A RAND NOTE

RAND

Toward a Comprehensive Environment tor
Computer Modeling, Simulation, and Analysis

Robert H. Anderson, Steven C. Bankes,
Paul K. Davis, H. Edward Hall,
Norman Z. Shapiro

The research described in this report was supported by RAND using its own
research funds.

RAND is a nonprofit institution that seeks to improve public policy through
research and analysis. Publications of RAND do not necessarily reflect the
opinions or policies of the sponsors of RAND research.

Published 1993 by RAND
1700 Main Street, P.O. Box 2138, Santa Monica, CA 90407-2138
To obtain information about RAND studies or to order documents,
call Customer Service, (310) 393-0411, extension 6686

A RAND NOTE

RAND

N-3554-RC

Toward a Comprehensive Environment for
Computer Modeling, Simulation, and Analysis

Robert H. Anderson, Steven C. Bankes,
Paul K. Davis, H. Edward Hall,
Norman Z. Shapiro

- ifi -

PREFACE

This Note is a tentative “think piece” describing the authors’ personal views about a
new type of computer “environment” that is both needed and possible for modeling and
analysis. It also describes a relatively concrete plan for developing and testing prototype
versions of such an environment at RAND, with the intention of later exporting successful
tools and methods to other analytic organizations inside and outside government. Work
consistent with the plan is now well under way, but it will take years to realize the vision.
Further, many elements of the approach reflect judgments and hypotheses that will need to
be revisited and iterated as we gain experience with prototypes. Although we developed it
originally for internal purposes, we are publishing the Note now because of interest in the
effort expressed by many colleagues in the scientific and analytic community, many of whom
are concerned with similar issues.

Preparation of the Note was sponsored by RAND’s Defense Planning and Analysis
department using RAND’s own funds. Comments are welcome and can be addressed to the
authors by electronic mail via Internet (e.g., at Paul_Davis@rand.org or
Robert_Anderson@rand.org).

SUMMARY

We argue here for a vision of a new and powerful computer “environment” for
modeling and analysis, with “environment” being construed broadly to mean a union of
hardware, software, facilities, conventions, procedures, links to external networks and data
bases, and organizational mechanisms for teaching, sharing, and communicating. Such an
environment will make modeling and analysis better, more flexible, and faster. This Note
describes objectives and a strategy for developing a prototype version called RANDSIM. If
successful, it would be the basis for subsequent work, including exportable tools.

Our overarching concept for organizing ideas on an environment is that we should
seek to maximize useful computer support for all the identifiable activities in studies—
activities ranging from review of past studies to group brainstorming, development of models
and data bases, “exploratory” analysis amidst massive uncertainty, careful analysis of
alternatives, and multimedia presentation of results. Currently, only a few of these activities
are adequately supported by computers and information science methods. For example,
modeling with current tools often leads to programs that are difficult or expensive to
comprehend and adapt, much less to pass on effectively to sponsors and other research
organizations, or to use effectively in distributed simulation networks. Great strides are
possible in both the scope and quality of computer assistance.

Our objectives consist, as mentioned above, of supporting all phases of the modeling
and analysis process. As part of this, however, we have the specific objective of improving
the state of the art in high-level languages. We seek language capabilities (including
graphical tools) that will allow analysts, not just programmers, to design, understand, and
modify major features of programs, and that will provide significant explanation capabilities.
Further, we wish to emphasize a highly interactive style of modeling and analysis that
encourages and facilitates the prototyping and exploratory analysis that we believe is
important to innovation and top-quality modeling and analysis under uncertainty. And we
seek hypermedia methods that will facilitate and improve documentation.

Our strategy for accomplishing the various goals is based on a number of principles
that reflect subjective judgments in the context of the particular circumstances we perceive
at RAND. Thus, while we hope the fruits of our development will be broadly applicable, our
approach is organization specific. The dbj ectives we developed in 1991 were and remain as

follows:

-vi-

* Buyus. Build. Exploit vigorously the new and powerful products available
commercially or without cost in the public domain. At the same time, retain
control over the central tools and techniques most critical to achieving an
integrated and adequately ambitious high-level environment. This means, in
particular, retaining control over the central development language and related
tools.

* Software Reusability. Encourage increased interoperability and modularity
generally, which will require organizational changes with at least some
centralized programming standards and registration of modules and, when
appropriate, consistency with emerging community standards (e.g., those for the
DoD’s Distributed Interactive Simulation [DIS] efforts).

* Diverse Users. Design the environment for researchers working not only on
military problems but also on social-policy and economic problems. Stimulate
domestic-research “demand” by working closely with such researchers and
encouraging experiments using the emerging tools.

* Model Families as a Goal. Seek scientific and practical advances in developing
internally integrated hierarchical families of models, which make it possible for
analysts to work effectively and consistently at different levels of detail
(resolution).

* Highly Interactive Modeling and Analysis. By pursuing work on appropriate
high-level languages and related graphical tools, seek major advances in highly
interactive modeling and analysis.

Our proposed strategy has many elements designed with these principles in mind. In

particular, the strategy includes the following aspects:

. Commercial Tools for Pre- and Post-Processing (and Some Modeling). Exploit
personal computers (Macintoshes and IBM PCs) and related commercial tools
such as Excel®, Word®, MacDraw®, PowerPoint®, HyperCard®, MacFlow®,
iThink®, and 4th Dimension® rather than attempt to reproduce their
functionality. Similarly, RAND should not develop its own data-base
management system (DBMS), network facilities, or systems for communicating

with the outside world.

- vii -

* A High-Level Central Language. Develop a new high-level programming
language (to be called Anabel) based on extending the RAND-ABEL®! language
to include object orientation and many other features.2 This will build on the
ubiquitous C/UNIX® programming environment and will make possible the
coherent integration of tools and other features of an environment while allowing
RAND to pursue unique features related to model comprehensibility, hierarchical
explanation capabilities, flexibility, interactivity, and ability to do exploratory
analysis. It will also improve prospects for developing integrated families of
models. Anabel will be an analyst-friendly language and a candidate for use in .
many of RAND'’s projects, which could increase commonality. We believe the
language will prove popular and will be requested and used elsewhere as well.

* Assuring Flexibility. To reduce risks and maximize flexibility, Anabel
development should neither start from a blank slate nor stand alone. In
particular, (a) the Anabel language should translate automatically into C and
C++, thereby assuring portability of this immediate code; (b) the entire
development should build on the substantial and documented base of the RAND-
ABEL language; (c) options should be maintained at all stages for falling back to
the use of features of C and C++; (d) development should emphasize the
requirement to link programs written in a variety of languages (including
FORTRAN, Ada, and MODSIM®) since such diversity of languages is and will
continue to be a fixture of research; and (e) the Anabel development should be
phased with intermediate deliverables and milestones that can be assessed. The
premises of Anabel development should be reviewed at yearly intervals.

* Model Families. Use the opportunity of current RAND work with such combat
models and war games as RSAS, TLC/NLC, Janus, and Brawler to develop
internally integrated hierarchies of combat models covering a wide range of
resolutions. This will contribute to RAND’s national security analysis and
provide generic experience on cross-resolution work critical to interoperability on,

for example, DIS networks.

1RAND-ABEL is a trademark of RAND.

2This decision was both difficult and controversial, but we concluded that none of the available
languages was appropriate for our purposes. In some cases language source code was not available; in
other cases the languages are not designed for high-level comprehensibility; in still other cases the
language was highly specialized and not readily compatible with C/UNIX systems; and so on.
Regardless of its potential value for large-scale DoD projects or embedded software, Ada was simply not
competitive for this type of research.

- viii -

Model and Data-Base Management. Build on ongoing work in other projects and
in RAND’s Military Operations Simulation Facility (MOSF) to provide tools for
configuration control, use of intelligent data-base techniques, model-specific data-
base adaptations and manipulations, and greatly increased sharing of both data
and models across projects.

Standards, Support, and Testing. To assure continued maintenance and support,
develop early documentation for Anabel and key environment tools. Plan on
using RAND support operations, notably the MOSF and Information Sciences
Laboratory (ISL), to assume some of the burdens associated with such matters
with use of standards and conventions and with increased emphasis on
verification and validation (V&V). Explore organizational mechanisms to provide
education and training.

Long-Term Support and Exploitation. Explore collaboration with commercial
vendors when development is far enough along to make that useful. It may be
desirable for a government sponsor to subsidize a support contractor when the
time comes, assuming the environment tools come to be used by the government
and its contractors.

Organizational Measures. In the second year, after laying a technical foundation
but while continuing Anabel development, begin aggressively to work with a
broad range of potential military and nonmilitary users with applications
involving a variety of model types such as discrete-event and time-stepped
simulation, optimization, cost-effectiveness assessments, and statistical analysis.
This will involve (a) creating appropriate discussion forums within and outside
RAND; (b) seeking early testers with ongoing or prospective project work suitable
to the new tools (including testers who need to use languages other than Anabel,
at least in part); (c) experimenting with important nonlanguage aspects of the
environment, such as distributed model-supported videoconferencing;

(d) experimenting with model and data-base management tools being developed
in other projects; (e) developing organizational mechanisms for centralizing
documentation, registering models and data bases, and providing effective
training as it is needed; and (f) keeping abreast of and contributing to community
developments through participation in professional organizations and other
efforts,

Reviewing and Iterating Precepts. Also in the second year, conduct tests to

strengthen the basis for judgments about the relative merits of different language

- ix -

features and tools for designing, understanding, and working with models. In
connection with other ongoing projects, conduct experiments in “exploratory
modeling and analysis,” prototype efforts that emphasize dealing effectively with
uncertainty. Reflect results in evolving plans for the modeling and analysis

environment.

Where are we as of November 1992? Work on the full environment concept is still at a
fairly early stage, but there have been important achievements in the last year since the
original version of this Note was first written as an internal proposal. We have
demonstrated effective and efficient coupling of Sun workstations and desktop Macintosh
microcomputers. We have experimented successfully with hypertext and hypermedia for
documenting models on-line and have developed operational software tools embodying these
concepts. We are well advanced in design work and related documentation for the Anabel
language and have completed versions with objects and lexical (static) inheritance. A first
version was completed early in 1992 and is now in use on a major project. Work on class
libraries is now under way. Cross-divisional plans call for submodels and tools developed in
the RAND Strategy Assessment System (RSAS) and Theater-Level Campaign Model/
Nonlinear Combat Toolkit (TLC/NLC) theater-combat-modeling efforts to migrate into the
emerging environment. This migration will include the MapView object-oriented map-
graphics system, which is coupled to the RAND-CAGIS (RAND’s Cartographic Analysis and
Geographic Information System). Map-based presentations should be of substantial value to
both regional specialists and domestic researchers as well as military analysts. Further, we
believe the graphics system underlying MapView can be used for graphics-assisted model
design.

We have yet to go beyond initial concepts on many other aspects of the envisioned
environment. For example, RAND is only now beginning to use videoconferencing, and its
use of external data bases available on networks is modest. The Anabel project is only
beginning to pursue graphical design aids for Anabel, and we have not yet begun integrating
work on the language and related tools with the tools for model and data-base management
that will be very important in establishing a good analyst environment. Nonetheless, the
first year has been very encouraging. If adequate funding can be obtained and maintained,
which remains problematic, we are optimistic about prospects. In many instances, however,
we are plunging into uncharted waters and there will need to be a great deal of exploration

and iterative refinement.

-xi-

ACKNOWLEDGMENTS

We appreciate informal reviews and other comments by many RAND colleagues,
particularly Willis Ware, Iris Kameny, and Stephen M. Drezner, and a formal review by
Richard J. Hillestad. All of them raised tough questions and made good suggestions. They
may or may not agree with our conclusions, but the research effort described here will be

better in any case.

- xiii -

.CONTENTS

Section

1. INTRODUCTIONccc... Ceeseseseseans
ObJectlves....... e eececsteccscssstcsstecssassnseannan
Background
Structure of Note s eecceccctecssstnesesssssae s .o

2. SHORTFALLS IN CURRENT MODELING AND ANALYSIS
ENVIRONMENT S . it itetrteecnsossscesoasssasssssossasssscsnans
A Framework for Identifying Shortfalls «.vcvoeveeececescscsccrceces
Shortfalls and Problems Being Addressed....cce0eeeese sesesecncnnn

3. TECHNOLOGICAL OPPORTUNITIES ceeessecens ceccssesaanas
Object-Oriented Programming Languages «..ceeeeesvcocanoacencsns
Personal Computers and Workstations « s e secevceesoesecocssasnanns
Highly Interactive Modeling and Analysis Environments « c e e cecveeeens
Visualizationccvveeeenecnceenenens
Exchange and Reuse of Models and Tools, Including Distributed

SIMUlation . .vveieiteteeneeeeeneeeceesencncecacacnasencans
Techniques and Methods «v.eevvveeeececececcoceacscoccscncones
Beyond “What If?”ccviivecrecncncnsanans ceeeenn ceeeseas
Explanation Capabilities «.ecvevee.. e esecesecscscsctsennanens
Optimization and Other Adaptive Plannmg Methods ccvevveveencnn.
Exploratory Modeling and Analysis «..cecececeececccecacananens
Analytic Gaming «c.ec.... teeesssesssesssssesssaccnnn ceesns
Other Technological Developments Relevant to a Comprehensive
Environment «..uoceeeececeeeeeeceensescescosascscsncaanens

4. PULLING THINGS TOGETHER INTO ASTRATEGY ..ccvceecececcecnnns
Objectives e vevvveenennn. s eseseserscccarresaanronn cesessseans
Components of Strategy cveeeveeeseesseessecescoasscocscescans
Software Strategy cheeceenaan ceaeena cesecsesesnenasans

The Language Issue oo cvvveenceecnonsesncssososnns cesecnnns
Software Associated with Microcomputers and Workstations
Nonsoftware Aspects of the Environment «cccceeeeeccsosceascenccnss
Model and Data Management . o oo ecvoeecessseossscocscscosoncnaana
Organizational IsSues « « oo vveeeeeeeenoescccoccessoscncoccsansas
Participation, Support, and Organizational Learning ceeesens
Standards. . .o.veeeeierietteectcratctasastossssoccsasasnns
Long-Term Support and Maintenance. .« coveeesesecsscsasesccsesss
Development Schedule and Funding Issues teseseencecanns

et

10

15
15
16
17
18

19
20
20
21
21
21
22

22

24
24
24
25
25
27
27

28
28
30
31

- xiv -

5. WHERE WE STAND NOW AND NEXT STEPS........... ceescenas N
Language Design cesecnaas teecasesecessasssesatncnona
Parser and Compiler....vceeeeeeeeeecenneess
Tools for Hypertext Authoring, Browsing, and Documenting. .+ ..ccvv...

Hypertext “Buttons” « c v veeeeeevereecocenrcacncasn
Voice ANNotation «veeevesesceoocesnas tsssescscsssncsssas
“Tokenizing” Anabel Source Code v« cevveuvee tecesesreasscanenns
File SUIteS s vvvverenreereeceeseasenseosennnnnns cetecnaanan
Intimate Linkage Between Macintosh and Sun Workstations .« eeoee...
Coordination with Other Projects and Activities « c e ceveeveeenernnnnnn
Next Steps eeeeeeeeesen Ceesesssesesssessssasseranns

Appendix

A. SOME QUESTIONS AND ANSWERS ..+ vceeeecaasss ceeesssneesesenan
How Much Standardization Should Be Imposed on Modelers and
Analysts? cesecesasecnsrsssanens PN
Can RAND Adopt a Commercially Available Modeling Language and

Should Military Modeling Be Stressed or Can Domestic Research Needs

Be Fully Accommodated?
What About Ada? «coveereennnaan creerecssscnnae ceecesessseeans

B. SOME SYSTEM DESIGN CONSIDERATIONS ...cevveven.. .
Top-Level Architecture of Anabel Environment tesesssssaans
Importing Anabel Models to Other ENvironmentseeeeeeeeeeeeeees
Importing Other Models into the Anabel Environment «...coeevee... .o

C. MODEL, DATA, AND MODEL-RUN MANAGEMENT cececnenne

BIBLIOGRAPHY teetecceccestasesannan cesscesccacnsananns .o

41
41
42
44

44

46
46
49
50

54

57

o b o

PR SN ol

-XV -

FIGURES
A Schematic View of the Study Process . .cceeueeeeeseeecsoeoesecnesnnns 4
An Expanded Concept of the Study Process «...eeeceeeescs. cecsenrenene 6
Potential Computer Support for the Study Process «.ceeeeeeeeceesceeness 8
Relationship of Anabel to the Overall RANDSIM Environment...... cesecees 26
Top-Level Logical Architecture of Anabel Environment «.....eeeceeeeeces. 47
An Anabel Model Within a Non-Anabel Environment « « cvvveeeveeseeneseaes 51
A Non-Anabel Model Within the Anabel Environment «....eoeeeeeescenss. 52
A Non-Anabel Model by Itself Within the Anabel Environmentoocev... 52
An Architecture for a Model Integration and Management System « v 55

TABLE

First-Cut Associations of Activities and AidS. e e v eseeseeeeeeeccaceanssss 9

-1-

1. INTRODUCTION

OBJECTIVES
This Note, which is somewhat of a think piece, has several objectives: (a) to convey an
image of an idealized computer “environment” for modeling and analysis, (b) to sketch a

development plan we first presented in 1991, and (c) to describe the first year’s progress.

BACKGROUND

This work originated in 1990 as a planning effort. RAND is in the business of studies
and analysis, which are changing rapidly with world politics and technological progress.
Consistent with its institutional history, RAND is pursuing ways to exploit the emerging
capabilities of information science to improve methods of analysis. This Note presents our
motivations and describes one plan for doing so, a plan envisioning a new and highly
ambitious overall computer “environment” consisting of hardware, software, facilities,
conventions, procedures, links to external networks and data bases, and even organizational
processes for teaching, sharing, and otherwise communicating about models. The ideas we
present are speculative; they represent the authors’ effort to provide a vision and plan to
guide exploratory developments. Some of our ideas and judgments will prove wise; others
will not. Even among our RAND colleagues there is a diversity of ideas about what is needed
and what is most worth pursuing. Nonetheless, one must start somewhere and this Note

describes our approach.

STRUCTURE OF NOTE

The Note is structured as follows: Section 2 describes shortfalls in current capabilities
for modeling and analysis. This is the “demand-pull” part of the Note but goes well beyond
what most practitioners of modeling and analysis would currently think of as requirements.
Section 3 represents “technology push” by describing the opportunities we see as most
relevant. Section 4 presents a strategy (first developed in 1991 but still accurate) for
developing a prototype environment (which we will call RANDSIM). Section 5 describes
where things stand and what is planned for the next year or so. It also describes the state of
actual development as of November 1992. Appendix A summarizes our reasoning and
Jjudgments on key choices (e.g., the choice of our primary computer language). Appendix B
gives more technical detail on the goals of the development work that is currently being

.92.

supported. Appendix C describes some of our aspirations for providing management tools for
models, data, and the run-time environment.

-3.

2, SHORTFALLS IN CURRENT MODELING AND ANALYSIS ENVIRONMENTS

A FRAMEWORK FOR IDENTIFYING SHORTFALLS

All modelers or analysts can quickly identify features they wish were available in their
computer environment. It is useful, however, to have a conceptual framework for identifying
such features systematically. Further, such a framework should be general enough to help
us think about modelers and analysts working ideally in what is sometimes referred to as a
world with “ultimate” computing power and pervasive communications.

One place to begin is with a depiction of the classic study process (for studies making
significant use of models). There are many depictions, but Figure 1 is appropriate for our
purposes. The process starts with tasking from policymakers or managers recognizing the
needs of policymakers. The study begins with brainstorming to determine what the “real
issues” are, which often are rather different from what was envisioned at the time of initial
tasking. The brainstorming is also crucial in developing a general sense of how to proceed:
what is important, what is doable, what depends on what, and so on. This phase may also
produce a variety of hypotheses and options that should be investigated, tested, and
compared. The next phase is developing a study plan, which is arguably the most important
part of the entire study, because crucial decisions are made about scope, assumptions,
uncertainty analyses, measures of effectiveness, and so on. The study plan may require
building or adapting models and data bases. It specifies cases that will be examined by using
the models. And so on. The overall process is highly iterative.

The individual processes in Figure 1 are shaded and annotated. The darker the
shading, the more we already use and depend on computers for the function in question. As
Figure 1 suggests, computers are still used primarily for running models. There is only
modest support for building them and analyzing the results.

Our views on this have been heavily inﬂuenéed by observing the influence and
acceptance of the “Macintosh environment” and our experience developing and evolving a
large analytic war gaming system (the RAND Strategy Assessment System) during a period
in which it was impossible to completely avoid mixing languages and interface paradigms
and in which competitive approaches were emerging rapidly. While “superstars” could
handle the diversity, most users found it very burdensome, which has led us over time to

move toward a more integrated framework.

i

e e e e e ————y

I

s e ew s e R e e e e e e e on af

Policymakers: recognize
and discuss problem and
issue tasking

Y

Study team: discuss
problem, define it better,
and identify hypotheses

Design study

RAND#P088-1-1202

e

Adapt or build models and

data bases

A

Conduct background

research

i

Run models for both
exploration and more
structured analysi

V

T 7
’?’;;4//524’/?2//24/5 L

7 ey
/////,;/ Analyze resuits - / oy
T
A

Discuss results with
policymakers

Use of computers
Some

Considerable

Figure 1—A Schematic View of the Study Process

-5-

We now expand upon this image in Figure 2, using bubbles to show how some of the
standard processes actually include quite a number of subordinate processes that have often
been taken for granted but that are important and could benefit from extensive computer
support (e.g., searching for and reviewing past studies, assembling a multidisciplinary team,
reviewing and perhaps testing existing models, tailoring products to particular sponsors, and
so on). The exclamation points !, !}, or !!! indicate subjectively the degree of pain and expense
involved in using computers to the extent they are used. For example, computers are
certainly used to build models (or at least the programs implementing them), but it is
currently a tedious and expensive process because the tools are not yet well enough
developed and available. It is striking how computer technology has been only minimally
used, or even thought of, as a standard way of helping us do our business. To be sure, one
could find counterexamples in each bubble, examples in which workers currently use
computers well in enhancing their work. However, the potential is far greater than the
reality. Further, even for activities in shaded bubbles, there is the potential for much more
effective use of computers than in the past (e.g., reviewing and adapting existing models
could be much easier merely if the models were programmed in more comprehensible
languages).

We regard each of the activities represented in Figure 2 as something that should take
place within a total environment for modeling, simulation, and analysis. In particular,
Figure 2 includes many activities not often well supported, either by computer aids or

otherwise:

. Searching data bases and the literature for prior relevant studies; reviewing such
studies efficiently through a variety of media (e.g., written reports, videotapes,
“canned simulations,” and data bases of results).

* Assembling, in some sense, an interdisciplinary team of individuals with
appropriate skills and diversity of both knowledge and viewpoint; brainstorming
with such a team and perhaps conducting insight-generating games.

* Acquiring and reviewing existing models. Can they be adapted? Are portions

reusable in this analysis?

Policymakers: recognize
and discuss problem and
issue tasking

1

Study team: discuss
problem, define it better,
and identify hypotheses

Obtain, adjust
special data !l!

Design study

Search prior studies

Y

RAND #P088-2-1292

Assemble
multidisciplinary
team

Brainstorm in group
discussions

Conduct games
or other insight-
generating drills

—

----------»l

data bases !l

LAY,

Adapt or build models and

LU

NANNNAN

Review existing
models !

Design or modify
model !

Conduct background

research

- Run models for both

xploration and more
is Mt

e T

{

/ P{Iyze results i
o

G

Develop new
theories !!

LI/ /AIINNIINNNN,

77
Discuss results with /
i~

policymakers 1!}

Build tailored
product
e

Use of computers

Some

Computer friendliness and expense

! Relatively easy
! Moderately painful and expensive
1 Very painful and expensive

Figure 2—An Expanded Concept of the Study Process (shading indicates current degree of

computer support)

* Building a tailored product from all of the existing resources that have been
found plus any programming and developmental work that has been required.
The “product” includes documents resulting from the analysis, briefings,
demonstrations of the model, videotaped documentation of the model or a
resulting briefing, and any other outputs deemed important to the client.

. Developing an analysis plan.

. Designing, building, and documenting any models developed (and some that were
previously developed but not adequately tested and documented).

. Conducting verification, validation, and accreditation (VV&A) for the models.

* Obtaining special data needed, either from existing data bases worldwide or as
derived from other data that are available.

* Developing new theories (e.g., new models for describing phenomena based in
part on insights gained from exploratory modeling, exploratory analysis, and
validation efforts).

* Comparing results across runs and models.

* Connecting to other models or man-in-the-loop simulations on a network such as
SIMNET (Miller, 1992).

We believe that as part of the prototype environment (RANDSIM), all of the above
activities, plus the ones indicated as already computer-supported in Figure 2, should be
supported with excellent aids uniformly throughout an organization—in RAND’s case, its
division for social policy research as well as its divisions for defense studies.

Figure 3 represents our view of the extent to which computer technology could affect
our work in the relatively near future (two to five years). The truth of this may even be self-
evident since we are all aware of the revolution that has recently brought us powerful
personal computers, networks, data retrieval programs, and so on.

What computer-based tools and techniques might provide relevant aids to the many
activities shown in Figure 3? Table 1 is an initial attempt to relate aids to activities. We are
not promising that all such aids will be developed or that we have listed all the most
promising ones. Rather, our intent is to indicate the wealth of tools and techniques that can
be brought to bear on many of these activities—but tools that must form a coherent and

mutually supportive collection.

RAND#P088-3-1292

Policymakers: recognize
and discuss problem and
issue tasking

)" Search prior studies -

Study team: discuss
probiem, define it better,
! and identify hypotheses !

Assemble

rainstorm in grou
discussions !

Design study |

Obtain, adjust
special data !!
/.

S e e e e es e m e e e e e . ———————

7 Anglyze results !!//
/// // ////// /% Use of computers
Some

lfrcrm e e - -

Considerable

| / - Extensive and critical,
policymakers !! // both qualitatively and
i, quantitatively

/ ' Computer friendliness and expense

! Relatively easy
I Moderately painful and expensive
' Very painful and expensive

Develop new
theories 1!

Figure 3—Potential Computer Support for the Study Process

Table 1

First-Cut Associations of Activities and Aids

Analysis-Related Activity

Potential Aids

Searching for prior studies and data
bases

Assembling a multidisciplinary team

Brainstorming to define the problem

Reviewing existing models

Building tailored products

Developing an experimental plan

Obtaining special data

Constructing models (design, build, test,
and document, often building on
existing models)

Electronic search via networks; browsing tools.

Videoconferencing and software for collaborative
work (groupware) such as electronic mail, shared
electronic notebooks, etc. (much available from
homes).

Group-discussion aids; visualization methods;
computer-assisted videoconferencing with
distributed modeling (including simulation and
gaming).

Electronic search; browsing tools for new
documentation methods; standardized data
dictionaries; semiautomated model testing
against standardized “scenarios”; high-level
languages.

Desktop publishing tied intimately to personal
computers tied intimately to networked
computers, printers, videotaping machinery, etc.
There is a possibility of directly linking models
with these “publishing” applications.

Case-development aids; retrieval of past study
results; retrieval of data on policymaker
attitudes, biases, and concerns.

Specialized retrieval, reformatting, and
processing of data from networked data bases
and other sources (e.g., speeches, proceedings,
and journals).

Graphical design aids; design conventions;
design theories; high-level languages; modular
design; standards promoting reusability;
semiautomated verification testing; partially
standardized validation; special methods to
enhance ability for problem exploration.

-10-

Table 1—continued

Conducting verification, validation, and Language features to assist verification and top-

accreditation on models down visually oriented design and
documentation with hypermedia features.
Library functions to assist verification testing.
Network links to other organizations to facilitate
model comparison as part of validation and

accreditation,
Connecting to other models and Networks and protocols (e.g., SIMNET and
simulations Distributed Interactive Simulation [DIS]),

quickly comprehensible documentation of
candidate models, VV&A tools, tools for adapting
models for connection to dissimilar models.

Running models and doing so Networking and parallel processing with user-
systematically as part of an analysis friendly setup tools and semiautomated problem
solving during long runs. Training methods.

Analyzing results Visualization techniques of all kinds. Training
methods.

Comparing results across runs and Semiautomated postprocessing coupled with

models visualization techniques and automated

comparisons with standard cases; user-friendly
case specification and version control;
dictionaries and repositories related to previous
results. Analyst tools to help design exploratory
analysis and final, convergent analysis.

Creating and tailoring briefings, Portable equipment for multimedia
demonstrations, and other outputs presentations and simulation; distributed
simulation; desktop multimedia publishing.

SHORTFALLS AND PROBLEMS BEING ADDRESSED

The problems being addressed in this Note can now be described in terms of the
overall environment indicated in Figures 2-3. The central problem we see is the lack of
adequate and unified support for the activities that are unshaded or only lightly shaded in
Figure 2, with the result that these activities are not performed as thoroughly or well as they
should be, are not performed with consistency across projects, and often leave little useful
documentation in their wake. The unshaded activities of Figures 1-2 are as vital to the
overall process as model building, programming, and analysis of run results but receive less

attention because of the primitive tools and aids available for them.3

SThere are many other problems associated with modeling and analysis, of course. These
include the data-base problems we discuss only briefly here, the challenge of teaching the substance of

-11-

One reason for some of the shortfalls (unshaded bubbles) is a lack of standardization
that has resulted from researchers, over time, optimizing their particular efforts along many
different dimensions (e.g., speed, readability of code, ease of programming, graphics front-
ends permitting interaction with a running simulation, convenience in using a particular
data base). As a result, a plethora of programming languages and computer aids is being
used for modeling at RAND and elsewhere with tools such as MODSIM, Extend®, Stella®,
RAND-ABEL, C, FORTRAN, Lisp, SAS, Basic, Excel, LOTUS®, and iThink. Thereis a
similar diversity of data bases and data-base formats. By no means is this all bad. To the
contrary, most modelers and analysts recognize that different tools are useful for different
problems and prefer the diversity of tools to having to use a single allegedly “universal tool.”
The different tools also encourage alternative approaches to the same problem, which can
enhance innovation and broaden perspectives. Nonetheless, because of this diversity, it is
difficult to build a pool of modelers, programmers, and analysts that are fungible among
projects and to build a common culture of modeling and analysis with appropriate training,
seminars, workshops, and documentation—or even possible sharing of subroutines or code
modules. Further, comprehensibility, user friendliness, and related issues of efficiency and
interoperability suffer heavily when the diversity of methods is too great.4 Although it will
always be necessary to work with a variety of languages and other tools, the current
situation is extreme—within RAND and in the community at large.

We want to address a number of other problems as well, some of them subsidiary to
the above issues but nonetheless important for a variety of reasons that include continuing
scientific interests (e.g., in promoting high-level languages and exploratory analysis). They

are as follows:5

* Current programming languages result in programs that are often not
transparent (understandable at the line-by-line level) and very seldom

comprehensible as a whole. It is often difficult if not impossible for analysts,

particular models to both senior and junior analysts on a continuing but unscheduled basis, and
importing and using models developed elsewhere.

40ur views on this have been heavily influenced by observing the influence and acceptance of
the “Macintosh environment” and our experience developing and evolving a large analytic war gaming
system (the RAND Strategy Assessment System) during a period in which it was impossible to
completely avoid mixing languages and interface paradigms and in which competitive approaches were
emerging rapidly. While “superstars” could handle the diversity, most users found it very burdensome,
which has led us over time to move toward a more integrated framework.

5See also DoD (1992), which includes appendices identifying shortfalls in both modeling
methodology and technology. The document focuses primarily on issues relevant to distributed
simulation.

-12-

much less clients and sponsors, to study and modify even moderately complex
models and simulations.® To some extent these difficulties are inherent in the
complexity of the problems themselves, but we believe great strides can be made
to improve both transparency and comprehensibility. This will require better and
higher-level languages, including, importantly, languages that exploit graphical
tools.”

Prototyping is typically difficult. It is therefore difficult to perform “exploratory
modeling” (Bankes, 1992b) as a means of making detailed design decisions about
the final model or to explore alternate structures or analytic approaches toward a
model. There are great opportunities here, especially those exploiting graphical
design methods.8

Many models are locked into particular hardware configurations, especially if
they use graphical input/output on a display terminal. Use of modeling tools
should result in code and user interfaces that are as portable as possible to a
variety of workstations and computers (e.g., Macintosh, Sun, IBM PC
compatibles).

Even models developed within a single organization seldom link well together or
fragment into modules that can be developed in parallel. Even more serious,
since most models used by analysis organizations are and will be developed
elsewhere, there are few tools and no overall environment to assist importing,
reviewing, adapting, and linking externally developed models. Some of this is
changing in the DoD world with the emergence of Distributed Interactive
Simulation (DIS) networks, but development is still at a fairly primitive stage
overall, despite significant advances at MITRE (see Weatherly, Seidel, and
Weissman, 1991) and Aerospace Corporation (Landauer and Bellman, 1992) and
by RAND colleague Jed Marti with the Seamless Model Integration (SEMINT)

system.

6This creates serious difficulties also for VV&A as well as for interoperability and reusability.
See Davis (1992a), which reports work done for the Office of the Secretary of Defense (OSD) Defense
Modeling and Simulation Office.

TMore graphics tools are becoming available, including tools for constructing data-flow diagrams
and other characterizations of models. Only in a few instances, however, are the diagrams hard-linked
to the code itself. Exceptions include iThink and some of the tools used in expert systems.

8As discussed in the appendices of Davis (1992a), high-level languages (including graphical
tools) should revolutionize the way modeling is accomplished and should eliminate some of the
troublesome distinctions between “models” and “implementing programs” that have caused so much
trouble over the years.

-18-

* Inarelated vein, connecting models that cross levels of resolution (or designing
variable-resolution models) is neither well understood theoretically nor supported
well by software tools (e.g., tools making it easier to see data flow and variable
hierarchies, change variable names, or find substantive definitions of variables if
such documentation is even available).?

* Documentation of models very often lags behind their development and appears
mainly to be an afterthought. It is often not effective even when it exists or
becomes ineffective as it rapidly becomes outdated. New methods are needed
that can be applied as a model is being developed, without distracting from the
development process.1® Further, documentation needs to be understandable
quickly 11

* It isdifficult to design and implement comprehensible models dealing with “soft”
issues, including behavioral factors and judgments, without using highly
specialized and often inefficient artificial intelligence languages.12

. Collecting, manipulating, cleaning, and otherwise testing, using, and reusing
complex data bases is very costly and often unpleasant, despite advances in data-
base management systems (DBMS). Object-oriented DBMS are not highly
developed as yet and more common DBMS (e.g., INGRES) often do not fit well
with advanced models (e.g., object-oriented models). There are few tools available

for automated or semiautomated verification of data bases, much less

9For recent work on variable-resolution modeling and connection of models with different
resolutions, see Davis (1992b), Hillestad and Juncosa (forthcoming), and Hillestad, Owen, and
Blumenthal (forthcoming).

10Some of the ideas we are pursuing on documentation stem from an exploratory project
accomplished by colleague John Clark, now at the University of Colorado. Clark emphasized moving
away from linear hard-copy documentation and toward hypertext concepts that recognize the need to
shift routinely from one perspective to another and to delve efficiently into examples from time to time.
Another reality is that most modelers and programmers work primarily at a workstation; having to
move to hard-copy documentation is a distraction.)

11This point was emphasized by one of us (Davis) in a DIS conference held by the Military
Operations Research Society in September 1992. If DIS is to be successful, it will surely be necessary
for users to be able to understand models developed by others and running at other physical locations.
This, in turn, will require efficient documentation, preferably of a variety exploiting graphics wherever
possible,

12RAND has had good experience building such models in RAND-ABEL (Shapiro et al., 1985;
Shapiro et al., 1988; Davis 1990), ROSS (Klahr and Waterman, 1986), DMOD (Narain, 1989), ROSIE
(Kipps et al., 1987; Sowizral and Kipps, 1985), and RLISP (Marti, forthcoming), but all of those
languages have significant shortcomings. RAND-ABEL, for example, does not have object orientation,
graphical design aids, graphical descriptions, or artificial-intelligence-style “inference” features of the
sort that allow backward-chaining.

-14-

“intelligent” tools that would help users test for subtle and domain-specific
problems.13

* Many high-level languages and other languages with important specialized
capabilities result in slowly running simulations that do not permit appropriate
exploratory analysis or sensitivity analysis. Some of the features that can
improve understandability or provide specialized capabilities, such as goal-
directed search, reduce run-time performance. Thus, there are tradeoffs to be
made.

* Many current programming and support tools do not permit graceful extension
into new technologies that are becoming available and important, such as object-
oriented modeling and programming and use of hypertext and hypermedia and

visualization systems.14

What follows, then, is a research effort to address these problems, an effort initiated
with internal funding but that is now being supported in part by the government. This effort
will draw upon computer projects already under way, plus new ones to be undertaken.
Before describing current efforts and the scope of the proposed effort, we mention in the
following section some recent technological developments that create opportunities that
should be taken into account in any “next-generation” modeling environment development
effort.

1830me data problems are, in our view, inherently substantive and will continue to be difficult
even as technology advances. The basic problem here is that evaluating data bases requires, in many
cases, intimate knowledge of the model in which the data are to be used and the problem to which the
model is to be applied. We do not discuss these matters in the current Note, but we see significant
challenges here for organizations with respect to standardization, centralization, and training—of both
technicians and professionals.

14The issues here are many and varied. They include the character of the underlying
languages, closed architectures, and conflicts of “style.” So it is, for example, that DOS systems are
gaining important functionality only by sophisticated intermediate mechanisms such as the Windows
program developed at great expense by Microsoft. ’

-15-

3. TECHNOLOGICAL OPPORTUNITIES

The previous section took a top-down enlightened demand-pull approach to the
discussion of a next-generation modeling, simulation, and analysis environment for RAND
(i.e., an approach that looks not only at current demand but also demand that can reasonably
be anticipated from objective needs, whether or not widely recognized). It is also important,
however, to be cognizant of technology-push considerations. There are a number of recent
developments that provide new opportunities for modeling and analysis but at the same time
increase the danger of obsolescence in doing business as usual. We briefly introduce a
number of these technologies here. These topics were chosen because of their relevance to

the activities composing the total modeling “environment” shown in Figures 2-3 above.

OBJECT-ORIENTED PROGRAMMING LANGUAGES

Object-oriented techniques have long been seen as desirable in simulation. Indeed,
one of the very first object-oriented languages (SIMULA) was developed 25 years ago (Dahl
and Nygaard, 1966). However, it has only been in the past five years that highly organized
concepts of object-oriented designl5 and taxonomies of object-oriented features6 have been
developed, resulting in mature programming languages such as C++ (Stroustrup, 1986),
CLOS (Bobrow et al., 1988), and Eiffel (Meyer, 1988).

We believe there are many advantages in the use of a design and programming
methodology that is object-oriented. This technique basically describes the world being
modeled as a set of software objects, each of which is described by a set of attributes, and a
set of operations that cause attributes of the objects to change. There is a clear distinction
between processes that the object “owns” and those it does not, and considerable effort is
made to limit the degree to which one object’s processes depend on information owned by
other objects. The result is a high degree of modﬁl'arity in the resulting design and the

programming code. Object-oriented programs also tend to be more concise, because part of

18See, for example, Rumbaugh, Blaha, Premeriani, Eddy, and Lorensen (1991); Coad and
Yourdon (1992); and Zeigler (1990).

16Perhaps the sentinel event was the Association for Computer Machinery’s (ACM’s) 1987
Object-Orient Programming Systems, Languages, and Applications (OOPSLA) conference where
proponents of various inheritance/delegation mechanisms generated the “Treaty of Orlando,” outlining
the benefits of static vs. dynamic inheritance, implicit vs. explicit delegation, and so on. Resolving that
“different programming situations call for different combinations of features,” the various factions were
freed to develop systems supporting features suited for particular goals without the “religious”
infighting that had characterized the language developer’s world.

-16-

the definition of the concept involves the capability of an individual object to inherit
characteristics from a class of objects to which it belongs. In this way, duplication of coding
is minimized. Object-oriented techniques have been used in simulation for nearly a decade
at RAND, with early seminal work on ROSS (see, for example, Klahr and Waterman, 1986,
Chapters 3 and 7). More recently, object orientation has been used for combat modeling in
the operational-level combat-modeling TLC/NLC project sponsored by the Air Force and
Army (Hillestad, Moore, and Larson, forthcoming), and in an Army-sponsored project using
the RISE system (Marti, 1988, 1990; Marti and Catsimpoolas, 1992). Object-oriented
methods are also being used by the Army, Los Alamos National Laboratory and MITRE in
development of the EAGLE combat model for corps-level battles. We believe the option to
use object-oriented methodologies must be available (and their use encouraged) in any next-
generation modeling environment.

At the same time, by no means do we believe object-oriented programming is a
panacea. It is not even appropriate for real-world systems in which the organizing principle
of “objects” is unnatural. This is somewhat analogous to physics in which one uses particle
representations for some problems and wave representations for others. The former work
best when the particles are readily identified and largely independent. The latter work best
in problems with continuous phenomena. Object orientation is also inappropriate for certain
systems that are being viewed from a process perspective.

Extreme versions of object-oriented programming are also troublesome. We observe,
for example, that many real-world models necessarily involve a great deal of interaction
among objects and that some of the interactions are not naturally represented by “messages.”
Further, many models require numerous global variables, because there are real-world
features that affect many objects at many times (e.g., aspects of the terrain and weather).

It follows, then, that we believe an appropriate environment would make it easy to use
either object-oriented or other paradigms as appropriate, preferably without having to
change languages. We also believe, based on project experience, that special effort must be
made to improve the comprehensibility of object-oriented models with respect to data flow
among objects. For real-world systems with many object interactions, comprehending those

interactions can be quite difficult in current object-oriented programming formulations.

PERSONAL COMPUTERS AND WORKSTATIONS
Personal computers and workstations now provide a great deal of modeling power, and

the wealth of mass-produced inexpensive software available for them creates major

opportunities for plotting, calculating, visualizing results, and interacting with the user

-17-

through displayed “windows” of information. Any future environment should take maximum
advantage of these off-the-shelf hardware and software systems and allow personal
computers to be used as front-ends (clients) to other computers (servers) on the same
network that are executing simulations or storing major data bases to be accessed. By using
IBM-compatible PCs, Macintoshes, and workstations as the main user interface to models
and simulations, the user is presented with a comfortable, familiar interface in which various
interactions and actions have standard meanings and results. Within RAND, as the result of
a strategic decision in 1990, almost every researcher has such a Macintosh, PC, or UNIX
workstation on his or her desk, and that same equipment might be used to access and
manipulate models, simulations, or analysis programs existing at various places on the
network that connects the computers at RAND.17 Some of this has been happening for the
last year or so, but the potential has not yet been approached.

HIGHLY INTERACTIVE MODELING AND ANALYSIS ENVIRONMENTS

By contrast with many workers and most trends in nonspreadsheet programming
languages, we also stress the need for a highly interactive modeling environment, in which a
user can move routinely and efficiently among such functions as designing, programming,
running, postprocessing, and viewing results of a model.}8 Anyone who has used a modern
spreadsheet such as Excel should appreciate that high interactivity greatly enhances one’s
ability to build and iterate good models. Unfortunately, standard spreadsheet programs are
inappropriate except when the level of complexity is modest (there are issues of both
efficiency!? and organization, limitations that can also encourage poor design practices).
A next-generation workstation environment can support this highly interactive mode of
operation with a general-purpose language (Anabel) by allowing portions of the model being
run to be interpreted directly from the source code while other portions have been compiled
into a more efficient (but less modifiable) code. Such flexibility has been exhibited for about
seven years at RAND by the RAND-ABEL language used in the RAND Strategy Assessment

17Establishing the requirement to exploit PCs and Macs, and to move away from sole reliance
on Sun workstations and the UNIX environment, was an early decision in our exploratory work on
environments. The Mac and PC tools are becoming a standard. Further, many analysts clearly want to
work at their desks with commercial tools such as those on the Macintosh and not in a workstation
laboratory down the hall (although there are tradeoffs we will mention later).

18For the sake of run-time performance, interactivity should preferably be optional, as with
languages that can be run in a compiled mode, an interpreted mode, or a hybrid mode.

19There are measures that can be taken to improve efficiency. These include compiling the code,
adjusting memory parameters, and so on. In our experience, however, these measures are not yet
practical for most modelers and analysts without help from technicians and programmers. Also,
spreadsheet languages are still quite restrictive in many respects.

-18-

System (RSAS) and other RAND projects.20 It is also common in systems written in the Lisp
list-processing language, such as the RISE system (Marti, 1988; Marti, forthcoming). It is
much less common in the general community, however, and we believe this is an important
subject for emphasis, especially when combining highly interactive environment features

with a comprehensible programming language 2!

VISUALIZATION

Any next-generation modeling and analysis system should contain tools and
capabilities for visualization of model structure and behavior of the data representing model
results and of the analysis results themselves. Major new capabilities are now available for
visually “flying over” battlefields to view them from various perspectives (notably the “Magic
Carpet” of the SIMNET system developed by the Defense Advanced Research Projects
Agency [DARPAL) or even to create a “virtual reality” in which one can be immersed in a
three-dimensional artificial world created by the computer to represent a model or
configuration of data. Any next-generation environment should be compatible with providing
these capabilities to the user for visualizing model behavior or data configurations.22

There is also a growing body of literature and sets of commercially available software
tools that support “computer-assisted software engineering.” These tools, including graphical
tools, assist in the design, programming, execution, and documentation of software systems,
and provide a “data repository” in which definitions, software objects, versions of programs,
and the other impedimenta and effluvia of model construction and operation can be stored in

a consistent manner. Such tools and techniques are needed by the next-generation modeler

2OMany hundreds of thousands of lines of code have been written in RAND-ABEL, which is used
in a number of government agencies employing the RSAS. For discussion of RAND-ABEL, see Shapiro
et al. (1988); Shapiro et al. (1985); and Davis (1990).

21Many skeptics exist on this matter because, in the past, promises of transparency and
comprehensibility have been exaggerated. Ultimately, one cannot avoid the facts that many computer
programs are complex and that understanding complexity is not easy. Further, full computer programs
contain not only the segments that can be made relatively readable and friendly, but a great deal of
material related to input and output, control flow, declarations, and so on, all of which tend to severely
reduce overall comprehensibility to nonprogrammers. And, finally, programmers can persist in writing
unintelligible programs even if they have a user-friendly language. Nonetheless, we are encouraged by
the substantial progress made with RAND-ABEL in the 1980s and believe much more is now
achievable.

22 dramatic example of visualization has been developed by DARPA in the 73 Easting
experiment, which consisted of using the SIMNET system to reconstruct and simulate an armored
battle in the 1991 war with Iraq. A video tape providing some highlights is available from DARPA. For
a cogent introduction to SIMNET, see Miller (1992).

-19-

(see, for example, Davis, 1992a, Appendix A), but they seem not yet to be available at

reasonable costs.23

EXCHANGE AND REUSE OF MODELS AND TOOLS, INCLUDING DISTRIBUTED
SIMULATION

It is now possible to imagine truly distributed simulations, in which portions of a
simulation migrate to different computers, even to hundreds of computers linked by
networks—not just locally but internationally. In this way, not only might simulations be
run in hours that might take days or weeks on a single processor but analysts and other
participants can learn and share insights and knowledge via interaction with the simulation.
This is now technically possible, although there are difficulties to be overcome (Bankes,
1992a). The ability to create distributed simulations is also closely related to the need for
object-oriented data-base management systems that are capable of storing “persistent
objects” (i.e., whose existence and attributes persist in a data base beyond any particular
simulation run). Distributed simulation will become commonplace in activities of the
military services and commands (e.g., in distributed war games and studies using the
revolutionary SIMNET system).24

A related topic involves developing models that can be reused and even exchanged, not
only within an organization but with outside users, perhaps involving only an electronic
transfer of the code representing the model. The DoD is attempting to move strongly in the
direction of developing standards to permit model interoperability, reusability, etc. (DoD,
1992). There has been little done, however, to provide a base of textbooks and advanced
documentation tools to make such transfers easier.25

There is now emerging a much more sophisticated understanding of data-base and
data-manipulation problems. Some of these involve constructs such as data dictionaries,

data encyclopedias, and data-access facilities, all of which are crucial to interoperability and

230ne notable example of graphical assistance is that provided in the Stella and iThink
programs, which implement System Dynamics. To a significant degree, at least, one builds models with
the graphics rather than the graphics being an afterthought. Further, there are many controls built in
to assure complete specification. Even these programs, however, go only part of the way toward what
we have in mind here.

2415 our Judgment, however, current enthusiasms for distributed interactive simulation often
obscure the substantive difficulties that arise when one connects dissimilar models built for different
purposes by different organizations. We believe that careful analysis will continue to require much
greater control and intimate knowledge of the relevant models than will soon (or perhaps ever) be
possible in SIMNET and other DIS experiments. See Bankes (1992a).

25An important recent DoD program to enhance reusability is the Joint Modeling and
Simulation System (J-MASS) effort sponsored by Wright Laboratory. The effort includes software
development standards and tools (see, for example, SofTech, 1991). It is, however, strongly oriented
toward Ada.

-20-

reusability.26 Another class of activity involves “intelligent data-base systems,” which
include knowledge-based rules and algorithms to help review, format, adjust, or fill in data—
often in an interactive setting. Such technologies will be very important in the future,
because large and complex data bases will be network shared, but individual users such as
RAND will need to do a great deal of review and adjustment. Today, that process is painful
and unsatisfactory. As noted earlier, much of the pain appears to be unavoidable because

reviewing and correcting data require intimate knowledge of the model and application.27
TECHNIQUES AND METHODS

Beyond “What I?”

Most complex military simulations are what RAND colleague Jeff Rothenberg has
described as “toy duck” simulations: “you wind them up and see where they go.” (Exceptions
include games and other interactive simulations.) For most analytical simulations, given a
set of initial conditions, one executes the programs and observes final results after n seconds
or minutes or days of simulated time. They are answering the question: “What if I start with
these conditions and the model adequately represents a pertinent slice of reality and the
initial conditions are a sensible set in the context of the model?” A next generation of
modeling technology should explicitly attempt to design models in which additional
questions—often ones of more fundamental and direct interest to the end-user of a model—
can be answered, questions such as: “Why did a particular event occur?” “Why did an event
not occur?” “What was object x doing when object y did some event?” “What factors
determine whether event x occurs?” These questions, and other similar ones, are referred to
as “beyond what if” in a recent RAND research report28 describing work toward the goal of
addressing such questions. This work concentrates on building a notion of causality into the
definition of a model, so that chains of causality can be traced. We believe next-generation
modeling environments should broaden the scope of modeling to include facilities to allow
development of models in which “beyond what if d questions regarding a model can be
answered.2? One difficult challenge here is thinking through how one can combine the

beyond-what-if techniques, which currently rely on Prolog-style backward-chaining inference

26See, for example, Cammarata, Shane, and Ram (1991).

27See also discussion of verification, validation, and accreditation of data bases in Davis (1992a).

28 See Rothenberg, Narain, Steeb, Hefley, and Shapiro (1989); and Rothenberg (1992a-b). See
also Round (1989), which gives a good overview of knowledge-based simulation and applications.

29For a relevant paper on modeling and simulation written a decade ago by one of the authors
(Shapiro) and colleagues, see Davis, Shapiro, and Rosenschein (1982).

-21-

and languages that are not analyst friendly, with techniques employing Anabel, MODSIM, or
other relatively high-level procedural languages.

Explanation Capabilliities

One aspect of the beyond-what-if issue is demanding of models a much higher degree
of explanation capability than has been customary. Typical simulation models have very
poor explanation capabilities, which greatly increases the time required for verification,
validation, and analysis. We are fortunate that it is relatively easy to build substantial
explanation capabilities into models developed in RAND-ABEL .30 Further, extensions of the
language should make it possible to include more self-testing features, which would greatly

aid verification and some aspects of validation (e.g., testing for logical completeness).

Optimization and Other Adaptive Planning Methods

Optimization techniques remain important in simulation. RAND has made extensive
use of one such method developed by Richard Hillestad, originally as part of the theater-level
TACSAGE combat simulation. More recently, the SAGE algorithm has been made “generic”
so that it can be employed in diverse types of simulation. We believe there should be a
systematic effort to explore additional applications of SAGE and SAGE-like methods in policy
analysis and that the proposed modeling environment should allow graceful application of
this technology as appropriate. Another subset of planning methods involves knowledge-
based decision models using highly structured (or simplistic) heuristic rules. These may be
used in lieu of human participation in war games or as decision aids for humans. The
strongly hierarchical knowledge-based methods used in the RSAS to describe political- and
military-level decisionmaking should have broad applicability.31

Exploratory Modeling and Analysis

One of the key features of policy analysis is the existence of uncertainty in many
dimensions. Analysts need to shift from using models as answer machines toward using
them as devices for exploratory modeling and analysis—“exploring” the problem space and

Posing tradeoffs in a way that permits the application of judgment, intuition, and arbitrary

30“Explanation” is, of course, a matter of degree and we are not discussing “deep explanation,”
which is a frontier topic in artificial intelligence. Rather, we have in mind what amounts to
hierarchically structured log statements providing reviewers of a model run the ability to step readily
through model calculations and logic, much as one might do manually for simpler computer problems.
We have found such explanation capabilities to be exceptionally useful in both combat models and
political models developed in RAND-ABEL. See, for example, Davis (1988).

81For discussion of how decision models (or “planning models”) might be used more effectively
than in the past, see Davis and Hillestad (1992).

-922.

tie-breaking decisions amidst uncertainty.32 Researchers developing tools and techniques to
aid in this exploratory process (e.g., Bankes, 1992b) should work closely with persons
developing the proposed modeling, simulation, and analysis environment, so that synergies

are exploited in both directions as these efforts unfold.

Analytic Gaming

Another discovery of the 1980s is the feasibility and value of “analytic gaming,” in
which one combines the best aspects of human gaming with those of closed simulation. In
much of the work conducted with the RSAS, for example, there is a crucial period of gaming
and exploration, which is then followed by well-controlled simulations for the purposes of
deductive analysis. The interplay between these phases of work is much stronger and more
highly interactive than in the past. We believe that such an approach to analysis is general
and should not be limited to defense analyses. Indeed, it is a generic problem of systems
analysis that practitioners too often leave out crucial features of the real-world problem
because they involve squishy topics such as perceptions, attitudes, organizational behavior,
biases, and distinctly nonoptimal behavior—topics well addressed in human gaming. With
highly interactive modeling and analysis systems, one can hope to do gaming, exploratory

analysis, and deductive analysis in the same framework.

OTHER TECHNOLOGICAL DEVELOPMENTS RELEVANT TO A COMPREHENSIVE
ENVIRONMENT

With the continuing commercialization of products providing hypertext and
hypermedia capabilities,33 fundamentally new opportunities are provided for documentation

of models. They also permit model output and even code to be structured in flexible and

32There are many strands of this approach through RAND’s history. The late 1970s Policy
Analysis of Water Management (PAWN) study, for example, highlighted the use of subjective
scorecards (Goeller et al., 1983). RSAS studies (e.g., Davis, 1988) emphasized multiscenario analysis
and a shift from dubious cost-effectiveness tradeoff calculations to identification of Achilles’ heels and
high-leverage potentials. Recently one of us proposed a new set of tools for exploratory modeling and
analysis (Bankes, 1992b), which he is pursuing in an ongoing project. Other relevant work includes a
proposal by one of us (Shapiro) to build in the capability for routine sensitivity analysis (Rothenberg,
Shapiro, and Hefley, 1990) and the extensive experience of colleague James Bigelow with Army-
sponsored “repro models” that can be used for sensitivity testing and the development of approximate
so-called response surfaces.

33Hypertext capabilities allow one to create networks of interconnected text items. One can
move from one point to another by pushing a “button” on the screen, which brings up, for example,
relevant documentation or examples. Macintosh computers come with a system called HyperCard®
that is being used more and more extensively. Hypermedia refers to the ability to embed information
represented in different media (e.g., video sequences, voice record and playback, graphic animated
sequences, charts, and diagrams) within one document. See Nielsen (1990) for an introduction to these
techniques and a brief overview of one of the systems, HyperCard, we will be using on this project.

-23-

nonlinear ways. For example, a user might insert voice annotations within his model code or
data during an active session as reminders of the reasoning behind changes being made. Or
a user might insert “movies” of sample model runs or even conditions for a “live” model run
that the reader can execute as an example of a particular behavior simply by “clicking” a
button.34

The environment for modeling, simulation, and analysis we propose involves much
more than software. It also involves the ability of researchers to collaborate and coordinate
their work, across the boundaries of time zones and distance. It is now becoming practical to
link two or more remote sites with video teleconferencing, so that work groups—for example,
in RAND’s case, in Santa Monica and Washington, D.C.—can communicate much more
effectively, and have tightly linked computer models and graphics in the process.
Videoconferencing is proving to be a major success in portions of the U.S. government and in
a number of large and small companies worldwide. Combined with the possibilities for
distributed simulations (mentioned above), it becomes possible to conceive of truly
distributed modeling, simulation, and analysis activities tying together all relevant persons
and systems within an organization and to offices and individuals elsewhere in the world. In
time, worldwide capabilities may become fairly commonplace. The proposed new modeling
environment should be designed with such distributed activities in mind.

In a world in which developments in all of the above areas are creating new synergies
and standards, it is time to set out clear goals and plans for modeling, simulation, and
analysis activities that will focus scarce resources on those activities that will benefit the
entire modeling community. The rest of this Note is essentially an elaboration of how we
could achieve this potential and what our priorities should be. It reflects a combination of
demand-pull (i.e., making Figure 3 real) and a significant component of technology-push
thinking, to take advantage of the opportunities sketched above.

34We and other RAND colleagues have already conducted experiments with voice annotations

and Quicktime® “movies,” which are actually computer-stored and -generated displays of model
graphics in a movie-like format.

-924 -

4. PULLING THINGS TOGETHER INTO A STRATEGY

Given the background of demand-pull challenges and technological opportunities
described in Sections 2 and 3, and given the particular organizational context that exists at
RAND, what strategy for moving toward a more comprehensive and ambitious environment
makes sense? This was a key issue for us in mid- to late 1991. The conclusions we reached

and the strategy that resulted reflected many personal Jjudgments and hypotheses.

OBJECTIVES

First, we reviewed objectives. Our overall objective was to improve computer support
for all aspects of the study process, as suggested in Figures 1-3. In addition, we had the
rather more specific objective of pursuing research on two topics: (a) friendly,
comprehensible, and highly interactive programming languages and (b) variable-resolution
models and hierarchically integrated families of models with varied resolution. RAND in
general and we in particular have long-standing research interest in these topics. Further,
they are important topics that appear to us understudied elsewhere. Both of these topics are
highly relevant to establishing an overall modeling and analysis environment, but others
interested in environments might be relatively less interested in the programming language

or the challenge of linking models together across levels of resolution.

COMPONENTS OF STRATEGY
Given the overall objective and the more specific and consistent subobjective, we next

sought to identify the major components of strategy. They appeared to us to be as follows:

1. Central issues of software: language(s), tools, architecture, and, in particular, use
of commercial off-the-shelf (COTS) tools.

2. Nonsoftware aspects of the environment (e.g., network links and model-supported
videoconferencing).

3. Model and data management.
Organizational issues (e.g., how to stimulate interest and “demand” for the
emerging capabilities, how best to have current and prospective project needs
influence development, and how best to bring into the overall environment-
generating activity the fruits of many separate research efforts within RAND).

5. Long-term support and maintenance.

Development schedule and associated funding requirements.

-95-

SOFTWARE STRATEGY

We were determined from the outset to exploit COTS, but there were differences of
opinion about what that meant. Several of us (Hall, Shapiro, and Bankes) had been working
primarily with Sun workstations in a C/UNIX environment. The others (Davis and
Anderson) had been working more extensively with microcomputers and associated tools
such as desktop publishing and spreadsheets. Other RAND colleagues were working with
various dialects of LISP, MODSIM, FORTRAN IV, and a number of other languages. Some
colleagues were working with Hewlett Packard workstations. There was general concern

about adopting an open architecture approach to the maximum extent feasible.

The Language Issue

On the one hand, we were interested in pursuing high-level languages as noted above.
On the other hand, developing our own language was nota foregone conclusion because of
the advances in commercial off-the-shelf systems, including object-oriented languages such
as MODSIM, with which RAND has had good experience, and the spreadsheet language
Excel, which is now far more powerful than spreadsheets of a few years ago. We also had to
consider seriously the Ada option, since the DoD has been strongly encouraging use of Ada by
its contractors. Nonetheless, after considerable discussion we concluded that developing our
own central high-level language was desirable for a variety of reasons (see also Appendix A).
We decided to do so following a concept for a language, Anabel, that had been conceptually
defined by one of us (Hall) in an earlier effort. A very attractive feature of this approach was
that it would allow us to start with a very strong base, the RAND-ABEL language mentioned
earlier.35 Anabel was to be an extension of RAND-ABEL with object-oriented features and a
great many other features coupling the language into a mini-environment of graphical and
other tools.

Significantly, Anabel development was to be only part of the overall effort and the
“Anabel environment” only part of the overall environment (Figure 4). This was especially

important because we were determined not to allow the development effort to turn into a

35By a strong language base we mean that RAND-ABEL has been well tested and used for a
half-dozen years, both within RAND and, at least to some extent, in about a dozen DoD organizations.
Further, RAND-ABEL incorporates many of the features most needed in a language that is to be both
comprehensible and appropriate for complex programming. These include an efficient interpreter
permitting highly interactive operations, an “active” data dictionary (i.e., one used by the compiler to
detect a wide variety of errors such as mistyped names or equations relating data of different types),
straightforward mechanisms for “dropping into C/UNIX" to exploit library functions and specialized
capabilities, and explanation capabilities. Our experience is that a good programmer trained in, for
example, Pascal, can learn RAND-ABEL in a matter of a week or less.

-926-

“hobby shop” effort to explore interesting language features. In particular, a firm element of

strategy was the requirement that

* The environment should allow use of multiple languages (e.g., C, MODSIM, Ada,
FORTRAN IV),
* It should be possible to have Anabel programs be called by programs written in

other languages and vice versa.

The techniques for accomplishing this were to be based on “wrapper” methods, which are
becoming widely used by those concerned with open architectures, distributed simulation,
and interoperability (see, for example, Weatherly et al., 1991, and Landauer and Bellman,
1992).

To further hedge in this important realm of language, we agreed on a strategy that
would preserve a great deal of flexibility. In particular: (a) Anabel will translate
automatically into C and C++, thereby assuring portability of this immediate code to
organizations that do not choose to have an Anabel compiler; (b) Anabel will maintain
options for “falling into C/UNIX” as necessary to provide specialized capabilities; (c) Anabel
development will be phased, with intermediate deliverables and milestones, at which points

the premises of Anabel should be reviewed.

4)

Overall RAND modeling, simulation, and analysis
environment: networking, conventions, DBMS,
group discussion tools, specialized tools for
planning and analysis

(Anabel environment: graphics,)
ties to Macs and PCs, Graphic User
Interface (GUI), etc.

Anabel language

- J

Figure 4—Relationship of Anabel to the Overall RANDSIM Environment

-927-

Software Associated with Microcomputers and Workstations

A second major decision was that we should tilt early toward microcomputers
(particularly Macintoshes) to provide friendly and powerful human interfaces. There now
exists a wealth of tools that it would be utter folly to reproduce from scratch on
workstations.36 These include Word, PowerPoint, MacDraw, Excel, MacFlow, HyperCard,
iThink, and 4th Dimension. Although we were not yet satisfied with any of the commercially
available data-base management systems, we decided that RAND should not develop such a
system. Nor should it develop network facilities or systems for communicating with the
outside world. Instead, we would await commercial developments.

This approach emphasizing microcomputers was not inevitable. In particular, we
could have chosen to rely entirely on workstations such as the Sun Sparc stations. However,
our judgment was that the tools on microcomputers were in many important cases better and
that many of the analysts we intended to serve would want to work exclusively on their
“personal” computers (Macs or PCs) and would not even want to wander down the hall to a
laboratory with Spare stations or to have two computers in their offices. Others, of course,
would be quite willing to do so to gain full benefit of workstation power and the synergisms of
rubbing elbows with other workers, but we decided, on balance, to tilt toward exploited
microcomputer interfaces. This implied a major investment in learning the intricacies of
Macintosh programming and the mechanisms by which such programs can be connected to
C/UNIX and DOS systems.

One consequence of this approach is that we were unable to completely avoid machine-
specific systems. For example, we decided to do prototyping work on hypermedia
documentation by using the HyperCard system that comes with Macintosh systems., On the
other hand, to the maximum extent possible, development of interfaces will follow open-

architecture procedures and standards.

NONSOFTWARE ASPECTS OF THE ENVIRONMENT

Less detailed thinking went into this part of the strategy, primarily because we knew
that we would be funding limited, with software development having an early priority.
However, part of our strategy was to lobby, within RAND, for videoconferencing capability
(which became operational in September 1992). For a wide variety of reasons RAND was

pursuing other important capabilities as well (e.g., proliferation of microcomputers and

36This meant abandoning some excellent tools developed earlier in RAND for use on Sun
workstations and other C/UNIX machines. However, we judged that those tools could not long remain
competitive without continuing investments and support expenditures that we could not justify.

- 98-

workstations with a comprehensive netting capability, both within our Santa Monica offices
and to our Washington office). RAND is also reviewing its publication policies to recognize
the growing significance of CD ROM technology. When all is said and done, then, we did not
go much beyond “visions” in this aspect of the overall problem. Instead, we concluded that
nonsoftware aspects of the environment would be a major theme of work in the second and

third years if the project went ahead.

MODEL AND DATA MANAGEMENT

An extremely important part of providing a good modeling and analysis environment,
especially for analysts using complex models and data bases, is providing the facilities and
tools for model and data management. These affect the ease with which modelers and
analysts can, for example, cope with models that are constantly changing in response to
study-specific demands, review and enhance data bases, draw on repositories of standard
“scenarios” (i.e., sets of initial conditions for model runs, each of which corresponds to an
important “case”), and design and manage experiments that may involve dozens, hundreds,
or even millions of model runs.

There has been considerable thought given to these problems in recent years (see
Bennett, 1989; Nance, 1987; and Appendix C). Our strategy here is to build on other efforts
that are ongoing in RAND and elsewhere and to try to integrate them into the overall
environment after we have made substantial progress on the “software strategy” described

earlier.
ORGANIZATIONAL ISSUES

Participation, Support, and Organizational Learning

From the outset we recognized that introducing a new modeling and analysis
environment would require paying major attention to organizational issues. We needed to
understand potential users and how their needs would be or should be changing in the years
ahead. We needed to enlist their support and enthusiasm. We would need early
experimenters. Further, gaining and maintaining organizational support would require
providing at least some significant and useful services “early” (perhaps in the second year).
There were issues of scope (which users did we want to support?), early priorities (which
ongoing projects might be users?), early opportunities for integration of currently separate

models, and similar considerations.

-99 -

Although, once again, we recognized that a year or so of software development would
largely have to precede progress on other matters, we agreed on a strategy that included the

following elements:

* Designing to support research on social-policy, international political, and
economic research, not merely military problems. That is, RANDSIM was to
serve all of RAND.

. Extensive consultation with researchers using a wide variety of techniques and
addressing a wide variety of problems, in part to establish requirements and
challenges and in part to interest them in the endeavor. The range of model
types should embrace, for example: discrete-event and time-stepped simulation,
deterministic and stochastic modeling, cost-effectiveness modeling, optimization,
decision support, and data analysis.

* Creating one or more RAND-wide organizations for interdisciplinary technical-
level exchange of ideas, friendly peer review of alternative approaches to
modeling, group discussion of state-of-the-art developments, and so on. This
should be much more than a mere seminar series (of which we already had
several).

* Creating, at the appropriate time, advisory committees with participants from
both within RAND and outside universities and other research organizations.

* Further encouraging open publication of research findings related to principles,
generic methods, generalized tools and methods, and other scientific results.

* At the appropriate time, seeking funds for experiments using emerging
capabilities on actual projects that would, if successful, generate widespread
interest and subsequent research support.

* Exploiting the opportunity of ongoing model-using or model-developing projects
to identify and address specific problems. Within this activity, giving priority to
efforts that could produce integrated hierarchical families of models with varied
levels of detail, since having such families is extremely valuable to policy analysis
and current families of models are neither well integrated nor easy to use. This,
of course, relates back to the second of the subobjectives we mentioned above,
advancing the state of knowledge in the area of variable- and cross-resolution

modeling.

-30-

Standards
The subject of standards is often considered a foul and unpleasant topic in research

organizations filled with independent, hard-charging, and busy individuals. However, we are
now in an era in which software and modeling standards are increasingly desirable and
inevitable. One sign of this is that the researchers involved are willing to identify many
specific examples of where they themselves value standards. Another sign is that with the
tightening of budgets as defense expenditures fall, it is no longer acceptable to have
inappropriate redundancy of effort. A third sign is the increasing importance of distributed
simulation and distributed computer operations of all kinds. This requires a great deal of
standardization (e.g., the SIMNET protocols in military work or the protocols allowing
researchers to exchange heavily formatted manuscripts with graphics over the telephone
lines). Yet another sign is the increased emphasis being given to VV&A (verification,
validation, and accreditation) by the DoD. The Army, for example, has recently issued firm
regulations requiring VV&A on models used to support Army decisions. Standardization,
VV&A, and efficient documentation are all going to be critical in distributed operations.

We concluded, therefore, that we would encourage a significant shift within RAND
toward standards, VV&A, documentation, and centralized registering of models, data bases,
VV&A records, and so on. This would not, of course, be an across-the-board affair.
Nonetheless, we believed that a considerable shift in that direction was desirable. Our

recommended strategy included the following:

* Encouraging all project leaders to emphasize modularity, open architecture, early
documentation, and VV&A—even for spreadsheet modeling.

. Developing guidelines for VV&A, which are embedded in a larger study
completed for OSD’s Defense Modeling and Simulation Office (DMSO) (Davis,
1992a).

* Participating heavily in DoD activities to develop standards and guidelines.

* Recommending use of infrastructure funds to support researchers willing to put
together internal standards (e.g., an internal standard for geographical
information used in a number of RAND studies).

* Arranging serious debates and technically informed management decisions on

issues involving alternative standards.37

87Examples here include decisions about (a) desktop publishing software (RAND has tilted
toward use of the Microsoft family of products that can be used on Macintoshes and on IBM PCs and
clones using Microsoft Windows); (b) the choice of graphics systems to use on workstations; and (c) a
review of whether some emerging software would be readily portable to a different workstation.

-81-

Work began on all aspects of this strategy in late 1991 and 1992. The outcome will not be

clear for years.

LONG-TERM SUPPORT AND MAINTENANCE

A magjor concern in thinking about development of a new and far-reaching
environment had to be long-term support and maintenance. It is one thing to develop
advanced languages and tools; it is quite another to make sure they can be readily used and
that they will continue to work over time, even though computers and technical standards
change, new features are introduced, the original developers move on to other projects or
other organizations, and so on. Similar problems sometimes exist when one counts on a
commercial developer, but if the product is widely used and profitable there is some reason to
expect continuing support. An additional concern here is that if our environment tools were
successful, and were exported to government agencies and even into the public domain, we
would have an obligation to provide continuing support.

Our strategy for addressing these issues had two components:

* Enlisting the assistance of internal RAND support organizations when the time
came (notably the Military Operations Simulation Facility, the Information
Sciences Laboratory, and the more general computer-support division).

* Planning, at some stage of the development process, to investigate collaboration

with a commercial vendor.

The second merits the most discussion. The question here was “Should RAND plan on
full support and maintenance of the next-generation modeling and analysis environment or
plan early collaboration with a commercial vendor who could assume professional
documentation, packaging, maintenance, and support of the resulting product?” We
concluded that RAND has neither the facilities, interest, nor charter to support indefinitely
products of its software research activities that come to have extensive external use.38
Further, except for some relatively small but important efforts (of which there are numerous
examples over the years), it would not be appropriate for RAND to do so, because that is

more in the province of commercial companies than of federally funded research and

381t is worth mentioning here that one of us (Shapiro) was a principal developer of the
electronic-mail system mh, which has subsequently been further developed and implemented in a wide
variety of organizations using UNIX systems. RAND, then, created the system, but others have
maintained and extended it. This same pattern occurred in RAND’s development of the Simscript
simulation language, which became a CACI commercial product.

-32-

development centers. After some stage of the development process, then, collaboration with a
commercial vendor should be initiated. However, we judged that the prospects for early
success in seeking commercial collaboration are much fewer than some enthusiasts would
suggest. We concluded that it would be a strategic blunder to delay pursuing our own
initiatives until some such vendor relationship could be developed. It followed, we concluded,
that we must plan explicitly to provide a high degree of in-house quality control and

maintenance capability until some external vendor relationship is established.

DEVELOPMENT SCHEDULE AND FUNDING ISSUES

We describe here the original notional three-phase technical development for the
prototype modeling and analysis environment. As of July 1992, we were almost one year into
the effort, but the effort is underfunded, so progress has been slower than desirable despite
major progress.

Appendix B contains a brief discussion and diagram of the system architecture
proposed for the computer programs supporting the next-generation modeling and analysis
environment. It focuses on the Anabel aspects of the overall environment.

Our plan shows results in deliverable systems, each with growing capability, at the
end of each project year (the first year started in approximately June 1991). As mentioned
above, these intermediate deliverables can be evaluated to assess the progress and utility of
the modeling and analysis language and environment at key checkpoints in its progress.39
Key features of the three “checkpoint” systems are expected to be as follows:

Year-One Environment Features:

* Initial RAND-ABEL language enhancements to include first-order object features
—Extensible executable table types
—Data structures and object-oriented “methods”
* Links to PCs and Macs, including tools such as Excel
* Table-oriented user interface providing table format access to all model variables
* Initial simulation modules for event- and time-management routines
* Initial data-base support, including initialization and storage of model state

* Hypertext documentation and browsing facility

39Note added, October 1992. The first year’s features have been successfully developed. They
are now being reviewed and evaluated.

-33-
Year-Two Environment Features:

¢ Full Anabel language
—Highly flexible objects and tables
—Ability to integrate nontextual elements

* Integrated tabular and graphical interface
—Automatic display and manipulation of objects
—Graphical display of object attributes under user control using Map View

system

* Complete simulation library

* Extended data-base support
—"Persistent objects” (i.e., objects transferrable from one model to another)
—Tight coupling to external data bases

* Hypertext source code and configuration control that integrates model
components, data, documentation, and cross-references

* “Wrapper” experiments involving combined use of models written in Anabel and
other languages such as MODSIM or C

* Significant progress on nonlanguage aspects of environment, leveraging heavily
on other RAND activities (e.g., installation of videoconferencing, extensive
networking, and tools for data-base searches via telephone links)

* Significant progress in linking up to other projects developing methods and tools
for model and data management

Year-Three Environment Features:

* Highly interactive interface
—Graphical model-construction aids (probably not comprehensive)
—Spreadsheet-style table interaction * .

* Tight coupling to external software

* Well-developed “wrapper” techniques allowing effective use of models written in
diverse languages

* Integrated hypermedia (visual/auditory)
—Documentation (e.g., audio or video annotation)
—Presentation

—Interface

-34-

* Extensive experiments with nonlanguage aspects of full RANDSIM environment,
exploiting inexpensive opportunities likely to arise by the third year of the project

Funding requirements were uncertain, of course, but our initial estimate was that az
least 10 man-years of effort would be required to develop a substantial prototype and that
this figure depended on very effective leveraging of other projects and activities.40 We should

also emphasize that our estimate assumed top-quality talent.

40This figure is for development of the Anabel environment and low-cost integration of other
ongoing activities into an overall environment. It does not include the manpower costs of the other
activities. If all were included, the effort level would probably triple.

-35-

5. WHERE WE STAND NOW AND NEXT STEPS

We completed this Note in November 1992. Our recommended strategy remains
largely unchanged. Further, we have completed the “first year” of development (in somewhat
more than a calendar year) with the use of RAND’s own funds and research support funds
from RAND’s federally funded research and development centers and a U.S. government
sponsor,

Although we have been underfunded and future funding remains problematic, we are
currently quite optimistic because of the substantial progress made in the last year, which
will be reported separately in more detail. The remainder of this section summarizes the

results of work to date and our planned next steps.

LANGUAGE DESIGN

We have completed a first pass through a detailed design of the extensions to the
RAND-ABEL language, resulting in specifications for the language we call Anabel. That
design has been described in an internal document that has been circulated for comments
within RAND and to sponsors. Among the facilities and features included within this
language design are (1) a generalization of the RAND-ABEL “Table” statement permitting a
user to define a new table type and to provide its semantics in the form of Anabel code to be
evaluated upon its execution; (2) the ability to define hierarchies of classes and create objects
having both attributes and methods that are instances of these class structures; (3) lexical
(static) and dynamic inheritance and both single and multiple inheritance among classes;
(4) dynamic object creation and destruction; (5) overloading of operators and methods; and (6)
a generalized iteration statement permitting, among other things, iteration over the objects
within a class. In addition to these features, essentially all existing features of the RAND-

ABEL language are retained.

PARSER AND COMPILER

We have completed both lexical and syntactic analyzers for the Anabel language and a
generator of C language code resulting from this analysis. The semantic analysis is perhaps
three-fourths complete. We are currently working on run-time facilities for model execution
and completion of the syntactic analysis, including class libraries to support the run-time
environment. Implementation of full dynamic inheritance within our class inheritance

hierarchy is being deferred for now while these other facilities are being completed.

-36-

The lexical analysis program emits a stream of “tokenized” text in the form of SGML4!
annotations used by the hypertext authoring and browsing facilities discussed in the
following subsection.

A colleague, Barry Wilson, has written a small sample Anabel program exercising
many of the object-oriented features of the language for use as a test case in debugging and

checking out the language-processing software being developed.

TOOLS FOR HYPERTEXT AUTHORING, BROWSING, AND DOCUMENTING

We have developed a specialized, yet general-purpose, editor for the Macintosh that
works in cooperation with a special HyperCard stack to provide hypertext facilities for
authoring and browsing Anabel code and related documentation. Among the facilities of this

editor are the following.

Hypertext “Buttons"”

The user may insert hypertext “buttons” that are associated with any other document
or process on that Macintosh workstation or on other workstations accessible via a local area
network. When double-clicked, a button brings the associated document or process window
to the “front” of the desktop. If that document is itself an editor document, it may also
contain hypertext buttons, including ones pointing back to the originating document. A
special feature of these “buttons” is that they act as ordinary text and therefore may be part
of text selections that are copied, cut, or pasted, or that partake in other normal text editing
operations. The user may define the text string representing a button. Specialized textual
icons representing standard processes (e.g., Microsoft Word, Excel, PowerPoint, HyperCard,
MacFlow) are available as default characters that are used to represent buttons associated

with documents created by these processes.

Voice Annotation

One specific type of hypertext annotation for which specialized features are provided is
the creation of voice annotations that may be linked to a hypertext button. Voice playback
occurs upon double-clicking of its associated button. The voice playback may be paused, then
continued, or stopped, and the user retains full control over the editor (for example, to scroll

or edit text within a document’s window) while the voice playback is occurring.

41Standard Generalized Markup Language (see Goldfarb, 1990).

-37 -

“Tokenizing” Anabel Source Code

Once Anabel source code has been created or revised, an editor menu command (or its
associated shortcut key sequence) “tokenizes” the code by sending it over a network TCP link
to a UNIX-based workstation containing the lexical analyzer. (The target UNIX workstation
may be set at will as a preference by the user.) A text stream returned by the lexical
analyzer, as mentioned above, is annotated in an SGML markup format to indicate—at
present—text groups representing Anabel keywords or phrases, identifiers, constants, and
comments. The user may select the mapping of these lexical categories into an arbitrary
combination of text font, style, size, and color. The text groups, after tokenizing, are
displayed using these text characteristics to distinguish them. For example, current default
settings show keywords in boldface, identifiers in normal text, constants underlined, and
comments in colored italics. Anabel code that has been tokenized may be retokenized.
Hypertext “buttons” that have been inserted within the text file survive the round-trip
through the lexical analyzer intact, retaining their meaning and operational behavior. Text
containing these buttons may be copied, cut, and pasted within the same file or different
editor files on a Macintosh while retaining their operational meaning.

When an Anabel keyword or phrase is double-clicked within tokenized text, a
HyperCard card of reference information is displayed describing the syntax and semantics of
Anabel statements in which that keyword may occur. This HyperCard stack also contains a
scrollable index of Anabel terms from which any term or phrase may be selected to view its
corresponding reference card. At present, this stack contains about 230 cards’ worth of

reference information.

File Suites

A set of files may be marked as a “suite” of files, and that suite given a special
filename. When that suite filename is opened, all files within the suite are brought to the
desktop together. They retain their ordering, front to back, that they had when last saved as
a suite. (This ordering is obviously only of importé.nce if the windows in which these
documents are displayed are to some extent overlapping.)

In addition to these features, the editor has most of the normal text editor features,
including the ability to open a file as “read-only.” The editor is also Apple Event aware,
permitting it to interact with other programs via the mandatory Apple Events that

designation implies.

- 38 -

INTIMATE LINKAGE BETWEEN MACINTOSH AND SUN WORKSTATIONS

A principal goal of our development work is creation of a highly interactive modeling,
simulation, and analysis environment. To this end, we have developed programs operational
on both a Macintosh computer and a user-selectable Sun workstation that provide one or
more high-speed ethernet TCP links between the two computers. We are now using these
facilities for the editor-lexical analysis linkage. In the future, these same links will carry
X-window information between the Sun workstation executing an Anabel model and an
X-window on the Macintosh displaying dynamic model graphic output and additionally
providing user interaction with that model.42

COORDINATION WITH OTHER PROJECTS AND ACTIVITIES

During the past year, RAND held a major conference on variable resolution modeling,
documented in Davis and Hillestad, 1992. We believe full object orientation (e.g., including
multiple and dynamic inheritance, and overloading of operators and class methods) in a
model assists in creating models capable of operation at varying resolutions or capable of
interacting with other models of differing resolutions. We therefore continue to explore
avenues toward variable resolution while developing RANDSIM and the Anabel language in
the hope that developments in variable resolution can be instantiated within the systems we
are creating.

A companion project at RAND called “Exploratory Modeling,” led by one of the authors
(Steve Bankes), is developing innovative ideas for exploring the attributes and behaviors of
families of models and creating a computer-based “notebook” recording experiments with
models and data bases. See Bankes (1992b) for an overview of the aspirations of this project.
We are coordinating with the Exploratory Modeling project so that at some point Anabel
classes, objects, and inheritance relationships, as well as code authoring and browsing tools
and Graphic User Interface capabilities, might be used to implement Exploratory Modeling
ideas in a prototype demonstration system.

To further our goals of administrative and ofganizational activities that support a
more unified modeling, simulation, and analysis environment at RAND, we are working
closely with an “Advanced Modeling and Analysis Working Group” (AMAG) that has been

recently formed to promote coordination, education, and shared experience among key

4245 one example of what is possible here, colleague Manuel Carrillo has recently completed a
development allowing users working on Macintosh or PC microcomputers to use, via a local network, a
variety of UNIX applications running on Sun workstations (e.g., applications such as SAS data-
processing and statistical programs, Ingres relational data bases, and the GAMS linear and nonlinear
programming optimization algorithms). The work is documented but not yet published.

-89 -

modelers and analysts at RAND. This group is conducting a series of seminars,
demonstrations, and discussions that may lead to greater commonality of methods, tools, and
terminology among RAND modelers. We expect Anabel tools and methodologies to be a
major source of input to these deliberations and that the result might be broad concurrence
among group members regarding the scope and characteristics of a unifying environment
that we have called RANDSIM.

NEXT STEPS

Our activities during the coming year are focused on (1) completing the class libraries
and other facets of a run-time environment for Anabel programs; (2) completing additional
Anabel test programs that will exercise and demonstrate Anabel modeling capabilities; (3)
development of cooperating software on both the UNIX and Macintosh platforms to provide
extension of Macintosh-based browsing tools based on inheritance relationships among class
hierarchies and on relationships among Anabel identifiers and their definition statements;
and (4) creating graphic visualization facilities for monitoring the operation of a model, most
likely by creating inheritable class libraries of graphic objects having a link with the facilities
of the MapView program developed during the past several years at RAND.

The above activities are closely correlated with the second year of the three-year
development schedule outlined in the previous section. In particular, they are oriented
toward completion of a library of simulation objects, extending hypertext source code and
configuration control, and the automatic display and visualization of objects.

Demonstration systems with increasing capabilities are owed to sponsoring clients as
contract deliverables at the end of March and September 1993.

In addition to language and user-interface facilities being developed, we continue to
participate in the larger discussions and organizational activities that are currently under

way regarding the whole RANDSIM modeling and analysis environment.

-41.

Appendix A
SOME QUESTIONS AND ANSWERS

In conceiving of a comprehensive environment for modeling and analysis, a significant
number of questions arise. We have given considerable thought to the following questions
and have developed what we believe are the appropriate answers (although not all our
colleagues agree). The tradeoffs they represent and our approach toward their resolution are
discussed in what follows. Although many of the questions are very RAND-specific as
expressed, we believe they are the same questions that other organizations will ask when
contemplating advanced environments. Thus, we provide this material here as a case history

of one group’s thinking on the matter.43

HOW MUCH STANDARDIZATION SHOULD BE IMPOSED ON MODELERS AND ANALYSTS?
A degree of standardization in RAND’s modeling environment and preferred modeling
language is desirable to obtain the benefits of compatible models and interfaces, to develop a
coherent set of training and documentation for mode! developers, and to develop a
community of model developers and users that can communicate effectively with each other.
Such standardization, however, restricts an individual researcher’s or project’s
decisionmaking regarding environment or language, At least to the extent of requiring
someone to “show cause” for variance. We believe it is time for more standardization—for
much the same reasons that underlay (at RAND) the adoption of the Macintosh (or PC with
Windows), Word, PowerPoint, and Excel as standards for desktop manuscript work.
Standardization would by no means be absolute, however. Researchers requiring
specialized languages and tools would continue using them (e.g., the logic programming
methods provided by the language PROLOG would not be easy to reproduce),44 and personal

preference is a legitimate consideration in language decisions. Nonetheless, there is little

43The views expressed here are those of the authors and not necessarily those of all of our
RAND colleagues, with some of whom we in fact have technical disagreements on a few issues.
However, the discussion here reflects numerous discussions and informal reviews with more than two
dozen colleagues who have worked on a wide variety of modeling and analysis projects or on related
computer-science developments.

441n this connection, we believe a small study should be conducted to explore the potential of
using backward-chaining methods (e.g., those of PROLOG) in separable programs that could be called
by larger RAND programs, written in Anabel or other standard languages, as subroutines or object-
oriented “methods.” This might capture a large fraction of the value of those techniques while
encouraging standardization at & higher level. Work of this sort is currently being conducted under
Defense Advanced Research Projects Agency (DARPA) sponsorship by colleagues Jeff Rothenberg and
Michael Mattock but has not yet been adequately folded into the planning described here.

-42-

benefit in further encouraging the continuing cacophony of systems, languages, debugging
aids, graphic interfaces, and data bases that currently characterize modeling in most other
modeling and analysis organizations we are acquainted with. Further, substantial
improvements are needed with respect to conducting routine and effective design reviews
and producing timely and easily used documentation, challenges that can be addressed only
by procedural and organizational standards. Progress on this front can be only partial,
because RAND and other comparable organizations will continue to rely heavily on many
models developed elsewhere in a variety of languages and styles, but at least in our own work
we can move toward greater commonality—if the emerging language and tools meet the test
of the marketplace!

It should be noted that care must be taken in the definition of standards and that
technology must have achieved a level of relative maturity for standardization to succeed. Thus,
standardization must be seen as an ongoing process, with standards being defined
opportunistically when they become technically feasible and when workers believe they would be
useful and largely agree on what they should be. What is important in the near term is to
identify areas where standardization is possible and the creation of an organizational mind-set

that will result in further standardization as it becomes possible.

CAN RAND ADOPT A COMMERCIALLY AVAILABLE MODELING LANGUAGE AND
ENVIRONMENT?

There are many commercial modeling languages and systems available, some of them
(e.g., CACI's Simscript and MODSIM) in active use at RAND. With a commercial product
(usually) comes documentation; support in the form of a telephone number or “help line”; a
user community with possible newsletters, conferences, etc.; new releases and enhancements;
and bug fixes. With in-house development of a modeling and analysis environment come few
of the above advantages, but instead one achieves control over one’s destiny in that features
and enhancements can be added and explored without convincing some third party (e.g., a
commercial company with many competing priorities and interests) that your needs are
paramount and urgent. Although we expect that commercial languages will be used
indefinitely at RAND, including within the environment we are describing, we believe there
is no commercial modeling and analysis product now available or foreseeable in the near
term that incorporates the range of features we feel are highly desirable to RAND excellence

in modeling, namely:

* Tools that concentrate not only on programming tasks but also the design of

models, exploratory modeling, interaction with running simulations, analysis of

-43.

results, comparing results across runs and models, and many other activities that
characterize modeling, simulation, and analysis at RAND.

* Programming languages that result in programs that are sufficiently
“transparent” in their meaning, so that our clients and sponsors can study and
possibly modify the contents of models and simulations we develop.

. Ability to create simulations using advanced features such as object feature
inheritance without a performance penalty.

* Ability to obtain adequate—one hopes even excellent—performance along various
dimensions (e.g., speed, readability of code, ease of programming, graphics front-
ends permitting interaction with a running simulation) with a single
programming language and development environment, which would hélp RAND
build a pool of programmers that are fungible among projects, and to build a
common culture of modeling and simulation with appropriate training, seminars,
workshops, and documentation—or even possible sharing of subroutines,
software “objects,” or code modules.

* Flexibility in permitting graceful extension into new technologies that are
becoming available and important, such as object-oriented modeling and
programming, use of hypertext and hypermedia, and visualization systems.

We therefore support in-house development of a comprehensive, RAND-wide,
computer-based modeling and analysis environment, incorporating auxiliary commercial
systems (e.g., for graphic interface display, DBMS) wherever possible. It should be noted
that RAND’s Anabel development is based on widely, commercially available languages such
as C and C++, with links available to modules programmed in other languages such as
FORTRAN. In this manner, ties to other commercial products can be maintained.45 We
believe that with this decision and commitment, it will prove possible to make a number of

major advances in modern, effective, tailored modeling and analysis tools.

450ne concern that is sometimes raised concerning the Anabel effort relates to our ability to
export programs written in Anabel once it exists. There will be several options: exporting the model
without source code, exporting the C code generated by compilation of the Anabel language, or
exporting the Anabel source code itself. Most users do not change source code at all, and Anabel
programs will be highly portable because of being C/UNIX based. For users wishing to make modest
changes, it should be possible to modify the C code directly. For users wishing to read and make more
substantial changes of source code, it will be necessary to learn Anabel, just as the dozen or so external
users of the RAND Strategy Assessment System (RSAS) have learried RAND-ABEL for some years
with little trouble.

-44 -

SHOULD MILITARY MODELING BE STRESSED OR CAN DOMESTIC RESEARCH NEEDS
BE FULLY ACCOMMODATED?

The significant majority of RAND modeling activities support our defense research.
Many feel this imbalance is inappropriate; it creates artificial divisions within the RAND
research staff based on differing methodologies used and also may lead to missed
opportunities in some domestic research projects. The question is: should the next-
generation RAND modeling environment be tailored to our dominant military modeling
activities or should it deliberately and consciously reach out and provide tailored facilities for
domestic research—facilities such as easy access to SAS data bases and statistical analysis
packages? Our answer is that every effort should be made to provide resources that will
attract RAND'’s domestic research toward use of a RAND-wide modeling environment; this
opportunity for greater methodological coherence across the defense-domestic interface at
RAND is too important to ignore. As is stated below, at least one domestic project should be
attracted as an “early adapter” of the proposed next-generation modeling environment to
help represent the interests of domestic research. A deliberate program of introducing
modeling and simulation into the Domestic Division should be planned for. There should
also be domestic representation on any steering committee or users’ committee advising on
the development of a next-generation RAND-wide system. (Plans for such steering and
technical committees are mentioned as part of the management plan in Section 4.) It will
probably be necessary to use discretionary funds to support early modeling activities that
appear useful within a sponsored activity that otherwise has no “requirement” or funds for

such modeling.

WHAT ABOUT ADA?

The topic of Ada deserves special mention. The DoD has been requiring use of Ada for
development of some models and simulations, particularly ones that form a deliverable
product resulting from a contract. There are also development environments becoming
available that aid in the development of Ada progfams. Should Ada be a candidate for our
central language? Despite DoD’s effort to make Ada the standard, it seems unlikely that it
will succeed, at least for the research and analysis communities. One problem is that Ada
was finalized and standardized before a number of new programming techniques were
popularized—notably full-blown object-oriented methodologies. A second is that Ada is so
standardized that we could not explore new modeling techniques and language extensions
within its framework. Third, Ada has not stressed transparency or comprehensibility by
analysts or sponsors (although it has stressed practices that improve code-level

comprehensibility for programmers). In this respect it is not at all competitive with RAND-

- 45 -

ABEL (or other high-level languages). Fourth, good and inexpensive compilers for Ada are
not yet widely available. Finally, we note that Ada is not being adopted by many workers
with a choice (i.e., those other than DoD contractors required to use it), either in the United
States or elsewhere. It is not winning in the marketplace. Although it has many good
features and would facilitate project management and continued operation and maintenance
of software, it is not a good choice for our principal work (although exceptions may exist from
time to time). Significantly, our conclusion here is not based on unfamiliarity with Ada,
because we believe that good programmers can learn new languages, especially well-
conceived languages such as Ada, rather quickly (weeks for initial competence, many months

for higher levels of competence).

- 46 -

Appendix B
SOME SYSTEM DESIGN CONSIDERATIONS

TOP-LEVEL ARCHITECTURE OF ANABEL ENVIRONMENT

Many design details of the language and environment described in this document will
continue to evolve over many years. Nevertheless, it is possible to show a top-level design of
major portions of the system envisaged to illustrate the many interconnections and options it
will allow. Figure B.1 is a data-flow diagram of the Anabel environment, in which each
round-cornered box represents a process and the arrows between processes or data files
represent the flow of data. Most arrows are labelled with the type of data being transferred.

A number of points need to be made about this diagram to put it in context. The
processes and facilities shown in Figure B.1 will emerge over a three- or four-year period.
Not all of the facilities will be available in the initial version of the system.

Figure B.1 represents a view of the system as seen by a user thinking about the wide
variety of software tools and processes that can be invoked. For example, if the user is
accessing this software through a Macintosh, normal application programs such as Microsoft
Excel, MacFlow, and MacDraw Pro are available within windows on the displayed “desktop.”
The user may also establish an X-Window connection to MapView, a program developed at
RAND allowing a wide and flexible variety of map backgrounds to be used as backdrops for
graphics generated during the operation of a model. A specially designed editor is available
on the Macintosh that allows creation of hypertext links to other Macintosh documents, such
as flowcharts, text files, voice annotations, or even QuickTime movies. Those hypertext links
may be embedded within Anabel source code, or any text file created within the editor, as a
means of documenting the code without detracting from the flow of the logic of the code itself.
The editor uses a TCP link to a UNIX server on the local area network to obtain analyses of
Anabel source code; the resulting data allow the editor to (1) use distinctive font/style/size/
color characteristics to distinguish among keywords, identifiers, constants, and comments;
(2) build data structures allowing cross-reference access from identifiers to their declarations
and to other occurrences of those identifiers; and (3) browse through class definitions and
inheritance relationships. From the editor, the user may also access (by double-clicking on
an Anabel keyword within the source code) Anabel reference materials contained in a
HyperCard stack. That stack of 230 cards contains information about the syntax and

semantics of every valid Anabel statement and language feature.

-47-

MacFlow

' MapView
Other apps and g
workstation
tools \ ~ User User establishes
interactions context for graphic
run-time output
Eventual User
exchange .
of data Graphlc
X \ run-time
; output
Y User

interactions

Graphic User
interface

7/

Macintosh

X

% Anabel tools /(GUI)
/ (editor,

/ hypertext, n :

/ materials) interaction for

/ code analysis

nabel run-time
environment,
compiler

/A

User editing Transcript of
of log interactions

Interaction %

Interpretive)
Anabel 77

User authoring and
editing of Anabel source code

L]

Specially developed Anabel software tools

Software provided by others

Figure B.1— Top-Level Logical Architecture of Anabel Environment

-48-

A GUI will be provided to the user, allowing access to the Anabel run-time
environment and compiler on a UNIX server. This GUI will be designed using X-Window
commands for portability, so that it might be accessed from an X-window on a Macintosh,

PC, or any POSIX*6.compliant workstation. During operation of an Anabel model and user
interactions with that model, a set of Anabel source statements will be emitted to an
interaction log file recording all user interactions. That log file will be human-readable and
-editable and can be used to play back a model’s execution—including user interactions—at a
later time. During a model’s execution, it might be designed with appropriate “display”
methods associated with its objects to send graphic commands to MapView so that (aspects
of) the model’s operation can be visualized on a map background. A class library of graphic
objects having these properties will be provided as a default “starter set.”

Since the ready interchange of Anabel model source code, including associated
hypertext linkages, is seen to be crucial to its dissemination and portability, we have chosen
to use the ISO Standard Generalized Markup Language (SGML) as its basic internal
representation and interchange format (Goldfarb, 1990, serves as our standard reference and
includes the ISO Standard).

A number of important facilities are not shown in Figure B.1, because they intersect
too many of the other functions. For example, the plan includes a comprehensive
configuration management facility allowing retention of a record of what data were used with
which run of what version of which model to obtain what resulting output script and files—
along with annotation by the user indicating reasons for that particular model run and other
auxiliary information.

Some of the processes indicated in Figure B.1 will normally run within a user’s
personal computer (e.g., Macintosh), and others on a UNIX-based workstation—with a high
degree of interaction among all these processes. How the processes are allocated among
various hardware platforms should be quite flexible.

A number of subsidiary processes and tools to be used in creating this environment are
also not indicated in Figure B.1. For example, a C or C++ language compiler will be used as
part of the interpreter/compiler process. Such lower-level support tools form an important
substratum of the entire system. With a careful choice of these lower-level tools, it is possible to
achieve considerable transportability of the system to a variety of hardware platforms as new

computing options continue to become available.

46pQSIX (Portable Operating System Interface for UNIX) is an open system standard based on
UNIX.

-49 -

Figure B.1 provides an overview of a software environment for creating, running, and
documenting models written in the Anabel language. However, it does not address the
important topic of the possible relationships among this Anabel environment, models written
in the Anabel language, models written in other languages (whether written at RAND or
imported from other sources), and other non-Anabel environments in which models (written
in Anabel or in other languages) are to be run. This is important because other, separately
developed models (often imported from other organizations and written in other languages)
are vital to RAND analyses.

There are two major cases to be considered, each with subcases and variations of

importance. The two cases are the following:

* Allowing models written in Anabel to work within another modeling environment
and to work with other models written in other languages;
* Using models written in other languages within the Anabel modeling environment

and in conjunction with Anabel models operating in that environment.

We discuss each case briefly below. It should be emphasized, however, that there are
many difficult issues involved in the cooperative, coordinated use of separately developed
models. For example, they may treat geography or time at a different resolution or
granularity, they may have differing nomenclatures for identical objects or concepts, or they
may aggregate items differently. These are important considerations that we are not
addressing in our attempt to create aids allowing interconnections to be made among
dissimilar models. We realize their importance, but such issues are not being addressed by

our current development project.

IMPORTING ANABEL MODELS TO OTHER ENVIRONMENTS

Assume model A is written in the Anabel language and is to be used as a submodel or
subprocess within some other model and modeling environment. We think of this as an
Anabel model operating within some other paradigm, having other conventions for
interprocess coordination or data sharing. (An example of such an “other” paradigm is the
SEMINT system being developed at RAND, referenced earlier in this report.)

We plan on providing at least two specific aids to assist in integrating that model A

into the other environment:

-50-

. Generation of C or C++ code representing Anabel model A, so that, for example,
the C/C++ code might be recompiled to work within that other environment.
Explicit generation of such C/C++ code may be either a standard feature of the
Anabel compiler or an optional feature to be invoked when desired. The resulting
C/C++ code will meet relevant ANSI standards for maximum transportability and
generality.

* Optional generation of a Data Interface Module (DIM), tailored to that Anabel
model A, for use by other models or interfaces and providing a relatively easy
means for those models or interfaces to access or manipulate data objects within
model A. This DIM may consist of some combination of (1) a data dictionary
mapping names of Anabel objects and their attributes and methods within model
A to their internal representations within model A and (2) a library of one or
more access routines working in conjunction with this data dictionary, with the
routine(s) in this library providing access to data within model A. Portions of this
Data Interface Module might well be generic and used for all Anabel models for
which a DIM is generated, and other portions might be model-specific. These

details are yet to be determined.

Figure B.2 shows schematically how an Anabel model might exist within a non-Anabel
environment through use of its DIM as an aid to communication with a user-interface
program or other models within that environment.

In Figure B.2, the existence of the “non-Anabel models” is optional; the Anabel model
with its DIM might well run by itself within the non-Anabel environment, just as any other

separately developed model would.

IMPORTING OTHER MODELS INTO THE ANABEL ENVIRONMENT

The second form of cooperation between Anabel models with their supporting
environment and externally developed models written in other languages is the importation
of those external models into the Anabel simulation and analysis environment. In this case
the external model is viewed as a subprocess of the Anabel model—perhaps used, on call, to
generate some data as input to the main Anabel model. The external model could be as
simple as a spreadsheet model or as complex as a whole detailed combat simulation with

high resolution.

-51-

Non-Anabel environment

Non- Non-
Anabel Anabel
model model
Model Data
written Interface
in Module
Anabel access
routines

\ .
\ User interface < User

v

Figure B.2—An Anabel Model Within a Non-Anabel Environment

This form of cooperation has the advantage that all the tools and capabilities of the
Anabel run-time environment are available to this consortium of models, such as the
automatic creation of a log file of user interactions with the combined model for later study,
editing, and/or replay.

We intend to create “wrappers” for these external models in this case that map 1/O
from the externally developed model into I/O compatible with the Anabel model(s). This
“wrapper” is a program that is itself written in Anabel. Figure B.3 shows several such
external models interfacing to an Anabel-language model, each through the use of such a
“wrapper” program, within the overall context of the Anabel modeling and simulation
environment.)

The symmetry in Figure B.3 should be note&: Once an external model has been
provided with a “wrapper,” it becomes just like an Anabel language model and can be used
wherever an Anabel model might be, for example, intercommunicating with other Anabel
models, with other “wrapped” external models within the Anabel environment, and with the
Graphic User Interface.

A special case of the configuration shown in Figure B.3 is especially important at
RAND: the ability to run a non-Anabel model all by itself within the Anabel run-time

environment. This case is shown in Figure B.4.

-52-

Anabel run-time environment

Model Interface
written -1 "Wrapper"
in /O written

other in
language [Anabel

\ Graphic
User |—p{ Anabel
Model Interface /

Interface f«¢—— mModel
written | "Wrapper"

in /O written

other in
language [Anabel

Uéer

Figure B.3—A Non-Anabel Model Within the Anabel Environment

Anabel run-time environment

(
Model Interface
written "wrapper" : .
in —> written — Sggehlc

other I/0 in
language | <®—| Anabel |-€—— Interface

\ \

Uéer

Fig B.4—A Non-Anabel Model by Itself Within the Anabel Environment

-53-

The ability to run a non-Anabel model by itself within the Anabel run-time
environment is important because, as that model is provided with a “wrapper,” that model—
even though developed separately, in a different language, and possibly imported from
elsewhere—can then benefit from all the resources of the Anabel run-time environment, such
as (1) the ability to use interpreted Anabel to write scenarios exercising the model; (2) use of
the Anabel Graphic User Interface to interact with the model during its execution; and (3)
automatic creation of a log file—in the form of normal Anabel statements—documenting all
user interactions with the model, so that this transcript might be edited and/or used to
replay a model run.

As part of the long-term Anabel development project, we intend to create standard
“wrappers” of this sort for externally developed models in common use within RAND and to
provide software tools (such as specialized class libraries) to aid in the development of such

“wrappers.”

-54-

Appendix C
MODEL, DATA, AND MODEL-RUN MANAGEMENT

Model, data, and model-run management will be an essential part of the eventual
environment we envision. RAND has been developing related infrastructure for some years
now, primarily centered in its Military Operations Simulation Facility MOSF), which is a
laboratory with numerous workstations and a permanent staff who can help analysts with a
wide range of problems, such as reviving an old model, establishing network links, exploiting
available software tools such as a geographic information system and various visualization
aids, or establishing configuration control for a new model development or analysis. Steady
progress has been made since the MOSF was established in the mid-1980s. Many model,
data, and model-run management methods and tools have also been developed as part of the
RSAS (RAND Strategy Assessment System) and its applications, which have often involved
multiscenario analysis and complex data bases.

At the same time, there is much yet to be accomplished. We (and the community at
large) are a long way from having a highly integrated user-friendly set of management tools.
As an example of what may be desirable here, consider Figure C.1, adapted from Bennett
(1989). This describes a particular idealized model-integration-and-management system
(MIMS). It envisions repositories of models, data, and scenarios. It also envisions tools
(including tools incorporating knowledge-based models and intelligent-data-base methods) to
assist analysts in drawing upon and tailoring models and data for a particular study and to
assist those analysts in designing the experiments and studying the results.4” Other
workers have also examined a number of concepts for related functions and have developed
prototype systems to accomplish some of them (see Nance, 1989, for abstracts of work at
Virginia Tech).

One of us (see Bankes, 1992b) has argued for computer-based support tools for
managing the complexity of an evolving analysis utilizing computer modeling. As a specific

approach to managing such complexity, recent research on exploratory modeling by Bankes

47Boxes represent information sources, with the analyst and experts being special in this
respect. Ellipses are computer processes. Solid arrows indicate data flow, except for dark arrows A, B,
D, E, and F, which represent manual intervention, as when the analyst is working within the
environment or when the data-base experts are interacting with the data-base templates. Dashed
arrows indicate “meta” data describing and interpreting actual data.

-55 -

Analyst

Scenario
eneration
ool

Data-base
" integration
tool

2
N - 1
emplate/data Source in Input/
put nput/output
'-'E}?J,"y' etation data bases data bases data bases

A

] c
[Msource ™ |
data-base
| template |
1 A
Source
data-base
experts
1
got:r%e Scenario and Result data b Plot
ata bases o ar esult data base ots,
excursion files input and output charts,reports,
1 (input data) 82&) & P stz-xtisticsp
) 12 Adapted from Bennett (1989)

Figure C.1—~An Architecture for a Model Integration and Management System

involves developing the concept of a computer-based “notebook” in which schemas for models
may be kept, with other pages recording specific model runs and associated data inputs and
outputs. Other pages may summarize results. The entire notebook contents may be
electronically searched in some linear fashion, such as by date of experiment, or queried like
a data base to find specific information. The exploratory modeling project is cooperating with
the development of the Anabel language and its related programming and documentation
support tools, with the hope that these projects may form useful cooperative linkages and

some common use of software in the future.

-57-

BIBLIOGRAPHY

Bankes, Steven C. (1992a), Issues in Developing the Potential of Distributed Warfare
Simulation, RAND, R-4131-DARPA.

Bankes, Steven C. (1992b), Exploratory Modeling and the Use of Simulation for Policy
Analysis, RAND, N-3093-A.

Bennett, B. E. (1989), A Conceptual Design for the Model Integration and Management
System, RAND, N-2645-RC.

Bobrow, D., et al. (1988), “Common Lisp Object System Specification,” draft submitted to
X3J13.

Cammarata, S., D. H. Shane, and P. Ram (1991), IID: An Intelligent Information Dictionary
for Managing Semantic Metadata, RAND, R-3856-DARPA.

Coad, Peter, and Ed Yourdon (1992), Object-Oriented Analysis, 2nd Edition, Prentice-Hall.

Dahl, Ole-Johan, and Kristen Nygaard (1966), “SIMULA—An Algol-Based Simulation
Language,” Communications of the Association for Computing Machinery, Vol. 9, No.
9, pp. 671-678.

Davis, M., N. Shapiro, and S. Rosenschein (1982), Prospects and Problems for a General
Modeling Methodology, RAND, N-1801-RC.

Davis, Paul K. (1988), Explanation Mechanisms for Knowledge-Based Models in the RAND
Strategy Assessment System, RAND, N-2711-NA.

Davis, Paul K. (1990), An Analyst’s Primer for the RAND-ABEL Programming Language,
RAND, N-3042-NA.

Davis, Paul K. (1992a), Generalizing Concepts and Methods of Verification, Validation, and
Accreditation (VV&A) for Military Simulations, RAND, R-4249-ACQ.

Davis, Paul K. (1992b), An Introduction to Variable-Resolution Modeling and Cross-
Resolution Model Connection, RAND, R-4252-DARPA.

Davis, Paul K., and Reiner Huber (1992), Var'iable;Resolution Modeling: Motivations, Issues,
and Principles, RAND, N-3400-DARPA.

Davis, Paul K., and Richard Hillestad (1992), “Using Simulation in the Education of General
Officers,” Proceedings of the Summer Simulation Conference, July 1992, Society for
Computer Simulation.

Department of Defense (DoD) (1992), Defense Modeling and Simulation Initiative, May 1,
1992, issued by the Defense Modeling and Simulation Office of the Director, Defense
Research and Engineering.

-58-

Goeller, Bruce, S. C. Abraham, A. F. Abrahamse, J. H. Bigelow, J. G. Bolten, J. C. DeHaven,
D. L. Jaquette, N. A. Katz, T. F. Kirkwood, R. L. Petruschell, T. Repnau, J. P. Stucker,
W. E. Walker, L. H. Wegner (1983), Policy Analysis of Water Management for the
Netherlands: Vol. 1: Summary Report, RAND, R-2500/1-NETH.

Goldfarb, Charles F. (1990), The SGML Handbook, Oxford Press, Oxford, UK, serves as our
standard reference (and includes the ISO Standard in its text). Several commercial
packages already have SGML capability.

Hillestad, Richard, and Mario Juncosa (forthcoming), Cutting Some Trees to See the Forest:
On Aggregation and Disaggregation in Combat Models, RAND, R-4250-DARPA.

Hillestad, Richard, John Owen, and Donald Blumenthal (forthcoming), Experiments in
Variable Resolution Combat Modeling, RAND, N-3631-DARPA.

Hillestad, Richard, Louis Moore, and Eric Larson (forthcoming), The Theater Level Campaign
Model /Non-Linear Combat Model Toolkit: An Overview, RAND.

Kipps, James R., Bruce Florman, and Henry A. Sowizral (1987), The New ROSIE Reference
Manual and User’s Guide, RAND, R-3448-DARPA/RC.

Klahr, Philip, and Donald A. Waterman (1986), Expert Systems—Techniques, Tools, and
Applications, Chapter 3, “Ross: An Object-Oriented Language for Constructing
Simulation,” pp. 70-91, and Chapter 7, “Twirl: Tactical Warfare in the ROSS
Language,” pp. 224268, Addison-Wesley Publishing Company.

Landauer, Christopher, and Kirstie L. Bellman (1992), “Integrated Simulation
Environments,” Proceedings of a Conference on Variable- and Cross-Resolution
Modeling, RAND.

Marti, Jed (1988), “RISE: The RAND Integrated Simulation Environment,” in Brian Unger
and David Jefferson (eds.), Distributed Simulation, Simulation Councils, Inc., San
Diego, California, Vol. 19, 1988.

Marti, Jed (forthcoming), RLISP'88: An Evolutionary Approach to Program Design and
Reuse, to be published as a book in 1993. Unpublished versions available through the
author at RAND.

Marti, Jed (1990), “Cooperative Autonomous Behavior of Aggregate Units over Large Scale
Terrain,” in Proceedings of Al, Simulation and Planning in High Autonomy Systems,
IEEE, Washington, D.C.

Marti, Jed, and Niels Catsimpoolas (1992), “Scripting Highly Autonomous Simulation
Behavior Using Case-Based Reasoning,” submitted to Society for Computer
Simulation, 1992 Simulation Multi-Conference.

Meyer, Bertrand Meyer (1988), Object-Oriented Software Construction, Prentice-Hall,
Englewood Cliffs, New Jersey.

Military Operations Research Society (1989), MORS Workshop on Simulation Technology
1997 (SIMTECH 97), Proceedings of Session III, October. See also earlier volumes on
sessions I and II.

-59-

Miller, Duncan (1992), “An Introduction to SIMNET,” presented at the Military Operations
Research Society’s Minisymposium on Distributed Interactive Simulation, September
29-October 1, 1992, Alexandria, Virginia. Presumably available from the author at
BBN Inc., Cambridge, Massachusetts.

Nance, Richard E. (1987), The Conical Methodology: A Framework for Simulation Model
Development, Systems Research Center of Virginia Tech, Technical Report SRC-87-
001.

Nance, Richard (1989), Technical Report Abstracts, Systems Research Center of Virginia
Tech (10 January 1989).

Narain, Sanjai (1989), “DMOD: A Logic-Based Event Calculus for Discrete-Event
Simulation,” in Proceedings of the Artificial Intelligence and Simulation Conference,
Society for Computer Simulation, San Diego.

Nielsen, J. (1990), Hypertext and Hypermedia, Academic Press, London, UK.

Rothenberg, Jeff (1989), Object-Oriented Simulation: Where Do We Go from Here? RAND,
N-3028-DARPA.

Rothenberg, Jeff (1992a), “Bi-directional Modeling for Integrated Simulation and Planning,”
Proceedings of the SCS European Simulation Multiconference, York, U.K., June 1-3,
1992, pp. 89~93.

Rothenberg, Jeff (1992b), “Using Causality as the Basis for Dynamic Models,” Proceedings of
the Third International Working Conference on Dynamic Modeling of Information
Systems (DYNMOD-3), June 9-10, 1992, Delft University of Technology, Delft, The
Netherlands.

Rothenberg, Jeff, N. Z. Shapiro, and C. Hefley (1990), A “Propagative” Approach to Sensitivity
Analysis, RAND, N-3192-DARPA.

Rothenberg, Jeff, Sanjai Narain, Randall Steeb, Charlene Hefley, and Norman Z. Shapiro
(1989), Knowledge-Based Simulation: An Interim Report, RAND, N-2897-DARPA.

Round, Alfred (1989), “Knowledge-Based Simulation,” in Handbook of Artificial Intelligence,
Vol. IV, Chapter 22, Addison-Wesley.

Rumbaugh, James, Michael Blaha, William Premeriani, Frederick Eddy, and William
Lorensen (1991), Object-Oriented Modeling and Design, Prentice-Hall, Englewood
Cliffs, New Jersey.

Shapiro, Norman Z., H. Edward Hall, Robert H. Anderson, and Mark LaCasse (1985), The
RAND-ABEL Programming Language: History, Rationale, and Design, RAND,
R-3274-NA.

Shapiro, Norman Z., H. Edward Hall, Robert H. Anderson, Mark LaCasse, Marrietta S.
Gillogly, and Robert Weissler (1988), The RAND-ABEL Programming Language:
Reference Manual, RAND, N-2367-1-NA.

-60-

SofTech Inc. (1991), Software Development Plan (SDP) for the Joint Modeling and
Simulation System (J-MASS), prepared for Wright Laboratory, Wright-Patterson AFB,
Ohio.

Sowizral, Henry A., and James R. Kipps (1985), ROSIE: A Programming Environment for
Expert Systems, RAND R-3246-ARPA.

Stroustrup, Bjarne (1986), The C++ Programming Language, Addison-Wesley, Reading,
Massachusetts.

Weatherly, Richard, David Seidel, and Jon Weissman (1991), “Aggregate Level Simulation
Protocol,” Proceedings of the Summer Computer Simulation Conference, Society for
Computer Simulation International, San Diego, California.

Zeigler, Bernard (1990), Object-Oriented Modeling With Hierarchical, Modular Models,
Academic Press, New York.

Zobrist, A. L., L. J. Marcelino, and G. S. Daniels (1991), RAND’s Cartographic Analysis and
Geographic Information System (RAND-CAGIS): A Guide to System Use, N-3172-RC.

RAND/N-3554-RC

