Analyses

More recently, the discrete-state model has been consid-
ered less adequate than models based on continuous pro-
cesses, such as signal detection models (Glanzer, Hilford, 
& Kim, 2004), or than hybrid models that assume a combi-
nation of continuous and threshold processes (Yonelinas, 
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any diagnostic source information. This interpretation of 
the flattening of source ROCs as being due to guessing 
noise allows the signal detection approach to account for 
the seemingly incongruent ROCs found in the literature.

An alternative yet similar account was previously pro-
posed by DeCarlo (2003a; see also DeCarlo, 2002). In 
this mixture distribution signal detection model, there is 
an additional signal distribution to describe items that are 
presented but not attended to during study. Participants 
have no source information available for items that they 
did not attend to, and so the distribution of unattended 
targets contains no systematic source information. In this 
model, targets can thus enter one of two discrete states: 
They can have been attended to during study or not. As 
in a discrete-state model, a mixture parameter governs 
the probability with which targets enter either state. This 
mixture account provides a better description of source 
ROCs than does a pure signal detection model, using an 
additional mixture parameter that is theoretically driven 
and psychologically plausible.

One common thread of these studies is that models 
based only on threshold processes are not considered 
competitive, given the curvilinear ROCs found in item and 
source memory. The discussion is, instead, focused on the 
question of whether a signal detection model augmented 
by an additional discrete process (recollection or mixture 
distribution) can reproduce the observed ROCs. The dis-
missal of discrete-state models on the basis of curvilin-
ear ROCs relies on the idea that threshold models predict 
linear ROCs not only for binary responses (Macmillan 
& Creelman, 2005; Murdock, 1974), but also when rat-
ing scales are used (e.g., Hilford et al., 2002). Actually, a 
debate regarding the representation of rating responses in 
threshold models pointed out long ago that this is a mis-
conception (e.g., Broadbent, 1966; Krantz, 1969; Larkin, 
1965; Lee, 1963; Nachmias & Steinman, 1963; Watson & 
Bourbon, 1965; Wickelgren, 1968).

As several authors have argued before (e.g., Bröder 
& Schütz, 2009; Erdfelder & Buchner, 1998; Falmagne, 
1985; Krantz, 1969; Malmberg, 2002), discrete-state mod-
els must specify how mental states (such as a mental state 
with item memory, but without source memory) map onto 
the available responses. For binary old/new and source de-
cisions, the issue of response mapping is trivial, as elabo-
rated below, but for graded response formats, a more com-
plex mapping of states on responses is needed. Malmberg 
(2002) demonstrated that a two-high threshold model can 
thereby produce curvilinear ROCs, including the asym-
metrical functions predicted by signal detection models 
with unequal variances and by Yonelinas’s (1999) dual-
process model. In the domain of item memory, Bröder and 
Schütz recently showed that ROC functions obtained with 
binary old/new responses and experimental manipulations 
of old/new response bias have a linear shape, as predicted 
by a discrete-state model. These authors argued (1) that it 
may be premature to dismiss discrete-state models on the 
basis of curvilinear ROCs defined by confidence ratings 
and (2) that the shape of the ROCs based on confidence 
ratings may not be diagnostic.

1997, 1999). This preference is based on research in which 
confidence ratings for source memory were collected and 
used to compile so-called receiver-operating characteristic 
(ROC) functions (Glanzer et al., 2004; Hilford, Glanzer, 
Kim, & DeCarlo, 2002; Qin, Raye, Johnson, & Mitchell, 
2001; Slotnick & Dodson, 2005; Slotnick, Klein, Dodson, 
& Shimamura, 2000; Yonelinas, 1999). The use of ROC 
functions is familiar from studies of item memory (for 
reviews, see Wixted, 2007; Yonelinas & Parks, 2007), in 
which discrete-state models predict linear ROCs (for bi-
nary response formats), whereas signal detection models 
predict curvilinear ones.

According to the hybrid model proposed by Yonelinas 
(1999), item memory judgments are based on both famil-
iarity processes (defined by a signal detection model) and 
recollection processes (defined as a threshold process). In 
this model, source judgments are based on recollection for 
sources equated in familiarity, leading to linear ROCs. For 
sources differing in familiarity, familiarity is a diagnostic 
feature in source discrimination, leading to curvilinear 
ROCs. In order to test these predictions, Yonelinas (1999) 
compared source ROCs for sources equated in familiarity 
with source ROCs for differentially familiar sources. The 
results were generally consonant with the model predic-
tions, with linear source ROC functions (pooled across 
old/new confidence ratings) when the familiarity levels of 
both Sources A and B were equivalent. When familiarity 
differed between sources, the observed ROC was curvi-
linear, reflecting the operation of a familiarity process, 
according to Yonelinas (1999).

The claim of linear source ROCs for equally familiar 
sources was, however, questioned by Qin et al. (2001), 
who observed curvilinear ROC functions. Slotnick et al. 
(2000) also reported curvilinear source ROCs (pooled 
across old/new confidence ratings), albeit with a lesser 
degree of curvature than typically observed for item mem-
ory ROCs (see also Hilford et al., 2002). Although this 
flattening is problematic for the Gaussian assumption of 
SDT (Green & Swets, 1966), these results broadly sup-
port a model in which both item and source judgments are 
based on continuous processes.

One of the issues raised by Slotnick et al. (2000) was 
that the shape of the source ROCs depended on the previ-
ous old/new rating. Slotnick et al. presented so-called re-
fined source ROCs computed conditionally on fixed levels 
of confidence in the old/new response. Source ROCs for 
the most confident old responses were highly curvilinear, 
whereas source ROCs based on lower levels of old/new 
confidence were increasingly flattened (see also the pres-
ent Figure 3, lower right panel). This direct relationship 
between curvature and old/new confidence rating was as-
cribed to “guessing noise” by Slotnick and Dodson (2005), 
a potential source of distortion of ROCs originally pro-
posed by Ratcliff, McKoon, and Tindall (1994). Through 
a reanalysis of the data from Yonelinas (1999) and two ad-
ditional experiments in which memory strength was ma-
nipulated, Slotnick and Dodson showed that the amount 
of noise appeared to increase with decreasing memory 
strength, as participants become less likely to remember 
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ture of two distributions. But these are not identified with 
nonattended and attended targets, respectively; instead, 
one distribution is said to represent a state of familiarity 
without source memory, the other one a state of recollec-
tion with diagnostic item and source information. There 
are thus three normal distributions for studied items: one 
for studied items from Source A, one for studied items 
from Source B, and a third distribution representing a state 
of familiarity with lowered mean on the axis represent-
ing item memory and without diagnostic source informa-
tion. Source and item information are assumed to vary 
independently in each distribution. Response bounds are 
linear, but response bounds for the source judgment are 
estimated separately for each level of confidence in the 
old/new response.

Hautus et al. (2008, p. 892) were motivated by the de-
sire to extend the menu of models from which researchers 
can choose in modeling given data, in order to increase the 
chances of finding a model that is capable of describing 
all the data sets considered. In the present article, we fol-
low this research strategy, adding a discrete-state model to 
the set of candidate models. We evaluate the performance 
of this model in the enlarged set of models, using the same 
statistical criteria and ROC analyses as those adopted by 
Hautus et al. for the purpose. We also fitted Onyper et al.’s 
(2010) model.

THE DISCRETE-STATE MODEL

We build on the well-known multinomial model of 
source monitoring originally proposed by Batchelder and 
Riefer (1990) in the two-high threshold version devel-
oped by Bayen et al. (1996). Consider first the case of 
dichotomous responses. In a typical source-monitoring 
experiment, participants acquire information from two 
sources, Source A and Source B. At test, the participants 
are presented Source A items, Source B items, and new 
items in a mixed list. For each item, they are asked to 
decide whether it is old or new. Given an old response, 
they are to decide whether it stems from Source A or B. 
In the case of a new response, source decisions are typi-
cally not required.

It is convenient to present the model in two parts, a 
stimulus–state mapping and a state–response mapping.

Stimulus–State Mapping
In Bayen et al.’s (1996) model, we can distinguish five 

mental states, M1 to M5 (see Figure 1):

M1: For an A item, it is remembered that the item is 
old and from Source A.

M2: For a B item, it is remembered that the item is old 
and from Source B.

M3: For an old item, it is remembered that the item is 
old, but memory for the source is absent.

M4: For a new item, it is detected that it is new.
M5: For an item presented at test, it is not remem-

bered that the item is old, and it is not detected 
that the item is new.

Toward an Extended Model for  
Item and Source Memory

The signal detection models discussed so far did not at-
tempt to account for both item and source memory ROCs 
simultaneously. In order to account for both item and source 
memory and corresponding ROCs, DeCarlo (2003b) pro-
posed a two-dimensional signal detection model (see also 
Ashby, 1988, 1992; Banks, 2000; Kinchla, 1994; Tanner, 
1956; Wickens, 1992). The model postulates three two-
dimensional normal distributions: one for new items, one 
for studied items from Source A, and one for studied items 
from Source B. One axis in the two-dimensional space rep-
resents item memory, the second source memory. Like its 
one-dimensional counterpart, the two-dimensional signal 
detection model assumes linear response bounds for each 
of the memory judgments involved. Despite capturing the 
overall pattern of the Slotnick et al. (2000) and Yonelinas 
(1999) data sets, the overall goodness of fit (evaluated, 
e.g., through the G2 measure of goodness of fit described 
below) was poor. The DeCarlo (2003b) model does, how-
ever, represent the first attempt to model both types of 
ROCs simultaneously.

Its limitations were highly informative for Hautus, 
Macmillan, and Rotello (2008), who implemented a series 
of modifications to the original model in a stepwise fash-
ion, greatly increasing its ability to account for the three 
data sets considered—that is, for the data from Yonelinas’s 
(1999) Experiment 2 and for the data from Slotnick et al.’s 
(2000) Experiments 2 and 3. These data sets have repeat-
edly been used in developing comprehensive models of 
item and source memory.

The first modification was the use of likelihood ratio 
bounds, instead of linear response bounds, for source rat-
ings. This modification (Model 1) resulted in a substan-
tial increase in goodness of fit, and it accounted for the 
observed flattening of refined source ROCs contingent 
on level of old/new confidence. Model 1 also accommo-
dated source ROCs that were curved when represented 
in z-coordinates, which, until then, only hybrid models 
could predict.

In a second step, Hautus et al. (2008) proposed that 
ratings corresponding to a new response are followed by 
simple source guessing. The implementation of this idea 
(Model 2) led to another substantial increase in goodness 
of fit.

The final modification to DeCarlo’s (2003b) two-
 dimensional model was to introduce a noise distribution 
modeling old items that were not attended to during study. 
The resulting model (Model 3) further increased goodness 
of fit and outperformed the other models even when the 
increased complexity of the model was taken into account 
by means of model selection indices that penalize a model 
for its complexity. This final model represents a tremen-
dous improvement in the ability of the signal detection 
framework to account for both item and source ROCs, and 
it is the best account in the literature so far.

A related model was, however, recently proposed by 
Onyper, Zhang, and Howard (2010). As in Hautus et al.’s 
(2008) Model 3, studied items are represented by a mix-
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State–Response Mapping for Dichotomous Data
The model is completed by adding the state–response 

mapping that specifies how the mental states map onto 
the observable responses. The state–response mapping is 
shown in the lower part of Figure 1. For each mental state, 
it specifies first the probability with which an old or new 
response will be elicited in that state (column labeled “Old/
New Response”), followed by the conditional probability 
of a Source A or B response given an old response (col-
umn labeled “Source Response Given Old Response”).

In mental state M1, there is both item and source mem-
ory for a presented A item. Hence, the old response has a 
probability of one, the new response a probability of zero. 
Following the old response, the response A is given with a 
probability of one, and the response B with a probability 
of zero.

In mental state M3, there is item memory, leading to old 
responses with a probability of one; but there is no source 
memory, so Source A is guessed with a probability of g, 
and Source B with a probability of 1  g.

In mental state M4, it is detected that a new item is new, 
and the new response is given with a probability of one. 
Because only new responses arise in this mental state, the 
response mapping for the source decision need not be 
specified (a source decision is typically not required for 
new responses).

In mental state M5, there is neither item nor source 
memory. The old/new response is then guessed with a 
probability of b for an old response and 1 b for a new 
response. In the case of an old response, a source decision 
is required, and Source A is guessed with a probability 
of a and Source B with a probability of 1  a. Frequently, 
source guessing with item memory (state M3) and source 
guessing without item memory (state M5) are described by 
the same parameter; that is, g is set equal to a.

Note that guessing as reflected in parameters a, b, and g 
is not necessarily random guessing. Guessing comprises 
a variety of informed guessing strategies influenced by 
various sources of information such as base rates, meta-
cognitive inferences, strategies, and so forth, in the ab-
sence of a clear memory-based signal as to the appropriate 
response.

State–Response Mapping for Rating Data
Can the model for dichotomous responses be extended 

to paradigms in which item and/or source decisions are 
collected by means of confidence ratings? Consider, for 
example, an experiment with 6-point rating scales for item 
recognition and source discrimination, in which partici-
pants judge each item twice, once with respect to whether 
it was old (responses 6, 5, and 4 in order of decreasing 
confidence) or new (responses 3, 2, and 1 in order of in-
creasing confidence), and once with respect to whether it 
stemmed from Source A (responses 1, 2, and 3 in order of 
decreasing confidence) or Source B (responses 4, 5, and 6 
in order of increasing confidence). Thus, each response 
falls into one of the cells of a 6  6 matrix, with rows cod-
ing the old/new rating and columns the source rating. The 
data, aggregated across items, can be summarized by three 
such matrices: one for A items, one for B items, and one 

Distractor detection as described in state M4 is believed 
to rely on metacognitive inference. For example, seeing a 
new item, participants may infer that it is new on the basis 
of, for example, some unusual feature of it, idiosyncratic 
associations it evokes, or its overall incongruency with the 
set of targets (Strack & Bless, 1994).

The stimulus–state mapping shown in the upper part 
of Figure 1 describes the probabilities of entering each 
of these states given an A item, a B item, or a new item. 
It uses two item memory parameters DA and DB, one dis-
tractor detection parameter DN, and two source memory 
parameters dA and dB. They are defined as follows:

DA: the probability of remembering that an A item 
is old;

DB: the probability of remembering that a B item is 
old;

DN: the probability of detecting that a new item is 
new;

dA: the probability of remembering the source of an 
A item, given item memory;

dB: the probability of remembering the source of a B 
item, given item memory.

For example, according to Figure 1, the probability of en-
tering state M1 for an A item is given by DA  dA.

Stimulus–State Mapping

State–Response Mapping
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Figure 1. The source-monitoring model with state–response 
mapping for binary data. The upper part of the figure shows the 
stimulus–state mapping. A refers to a target from Source A, B to a 
target from Source B, N is a distractor item. The lower part shows 
the state–response mapping.
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Response Mapping section), it is not reasonable to assume 
that detect states such as M1 are invariably mapped onto 
highest confidence responses (see Onyper et al., 2010, for 
a similar assumption in the signal detection framework).

In mental state M1, there is also memory for Source A; 
hence, the Source B responses on the source-rating scale 
(i.e., 4, 5, and 6) receive a probability of zero, as in the 
dichotomous case. Conditional on each of the three old 
responses that can arise in M1, the parameters s specify the 
probabilities of the three Source A responses. For example, 
s(1 | 5) is the probability of using source-rating category 1 
given an old/new rating of 5. There are now three rows of 
s parameters, because the s parameters are defined condi-
tionally on the actual old response. In each row, the three 
s parameters have to sum to one, so that each row contrib-
utes only two free parameters. The source-rating parame-
ters for the rows with new responses need not be specified, 
because new responses do not occur in state M1.

In mental state M3, there is item memory without source 
memory. The source-rating parameters in state M3 have 
been named go, because they correspond to the source-
guessing parameter g in the dichotomous case.

In mental state M4, it is detected that a new item is new. 
Unlike in the dichotomous case, source ratings are now 
also available for new responses; hence, new parameters 
for source guessing are required conditional on the new 
responses in state M4. They were named gn.

for new items. Cell entries are the frequencies with which 
the combinations of old/new rating and source rating were 
observed. The data by Yonelinas (1999, Experiment 2) fol-
low this format.

It is, in fact, straightforward to extend the model to 
this response format. The stimulus–state mapping is un-
changed, because it is independent of response format. In 
consequence, only the state–response mapping must be 
extended, which can be done in a natural fashion.

Table 1 shows the appropriate state–response mapping. 
As for the dichotomous case, the mapping specifies the 
probabilities of the different old/new responses (column 
labeled “Old/New Parameters”) and the conditional prob-
abilities of the different source-rating responses given one 
of the possible old/new ratings for each mental state (col-
umns headed “Source Rating Parameters”).

In mental state M1, there is both item memory and source 
memory for Source A. Because there is item memory, the 
new responses on the old/new scale (i.e., 1, 2, and 3) re-
ceive a probability of zero, as in the dichotomous case. 
There are, however, three old responses (6, 5, and 4) that 
can occur, and the probabilities of using these in state M1 
are modeled by three parameters, r(6 | M1), r(5 | M1), and 
r(4 | M1), one for each old response. The three r parameters 
have to sum to one, so that there are only two free parame-
ters to be estimated. For reasons elaborated below (i.e., for 
variations in response style; see the Simplifying the State–

Table 1 
State–Response Mapping

Mental Old/New Source Rating Parameters

State  Rat.  Par.  1  2  3  4  5  6

M1 6 r(6 | M1) s(1 | 6) s(2 | 6) s(3 | 6) 0 0 0
5 r(5 | M1) s(1 | 5) s(2 | 5) s(3 | 5) 0 0 0
4 r(4 | M1) s(1 | 4) s(2 | 4) s(3 | 4) 0 0 0
3 0
2 0 need not be specified
1 0

M2 6 r(6 | M2) 0 0 0 s(4 | 6) s(5 | 6) s(6 | 6)
5 r(5 | M2) 0 0 0 s(4 | 5) s(5 | 5) s(6 | 5)
4 r(4 | M2) 0 0 0 s(4 | 4) s(5 | 4) s(6 | 4)
3 0
2 0 need not be specified
1 0

M3 6 r(6 | M3) go(1 | 6) go(2 | 6) go(3 | 6) go(4 | 6) go(5 | 6) go(6 | 6)
5 r(5 | M3) go(1 | 5) go(2 | 5) go(3 | 5) go(4 | 5) go(5 | 5) go(6 | 5)
4 r(4 | M3) go(1 | 4) go(2 | 4) go(3 | 4) go(4 | 4) go(5 | 4) go(6 | 4)
3 0
2 0 need not be specified
1 0

M4 6 0
5 0 need not be specified
4 0
3 r(3 | M4) gn(1 | 3) gn(2 | 3) gn(3 | 3) gn(4 | 3) gn(5 | 3) gn(6 | 3)
2 r(2 | M4) gn(1 | 2) gn(2 | 2) gn(3 | 2) gn(4 | 2) gn(5 | 2) gn(6 | 2)
1 r(1 | M4) gn(1 | 1) gn(2 | 1) gn(3 | 1) gn(4 | 1) gn(5 | 1) gn(6 | 1)

M5 6 b(6) ao(1 | 6) ao(2 | 6) ao(3 | 6) ao(4 | 6) ao(5 | 6) ao(6 | 6)
5 b(5) ao(1 | 5) ao(2 | 5) ao(3 | 5) ao(4 | 5) ao(5 | 5) ao(6 | 5)
4 b(4) ao(1 | 4) ao(2 | 4) ao(3 | 4) ao(4 | 4) ao(5 | 4) ao(6 | 4)
3 b(3) an(1 | 3) an(2 | 3) an(3 | 3) an(4 | 3) an(5 | 3) an(6 | 3)
2 b(2) an(1 | 2) an(2 | 2) an(3 | 2) an(4 | 2) an(5 | 2) an(6 | 2)
1 b(1) an(1 | 1) an(2 | 1) an(3 | 1) an(4 | 1) an(5 | 1) an(6 | 1)

Note—Rat., rating; Par., parameter. Old/new and source ratings range from 6 (confident old and 
confident Source B, respectively) to 1 (confident new and confident Source A, respectively).
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old response of highest confidence (i.e., 6) to rows with 
lower levels of confidence, interindividual differences in 
extreme response style should lead to dispersed data in 
the first row with many extreme source ratings, but source 
ratings should be successively more compressed toward 
the cautious middle source ratings (i.e., 4 or 3) for lower 
levels of confidence in the old response.

A second principle is response editing for consistency 
between ratings (Tourangeau, Rips, & Rasinski, 2000). 
Participants attempt to maintain consistency between suc-
cessive ratings. For example, it would be inconsistent to 
respond new to a test item and then ascribe it to one of 
the two sources with high confidence. In other words, to 
the extent to which the item is judged new, source ratings 
should be compressed toward the middle categories (see 
also Slotnick & Dodson, 2005). This would add to the ef-
fects of interindividual differences in extreme response 
style for old responses and would counteract, and perhaps 
override, such effects for new responses. Hautus et al. 
(2008) appealed to a similar idea to justify the use of a 
separate set of guessing parameters for the new responses 
in their Models 2 and 3.

A third observation is that the mental states considered 
here differ in the amount of information that is available 
in each case. Thus, in states M1 and M2, there is both item 
and source information, whereas in M3 and M4, there is 
only item information but no source information. Finally, 
in M5, there is not even item information. It seems plau-
sible that this could lead to differences between these 
states in the overall level of confidence with which old/
new ratings are made and, hence, in the willingness to use 
extreme response categories for these ratings. Similarly, 
there might be differences between the states with and 
without source memory in the overall level of confidence 
with which source ratings are made.

Each of these principles suggests that certain groups of 
parameters should differ mostly in the extent to which re-
sponses are compressed toward the middle categories. For 
example, the extreme response style and the consistency 
principle suggest that parameter values go  ao should be 
most dispersed across the six columns in the row with an 
old/new rating of 6 (see Table 1), but successively com-
pressed toward the middle for old/new ratings of 5 and 4. 
That is, in these rows, the probability of cautious source 
ratings should increase at the expense of the probability 
of extreme source ratings. Response editing for consis-
tency similarly suggests a compression toward the middle 
in source ratings given a new response for parameters 
gn  an.

We modeled this idea by defining a compression func-
tion. The compression function used two parameters: a 
parameter for overall shape and a compression factor , 
regulating the amount of compression toward middle 
scale categories. Figure 2 shows how the function works. 
It takes as input a set of probabilities for the six rating 
categories and transforms these by compressing them to-
ward the middle. In Figure 2, this is shown starting from a 
probability distribution with equal probabilities for the six 
rating categories (line labeled  0). This is subjected to 
four transformations with an increasingly high compres-

Similarly, in mental state M5, there is neither item mem-
ory nor distractor detection. Parameters b(1), . . . , b(6) for 
guessing the old/new response correspond conceptually 
to the b parameter of the dichotomous case. The source-
rating parameters in state M5, given an old response, have 
been named ao, because they correspond to the source-
guessing parameter a in the dichotomous case. Unlike in 
the dichotomous case, source ratings are now also avail-
able for new responses; hence, new parameters for source 
guessing are required conditional on the new responses in 
state M5. They are named an.

Simplifying the State–Response Mapping
It is in the nature of discrete-state models that they re-

quire many parameters for complex response formats. If 
the interest is in measuring item and source memory, the 
parameters governing the state–response mapping can be 
considered nuisance parameters, and estimation and in-
ference can focus on the parameters of the stimulus–state 
mapping. One advantage is that the memory parameters 
governing the stimulus–state mapping are then estimated 
with minimal assumptions about scale usage.1 However, 
in a model comparison context, models with fewer pa-
rameters, such as the Hautus et al. (2008) models, would 
probably be preferred for reasons of parsimony.

The state–response mapping can be considerably sim-
plified using substantive assumptions. The adequacy of 
the assumptions can be assessed by the simplified model’s 
ability to fit the empirical data. In the present case, a stan-
dard move frequently made for dichotomous data is to set 
equal source-guessing parameters g and a (e.g., Bayen 
et al., 1996). This can analogously be done for rating data, 
and thus, we set equal corresponding ao and go param-
eters, as well as corresponding an and gn parameters.2

Furthermore, in states M1 and M2, there is source mem-
ory for A and B, respectively. We assumed that scale usage 
for source ratings would be symmetrical in this case, and 
thus, we constrained source-rating parameters s expressing 
equal levels of confidence to be equal for M1 and M2.3

In a similar vein, we assumed that scale usage for old/
new ratings would be the same in these two states. Thus, 
we constrained the three old/new parameters r for state M1 
to be equal to those for state M2.

Next, we used three psychological assumptions, pertain-
ing to the so-called extreme response style, consistency 
between ratings, and a partial ordering of mental states 
according to level of confidence. The extreme response 
style refers to a finding from research on response styles. 
It is found in ratings requiring the participant to respond 
along an intensity dimension, such as level of confidence. 
In such situations, some persons have a tendency to use 
the extreme alternatives, whereas others tend to employ 
the middle categories with greater frequency (e.g., Ham-
ilton, 1968). In the present context, this means that we can 
expect a correlation between rating extremity for old/new 
ratings and rating extremity for source ratings caused by 
interindividual differences in extreme response style.4

Consider the 6  6 table cross-tabulating old/new rat-
ings and source ratings, with response frequencies aggre-
gated across participants. Moving down from the row with 
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pression pattern: Middle categories are increasingly pre-
ferred as confidence in the old response decreases. Source 
guessing given new responses (parameters gn  an for 
states M4 and M5) seems to be dominated by the consis-
tency principle: After a new response, guesses are strongly 
biased toward the middle rating categories. Source guess-
ing after new responses is, in fact, more or less indepen-
dent of the level of confidence in the new response, indi-
cating that there is room for further simplification of the 
state–response mapping.

To evaluate models, Hautus et al. (2008) presented 
graphical ROC analyses (for the Yonelinas, 1999, Ex-
periment 2 data), as well as quantitative assessments of 
model performance. Figure 3 shows the observed ROCs 
and those predicted by the discrete-state model for the 
data in Yonelinas (1999, Experiment 2). The upper left 
panel presents the old/new ROCs pooled across source 

sion factor of  0.5, 1.0, and 1.5. It can be seen that the 
effect is to weight middle categories successively more 
heavily at the expense of the extreme categories.

Use of the compression function allows us to model 
most parameter groups more parsimoniously. For example, 
the parameters go  ao are modeled by using only one set 
of six parameter values (of which five are non redundant) 
to describe source ratings under the highest level of old/
new confidence—that is, for the row with an old/new rat-
ing of 6 in Table 1. The parameter values for rows with less 
extreme old ratings are generated from these through the 
use of two compression factors: one for the row with an 
old/new rating of 5 and one for the row with an old/new 
rating of 4. This replaces 15  3 5 parameters with 7  
5  2 parameters. Details are described in the Appendix. 
The resulting simplified model has 32 parameters for the 
Yonelinas (1999, Experiment 2) data and 36 parameters 
for the Slotnick et al. (2000, Experiments 2 and 3) data.

RESULTS

The discrete-state model was fitted to the three data sets 
analyzed by Hautus et al. (2008)—that is, to the data from 
Yonelinas (1999, Experiment 2) and the data from Slot-
nick et al. (2000, Experiments 2 and 3)—using the maxi-
mum likelihood method.5 Table 2 reports the parameter 
estimates for the stimulus–state mapping. As can be seen, 
item memory parameters, DA and DB, and the parameters 
for source memory given item memory, dA and dB, were 
highest for Slotnick et al.’s Experiment 2.

Table 3 shows the estimated state–response mapping 
for the Yonelinas (1999) data in the format of Table 1. As 
can be seen, the s parameters for source rating (states M1 
and M2), as well as the source-guessing parameters go  ao 
given old responses (states M3 and M5), exhibit the com-
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Figure 2. The compression function for four levels of com-
pression .

Table 2 
Estimates of Item and Source Memory Parameters

Data Set  DA  DB  DN  dA  dB

Yonelinas (1999), Experiment 2 .43 .46 .32 .55 .55
Slotnick, Klein, Dodson, 
 and Shimamura (2000), Experiment 2 .77 .76 .40 .63 .59
Slotnick et al. (2000), Experiment 3  .64  .64  .47  .50  .48

Table 3 
State–Response Mapping Estimated for Data by  

Yonelinas (1999, Experiment 2) 

Mental Old/New Source Rating Parameters

State  Rat.  Par.  1  2  3  4  5  6

M1 6 .90 .90 .10  .00
5 .09 .00 .96  .04
4 .00 .00 .00 1.00
3
2 need not be specified
1

M2 6 .90  .00 .10 .90
5 .09  .04 .96 .00
4 .02 1.00 .00 .00
3
2 need not be specified
1

M3 6 .83 .16 .17 .10 .15 .22 .21
5 .16 .07 .18 .18 .26 .23 .09
4 .01 .01 .13 .27 .40 .17 .02
3
2 need not be specified
1

M4 6
5 need not be specified
4
3 .09 .01 .02 .33 .51 .10 .02
2 .42 .01 .02 .33 .52 .10 .02
1 .49 .01 .03 .32 .50 .11 .03

M5 6 .08 .16 .17 .10 .15 .22 .21
5 .15 .07 .18 .18 .26 .23 .09
4 .20 .01 .13 .27 .40 .17 .02
3 .22 .01 .02 .33 .51 .10 .02
2 .22 .01 .02 .33 .52 .10 .02
1 .13 .01 .03 .32 .50 .11 .03

Note—Rat., rating; Par., parameter. Old/new and source ratings range 
from 6 (confident old and confident Source B, respectively) to 1 (confi-
dent new and confident Source A, respectively).
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G2 is a goodness-of-fit statistic; G2  2 O log(O/E), 
where O and E are the observed and predicted fre-
quencies, respectively, in the cells of the contingency 
tables cross-tabulating old/new responses and source 
responses. Smaller values indicate better fits.

RMSEA is another goodness-of-fit index, the so-
called root-mean square error of approximation. 
Values of RMSEA smaller than 0.05 are considered 
an indication of close fit (see DeCarlo, 2003b, Ap-
pendix; Hautus et al., 2008).

AIC and BIC are the Akaike information criterion 
and the Bayesian information criterion, respectively. 
They are model selection indices that introduce pen-
alties for a model’s flexibility in terms of the model’s 

ratings; the upper right panel presents the source ROCs 
pooled across old/new ratings. As can be seen, the ob-
served ROCs are almost perfectly fitted by the discrete-
state model. The lower panels show so-called refined 
old/new and source ROCs (Hautus et al., 2008). There 
are six refined ROCs for each task, one for each level of 
confidence on the other task. For example, there are six 
refined old/new ROCs (lower left panel), one for each 
level of confidence in source ratings. As can be seen, the 
observed refined ROCs are fitted reasonably well, at a 
level comparable to the performance of Hautus et al.’s 
(2008) Model 3.

To evaluate models quantitatively, Hautus et al. (2008) 
used an array of goodness-of-fit and model selection in-
dices (see Hautus et al., 2008, for details).
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Figure 3. Model fit to the receiver-operating characteristic (ROC) data by Yonelinas (1999, Experiment 2). The 
left half of the figure shows old/new data and model predictions; the right half shows source data and predic-
tions. The upper panels show pooled analyses; the lower panels refined analyses (see the text). Symbols indicate 
observed data, whereas bars and curves show the model predictions for the observed data points and the ROCs, 
respectively.
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probability of p. In addition, there is response editing akin 
to a state–response mapping: Source responses follow-
ing old responses are based on the signals provided by 
the continuous signal detection part of the model; source 
responses following new responses are based on guessing 
probabilities, as in a state of uncertainty in a discrete-state 
model. Similarly, Onyper et al.’s (2010) model involves 
two mental states and a rudimentary stimulus–state map-
ping: Diagnostic item and source information can be re-
trieved for a target (State 1: recollection), or there can be 
only item information (State 2: familiarity). In addition, 
there is a relatively complex response mapping in that a 
separate set of response bounds for source judgments is 
used for each level of old/new rating. In the present ar-
ticle, we went all the way to a discrete-state model. We 
then placed the model in the set of models considered by 
Hautus et al. and tested how it performed according to the 
rules adopted by these authors. In terms of these rules, the 
present model wins the competition over the models con-
sidered by Hautus et al. As compared with Onyper et al.’s 
model, the model comparison resulted in a tie.

We believe that the discrete-state model is thereby es-
tablished as a viable alternative to the model endorsed by 
Hautus et al. (2008) and to Onyper et al.’s (2010) model. 
One limitation of these analyses is that the model selection 
criteria AIC and BIC make only rough and approximate 
corrections for a model’s flexibility (Pitt et al., 2002). More 
appropriate corrections would take the functional form 
of the model into account, as is done in model selection 
criteria based on minimum description length (Pitt et al., 
2002). Although some progress has been made in comput-
ing such criteria for multinomial models (Wu, Myung, & 
Batchelder, 2010), their computation is a formidable task, 
beyond the scope of the present article, for the set of models 
considered here. In consequence, it is possible that some of 
the competing models, the signal detection models or the 

number of parameters. Models with smaller values 
are preferred, indicating that they strike a better com-
promise between fit and parsimony than do models 
with larger values (Pitt, Myung, & Zhang, 2002).6

Table 4 presents these statistics for the three models 
proposed by Hautus et al. (2008), for Onyper et al.’s 
(2010) model, and for the discrete-state model, separately 
for each of the three data sets analyzed by Hautus et al. 
As has already been mentioned, Hautus et al. accepted 
Model 3 because it outperformed all other models on 
all indices, with the exception of a better BIC value for 
Model 2 than for Model 3 for the Slotnick et al. (2000) 
Experiment 3 data (see Table 4). The discrete-state model 
outperforms Hautus et al.’s model with respect to all sta-
tistics, with the exception of a tie in BIC values with 
Model 2 for the Slotnick et al. Experiment 2 data and a 
slightly better BIC value for Model 3 for this data set. As 
compared with Onyper et al.’s model, the discrete-state 
model describes the Slotnick et al. Experiment 2 data bet-
ter than does Onyper et al.’s model in terms of the model 
selection indices AIC and BIC, whereas Onyper et al.’s 
model describes the Yonelinas (1999) Experiment 2 data 
better than does the discrete-state model. Both models 
are tied for the Slotnick et al. Experiment 3 data, in that 
AIC favors Onyper et al.’s model, whereas BIC favors the 
discrete-state model.

DISCUSSION

Hautus et al.’s (2008) Model 3 is a hybrid model combin-
ing features of two-dimensional signal detection models 
with features of discrete-state models. Thus, there are two 
mental states and a rudimentary stimulus–state mapping: 
Targets can have been attended (State 1) or not (State 2). 
Given a target, the two states are entered into with mixture 

Table 4 
Fit Indices and Model Selection Indices

Slotnick, Klein, Dodson, and Shimamura
Yonelinas (1999, Experiment 2) (2000, Experiment 2) Slotnick et al. (2000, Experiment 3)

p/df  G2  RMSEA  AIC  BIC  p/df  G2  RMSEA  AIC  BIC  p/df  G2  RMSEA  AIC  BIC

DeCarlo’s (2003b) Model

19/86 2,418 0.119 2,456 2,507 21/123 1,582 0.117 1,624 1,687 21/123 3,765 0.124 3,807 3,870

Hautus, Macmillan, and Rotello’s (2008) Model 1

19/86 951 0.072 989 1,040 21/123 620 0.068 662 725 21/123 1,186 0.067 1,228 1,291

Hautus et al.’s (2008) Model 2

24/81 213 0.029 261 326 27/117 199 0.029 253 334 27/117 212 0.021 266 347

Hautus et al.’s (2008) Model 3

29/76 178 0.026 236 314 32/112 173 0.025 237 333 32/112 193 0.019 257 353

Onyper, Zhang, and Howard’s (2010) Model

40/65 94 0.015 174 281 53/91 140 0.025 246 405 53/91 107 0.010 213 371

Discrete-State Model

32/73 159 0.025 223 308 36/108 155 0.022 227 334 36/108 162 0.016 234 342

Note—p/df, number of parameters/degrees of freedom; G2, goodness-of-fit statistic; RMSEA, a measure of approximate fit (RMSEA  .05 
indicates close fit); AIC, Akaike information criterion computed from G2 values by adding 2p; BIC, Bayesian information criterion computed 
from G2 by adding plog(n), where n is the number of cells in the data matrix (see Hautus et al., 2008). Values of AIC and BIC for Hautus et al.’s 
models were recomputed for the Slotnick et al. (2000) data sets because some of the values in Hautus et al. (Table 3) are not consistent with the 
reported G2 values; see also note 5.
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is modeled entirely by the state–response mapping in what 
could be argued to be ad hoc simplifications of it, and there 
is some truth to that argument.

But the argument can also be turned around. Response 
editing for consistency and variations in extreme response 
style by themselves account for the observed compres-
sion pattern. These phenomena modulate scale usage, and 
hence, it is appropriate to model their effects in the state–
response mapping of the model. Conversely, where these 
phenomena are not factored into the response- mapping part 
of a model, they will artifactually distort other parts of the 
model. Thus, it could be argued that the pattern of bivari-
ate correlations, the use of likelihood ratio bounds, and the 
addition of a noise distribution are distortions forced upon 
the signal detection framework to cope with a compression 
pattern that, in reality, largely reflects scale-usage phenom-
ena. In line with this argument, the potentially distorting 
role of response processes is currently receiving increased 
attention in the signal detection literature (Benjamin, Diaz, 
& Wee, 2009; Mueller & Weidemann, 2008).

There are two conclusions to be drawn from the pres-
ent modeling exercise. First, the analyzed data are not 
strong enough to allow one to discriminate between the 
kind of hybrid signal detection model proposed by Hautus 
et al. (2008) and Onyper et al. (2010), on the one hand, 
and discrete-state models, on the other hand. New and 
structurally enriched data are required to make this dis-
crimination. Several avenues of research seem promis-
ing. A simple approach is to go back to dichotomous old 
versus new responses and dichotomous Source A versus 
Source B responses and to manipulate decision bias in 
item and source recognition experimentally, rather than 
via confidence ratings. Base rate and payoff manipula-
tions could be used for the purpose (Van Zandt, 2000). 
Signal detection models and discrete-state models make 
unambiguously different predictions for such experiments 
(Bröder & Schütz, 2009).

A second approach, independent of response format, is 
to introduce experimental manipulations targeting certain 
model parameters of one of the models. For example, a 
manipulation might be implemented that can be expected, 
on the basis of substantive psychological theory and in-
dependent findings, to influence selectively the propor-
tion p of targets not attended, as per Hautus et al.’s (2008) 
Model 3. The effect of this manipulation should then map 
onto the appropriate parameter p of that model selectively, 
if the model is true, and it would in all likelihood lead to 
less parsimonious changes in the model parameters of the 
discrete-state model. Such a result pattern would support 
the Hautus et al. model and subtract from the plausibility 
of the discrete-state model.

A third approach in this spirit is to test for source 
memory for unrecognized items—that is, for evidence 
for source discrimination among items receiving new rat-
ings. Neither Hautus et al.’s (2008) Model 3 nor the pres-
ent discrete-state model could account for such a find-
ing without modification. Both in Hautus et al.’s model 
and in the discrete-state model, source ratings for items 
rated new are guesses. But as was pointed out by Starns, 
Hicks, Brown, and Martin (2008), source discrimination 

discrete-state model, would be penalized more strongly 
for lack of parsimony than is apparent in AIC or BIC when 
functional form is taken into account. Nevertheless, the 
good overall fit of the discrete-state model suggests that 
the data sets analyzed here do not support a firm decision 
between the discrete-state model, the model finally ac-
cepted by Hautus et al., and Onyper et al.’s model.

In modeling complex sets of data, it is almost inevi-
table that some of the design choices in building a model 
are ad hoc, data driven, or made out of mathematical con-
venience, and Hautus et al. (2008) openly acknowledged 
this in developing their models, where appropriate.7 The 
major ad hoc choice in the discrete-state model is the par-
ticular function chosen to model the compression in the 
state–response mapping. The particular exponential func-
tion that we used was our first and only choice, but many 
different functional forms could have been tried out. It 
seems likely that playing around with different compres-
sion functions might sometimes improve and sometimes 
degrade the model’s performance in terms of the criteria 
used to evaluate models.

One advantage of the discrete-state model is that it 
uses the same model for the stimulus–state mapping as 
does Bayen et al.’s (1996) model for dichotomous data, 
irrespective of response formats. The measurement of 
memory performance in terms of item and source mem-
ory parameters is therefore straightforward and conceptu-
ally clear, irrespective of response format. This reflects 
the fact that different response formats do not alter the 
stimulus–state mapping. Only the state–response map-
ping must be adapted.

The downside of this is that major portions of the data 
were modeled by the state–response mapping. In doing so, 
we used three substantive assumptions: (1) interindividual 
differences (and possibly intraindividual differences; see 
note 4) in extreme response style; (2) response editing for 
consistency; and (3) the idea that different mental states 
may differ in overall level of confidence. Assumptions 1 
and 2 are based on well-documented phenomena (e.g., 
Hamilton, 1968; Tourangeau et al., 2000), and Assump-
tion 3 seems reasonable.

Nevertheless, it could be argued that Hautus et al.’s 
(2008) Model 3 is the more principled model, inasmuch as 
a major pattern in the present data sets flows naturally from 
its assumption. The major pattern is that source ratings are 
compressed toward the middle as old responses decrease 
in confidence and for new responses. This pattern is very 
strong in the Slotnick et al. (2000) data in particular, and it 
flows from the combination of several features of Hautus 
et al.’s model: (1) The bivariate correlations of the target 
distributions, leading to reduced source discrimination for 
targets with low values on the old/new dimension; (2) the 
use of likelihood ratio bounds for source decisions; these 
bounds spread out as a target’s value on the old/new dimen-
sion decreases from values typical for the target toward val-
ues typical for the lures (see, e.g., Figure 8 in Hautus et al., 
2008); and (3) the use of a distribution for unattended items, 
leading to lower levels of source discrimination as old/new 
confidence decreases (Hautus et al., 2008, p. 900).8 In con-
trast, in the discrete-state model, the compression pattern 
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tion—correspond, in order, to the three states M1 (item and 
source memory for Source A items), M2 (item and source 
memory for Source B items), and M3 (item memory but 
no source memory) of the discrete-state model. Both mod-
els are thus in line with the assumption that recognition 
memory depends on two distinguishable memory signals, 
often termed familiarity and recollection, which they con-
ceptualize in roughly similar ways as processes subserving 
item memory and item-cum-source-memory, respectively. 
They thereby provide measurement tools for quantifying 
the separate contributions of these processes in observed 
recognition data (Batchelder & Riefer, 1999), and they im-
pose constraints on the development of more fine-grained 
models of the underlying encoding and retrieval processes 
(e.g., Shiffrin & Steyvers, 1997). Both models also agree 
in that states with diagnostic information are not simply 
mapped onto highest confidence responses but always give 
rise to a range of responses.

There are, however, two major theoretical differences 
between the discrete-state model and signal detection mod-
els. One is the obvious difference that memory signals are 
graded along continuous dimensions in the signal detec-
tion models, whereas they are all-or-none in the discrete-
 state model. The second, less obvious, difference is that the 
discrete- state model incorporates a state of distractor detec-
tion, a process of active rejection for new items, that has no 
conceptual counterpart in the signal detection models. As 
was already mentioned, distractor detection is assumed to 
be based on metacognitive inference. For example, seeing 
a new item, participants may infer that it is new on the basis 
of, for example, some unusual feature of it, idiosyncratic 
associations it evokes, or its overall incongruency with the 
set of targets (Strack & Bless, 1994), among other things. 
Supplementing the strategies for discriminating between 
models considered above, distractor detection, in particu-
lar, may well turn out to be a source of several distinctive 
predictions of discrete-state models.
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for unrecognized items would flow naturally from a bi-
variate signal detection model without source guessing 
for new responses under certain conditions, and Onyper 
et al.’s (2010) model could probably model it. There is, 
however, little evidence for source memory for unrecog-
nized targets in either the Slotnick et al. (2000) data or the 
Yonelinas (1999) data analyzed here.

Starns et al. (2008) reported three experiments in which 
they found source discrimination for unrecognized targets 
in a condition with a conservative old/new criterion. As was 
acknowledged by Starns et al., the results from the first two 
experiments are open to alternative explanations, due to 
the fact that old/new decisions and source ascriptions were 
collected in separate phases of the experiment. In Experi-
ment 3, item and source decisions were made successively 
for each item presented at test. However, in this experiment, 
an unusual feature was that participants knew that an un-
recognized target was an old item when they were asked 
to ascribe it to a source despite an initial new response. 
Knowledge of this may have promoted a second attempt 
at retrieving information for the item, an attempt that may 
sometimes have elicited sufficient information to allow the 
participants to ascribe the item to the correct source (and 
to correct the initial new judgment if the participants had 
been allowed to do so). In sum, although it is suggestive and 
worth further research, we feel that the evidence on source 
recognition for unrecognized items is currently not strong 
enough to stop thinking about discrete-state models.

A second conclusion is a caveat. As was pointed out 
above, interindividual differences in scale usage may be 
responsible for some of the systematic patterns in the 
data analyzed here, and they have the potential to distort 
one’s model when not taken into account. More generally, 
a model that fits each individual’s data need not fit the 
data aggregated across individuals if participants differ in 
scale usage or memory performance. Conversely, a model 
fitting the aggregate data may well be outside the class of 
models that generate each individual’s data. Interindivid-
ual differences are ubiquitous, and they need to be taken 
into account if any progress is to be made in uncovering 
the processes underlying participants’ responses.

Individual data are usually not rich enough to fit the 
kind of model considered here for each individual sepa-
rately, but there is a compromise between the extremes of 
individual and aggregate analyses, the hierarchical model-
ing approach (Raudenbush & Bryk, 2002). Considerable 
progress has been made in the last decade in developing 
hierarchical models for discrete-state models (Klauer, 
2006, 2010; Smith & Batchelder, 2010), as well as for 
signal detection models (Rouder & Lu, 2005), and we be-
lieve that the field would profit from using such models 
to make appropriate corrections for the distorting effects 
of interindividual differences in the analyses.

In conclusion, what are the implications of the present 
analyses and model for memory theory? Conceptually, 
the three distributions for targets in Onyper et al.’s (2010) 
model—one for Source A items with diagnostic item and 
source information, one for Source B items with diagnostic 
item and source information, and one for studied items with 
diagnostic item information, but without source informa-
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NOTES

1. A few simplifications are, however, necessary to make the model 
identified.

2. More precisely, go( y | x) was constrained to equal ao( y | x) for 
y  1, . . . , 6 and x  4, 5, and 6, and an( y | x) was constrained to equal 
gn( y | x) for all y  1, . . . , 6 and x  1, 2, and 3.

3. More precisely, s( y | x) was constrained to equal s(7  y | x) for 
y  1, 2, and 3 and x  4, 5, and 6.

4. Although the correlation is one between participants, it can be 
speculated that extreme response style, like other personality traits, also 
has a state component that leads to fluctuations in extreme response style 
from moment to moment within each participant. If so, the same correla-
tion would also exist, perhaps at a reduced level, within each participant 
across trials.

5. The analyses were implemented in R (R Development Core Team, 
2009). The R scripts can be obtained from the first author.

6. Hautus et al. (2008) computed BIC by adding plog(n) to G 2, where 
p is the number of nonredundant parameters in the model and n is the 
number of cells in the data matrix (see the note to their Table 3), and we 
followed them in defining BIC in that way. It is, however, more common 
to define BIC using some measure of sample size for n, such as the num-
ber of participants or the total number of responses, depending on what is 
considered the unit of analysis (e.g., Stahl & Klauer, 2007).

7. For example, likelihood ratio bounds are used only for the source 
decision, but not for the item decision, due to mathematical conve-
nience. When a noise distribution for unattended targets is added, as in 
Hautus et al.’s (2008) Model 3, the likelihood ratio bounds are, in fact, 
no longer likelihood ratio bounds relative to the modified likelihood, 
making these bounds appear ad hoc. A data-driven choice is to consider 
old/new ratings of level 4 as new responses in the data in Slotnick et al. 
(2000), as acknowledged by Hautus et al. (p. 905). For Onyper et al.’s 
(2010) model, the choice of different response bounds for the source 
judgment as a function of the old/new response appears to be an ad 
hoc choice.

8. In Onyper et al.’s (2010) model, the compression pattern is handled 
by (1) the use of a separate distribution for targets with familiarity in-
formation but without recollection, which has an effect similar to that 
of adding a distribution for unattended items in Hautus et al.’s (2008) 
Model 3, and (2) the use of a separate set of response bounds for the 
source judgment for each old/new judgment. The estimated bounds 
spread out as the target’s value on the old/new dimension decreases (see 
Figure 6 in Onyper et al., 2010).
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APPENDIX 
The Simplified State–Response Mapping

The Compression Function
Extremity of a rating category was quantified as the distance of category i from the midpoint m of the scale 

(e.g., m  3.5 for a scale ranging from 1 to 6)—that is, as | i  m |. A shape parameter u  0 regulates the subjec-
tive spacing of the rating categories; extremity, in fact, enters the compression function as | i  m |u. For u  1, the 
extremity scores increase linearly as i moves out from the center of the scale. For larger u, the increase is posi-
tively accelerated, and thus, the distances between adjacent categories increase as i moves out from the center.

Starting out from a probability distribution 1, . . . , 6 on the rating scale (assuming a 6-point scale), a com-
pressed version of it is generated by weighting each i with weight factor wi( ) given by

 wi( )  exp( | i  m |u ),  i  1, . . . , 6. (A1)

The compressed probability distribution 1( ), . . . , 6( ) is then obtained by normalizing the weighted prob-
abilities so that they sum to one. This is achieved by dividing each weighted probability by the sum of the 
weighted probabilities:
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The compression factor regulates the amount of compression; its effect is shown in Figure 2. Changes in 
parameters u and actually have similar effects, and we used parameter u sparingly, modeling most compres-
sions via the compression factor .
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Using the Function in the State–Response Mapping
Consider first the source-rating parameters. As was already mentioned, we set equal corresponding go and 

ao parameters, as well as corresponding gn and an parameters. We refer to these parameter groups as go and gn, 
respectively, in the following. The same u parameter was used for both parameter groups. On the basis of the 
ideas of extreme response style and response editing for consistency, the row of go parameters with old rating 6 
(highest old confidence; see Table 1) was not compressed (  0), and the other two rows used the same param-
eters for the six source-rating categories, but transformed with different compression factors, one for each row. 
These same compression factors were also used for the s parameters that describe source ratings in states M1 
and M2 (see Table 1). On the basis of the idea that states with source memory (M1 and M2) may differ in overall 
level of confidence for source ratings from states without it (M3, M4, and M5), a different parameter u was, 
however, used for the s parameters as a group.A1

Extreme response style and the consistency principle also operate on the gn parameters for source guessing, 
given a new response in states M3 and M4. Different compression factors were therefore used for the different 
rows of gn parameters, one of which could be set to a zero value of no compression to fix the scale.

Turning to the old/new parameters, we set u  1 for all of them. This can be done without loss of generality, 
because changes in u can be compensated for by changes in other parameters in this part of the model. As was 
already mentioned in the body of the text, the parameters r for old ratings in states M1 and M2 were set equal. 
These and the b parameters were estimated without compression factor (  0), again without loss of general-
ity. The same parameters r were also used for old ratings in state M3 and for new ratings in state M4 (mirrored 
at the scale’s midpoint), but in line with the idea that M3 and M4 might differ in overall level of confidence for 
old/new rating from M1 and M2, different compression factors were used for the group of r parameters in state 
M3 and for the group of r parameters in state M4.

To summarize, the state–response mapping for the Yonelinas (1999) data comprises the following parameters:
1. Five (nonredundant) category parameters and two compression factors generating the go parameters. The 

category parameter estimates are the six source-rating parameters shown in Table 3 in the row with old/new 
rating 6 for state M3 (and M5), one of which is redundant. The category parameters in rows with old/new rat-
ings 5 and 4 were generated from these via the compression function with compression factors  estimated as 
0.31 and 0.72, respectively.

2. Five category parameters and two compression factors for the gn parameters. The category parameter esti-
mates are the six source-rating parameters shown in Table 3 in the row with old/new rating 3 for state M4 (and 
M5), one of which is redundant. The category parameters in rows with old/new ratings 2 and 1 were generated 
from these, with compression factors  estimated as 0.02 and 0.06, respectively.

3. One u parameter common to the go and gn parameters. Its value was estimated to be 1.77.
4. Two (nonredundant) category parameters and one parameter u for the s parameters for source ratings in 

states M1 and M2. The category parameter estimates are the three parameter values shown in Table 3 in the row 
with old/new rating 6 for state M1, one of which is redundant. The u parameter was estimated to be 8.15.

5. Five (nonredundant) b parameters for old/new ratings in state M5. The parameter estimates are shown in 
Table 3 in the column headed “Old/New Parameters” for state M5; one of them is redundant.

6. Two (nonredundant) category parameters and two compression factors for the r parameters for old/new 
ratings in states M1, M2, M3, and M4. The category parameter estimates are shown in Table 3 in the column 
headed “Old/New Parameters” for state M1 (and M2), one of which is redundant. The category parameters for 
states M3 and M4 (mirror imaged) were generated from these with compression factors  estimated as 0.62 and 
2.11, respectively.

Taken together, there are 27 parameters defining the simplified state–response mapping. The estimates for 
the five parameters of the stimulus–state mapping are shown in Table 2.

The same state–response mapping was used for the Slotnick and Dodson (2005) data with straightforward 
changes to accommodate for the 7-point rating scales used for these data. Following Hautus et al. (2008), the 
old/new categories 7, 6, and 5 were considered old categories, the remaining categories new categories for the 
source-guessing parameters go and gn. Given item and/or source memory, we assumed that participants would 
use one of the three appropriate response categories on the respective rating scales, leaving out the middle 
category 4 (e.g., participants remembering that an item is old would choose one of the old/new categories 5, 6, 
or 7, as governed by the r parameters). The simplified state–response mapping requires 31 parameters for this 
response format.

APPENDIX NOTE

A1. We could have estimated new compression factors  for these parameters, but this would have introduced two new 
parameters (one parameter  for each row of old response confidence, one of which can be fixed to zero). As was already 
mentioned, parameter u has effects qualitatively similar to those of parameter , and it allowed us to model a different overall 
level of compression for the s parameters through the use of only one additional parameter.
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