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Abstract This paper proposes an original approach for the

statistical analysis of longitudinal shape data. The proposed

method allows the characterization of typical growth patterns

and subject-specific shape changes in repeated time-series

observations of several subjects. This can be seen as the exten-

sion of usual longitudinal statistics of scalar measurements

to high-dimensional shape or image data.

The method is based on the estimation of continuous

subject-specific growth trajectories and the comparison of

such temporal shape changes across subjects. Differences

between growth trajectories are decomposed into morpholog-

ical deformations, which account for shape changes indepen-

dent of the time, and time warps, which account for different

rates of shape changes over time.

Given a longitudinal shape data set, we estimate a mean

growth scenario representative of the population, and the vari-

ations of this scenario both in terms of shape changes and in

terms of change in growth speed. Then, intrinsic statistics are

derived in the space of spatiotemporal deformations, which

characterize the typical variations in shape and in growth
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speed within the studied population. They can be used to

detect systematic developmental delays across subjects.

In the context of neuroscience, we apply this method to

analyze the differences in the growth of the hippocampus

in children diagnosed with autism, developmental delays

and in controls. Result suggest that group differences may

be better characterized by a different speed of maturation

rather than shape differences at a given age. In the context of

anthropology, we assess the differences in the typical growth

of the endocranium between chimpanzees and bonobos. We

take advantage of this study to show the robustness of the

method with respect to change of parameters and perturbation

of the age estimates.

Keywords longitudinal data · statistics · growth · shape

regression · spatiotemporal registration · time warp

1 Spatiotemporal variability of longitudinal data

Many scientific questions can be expressed in terms of

changes or alterations of a dynamical process. In camera

surveillance, one aims at distinguishing normal from abnor-

mal behaviors in video sequences. In clinical studies, one

wants to characterize anatomical or functional changes due

to disease progression, clinical intervention or therapy. In

neuroscience, one studies the neurodevelopment or the neu-

rodegeneration of the brain and its related structures. In car-

diac imaging, one looks for abnormal patterns in the heart

motion. What make these questions so challenging is that the

evolving object of interest changes in appearance in differ-

ent situations. In video sequences for instance, we want to

distinguish a normal from an abnormal behavior behind the

large variety of the shapes and the motions of the silhouettes.

Similarly, every brain has a different shape, whereas its matu-

ration may follow some common patterns that we would like

precisely to describe and quantify.
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From the point of view of data analysis and pattern theory,

these problems can be addressed by the statistical analysis

of longitudinal data sets. A longitudinal data set consists

of the observation of a set of homologous objects (such as

silhouettes of people or anatomical structures), each object

being observed repeatedly at several time points. An ab-

stract example of such a data set is given in Fig. 1, which

illustrates the sampling of individual growth trajectories of

different subjects. The analysis of such longitudinal data sets

should lead to the qualitative and quantitative assessment

of change trajectories, to the detection of common growth

patterns shared in a population, and to the characterization

of their appearances in different subjects.

Longitudinal analysis differs from the usual cross-sectional

variability analysis in that it takes into account the inherent

correlation of repeated measurements of the same individuals.

It must also provide a model of how an individual subject’s

trajectory changes relative to another subject. At the popu-

lation level, we typically analyze how the subjects are dis-

tributed within a group by estimating a mean configuration

and its variance. For longitudinal data, the mean configura-

tion may be a “mean growth scenario”, which averages the

growth patterns in the population. The analysis of its variance

explains how each subject’s trajectory differs from the mean

growth scenario. Such a statistical approach based on mean

and variance is well-known for scalar measurements and for

analysis of cross-sectional shape data, for which the mean is

usually called “template” or “atlas”. The extension of these

concepts for longitudinal shape data is challenging, as no

consensus has emerged about how to combine shape changes

over time and shape changes across subjects.

In this paper, we propose a consistent conceptual and

computational framework to address these questions: (i) the

estimation of subject-specific trajectories via the introduction

of a growth model as a smooth deformation of the baseline

shape, (ii) the comparison of different trajectories via spa-

tiotemporal mappings which align both the shape of different

subjects and the tempo of their respective evolution, (iii) the

estimation of a “mean growth scenario” representative of a

given population, and (iv) the statistical analysis of the typi-

cal variations of this mean scenario in the studied population.

The proposed methodology does not require that the subjects

are observed with the same number of samples or at the same

time-points.

One of the main contributions of this methodology is

that it models the changes in individual trajectories both

as morphological changes, which account for the different

appearances of the object, and as dynamical changes, which

account for different paces of evolution. At the population

level, this assumes that the development of different subjects

shares the same growth patterns, up to changes in shape and

changes in the tempo of the development. This enables in

particular the characterization of the effect of a pathology as

a systematic developmental delays in the growth of a given

organ.

The detailed explanation of the method and its related al-

gorithms is given in Sec. 3. Sec. 2 explains how the proposed

framework consistently embeds different concepts introduced

in the literature and highlights different possible modeling

choices. In Sec. 4, we show how the method can be used to

characterize the effect of autism and developmental delay in

the growth speed of the hippocampus. In Sec. 5, the method

will be used to quantitatively assess the relative developmen-

tal delay of the endocranial growth between bonobos and

chimpanzees. We will show that this estimation is robust to

parameter changes and changes in the age estimates of the

samples.

Fig. 1 Synthetic example of a longitudinal data set with 3 subjects.

Each subject has been observed a few times and at different time-points.

The aim of the spatiotemporal variability analysis is to describe the

variability of this population in two ways: the geometrical variability

(there is a circle, a square and a triangle), and the variability in terms of

change of dynamics of evolution (for instance, the square grows first at

a faster rate than the circle and then slows down.)

2 An emerging framework for the analysis of

longitudinal shape data

This section presents a survey of the literature on the topic

of longitudinal analysis of shape data. This will highlight

which tools and concepts need to be linked into a common

statistical framework. We will also make clear that different

modeling choices are possible. We will propose to follow

the approach that seems the more adapted to the targeted

applications.
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2.1 Previous research to design 4D statistical analysis

2.1.1 4D analysis meant as regression or tracking

The first kind of so-called 4D-analysis proposes to es-

timate a continuous sequence from a set of time-indexed

shapes or images of the same subject. In Mansi et al (2009),

one estimates a cross-sectional atlas from time series data

and then analyzes the correlations between the modes of vari-

ability and the age of the subject, considered as an explana-

tory variable. These correlations may be used to estimate

a synthetic growth scenario for a given individual. Other

approaches, which do not rely on a cross-sectional atlas, in-

clude work by de Craene et al (2009), in which the authors

use Large Diffeomorphic Free Form Deformations to esti-

mate time-varying deformations between the first and the last

sample of a sequence of images. In the same spirit, Davis et al

(2007) propose to perform the regression of a sequence of

images via a generalization of the kernel regression method

to Riemannian manifolds. Growth scenarios could also be

estimated based on stochastic growth models as in Grenander

et al (2007); Trouvé and Vialard (2010) or on twice differen-

tiable flows of deformations as in Fishbaugh et al (2011).

These methods are pure regression methods. If they are

used with several subjects scanned several times, these re-

gression methods return a single evolution, the most probable

evolution in some sense. They do not take into account that

data at different time points may come from the same subject

or from different subjects. It averages shape evolutions with-

out discarding the inter-subject variability, which leads to

“fuzzy” estimation like the average of a set of non-registered

images. By contrast, in Thompson et al (2000); Gogtay et al

(2008), registrations between baseline and follow-up scans of

the same subject are performed and the evolutions of scalar

measurements extracted from the registration are compared

across subjects. A main contribution of our paper will be

to extend this framework for scalar measurements to the

high-dimensional space of shapes. In Khan and Beg (2008),

the authors propose to perform a regression of the image

sequence of every subject separately and then to average the

time dependent velocity field of each regression to estimate

a typical scenario of evolution. This approach is limited to

situations where each sequence is registered in the same ref-

erence frame, but no details of how to perform registration

of time-indexed sequences of images is given.

2.1.2 3D-registration of 4D-sequences

The problem of registering individual trajectories has

been investigated in different communities. In Chandrashekara

et al (2003), the motion of the heart of each subject is tracked

through time. Then the registration between the baseline im-

age of two subjects is used to transport the velocity field

of the tracking from one subject’s space to the other. This

approach could also include the estimation of a template

image at the baseline time-point using usual cross-sectional

atlas construction methods, like in Ehrhardt et al (2008);

Qiu et al (2008, 2009). All these methods assume that the

inter-subject variability can be captured considering only the

baseline images. Using these deformations for registering the

whole time-indexed sequence of images is arguable, since

they do not take into account anatomical features which may

appear later in the sequence.

This issue has been addressed in Peyrat et al (2008) who

proposed to register a time-indexed sequence by computing

deformations between any pair of successive scans of the

same subject and between any pair of scans of two different

subjects at the same time-point. Such an approach takes all

temporal information into account and therefore leads to a

much more robust registration scheme. However, this method

assumes that every time-indexed sequence has exactly the

same number of images, which are acquired at time points

which correspond across subjects. By contrast, in longitudi-

nal studies, only a few scans per subject are available, and

the number of scans may vary for different subjects. This

issue has been addressed in Hart et al (2010), who proposed

an interpolation scheme to average individual trajectories at

every time-point independently. However, none of these ap-

proaches take into account the inherent temporal correlations

between successive inter-subject registration. From a statisti-

cal point of view, this means that the inter-subject variability

at two different time points are considered as independent

variables. As the sampling of the image sequence becomes

finer and finer, the number of variables to estimate becomes

larger and larger. A main contribution of this paper will be

precisely to define a generative statistical model, which takes

into account the temporal correlations between inter-subject

registrations at different time points, and to provide a way to

estimate these correlations from a finite set of observations.

In Gerig et al (2006), a template image is built at every

time-point independently. Then, the deformations between

the baseline scan and the follow-up of any subjects are com-

pared to the deformation between the baseline atlas and the

follow-up atlas. This approach focuses on the analysis of the

cross-sectional variability over time. However, since the tem-

plate image is built at each time point independently, it is not

clear whether the difference between the baseline atlas and

the follow-up atlas is the average of every subject’s evolution.

Moreover, such a method requires that the distribution of age

in the longitudinal data set is clustered at two distinct ages,

which is a special case. A similar approach has also been

proposed in Aljabar et al (2008).
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2.1.3 Taking into account temporal re-alignment

The methods cited previously propose a way to combine

the subject-specific growth with the inter-subject variability:

time-series image sequence are processed by a combina-

tion of 3D deformations. In particular, the age at which the

subjects are scanned is considered an absolute time which

corresponds across subjects. This assumes that at a given age,

every subject is at the same development stage and that their

anatomy can be compared. Such procedures neglect possible

developmental delays between subjects, or some pathology

affecting the cardiac pace, for instance, a key feature that

we precisely want to detect. A spatiotemporal registration

scheme should register individual growth scenarios both in

space (usual geometrical variations of the anatomy) and in

time (change of the speed of evolution). Time changes should

put the ages of the subjects into correspondence, which rep-

resents the same developmental stage.

In Declerck et al (1998), a deformation of the 4D do-

main is provided via 4D planispheric transformations for the

registration of the heart motion. In Perperidis et al (2005),

spatiotemporal deformations are computed. The temporal

part is a 1D function showing the change of cardiac dynam-

ics between the source and the target subject. This temporal

alignment is performed jointly with the registration of the

anatomy. These methods focus on the registration between a

pair of individual trajectories, and requires a fine temporal

sampling of the trajectories. A main contribution of our pa-

per will be to use such spatiotemporal deformations for the

inference of statistical properties at the population level, via

the estimation of spatiotemporal atlases.

2.1.4 Ingredients for a spatiotemporal statistical model

This review of the literature shows that several aspects of

the design of a 4D statistical analysis have been addressed

separately by different authors, in different contexts and with

different tools. There is a lack of a consistent framework

to embed these concepts together, covering the estimation

of individual trajectories and the inference of population

statistics.

In light of this review, a statistical framework for longitu-

dinal data analysis might include:

– The estimation of a continuous shape evolution from a set

of observations sparsely distributed in time. These indi-

vidual trajectories could be used to compare the anatomy

of two subjects, who have not been scanned at the same

age. They could also be used to analyze the speed of

evolution of a given subject at any time-point.

– The comparison between individual trajectories, which

should measure not only morphological differences (com-

monly described by 3D deformations) but also the tem-

poral re-alignment which put the developmental stages

of different subject into correspondence. This temporal

re-alignment will detect different speeds of evolution and

therefore possible developmental delays between sub-

jects.

– A generative statistical model, which combines the two

previous concepts to estimate evolution patterns that are

shared among a given population. The estimated statistics

should include a mean (a growth scenario representative

of the population) and variance (the typical variations of

this mean growth scenario evident in the population).

2.1.5 Terminology

The survey of the current literature also raises the prob-

lem of terminology: there is no consensus among authors

about which words refer to which concepts. In this paper, we

will use the following definitions:

Data:

– cross-sectional data is a set of samples, which are sup-

posed to be comparable, or homologous (like samples

drawn from a healthy adult population, for instance). No

notion of time is involved, or equivalently, the effect of

time or age on the data can be neglected.

– time-series data is a set of data that are indexed by any

temporal marker like age, indicator of developmental

stage, disease progression or index of a frame in a movie,

for instance. No assumption is made that a sub-set of the

samples correspond to the same object seen at different

time-points.

– longitudinal data is a time-series data set, which con-

tains repeated observations of individual subjects over

a period of time. As a consequence, each subject in the

data set should have been observed more than once at

different time-points.

Methods:

– shape/image regression, also called tracking, refers to

the estimation of a continuous evolution model from a

time-series data set. This tool estimates shape changes

between discrete temporal observations or averages time-

indexed observations into a single evolution.

– spatiotemporal registration puts two individual trajec-

tories into correspondence. This involves the notion of

correspondence between shapes and between time-points.

– spatiotemporal or longitudinal data analysis measures

the similarities and the differences between individual

trajectories. It takes into account the fact that individual

subjects were observed several times, which makes it

more constrained than the analysis of the effect of time

on the observations.

According to these definitions, shape or image regression

may be performed on time-series data, whereas spatiotempo-

ral analysis can only be performed on longitudinal data.
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2.2 Two possible generative models for longitudinal data

2.2.1 Spatiotemporal variations of a typical growth model

A generative statistical model is a set of hypotheses,

which explain how individual trajectories could be derived

one from the others. In other words, it should provide an

answer to the two fundamental questions: given the anatomy

of one subject at time t,

– how can we predict the anatomy of this subject at a later

time t ′ > t?

– how can we derive the typical anatomy of another subject

at the same time-point?

Once these answers are provided, we can easily define

a generative statistical model at the population level. This

model will assume the existence of a mean growth scenario

representative of the population, such that the individual

trajectories can be seen as a derivation of this mean scenario.

The mean scenario captures the invariants in the population

and detects the growth patterns, which are shared among the

subjects. The derivation of the mean scenario captures the

variance of this mean configuration within the population.

In light of the literature survey, there are at least two

different ways to answer these questions. We refer to these

two paradigms as a “subject-specific approach” and a “time-

specific approach”.

2.2.2 Subject-specific approach

In the subject-specific approach, a specific reference

frame is attached to each subject. The whole evolution of

each subject is described within the same reference frame:

the reference frames are atemporal. We assume that there is a

template reference frame in which the evolution is written by

a time-varying shape M(t): the prototype scenario of evolu-

tion in the population, which can be seen as the 4D analog to

the template shape in 3D. We usually assume that the time-

varying shape derives continuously from a template shape M0

at a reference time point t0. This is written as: M(t) = χt(M0),

where χt is a smoothly varying 3D deformation called the

growth function (χt0 = id so that M(t0) = M0).

Change of coordinates from the template reference frame

to each subject’s reference frame is modeled by 3D defor-

mations φ s. Since these reference frames are atemporal, the

deformations φ s do not depend on time. As a consequence,

the evolution function M(t) has a different expression in each

coordinate system: the evolution of a subject S is given as

S(t) = φ(M(t)), also written as S(t) = φ(χt(M0)). It is as if a

single object (M(t)) is seen by different observers in different

coordinate systems. As illustrated in Fig. 2a, the change of co-

ordinates φ s transports the evolution function χ(t) from the

template frame to the subject’s frame: χS
t = φ s ◦ χt , so that

S(t) = χs
t (M0). The evolution mapping is therefore specific

to each subject.

In this modeling, we can include time as an additional

variable, so that the reference frame of each subject is de-

scribed by 3 spatial coordinates and 1 temporal coordinate.

This means that both the anatomy and the age is relative

to the subject. This specific time variable can be called the

“physiological age” of the subject, as if each subject has their

own biological clock. In the reference frame of the prototype,

the time would be the absolute age, computed from the date

of birth. Then, the 3D warp φ(x,y,z) needs to be generalized

to a deformation of the underlying 4D space: Φ(x,y,z, t).

The most general form of a 4D-deformation is Φ(x,y,z, t)=

(φ(x,y,z, t),ψ(x,y,z, t)), where φ(x,y,z, t) denotes the 3 spa-

tial coordinates of Φ(x,y,z, t) (the morphological deforma-

tion) and ψ(x,y,z, t) its temporal coordinate (the time warp).

Assuming that ψ(x,y,z, t) depends on the spatial vari-

ables (x,y,z) means that different parts of the anatomy of a

given subject would evolve at different speeds. This is def-

initely possible in applications involving multi-shape com-

parisons. However, in this paper, we will assume that all

points of the anatomy of a given subject have always the

same physiological age over time. In this case, ψ depends

only on the time variable t: ψ(t). This assumption is likely to

be valid in most longitudinal studies, focusing on one specific

structure. The time warp ψ(t) maps the absolute age in the

reference frame of the prototype to the physiological age of

a given subject. Note that this function should be monotonic,

assuming that the sequence of events in every individual tra-

jectory occur in the same order (from birth onwards) but at a

different pace.

Since the change of coordinate maps φ are independent

of time, they are of the form: φ(x,y,z). Therefore, in the

subject-specific setting, the 4D deformations are written as:

Φ(x,y,z, t) = (φ(x,y,z),ψ(t)).

The morphological deformation φ is used to measure the

geometrical variability. The time warp ψ is used to detect

possible developmental delays between subjects.

Note that the most general form of 4D deformations,

without any assumptions on the temporal dependency of

the spatial part φ(x,y,z, t), cannot be used in a statistical

model. Indeed, such models will be not identifiable, as there

would be an infinite number of different spatial/temporal

combinations to explain the same data set.

2.2.3 Time-specific approach

In the time-specific approach, every subject is embedded

into the same reference frame, which transports everyone

over time. It is as if different objects are seen by a single

observer. More precisely, there is a common reference frame

at reference time t = 0 (the “origin of the world”) in which the
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a- subject-specific approach b- time-specific approach

Fig. 2 Illustration of the hypotheses underlying the subject- and time-specific approaches. In the subject-specific approach (left), one considers that

one subject is “circle” and the other is “square”: the difference is described by a single function φ , which maps circles to squares. The evolution

of the first subject is described by a function χ which maps a small circle to big circle. As a consequence, the evolution of the second subject is

described by another function χφ which maps a small square to a big square. In the time-specific approach (right), one describes the evolution

by a universal function χ , which tends to scale the shapes. At the first-time point, the difference between subjects is described by a function φ
which maps the small circle to the small square. At a later time, the inter-subject variability has changed according to χ : now the difference between

subjects is described by φt which maps a big circle to a big square.

subject-specific approach time-specific approach

Fig. 3 Subject- versus time-specific approach. In the subject-specific approach (left) the mean scenario averages the individual trajectories. The

inter-subject variability is supposed to be constant over time. In the time-specific approach (right), every subject is supposed to follow the same

mean scenario of evolution, up to a change of the initial conditions. The mean scenario describes how the inter-subject variability evolves over time.

anatomy of every subject is described. The evolution function

χt changes the geometry of this reference frame over time.

At each time t, there is one single reference frame which

embeds the anatomy of every subject: this frame is universal.

The same function χt applies for each subject, so that the

evolution of any subject is given by S(t) = χt(S0), where S0

represents the anatomy of the subject at the reference time t0.

In the common reference frame at t = 0, we assume

that each subject’s anatomy S0 results from a deformation

of the prototype anatomy M0: S0 = φ s(M0). The deforma-

tions φ s describe the inter-subject variability at time t = 0.

In this framework, the mapping between the template and

the subject shape changes over time according to the evolu-

tion function χt . At a later time t, the template has evolved

as M(t) = χt(M0) and the subject shape has evolved as

S(t) = χt(S0). This shows that the template-to-subject regis-

tration has become: S(t) = φt(M(t)) where φt = χt ◦φ ◦χ−1
t ,

as illustrated in Fig. 2b. Whereas the evolution function is

independent of the subject, the inter-subject variability is

specific to time.

We can also include possible developmental delays in

this framework. If χt is a universal function which carries

the anatomies over time, we can imagine that every subject

follow this universal scenario at its own pace. There is a

subject specific time warp ψ , so that the evolution of this

subject is given by χψ(t). However, we must admit that this

time-realignment fits less naturally into this time-specific

framework than for the subject-specific framework. In partic-

ular, it is not clear how to distinguish a developmental delay

from a variation of the inter-subject variability in this setting.

This time-specific approach also defines a deformation

of the underlying 4D-space Φ(x,y,z, t). The morphological

deformations φ now depend on time according to the evolu-

tion function χt . This leads to the particular form of the 4D

mapping:

Φ(x,y,z, t) = (φ(x,y,z,ψ(t)),ψ(t)),
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where the geometrical part has the form:

φ(x,y,z, t) = χt ◦φ0 ◦χ−1
t (x,y,z).

This last equation is the constraint, which eventually makes

the statistical model identifiable.

2.2.4 Which method for which problem?

The subject-specific approach focuses on the variations of

a growth scenario from subjects to subjects. One is interested

in analyzing how individual trajectories vary across subjects.

The time-specific approach focuses on the evolution of the

inter-subject variability over time. One is more interested in

the evolution of the statistical properties (mean and variance)

of the population over time, as illustrated in Fig. 3. Theses

two approaches are based on different assumptions and lead

to different statistical estimations.

The subject-specific approach is the only one to take

into account change of coordinates between subjects, and

therefore the only one to accommodate for scaling effects

across subjects. The time-specific paradigm uses a single

diffeomorphic deformation to describe the evolution of ev-

ery subject. This assumes that the structure of two different

subjects, which are superimposed at one time, will remain

superimposed in the future. Such topological constraints are

often unrealistic. Moreover, the statistical estimations in the

subject-specific paradigm are more robust when the num-

ber of subjects is greater than the number of observations

per subjects, which is the case with the longitudinal data set

on which we aim at applying this methodology in Sec. 4

and 5. For these reasons, the presented work will focus on

the subject-specific paradigm.

3 A subject-specific approach using 3D

diffeomorphisms and 1D time warps

In this section, we propose an instance of the subject-

specific paradigm for the analysis of longitudinal shape data,

given as point sets, curves or surfaces. Among several other

possible choices, we will build our methodology on the large

diffeomorphic deformations setting for defining the registra-

tion between shapes. This setting is particularly adapted to

define statistical models using deformations due to the metric

properties of the considered space of diffeomorphisms (Vail-

lant et al, 2004; Durrleman et al, 2009a). In particular, we will

propose an extension of this framework to construct mono-

tonic 1D functions for our “time warp” in a very generic

way. We will also consider the geometrical shape like curves

and surfaces as currents (Glaunès, 2005). This allows us

to inherit from the statistical and computational tools intro-

duced in Durrleman et al (2009a); Durrleman (2010) for the

estimation of representative shapes, called templates.

We follow the approach in three steps outlined in the In-

troduction: (i) the estimation of individual growth trajectories

via the inference of a growth model, (ii) the comparison of

individual trajectories based on a morphological map and a

time warp, (iii) the estimation of statistics from a set of indi-

vidual trajectories: mean scenario of evolution and analysis

of the spatiotemporal variability.

3.1 Sketch of the method

3.1.1 Growth model for individual shape evolution

Our purpose is to fit a continuous shape evolution to a

discrete set of shapes (Si) of the same subject acquired at

different time points (ti). To infer such a continuous shape

evolution, we need a prior on the growth of the shape, called

a “growth model”. Here, we hypothesize that the baseline

shape S0 observed at time t = 0 continuously and smoothly

deforms over time. To be more precise, our growth model

assumes that the evolution of the shape S0 can be described

by a continuous flow of diffeomorphisms χt . This means that

for each t varying in the interval of interest [0,T ], χt is a

diffeomorphism of the underlying 2D or 3D space, which

models the smooth and invertible deformation which maps

the baseline at t = 0 to its actual shape at time t. The dif-

feomorphisms vary continuously over time (the deformation

χt+δ t is close to χt ). Mapping the baseline shape S0 with the

time-varying functions χt leads to a continuously deforming

shape S(t) = χt(S0): the individual trajectory of the consid-

ered subject. Note that this imposes that χ0 = Id, the identity

map, so that S(0) = S0.

Given the set of discrete observations (Si) at time-points

ti, one needs to estimate the flow of diffeomorphisms χt ,

which may have led to these observations. A Maximum

A Posteriori (MAP) estimation, in the same framework as

in Durrleman (2010)[Chap. 5] leads the minimization of the

discrepancy between the growth model at time ti (S(ti) =

χti(S0)) at the actual observation Si, up to a regularity con-

straint on the smoothness of the flow of diffeomorphisms

(χt)t∈[0,T ]:

E(χ) = ∑
ti

d(χti(M0),Si)
2 + γχ Reg(χ) (1)

where d is a similarity measure between shapes, which will

be the distance on currents in the following, Reg(χ) a reg-

ularity term, which will be the total kinetic energy of the

deformation, and γχ a scalar parameter quantifying the trade-

off between regularity and fidelity to data. The optimization

of this criterion will be explained in Section 3.2.2.

As an illustrative example, we used five 2D profiles of

hominid skulls which consist of six lines each1, as shown in

1 source: www.bordalierinstitute.com
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Fig. 4 Shape regression of a set of five 2D profiles of hominid skulls (in red). The Australopithecus profile is chosen as the baseline S0. The temporal

regression computes a continuous flow of shapes S(t) (here in blue) such that the deforming shape matches the observations at the corresponding

time-points. It is estimated by fitting a growth model, which assumes a diffeomorphic correspondence between the baseline and every stage of

evolution (S(t) = χt(S0)), with the diffeomorphism χt varying continuously in time.

Fig. 4. Each profile correspond to a hominid (Australopithe-

cus, Homo Habilis, Homo Erectus, Homo Neandertalensis

and Homo sapiens sapiens) and is associated to an age (in

millions of years). The regression infers a continuous evolu-

tion from the Australopithecus to the Homo sapiens sapiens

which matches the intermediate stages of evolution.

If there is only one data S1 at time t1 = T , the criterion (1)

defines the registration of S0 to S1. In the LDDMM frame-

work, the result of such a registration is a geodesic flow of

diffeomorphism between t = 0 and t = T that maps S0 close

to S1 (Miller et al, 2002). With several data at successive time

points, we will show in Sec. 3.2.2 that the result is a flow

of diffeomorphism which is geodesic only between succes-

sive time points (i.e. piecewise geodesic). We will also show

that the computation of the regression functions χt takes into

account all the observations Si in the past and future simul-

taneously. Therefore, it differs from pairwise registration

between consecutive shapes. For instance, if the trade-off γχ

tends to infinity (no fidelity-to-data term) the regression is

a constant map χt = Id for all t. As γχ decreases, the piece-

wise geodesic regression matches the data with increasing

“goodness of fit”. This framework allows us also to perform

the regression even if several data are associated to the same

time-point. This will be used in Sec. 5 to estimate a mean

growth scenario of a time-series cross-sectional data set.

Note that if T is greater than the latest time-point of the

data tmax, then the regression function χ is constant over the

interval: [tmax,T ]. Therefore, the method extrapolates with

constant shape outside the time interval [0, tmax]. Such an

extrapolation will be needed to compare the evolution of two

subjects, whose latest observation correspond to different

time-points. Similarly, we can also extrapolate the evolution

function at time earlier than 0 with a constant map, so that

the evolution function can be defined on any arbitrary time

interval.

3.1.2 Spatiotemporal registration between pairs of growth

scenarios

We suppose now that we have two subjects S and U which

have been scanned several times each (but not necessarily the

same number of times and possibly at different ages). Let Sti

(resp. Ut j
) be the shapes of subject S (resp. U) at ages ti (resp.

t j). We define a time-interval of interest which contains every

ti’s and t j’s. Without loss of generality, we can assume that

this time interval of interest is of the form [0,T ].

We infer an individual growth model S(t) from the data of

the source subject {Sti}, using the procedure of the previous

section. As a result, the continuous shape evolution S(t) is of

the form: S(t) = χt(S0) for t ∈ [0,1].

Our goal is to define a spatiotemporal deformation of

the continuous evolution S(t) into S′(t) so that the deformed

shapes S′(t j) at the time-points of the target t j match the

shape Ut j
(thanks to the continuous regression, we can define

S(t j) for the target time point t j even if the source has not

been observed at this age.) For this purpose, we introduce

two functions (using the subject-specific paradigm in Sec. 2):

the 3D morphological deformation φ and the 1D time warp

ψ . The morphological deformation is a 3D-function, which

maps the geometry of the source to the geometry of the tar-

get (change of reference frame). Every frame of the source

sequence S(t) is deformed using the same function. The time

warp ψ maps the time-points t within the time interval [0,T ]

to ψ(t). This function does not change the frames of the

sequence S(t) but change the speed at which the frames are

displayed. It models the change of the dynamics of the evolu-

tion of the source with respect to the evolution of the target.

We impose this 1D function to be monotonic, assuming that

the shape changes occur in the same order, even if at a dif-

ferent pace between source and target. The combination of

these two functions gives the spatiotemporal deformation of

the continuous evolution S(t), defined as:
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Fig. 5 Illustrative pairwise registration: data preparation. The database is cut in two to compare the evolution {Homo habilis-erectus-neandertalensis}

(red shapes) to the evolution {Homo erectus-sapiens sapiens} (green shapes). The later evolution is translated in time, so that both evolutions start at

the same time. Then, one performs a shape regression of the source shapes (blue shapes). The spatiotemporal registration of this continuous source

evolution to the target shapes is shown in Fig. 6 and 7.

Fig. 6 Illustrative pairwise registration: morphological deformation and time warp. Top row: The input data as prepared in Fig. 5 with the continuous

source evolution (blue) superimposed with the target shapes (green). Middle row: The morphological deformation φ is applied to each frame of the

source evolution. It shows that, independently of time, the skull is larger, rounder and the jaw less prominent during the later evolution relative to the

earlier evolution. Bottom row: The time warp ψ is applied to the evolution of the second row. The blue shapes are moved along the time axis (as

shown by dashed black lines), but they are not deformed. This change of the speed of evolution shows an acceleration of the later evolution relative

to the earlier evolution. Taking this time warp into account enables a better alignment of the source to the target shapes than only the morphological

deformation. Note that the morphological deformation and the time warp are estimated simultaneously, as the minimizers of a combined cost

function.

S′(t) = φ (S (ψ(t))) . (2)

Using the fact that S(t) = χt(S0), this becomes2:

S′(t) = φ(χψ(t)(S0)). (3)

2 We notice that in the time-specific paradigm, this would be S′′(t) =
χψ(t)(φ(S0)) (see Sec. 2)

In a MAP setting, the estimation of the best possible spa-

tiotemporal deformation (φ ,ψ) of the source evolution which

fits the the target observations, leads to the minimization of

the discrepancy between the deformed source at target’s time-

points S′(t j) = φ(S(ψ(t j)) and the target’s shape Ut j
:

E(φ ,ψ)=∑
t j

d
(
φ(S(ψ(t j))),Ut j

)2
+γφ Reg(φ)+γψ Reg(ψ),

(4)
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where d is a distance between shapes, Reg(φ) and Reg(ψ)

the measure of regularity of the deformation φ and ψ and

γφ ,γψ the usual scalar trade-offs between regularity and fi-

delity to data.

An illustration of spatiotemporal registration is shown

in Fig. 5, 6 and 7. We use the same set of profiles of 2D

hominids skulls as in Fig. 4. Here we want to compare the

evolution {Homo habilis-Homo erectus-Homo neandertal-

ensis} (called earlier evolution) with the evolution {Homo

erectus-Homo sapiens sapiens} (called later evolution). The

differences may be due to a change of the shape of the skull,

as well as a change of the dynamics of evolution between

the earlier and the later evolution. Therefore, we divide the

database into two groups, considered as two different sub-

jects, and translate the target back four million years, so that

both evolutions start at the same time (this can be seen as a

“rigid” temporal alignment as a pre-processing). See Fig. 5.

The regression of the source data leads to a continuous

source evolution S(t) shown in blue in the first row of Fig. 5.

The estimation of the spatiotemporal deformation between

the source and the target results in a morphological defor-

mation φ and a time warp ψ , see Fig. 6. The morphological

deformation shows that the jaw is less prominent and the

skull larger and rounder during the later evolution than dur-

ing the earlier evolution (second row in Fig. 6). The effect

of the time warp is to accelerate the source evolution to ad-

just to the rate of shape change between the target shapes

(third row in Fig. 6). The graph of the time warp is plotted

in Fig. 7a. It shows an almost linear increase in speed. The

slope of the curve is of 1.66, thus meaning that the later

evolution evolves 1.66 times faster than the earlier evolution.

This value is compatible with the growth speed of the skull

during this period according to the values reported in the

literature and in Fig. 7b: between Homo erectus and Homo

sapiens sapiens the skull volume had grown at a rate of

(1500−900)/0.7 = 860cm3 per millions of years, whereas

between Homo habilis and Homo neandertalensis, it had

grown at (1500−600)/1.7 = 530cm3 per millions of years,

namely 1.62 times faster.

3.1.3 Atlas estimation from longitudinal data sets

In this section, we want to combine the previously in-

troduced growth model and spatiotemporal deformations to

estimate statistics from a longitudinal database. Given the

repeated observations of a group of subjects, we assume

that each subject’s evolution derives from the same proto-

type evolution, called a “mean scenario of evolution”. Each

subject-specific evolution is derived from the mean scenario

via its own spatiotemporal deformation. The analysis of the

set of all the spatiotemporal deformations in the population

will lead to the estimation of the typical variations of the

mean scenario in the population (the variance of the popu-
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a- time warp

b- skull volume evolution

Fig. 7 Illustrative pairwise registration: analysis of the time warp. Top:

plot of the 1D time warp ψ(t) putting into correspondence the time-

points of the target shapes with that of the source. The x = y line

(dashed in black) would correspond to no dynamical change between

source and target (ψ(t) = t). The slope indicates that the shape changes

between target data occur 1.66 times faster than the changes in the

source evolution, once morphological differences has been discarded.

Right: the graph of the skull volume over the human evolution as found

in the literature (source: www.bordalierinstitute.com). This curve shows

that the increase in skull volume between Homo erectus and Homo

sapiens sapiens was 1.62 times faster than between Homo habilis and

Homo neandertalensis (ratio between the slope of the two straight lines).

This value is compatible with the acceleration measured by the time

warp: 1.66.

lation in a sense to be defined). We assume that the mean

scenario of evolution is given by the growth model of an

unknown prototype shape M0, called template in the sequel.
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Formally, this means that there is a growth function χt for

t ∈ [0,T ] and a template shape M0, so that the mean scenario

of evolution is written as: M(t) = χt(M0) with M(0) = M0.

For each subject s (s = 1, . . . ,Nsubj), the subject-specific spa-

tiotemporal deformation of the mean scenario is written as:

Ss(t) = φ s (M (ψs(t))) for all t ∈ [0,T ]. φ s is the morpholog-

ical deformation for subject s and ψs its time warp. These

two functions model how the anatomy of the subject and

the dynamics of evolution can be derived from the prototype

scenario of evolution. Eventually, we suppose that the ob-

servation of the subject s at time-point ts
j , denoted Ss

j, is the

temporal sample from Ss(t) at time point ts
j , up to a random

Gaussian noise: Ss
j = Ss(ts

j)+ εs
j :

Ss
j = φ s

(

χψs(ts
j)
(M0)

)

+ εs
j , (5)

where the Gaussian variables εs
j are independent and identi-

cally distributed over the subject-index s and the time-index

j.

This equation is our generative statistical model, which

explains how the observations can be seen as instances of

a random process. The fixed parameters are the prototype

shape M0 and the growth function χt . The random parameters

are the spatiotemporal deformations (φ ,ψ) (each estimated

(φ s,ψs) is an instance of these random deformations). Both

the fixed and the random parameters are unknown and should

be estimated given the actual observations.

In the same MAP setting as in the previous section, the

estimation of the unknown parameters can be done by mini-

mizing the following combined cost function:

E
(

(ψs)s=1,...,Nsubj
,(φ s)s=1,...,Nsubj

,χ,M0

)

=

Nsubj

∑
s=1

{

∑
ts
j

d(φ s(χψs(ts
j)

M0),S
s(ts

j))
2

+ γφ Reg(φ s)+ γψ Reg(ψs)+ γχ Reg(χ)

}

(6)

The output is the prototype shape M0, the growth func-

tion χt and the set of spatiotemporal deformations φ s,ψs for

every subject s. These variables are called a “spatiotempo-

ral atlas”. In Sec. 3.3, we will show how we can perform

statistics on the estimated deformations (φ s,ψs), like Prin-

cipal Component Analysis for instance. Such statistics will

describe the changes in shape and the variations of the speed

of evolution across subjects.

To illustrate the method, we run the atlas estimation given

the two “subjects” in Fig. 5: the first subject (in red) consists

of three shapes, the second subject (in green) consists of

two shapes. From these five shapes, the method returns the

estimated template, the mean scenario and the two spatiotem-

poral registrations of this mean scenario to each subject. The

estimated template M0 is given as a current, which does not

form a set of curves anymore Durrleman et al (2009a). To

give an illustration of the atlas, we map the youngest shape

of each subject to this current and pick the deformed shape

that is the closest to the estimated template. Then, one runs

one more iteration of the atlas algorithm, to show the mean

scenario and the spatiotemporal registrations as deformations

of this template shape. This is shown in Fig. 8. In particular,

the two time warps which put into correspondence the evolu-

tion stages of each subject to the ones of the estimated mean

scenario are shown in Fig. 9-b.

Let us denote S1(t) the spatiotemporal deformation of

the mean scenario, which is supposed to match the shape

of the first subject: S1(t) = φ1(M(ψ1(t))). Similarly, S2(t) =

φ2(M(ψ2(t))) matches the shapes of the second subject. Then,

by definition, we have: S2(t) = φ2

(
φ−1

1 (S1(ψ
−1
1 (ψ2(t))))

)
.

At the first glance, this suggests that (φ2 ◦φ−1
1 ,ψ−1

1 ψ2) cor-

responds to the spatiotemporal registration between the first

subject (considered then as the source) to the second sub-

ject (considered as the target). We superimposed in Fig. 9-c

the graph of ψ−1
1 ◦ψ2 with the graph of the time warp es-

timated in the previous section and shown in Fig. 7-a. As

expected, the two curves show a similar pattern, namely the

overall acceleration of the source relative to the target. How-

ever, noticeable differences appear, in particular in the slope

of the curves. This can be explained by at least two rea-

sons. First, what we called here S1(t) is not the same shape

evolution as the one computed in the pairwise registration

case (first row in Fig. 5): the regression of the source sub-

ject in the registration case did not take into account any

information about the target shapes, whereas the mean sce-

nario M(t) (and consequently its deformation S1(t)) averages

the growth patterns of both subjects. Second, the reasoning

above does not take into account the residual errors into ac-

count: assuming that S̃1(t) and S̃2(t) are the true evolution of

each subject, then we have: S̃1(t)= φ1(M(ψ1(t)))+ε1(t) and

S̃2(t) = φ2(M(ψ2(t)))+ ε2(t), where ε1(t) and ε2(t) models

the residuals shape which contains noise, small-scale varia-

tions and everything else, which cannot be explained by the

model. The squared norm in the criterion to be optimized

shows that we assume these residuals to be Gaussian ran-

dom variables (see Durrleman (2010) for more details). This

shows therefore that S̃2(t) = φ2 ◦φ−1
1 (S̃1(ψ

−1
1 ◦ψ2)(t)+φ2 ◦

φ1(ε(ψ
−1
1 ◦ψ2(t))), meaning that the residual error between

the two scenarios S̃1(t) and S̃2(t) is no more Gaussian. There-

fore, to retrieve the same deformations and time warps, one

would need to change the squared norm in the registration

criterion to take into account the distortion in the distribution

of the residuals induced by the deformations.

The discussion above highlights the main features of the

atlas construction method. The main assumption is that the

different subjects derive from the same prototype scenario,

and therefore share common growth patterns even if altered in

their shape and timing. The atlas aims precisely at detecting
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Fig. 8 Spatiotemporal atlas estimation given the two “subjects” in Fig. 5. On the middle row is shown the estimated mean scenario of evolution.

The first frame of this scenario (far left) is the estimated template shape. Two upper rows represents the morphological deformation and then the

time warp, which jointly maps the mean scenario to the shapes of the first subject (red shapes). Tow lower rows represents the spatiotemporal

deformation of the mean scenario to the shapes of the second subject (green shapes). Black arrows indicate areas where the most important shape

deformations occur.

these common features and the variations of their shape and

pace in the population. Every pattern, which is specific to

a given individual, is discarded from the atlas and remains

in the residuals. In this sense, the atlas is a statistical tool,

which detects the reproducible patterns in the population.

Compared to pairwise registration, the advantages of the

atlas construction is that it can be applied to more than two

subjects and that it does not favor any particular subject in

the population.

Remark 1 (On the assumption of diffeomorphic maps) In this

modeling, we suppose that the evolution function χ and the

morphological deformations φ are 3D diffeomorphisms and

that the time warps ψ are 1D diffeomorphisms. The motiva-

tion and consequences of choosing diffeomorphic maps are

different in each case.

The evolution function χ maps the anatomy of a subject

over time. Setting χ as a diffeomorphism assumes a smooth

one-to-one correspondence between any observed shapes of

the same subject. This includes modes of growth like atrophy,

dilatation, torque, etc. However, this cannot model a tearing

of the shape, its division or the creation of another discon-

nected component over time. This assumption is realistic in

many practical case, like for the heart over a cycle or the

macroscopic observation of a brain structure during infancy.

The morphological deformations φ model the geometri-

cal inter-subject variability. Assuming a smooth one-to-one

correspondence between the anatomies of two different sub-

jects is more questionable. As highlighted in Durrleman et al

(2011) and Durrleman (2010)[Chap. 5], the diffeomorphism

is used to decompose the inter-subject variability into two

terms: the diffeomorphic geometrical variability captured in

the deformations and the non-diffeomorphic variability in

terms of “texture” captured in the residuals (modeled by the

random Gaussian variables). Both terms can be used for the

statistical analysis, whereas in this work we will focus only

on the geometric variability captured by the deformations.

Extending the work of Durrleman et al (2011) to analyze the
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Fig. 9 Spatiotemporal atlas estimation: template and time warp. (a) the

template and its morphological deformation to the first subject (red) and

the second subject (green). This corresponds to the far left frames in the

second, third and fourth row in Fig. 8. (b) The graphs of the two time

warps, mapping the subjects’ growth speed to that of the mean scenario.

When the curve is above x = y axis, the subject’s evolution is in advance

relative to the rate of shape changes given by the mean scenario. (c) Graph

of the function: ψ−1
1 ◦ψ2 (in blue), which maps the dynamics of the two

subjects. The dashed red curve is the time warp given by the pairwise

registration as shown in Fig. 7-a.

non-diffeomorphic variations would be possible but out of

the scope of this paper.

The time warp ψ model the change of speed of evo-

lution between subjects. The diffeomorphic assumption in

1D implies that the function is smooth and monotonic. The

monotonic property assumes that the sequence of the events

during evolution occur in the same order for every subject

(from birth to death). This is a very realistic (if not desirable)

hypothesis, at least from a biological point of view. More-

over, assuming the evolution of a structure is smooth (at least

differentiable) like its inverse is also very realistic, so that

one can speak about the speed of an evolution. Therefore, the

time warps ψ are intrinsically diffeomorphic.

Remark 2 On the noise model In (5), we assumed the noise

of the data to be Gaussian. This choice leads to the squared

distance between the deformed template and each observa-

tion in the criterion (6). The same assumption is made by

the registration schemes that are driven by “sum of squared

differences”-like metrics. Though convenient, this noise model

is arguable. In the framework of currents, the simulation of a

Gaussian noise is equivalent to adding random Dirac delta

currents at the nodes of a regular lattice, whose covariance

matrix is given by the kernel (momenta close to each others

tend to be correlated), which is not unlike a sensor noise

(see Durrleman (2010)[Chap. 3] for more details). Other

noise models that are more closely related to the mesh struc-

ture of the surfaces could be used, at the cost of a more

complex MAP derivation.

Note that, in our model, we supposed the subjects’ data

to be corrupted by noise, and not the template which is sup-

posed to be a noise free ideal representation of the shape.

Therefore, the resulting cost function (6) is not symmetric,

as the observed subjects’ shapes do not play the same role as

the template.
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3.2 Computational framework and algorithms

3.2.1 A generic way to build diffeomorphisms

In this section, we explain a way to build generic 3D

and 1D flows of diffeomorphisms which will be used as

a model for the deformations χt , φ and ψ in the follow-

ing. We use here the LDDMM framework (Trouvé, 1998;

Dupuis et al, 1998; Miller et al, 2002) for constructing 3D

diffeomorphisms. We propose to adapt this framework to the

construction of 1D diffeomorphisms.

3D diffeomorphisms In the LDDMM framework, 3D diffeo-

morphisms are generated by integrating time-varying vector

fields. Let vt(x) be a time-varying speed vector field which

gives the velocity of a particle which is at position x at time

t. A particle which is at position x at time t = 0 moves to

the position φt(x) at time t. The function φt(x) follows the

differential equation for t ≥ 0:

{
dφt (x)

dt
= vt(φt(x))

φ0(x) = x
(7)

Under some conditions on the regularity of the speed vec-

tor field explained in Trouvé (1998), the set of deformation

φt is a flow of diffeomorphisms of the 3D domain. Following

this theory, we assume that the speed vector field belongs to

a reproducible kernel Hilbert space (RKHS), meaning the

speed vector fields result from the convolution between a

square integrable vector field and a smoothing kernel K,

which plays the role of a low-pass filter. In our applica-

tions, we will use a Gaussian kernel, which writes K(x,y) =

σ2 exp
(

−|x− y|2 /λ 2
)

I for any points (x,y) in space and I

the identity matrix. The spatial scale λ determines the typical

scale at which points in space have a correlated speed, and

therefore move in a consistent way. It determines the degree

of smoothness of the deformations. Large scale means al-

most rigid deformations. Small scales favor deformations

with many small-scale local variations. The parameter σ is

a scaling factor, which in some cases cancels out with the

trade-offs in the criterion, as we will discuss later.

In this setting, we define the measure of regularity of the

flow of diffeomorphisms as the total kinetic energy of the

flow between t = 0 and t = T :

Reg(φ) =
∫ T

0
‖vt‖

2
V dt (8)

where ‖.‖V denotes the RKHS norm associated to the kernel

K.

An important property, (proven in Joshi and Miller (2000);

Glaunès (2005) and extended in Durrleman (2010)[Chap.4]

in case of the matching term involves several time-points),

states that the vector field in the RKHS V which achieves

the best trade-off between this regularity term and a fidelity-

to-data term has a finite-dimensional parameterization, if

the fidelity-to-data term depends only on a finite number of

points:

Proposition 1 (Finite dimensional parameterization of min-

imizing vector field) Let E be a criterion of the form:

E(v) = ∑
i

Ai(φ
v
ti
(S))+ γ

∫ T

0
‖vt‖

2
V dt (9)

where vt denotes a time-varying speed vector field, φ v
t the

flow generated by this vector field in the sense of (7), S a

discrete set of N points xi in the 3D domain and Ai a set of

positive and continuous functions from R
3N to R.

Then, the criterion E admits at least one minimum and

the vector field which minimizes E over all possible vector

field in the RKHS V is parameterized by a set of N time-

varying vectors (αi(t)), such that:

vt(x) =
N

∑
i=1

K(x,xi(t))αi(t) (10)

for any points x, where xi(t) = φ v
t (xi) satisfies the flow equa-

tions:

dxi(t)

dt
= vt(xi(t))=

N

∑
j=1

K(xi(t),x j(t))α j(t) with xi(0)= xi

(11)

The couples (xi(t),αi(t)) are called momenta.

The norm of the minimizing vector field in the RKHS V

is given as:

‖vt‖
2
V =

N

∑
i=1

N

∑
j=1

αi(t)
tK(xi(t),x j(t))αi(t), (12)

The criterion depends therefore only on the set of L2

functions αi(t). Given these functions and the initial positions

xi, one can integrate (11) to generate the trajectories xi(t).

Then the criterion E involves only the couples (xi(t),αi(t).

1D diffeomorphisms We can adapt this framework to the

construction of 1D diffeomorphisms, which will be used as

time warps in our method. Let the variable t ∈R play the role

of the spatial variable x in the construction of 3D diffeomor-

phisms. We can build a flow of 1D diffeomorphisms ψu(t)

for the parameter u in [0,1] (here u plays the previous role of

t, since now t denotes a ‘real’ time and not the integration

variable) by integrating the flow equation:
{

dψu(t)
du

= vu(ψu(t))

ψ0(t) = t
(13)

where vu is now a scalar function, which gives the speed at

which the time ψu(t) evolves. If it is positive, time tends to
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accelerate. If it is negative, time tends to slow down. We

impose that vu is in 1D RKHS, determined by the kernel

K(t, t ′) = σ2 exp
(

−|t− t ′|2 /λ 2
)

. The scalar parameter λ

determine the typical time-length at which two time-points

t and t ′ are changed in a correlated manner. An illustration

of the construction of such 1D diffeomorphism is given in

Fig. 10.

Then, the same property as Prop. 1 applies. If E is a

criterion of the form:

E(v) = A(ψ1(t))+ γ

∫ 1

0
‖vu‖

2
V du (14)

where t denotes a vector of time-points t1, . . . , tN and A a

positive and continuous scalar function, then the minimum of

E over the RKHS exists and is achieved for a speed function

vu of the form:

vu(t) =
N

∑
i=1

K(t,ψu(ti))βi(u) (15)

where the time-varying scalars βi(u) are L2 functions from

[0,1] to R. The norm of the speed function vu in the RKHS

is given by:

‖vu‖
2
V =

N

∑
i=1

N

∑
j=1

K(ψu(ti),ψu(t j))βi(u)β j(u) (16)

3.2.2 Optimization of the regression criterion

We optimize the regression criterion (1) assuming that

the regression function χt is generated by a time-varying

velocity field vχ , which belongs to the RKHS V χ determined

by the 3D Gaussian kernel Kχ with standard deviation λχ .

Defining the regularity criterion as Reg(χ) =
∫ T

0 ‖vt‖
2
V χ dt,

the criterion to be minimized becomes:

E(χ) = ∑
ti

d(χti(S0),Si)
2 + γχ

∫ 1

0
‖vt‖

2
V χ dt (17)

where d is a similarity measure between shapes. Here we

assume that the baseline S0 and the shape Si are sets of

points, polygonal lines or meshes. We denote (x1, . . . ,xN)

the vertices of the baseline S0. Would d be either the sum

of squared differences between point positions or the dis-

tance on currents in absence of point correspondence, the

conditions of Proposition 1 are satisfied Glaunès (2005): the

minimizing vector field vt is parameterized by the momenta

(xp(t),αp(t)): v
χ
t (x) = ∑

N
p=1 Kχ(x,xp(t))αp(t).

As noticed in Sec. 3.2.1, the regression criterion E is a

function of the N L2 functions αp(t). We provide this set of N

functions with the metric induced by the kernel Kχ , meaning

that the inner-product between two sets of L2 functions αp(t)

and α ′p(t) is given by:

∫ 1

0

N

∑
p=1

N

∑
q=1

(α ′p(t))
tKχ(xp(t),xq(t))αq(t)dt.

The gradient of E with respect to the pth function αp(t) is an

L2 function denoted ∇αpE(t), which is such that for all:

d

dτ
E(α1(t), . . . ,αp(t)+ τεp(t), . . . ,αN(t)) =

∫ 1

0

N

∑
q=1

εp(t)
t
Kχ(xp(t),xq(t))∇αq E(t)dt.

In Appendix A, we show that this gradient is equal to:

∇αpE(t) = 2γχ αp(t)+ηχ
p (t) (18)

where η
χ
p (t) is the solution of the linear set of backward

integral equations for all p:

ηp(t) = ∑
ti

(∇xp(ti)Ai)1{t≤ti}+

∫ T

t

N

∑
q=1

(

αp(u)
tηq(u)+αq(u)

tηp(u)

+2γχ αp(u)
tαq(u)

)

∇1kχ(xp(u),xq(u))du (19)

where 1{t≤ti}= 1 if t ≤ ti and 0 otherwise, Ai = d(χti(S0),Si)
2

seen as a function of the points positions xp(ti) and kχ(x,y) =

exp
(

−|x− y|2 /λ 2
χ

)

.

The gradient descent scheme for the computation of the

regression S(t) = χt(S0) is summarized in Algorithm 1 in

Appendix C. We start the gradient descent by setting αp(t) =

0 for all t and p (χt = Id and S(t) = S0, for all t). Computing

the gradient requires first to integrate of the flow equation

(Eq. (11)) forward in time and then to compute the auxiliary

variable ηχ (Eq. (19)) backward in time. In this last case,

the initial conditions at t = T is given by ∇xp(T )AT . Then

the ODE is integrated for decreasing time t. As soon as a

new time point ti is reached, a new contribution ∇xp(ti)Ai is

added to ηχ(t). As a consequence, ∇αp E(t) (and therefore

the momenta αp(t) and the vector field v
χ
t ) at time t depend

on all the data which appear later than t. Once the momenta

are updated, the new positions xp(t) are computed by the

integration of the flow equation (11) forward in time (the

initial condition is given at time t = 0 by xp(0) = xp). These

positions at time t depend on the vector field v
χ
t for all time

earlier than t. As a result, the positions xp(t) depend on all the

data in past and future. This regression fits the best trajectory

(χt(S0)) to all the data globally. This differs, for instance,

from pairwise registrations between consecutive time-points,

although both techniques result in a piecewise geodesic flow.
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Fig. 10 Construction of 1D diffeomorphisms by integration of speed functions. In this illustration, we suppose the speed function to be constant (v

independent of u):
∂ψu(t)

dt
= v(ψu(t)). Left: The speed profile v is set as the convolution of 3 constant momenta (βi) with a Gaussian kernel with

standard deviation λψ = 4 (in red). The integration of the flow equation with the initial condition ψ0(t) = t is shown in blue: the bold blue curve

corresponds to the final diffeomorphism at u = 1, light blue curves correspond to ψ1/6(t), ψ1/3(t), ψ1/2(t), ψ2/3(t) and ψ5/6(t). Right: Illustration

of the numerical integration of the flow: ψun+1
(t) = ψun (t)+ τv(ψun (t)). The speed profile in red is shown along the y-axis. One can show easily

that this scheme produces only increasing function (invertible 1D function), when τ is chosen small enough.

For better numerical accuracy, we replace the Euler scheme

in Algorithm 1 to integrate ODEs by a Euler scheme with pre-

diction/correction, which has the same accuracy as a Runge-

Kutta method of order 2. The computational bottleneck of

this algorithm is the computation of every sum of the form

∑
N
p=1 K(xq,xp)αp that need to be computed for all q. These

computations of complexity N2 (where N is number of points

in the baseline shape) can be efficiently approximated using

a linearly spaced grid and FFT (Durrleman, 2010), or Fast

Multipole Approximations (Glaunès, 2005), with a nearly

linear complexity.

The computation of the gradient requires to compute the

differentiation of the fidelity-to-data term: ∇xp(ti)d(φti(S0)−

Si)
2. If Si have the same number of points as S0 (i.e. N points),

then d can be defined as the sum of squared differences:

Ai = ∑
N
p=1

∣
∣xp(ti)− si

p

∣
∣2, where si

p denotes the points of Si.

In this case, ∇xp(ti)Ai = 2(xp(ti)− si
p). In absence of point

correspondence, the distance on currents is used, which can

be differentiated as explained in Glaunès (2005); Durrleman

(2010).

3.2.3 Optimization of the spatiotemporal registration

criterion

As explained in Sec. 3.2.1, the morphological deforma-

tion φ and the time warp ψ are generated by the integration of

flows of 3D and 1D velocity fields respectively. This means

that they are the end-points φ = φ1 and ψ = ψ1 of the differ-

ential equations:

∂φu(x)

∂u
= vφ (φu(x))

∂ψu(t)

∂u
= vψ(ψu(t))

(20)

with the initial conditions: φ0(x) = x and ψ0(t) = t.

Now, we assume that for every parameter u, the 3D ve-

locity fields v
φ
u and 1D velocity profile v

ψ
u belong to a RKHS

with Gaussian kernel Kφ and Kψ , with standard deviation λφ

and λψ respectively. We denote {xp}p=1,...,N the set of points

of the discrete shape S0. The source trajectory S(t) = χt(S0)

is described by the moving points xp(t). Let {t j} j=1,...,Ntarget

be the time-points associated to target shapes.
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The fidelity-to-data term in (4) depends on the variables

φ1 (xp(ψ1(t j))) = φ1(xp, j), where we denote (see Fig. 11 for

an illustrative scheme):

xp, j = xp(ψ1(t j)) (21)

Therefore, the application of Proposition 1 leads to the

following parameterization of the minimizing velocity fields:

vφ
u (x) =

N

∑
p=1

Ntarget

∑
j=1

Kφ (x,φu(xp, j))αp, j(u) (22)

and

vψ
u (t) =

Ntarget

∑
j=1

Kψ(t,ψu(t j))β j(u) (23)

The criterion (4) is a function of the N×Ntarget L2 func-

tions αp, j and the Ntarget L2 functions β j. Like for the regres-

sion case, we provide this set of functions with the metric

induced by the kernel Kφ and Kψ .

Fig. 11 Illustrative scheme for the notations: xp denotes a generic

point of the source shape, xp(t) = χt(x) the continuous evolution of the

source point, (ψu)u∈[0,1] is a flow of 1D-diffeomorphism which moves

the time-labels along the time-axis (in red), (φu)u∈[0,1] is a flow of 3D-

diffeomorphism which moves the points of the source evolution (in

magenta), independently at each time-point.

For the sake of simplicity, we introduce the notations

xp,t(u) and t j(u) such that:

φu(xp, j) = xp, j(u)

xp, j(0) = xp, j = xp(ψ1(t j))

xp, j(1) = φ(xp, j)

ψu(t j) = t j(u)

t j(0) = t j

t j(1) = ψ(t j)

(24)

The regularity parameters in (4) are given by:

Reg(φ) =
∫ 1

0

∥
∥vφ

u

∥
∥

2

V φ du

=
∫ 1

0
∑

p, j,p′, j′
αp, j(u)

tKφ (xp, j(u),xp′, j′(u))αp′, j′(u)du

(25)

and

Reg(ψ) =
∫ 1

0
‖vψ

u ‖
2
V ψ du

=
∫ 1

0
∑
j, j′

β j(u)
tKψ(t j(u), t j′(u))β j′(u)du

(26)

As shown in Appendix B, the gradient of the criterion

with respect to the functions αp, j(u) (denoted ∇αp, j E(u)) and

to the functions β j(u) (denoted ∇β j
E(u)) is given by:

∇αp,iE(u) = 2γφ αp,i(u)+ηp,i(u)

∇β j
E(u) = 2γψ β j(u)+ξ j(u)

(27)

where ηi,p(u) satisfies the backward integral equation:

ηp,i(u) = ∇xp,i(1)A

+
∫ 1

u

N

∑
q=1

Ntarget

∑
j=1

(

αp,i(s)
tηq, j(s)+ηp,i(s)

tαq, j(s)

+2γφ αp,i(s)
tαq, j(s)

)

∇1kφ (xp,i(s),xq, j(s))ds (28)

where A denotes the matching term ∑
Ntarget

j=1 d(φ1(S(ψ1(t j)))−

U j)
2 which is a function of the variables φ1(xp(ψ1(t j))) =

xp, j(1).

and where ξ j(u) satisfies the backward integral equation:

ξ j(u) =
N

∑
p=1

(

dxp(t)

dt

∣
∣
∣
∣
t=t j(1)

)t

ηp, j(0)

+
∫ 1

u

Ntarget

∑
k=1

(

β j(s)
tξk(s)+ξ j(s)

tβk(s)

+2γψ β j(s)
tβk(s)

)

∇1kψ(t j(s), tk(s))ds (29)

The auxiliary space variable η(u) pulls the gradient of

the matching term from u = 1 back to u = 0 along the space

axis. Then, the value η(0) is used in the final conditions

of the auxiliary time variable ξ (u) in combination with the

local speed of the source growth scenario, thus showing the

spatiotemporal coupling. The variable ξ (u) pulls back this

condition at u = 1 back to u = 0 along the time axis. The gra-

dient transports the driving force in the target space, namely
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the gradient of the data term, back to source space along

the spatiotemporal deformation. This transport is used to up-

date the momenta αp, j(u) and β j(u), which parameterize the

spatiotemporal deformation.

In (28), the gradient of the matching term is computed

as for the regression function. For instance, if the distance

between source and target is the sum of squared differences:

A=∑
Ntarget

j=1 ∑
N
p=1

∣
∣xp, j(1)−Up, j

∣
∣2, then the gradient is simply

∇xp,i(1)A = 2(xp, j(1)−Up, j).

In (29), one needs to compute the speed of the source

growth scenario:
dxp(t)

dt
. If one has stored the parameterization

of the regression function (i.e. the momenta (xp(t),α
χ
p (t))),

then one can compute explicitly:

dxp(t)

dt
=

dχt(xp)

dt
= v

χ
t (xp(t))

=
N

∑
q=1

Kχ(xp(t),xq(t))α
χ
q (t)

(30)

In our implementation, we only stored samples of the trajec-

tories xp(t) and not the vectors αχ(t). So, we estimate this

speed by a finite difference scheme:
dxp(t)

dt
(t j) = (xp(t j+1)−

xp(t j−1))/2. This allows us to still use this spatiotemporal

registration even if the source evolution has been computed

with another regression method than the one presented in

Sec. 3.2.2.

The sketch of the gradient descent for this spatiotemporal

registration scheme is given in Algorithm 2 in Appendix C.

Note that we minimize the criterion with respect to the geo-

metrical and the temporal parameters jointly, thus avoiding

alternated minimization. The differentiation of the criterion

proposed here is here, whereas an approximation was in-

volved in Durrleman et al (2009b); Durrleman (2010). In

practice, both differentiations leads to similar results.

Remark 3 Note that since the growth model χt is piecewise

geodesic, the evolution S(t) generated by χt is not differen-

tiable at the time-points t j: the continuous S(t) may have

different left and right derivatives. This point is discussed in

depth in Durrleman (2010)[Chap. 9], where an alternative

optimization procedure is proposed, which ensures that an

extremum of the registration criterion is achieved at conver-

gence, even in presence of discontinuous velocities. Another

way to address the problem is to use the twice-differentiable

growth model proposed in Fishbaugh et al (2011).

3.2.4 Optimization of the criterion for atlas construction

The estimation of the 4D-atlas relies on one regression

function χt and Nsubj spatiotemporal deformations (φ s,ψs)

for s = 1, . . . ,Nsubj, where Nsubj is the number of subjects.

We use the framework of Sec. 3.2.1 to construct the 3D

diffeomorphisms χ and φ s and the 1D diffeomorphisms ψs.

As a consequence, every deformation satisfies a flow equation

as follows:

∂ χt(x)

∂ t
= v

χ
t (χt(x)), t ∈ [0,T ]

∂φ s
u(x)

∂u
= vφ s

u (φ s(x)), u ∈ [0,1],s = 1, . . . ,Nsubj

∂ψs
u(t)

∂u
= vψs

u (ψs(t)), u ∈ [0,1],s = 1, . . . ,Nsubj

(31)

where we suppose that the velocity fields vχ (resp. vφ s
and

vψs
) belong to a RKHS V χ (resp. V φ and V ψ ) determined

by the Gaussian kernel Kχ (resp. Kφ and Kψ ) with standard

deviation λχ (resp. λφ and λψ ).

We suppose that the prototype shape M0 (to be estimated)

is given by a finite set of points {xp}. In this case, the appli-

cation of Proposition 1 leads to the parameterization of the

time-varying velocity fields by momenta as follows:

v
χ
t (x) = ∑

p

Kχ (x,xp(t))αχ
p (t)

vφ s

u (x) = ∑
p,ts

j

Kφ
(
x,xs

p, j(u)
)

αs
p, j(u), for s = 1, . . . ,Nsubj

vψs

u (t) = ∑
ts
j

Kψ
(
t, ts

j(u)
)

β s
j (u), for s = 1, . . . ,Nsubj

(32)

where we denote:

xp(t) = χt(xp) xs
p, j(u) = φ s

u(x
s
p(t

s
j(1))) ts

j(u) = ψs
u(t

s
j)

(33)

for all t ∈ [0,T ] and u ∈ [0,1]. ts
j denotes the Ns

target time-

points at which the sth subject has been observed, which

might be different for every subject.

The criterion for atlas estimation depends therefore on

the N points of the template M0 = {xp}p=1,...,N , the Ntime

t-varying vectors αp(t) for the regression function, the N×

∑
Nsubj

s=1 Ns
target u-varying vectors αs

p, j(u) for the morphological

deformations and the ∑
Nsubj

s=1 Ns
target u-varying vectors β s

j (u)

for the time warps. This criterion can be written now as:

J
(
{αs

p, j(u)},{β
s
j (u)},{α

χ
p (t)},M0

)
=

Nsubj

∑
s=1

{
Nsubj

∑
s=1

Ns
target

∑
j=1

A
(
{xs

p, j(1)}
)
+ γφ

∫ 1

0

∥
∥
∥vφ s

u

∥
∥
∥

2

V φ
du

+ γψ
∫ 1

0

∥
∥
∥vψs

u

∥
∥
∥

2

V ψ
du+ γχ

∫ T

0

∥
∥v

χ
t

∥
∥

2

V χ dt

}

(34)

where the matching term A
(

{xs
p, j(1)}

)

= d(φ s(χψs(ts
j)

M0),S
s
j)

2

depends on the positions φ s
1(M(ψ1(t

s
j)))= {(x

s
p, j(1)}p=1,...,N .

To minimize this criterion, we adopt a 3-step alternating

minimization procedure:
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– If the template M0 and the growth function χt are fixed,

the criterion is divided into Nsubj independent functions.

Their minimum is achieved for the spatiotemporal defor-

mations (φ s,ψs), which maps the mean scenario χt(M0)

to the set of data Ss
j for each subject s. These Nsubj spa-

tiotemporal registrations are computed using Algorithm 2.

– If the Nsubj spatiotemporal deformations (φ s,ψs) and the

growth function χt are fixed, the criterion to be minimized

with respect to M0 is reduced to:

J(M0) = ∑
s, j

d(Φs, j(M0),S
s
j)

2,

where we denote Φs, j = φ s ◦χψs(ts
j)

. These deformations

are 3D-diffeomorphisms. This criterion has exactly the

form of the criterion for usual 3D template estimation. If

d is the distance on currents, a solution for the minimiza-

tion of this convex criterion has been proposed in Durrle-

man et al (2009a) and Durrleman (2010)[Chap. 5, Algo-

rithm 4]. As a consequence, the template M0 is always

given as a finite set of points {xp}p=1,...,N .

– If the template M0 and the Nsubj spatiotemporal defor-

mations (φ s,ψs) are fixed, the criterion to be minimized

becomes:

∑
s, j

d(φ s(χψs(ts
j)

M0),S
s(ts

j))
2 + γχ Reg(χ).

This is not exactly the regression problem stated in Sec-

tion 3.1.1 because of the deformation φ s in the match-

ing term. To turn it into a regression problem, we ap-

proximate the matching term d(φ s(χψs(ts
j)

M0),S
s(ts

j)) by

d(χψs(ts
j)
(M0),(φ

s)−1(Ss(ts
j))), meaning that the shapes

of each subject are matched back to the mean anatomy.

This approximation is valid only for diffeomorphisms φ s

whose Jacobian is close to the identity, since the usual

metrics d are not left-invariant. As a result, the evolution

function χt performs the temporal regression of the set

of shapes (φ s)−1(Ss
j) located at time-points ψs(ts

j). This

regression problem can now be solved using Algorithm 1.

Further investigations are needed in order to perform this

regression without this approximation, so that we can be

consistent throughout the minimization procedure.

To initialize the minimization, we set M0 as the mean

current of the earliest data ((Ss
1) for every subject s) and set

all the momenta to zeros (χ,φ s,ψs equal identity map). The

whole minimization procedure is summarized in Algorithm 3

in Appendix C.

3.2.5 Parameters

The overall framework depends on several parameters.

There are 3 kernels of 3 distinct RKHS: Kχ , Kφ and Kψ .

We use Gaussian kernels determined by their standard de-

viations: λχ , λφ and λψ respectively. They determine the

degree of smoothness (i.e. the scale at which points have

a correlated speed) of the mean scenario of evolution, the

morphological deformations and the time warp. The first one

compares with the scale of the geometrical variations of the

structure over time for a typical subject (scale of the intra-

subject variability). The second one compares with the scale

of geometrical variations between different subjects (geomet-

rical inter-subject variability). The third one compares with

the typical time-scale at which the dynamics of evolution

changes from subject to subject.

The user must also set the 3 trade-offs between regularity

and fidelity to data: γχ ,γφ ,γψ . In addition, one needs to set

the metric d between shapes. In the framework of currents,

this metric depends on a kernel KW . We choose a Gaussian

kernel with standard deviation λW . This parameter sets the

typical scale at which shape variations are smoothed (see Dur-

rleman (2010)).

The dimension of the trade-off γχ , γφ and γψ depends on

the kinds of data that we deal with. The dimension of the data

term in the criterions is L2 (i.e. squared length) for curves

and L4 (i.e. squared area) for surfaces, where L denotes the

dimension of a length. The parameter t has the dimension

of time (denoted T ) and the parameter u is an integration

parameter, which is normalized to fall in the unit interval

[0,1] and therefore has no physical dimension. Therefore,

the velocities v
χ
t , v

φ
u , v

ψ
u are of dimension LT−1, L and T

respectively and the regularity terms (integral of the squared

norm of the velocities) Reg(χ), Reg(φ) and Reg(ψ) are of

dimension: L2T−1, L2 and T 2 respectively. Eventually, the

dimension of the trade-off γ is that of the ratio between the

data term and the regularity terms:

curves surfaces

γχ T L2T

γφ none L2

γψ L2T−2 L4T−2

In the future, we plan to normalize these constants so

that their values can be compared for different applications.

More generally, one needs to better understand the balance

between the spatial and temporal constraints and to find an

automatic way to estimate this parameters (which could be

considered as fixed effects in a Bayesian framework along

the lines of Allassonnière and Kuhn (2009)).

3.3 Statistical measures of spatiotemporal variability

The construction of the spatiotemporal atlas leads to the

mean scenario M(t), which gives a representative mean of

the studied population, and the spatiotemporal deformations

of this mean scenario to each subject, which estimates the

variance within the population. The criterion for the atlas con-

struction is not unlike the estimation of a Fréchet mean on the
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“manifold” of the individual trajectories, the distance between

two individual trajectories being given by the cost of the spa-

tiotemporal deformation which connects them (see Miller

et al (2002) for this interpretation in the 3D case). In this sec-

tion, we explain how one can compute intrinsic statistics on

the spatiotemporal deformations: the mean and the principal

modes of the morphological deformations and the time warps

are defined as 3D and 1D diffeomorphisms themselves. Due

to the definition of the mean scenario, the mean of all defor-

mations vanishes. Nevertheless, one can compute the means

of population sub-groups to detect significant differences

between them. The modes show the typical variations of the

mean scenario within the population or within one sub-group.

They can be used to drive the search for anatomical charac-

terization of sub-groups. Besides the quantification of group

differences and the usual hypothesis testing, one important

aspect of intrinsic statistics is that means and modes can be

displayed as movies of shape evolutions, which is crucial for

qualitative interpretation purposes. This can be used to better

understand the effect of a pathology and drive the search for

bio-markers.

3.3.1 Statistics on initial momenta

As shown in Miller et al (2002), the flow of diffeomor-

phisms which minimize the registration criterion (4) or the

atlas construction criterion (6) are geodesic: they are the

ones which minimize the length of the path (φu,ψu)u∈[0,1]

between the identity map Id and the actual diffeomorphisms

(φ1,ψ1). These initial velocity plays the role of a tangent-

space representation as in finite-dimensional Riemannian

geometry (Pennec et al, 2006): they are the equivalent of the

logarithm of the deformations. Since we perform template-

to-subjects registration (and not subjects-to-template), every

flows of diffeomorphisms φ s ( resp. ψs) starts from the same

space, the one of the mean scenario, and therefore share

the same tangent-space V φ (resp. V ψ ). As a consequence,

one can perform intrinsic statistics on these common vec-

tor spaces. Since the initial velocities are parameterized by

a finite number of momenta, the statistics on deformations

reduces to statistics in an Euclidean space.

For each subject s, the 3D diffeomorphisms φ s are param-

eterized by momenta αs
p, j(0) located at the points xp, j(0) =

xp(t
s
j(1)), which is a subset of the whole point set xp,k (the

trajectories of every template point). Using zero-padding,

every φ s is parameterized by a vector of the same dimen-

sion αs = {αs
p,k}p,k. Similarly, each 1D diffeomorphism ψs

is characterized by momenta β s
j (0) located at time-points

ts
j(0) = ts

j , which is a subset of the set of all time-points {tk}.

Using zero-padding, every 1D diffeomorphism is character-

ized by a vector of the same dimension: β s = {β s
k}k.

One can compute a Principal Component Analysis (PCA)

on the vectors αs and β s
according to the metric on the RKHS

V φ and V ψ as follows (see Durrleman (2010)[Chap. 5] for

more details). One builds the mean vectors α = ∑s αs/Nsubj

and β = ∑s β s/Nsubj and the centered vectors α̃s = αs−α

and β̃
s
= β s−β . Then, one builds the empirical matrices Σ φ

and Σ ψ of size Nsubj×Nsubj whose term s,s′ is given by:

Σ
φ
s,s′ =

〈

α̃s, α̃s′
〉

V φ
= ∑

k,k′

N

∑
p,p′=1

(α̃s
p,k)

tKφ (xp,k,xp′,k′)α̃
s′

p′,k′

Σ
ψ
s,s′ =

〈

β̃
s
, β̃

s′
〉

V ψ
= ∑

k,k′
Kψ(tk, tk′)β̃

s
k β̃ s

k′

(35)

Let E
φ
m and E

ψ
m the eigenvectors of the matrices Σ φ and

Σ ψ associated to the mth largest eigenvalues λ
φ
m and λ

ψ
m

(these are vectors of dimension Nsubj). Then, as shown in Dur-

rleman (2010)[Chap. 5], the mth eigenmode is given by:

αm = α +

Nsubj

∑
s=1

Eφ
m,s(α

s−α)

βm = β +

Nsubj

∑
s=1

Eψ
m,s(β

s−β )

(36)

such that ‖αm−α‖2
V φ = λ

φ
m and

∥
∥
∥βm−β

∥
∥
∥

2

V ψ
= λ

ψ
m .

3.3.2 Geodesic shooting for computing intrinsic means and

modes

Once one has computed the statistics on the tangent-

spaces V φ and V ψ , one needs to use the geodesic shooting

equations (the equivalent of the exponential map in Rieman-

nian manifold) to generate the 3D and 1D diffeomorphisms,

whose initial velocities are parameterized by the computed

mean or modes. The computed diffeomorphisms are called

the mean or the modes of the deformations.

Given vectors α and β (located at the points {xp,k}p,k

and {tk}), the diffeomorphisms, whose initial velocities are

parameterized by these vectors, are re-constructed by inte-

grating over the interval u ∈ [0,1]:






dαp,k(u)

du
=−

(

dxp,k(u)v
φ
u

)t

αp,k(u)
dxp,k(u)

du
= v

φ
u (xp,k(u))

(37)

where v
φ
u (x) = ∑p,k Kφ (x,xp,k(u))αp,k(u) (see Miller et al

(2006) for the proof). The positions of the points xp,k(1) =

φ1(xp,k) builds a movie, which shows the mean (if α is used

as initial conditions) or the mth mode (if ±αm is used as

initial conditions) of the morphological deformations within

the population or one of its sub-group.

The equivalent equations for 1D diffeomorphisms are

given as:
{

dβk(u)
du

=−
(
dtk(u)v

ψ
u

)t
βk(u)

dtk(u)
du

= v
ψ
u (tk(u))

(38)
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where v
ψ
u (t) = ∑k Kψ(t, tk(u))βk(u). The integration of this

set of ODEs leads to the 1D diffeomorphism tk(1) = ψ1(tk),

called the mean time warp (if the mean vector β is used as

initial conditions) or the mth mode of the time warps (if the

mth mode ±β m is used as initial conditions).

The geodesic shooting of the mean and the principal

modes of the momenta leads to diffeomorphisms. In this

sense, they are “intrinsic” statistics on an infinite-dimensional

“manifold” of diffeomorphisms. In particular, the mean or the

modes of the time warps are all smooth monotonic functions.

This differs from computing the point-by-point mean of the

real-values functions ψs(t). Examples will be shown in the

next sections.

4 Measures of developmental delays of deep brain

structures in autism

In this section, we apply the tools introduced in Sec. 3

to analyze a longitudinal database of deep brain structures

segmented from images of autistic, developmental delayed

and control children (Hazlett et al, 2005, 2011). Each child

has been scanned twice: a baseline at about age 3 years and a

follow-up at about age 5 years. The segmentation provides

a set of 24 meshes for each structure: 12 subjects divided

on 3 groups of 4 subjects (autistics, developmental delays

and controls), each subject having two meshes (a baseline

and a follow-up). As a pre-processing, all the meshes were

co-registered via rigid transformations using gmmreg (Jian

and Vemuri, 2005).

Our purpose is to show how our methodology can be used

to give a description of the effect of the pathology on the

maturation of the hippocampus and the amygdala of the right

hemisphere. Due to the limited number of subjects involved,

this study is mostly a proof of concept, aiming at showing

the strengths and the limitations of our approach.

4.1 Spatiotemporal atlas estimation

We estimate a spatiotemporal atlas by minimizing the

criterion in (6) using the algorithms described in Sec. 3.2.4.

We set the time-interval of interest to [0.5,7.1] years with

a time-step of 0.2 years. The parameters of the Gaussian

kernels were set to λχ = 10 mm for the regression func-

tion, λφ = 10 mm and σφ = 1 for the morphological defor-

mation and λψ = 1.5 years and σψ = 1 for the time warp.

The typical scale on currents λW is set to 5 mm. The trade-

offs were set to γχ = 10−4 mm2year, γφ = 10−4 mm2 and

γψ = 10−6 mm4year−2. The diameter of the hippocampus

is about 25 mm. We refer the reader to Sec. 3.2.5 for a dis-

cussion about the parameters used (an empirical study of

the impact of these parameters will be presented in the next

section about endocranial data).

The output of the algorithm is a prototype shape, a mean

scenario of evolution of this prototype shape, and 12 spa-

tiotemporal deformations of this mean scenario to the pair

of meshes of each subject. The analysis of the value of the

criterion at the minimum shows that one autistic patient has a

residual significantly larger than the other subject. This sub-

ject can be considered as an outlier, as will discuss later on.

As shown in Durrleman et al (2009a), the prototype shape is

given as a current, which does not correspond to a mesh. For

visualization purposes, and for the following volume compu-

tations, we mapped one instance of the data to the prototype

shape and used it as a template. As a consequence, the mean

scenario and its spatiotemporal deformations can be seen as

the continuous evolution of a mesh.

Significant samples of the estimated mean growth sce-

nario are shown in Fig. 12. The complete scenario can be

seen in the companion movie (See Online Resource 1). This

mean scenario of evolution shows that the prototype growth

of the structure is much more complex than a pure volume

scaling over time, and involves several non-linear growth pat-

terns. The visual inspection of the companion movie shows

mainly 3 phases of growth: from 1.5 to 2.5 years, the hip-

pocampus tends to “unfold” giving it less curved aspect; from

2.5 to 4.5 years, the hippocampus strongly elongates in the

antero/posterior direction; from 4.5 to 6 years, the extremi-

ties of the hippocampus tends to bend: the head toward the

bottom and the tail toward the top, thus stretching the body

of the hippocampus (red blob in the third frame in Fig. 12).

This mean scenario of evolution has been estimated along

with its spatiotemporal deformation to each subject. The spa-

tiotemporal deformation takes into account all the shape

information and not only the size. Nevertheless, to illustrate

the method, we compute the volume of the original meshes,

of the template mesh and the deformed meshes. The evo-

lution of the volume of the mean hippocampal growth is

shown in Fig. 13-a. Although the growth involves different

non-linear patterns in shape as highlighted in Fig. 12, the

volume extracted from this mean scenario evolves quite lin-

early between age 2 and 6 years. Outside this interval, the

volume remains constant due to the boundary conditions

(the growth function χt equals identity). In Fig. 13-b,c,d,

we plot the volume evolution of the mean scenario, once

it has been registered to each subject, taking into account

both the morphological deformation and the time warp: the

morphological deformation changes the values of the curve

in Fig. 13a, whereas the time warp stretches or shortens the

curve along the time axis. We superimpose the volume of the

original pairs of data for each subject, as well as the volume

evolution computed from the pairwise registration between

these pairs of surfaces.

Note that there is no reason that the volume of the reg-

istered mean scenario corresponds to the volume evolution

computed from the pairwise registration. Indeed, the pairwise



22

Fig. 12 Mean growth scenario of the hippocampus. Four significant frames are shown (lateral view). Color indicates the instantaneous speed of the

surface deformation (best seen as a movie: see Online Resource 1)

registration take into account only a pair of data, whereas

the mean scenario integrates the information of the whole

database: the mean scenario may contain growth patterns

which are not present in a given subject’s evolution. More-

over, the pairwise registration aims at minimizing the discrep-

ancy between the two surfaces, whereas the deformed mean

scenario is more constrained by the fact that we assume each

subject’s pair of surfaces to result from a smooth deformation

of a mean scenario.

Having said that, we notice that volume evolution of

the deformed scenario does not deviate too much from the

volume evolution computed from pairwise registration. This

means that the morphological deformation accounts well for

the different sizes of the structures and that the time warp

enables to adjust the slope of the curves to the different

growth speed of each subject.

We notice that the curves for one autistic patient are

not properly aligned (the patient for which the the volume

decreases between the two observations in Fig. 13-b). This

is the patient detected as an outlier. With the current set of

parameters, it was too costly to deform the mean scenario to

this subject, which present a unique pattern of size reduction

over time (this volume reduction might be real or might be

due to a segmentation inaccuracy as well). We run the atlas

estimation with a more important weight for the time warp

than for the morphological deformation (σψ/σφ up to 10

instead of 1) and for larger scales for the time warps (λψ =
1.5 to 2.5), which reduces the cost of time warps of large

amplitude. We observe that the estimated mean scenario tends

to show a volume reduction near age 6 years (after a phase

of volume increase from 2 to nearly 6 years) and the outlier

is registered to the later part of the mean growth scenario:

its time warp shows a strong advance in development of

this subject relative to the mean scenario. Nevertheless, this

was done at the cost of less accurate registration of all other

subjects and the atlas with such parameters was not optimal.

Our statistical model prefers to treat this particular subject

as an outlier. However, would more subjects be available

showing a decreasing volume over time, the atlas would

be likely to take this into account by estimating a growth

scenario decomposed into a first phase of increasing volume

and a second phase of decreasing volume. Then, the subject

with decreasing volume would be systematically considered

as delayed with respect to the subject with increasing volume

at the same age. Such a population, however, would probably

violate our main assumption that the growth of the subjects

are homologous, in the sense that they derive from a common

prototype scenario. It would be better to consider the two

sub-groups as two different populations.

4.2 Analysis of the spatiotemporal variability

Now, we analyze the spatiotemporal variability of the

mean scenario in the population, and not only its effect on

the volume distribution. This variability is decomposed into

a geometrical part captured by the morphological deforma-

tions φ s and a temporal part captured by the time warps

ψs. Preliminary tests performed on the initial momenta of

the 3D diffeomorphisms φ s (see Sec. 3.3) do not show any

correlations between the morphological deformations and

the class of the subject (autistics, developmental delays and

controls). The mean initial momenta of the morphological

deformations of each group do not differ significantly from

zero. The direction of the first mode of deformation is similar

for each group, but the variance is larger for the autistics

and developmental delays than for the controls. This mode

essentially shows important variations in the elongation of
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Fig. 13 Evolution of the volume of the hippocampus. a- Volume evolution of the mean scenario. b-to d-: Volume of the mean scenario, after it has

been registered to each subject (magenta curves). Black asterisks indicate the volume of the original data. Red, green and blue curves indicate the

volume evolution given by the pairwise registration between each subject’s data pair. The autistic outlier corresponds to the decreasing red curve in

b- (decrease of volume between the two observations of this subject)

the hippocampus along with an enlargement of the body. By

contrast, the depth of the hippocampus almost does not vary.

The time warps are plotted in Fig. 14-a for every sub-

ject. When the curve is above the y = x axis (resp. below the

y = x axis), the evolution of the subject is in advance (resp.

is delayed) relatively to the mean scenario. A slope greater

than 1 (resp. smaller than 1) denotes an acceleration (resp. a

speed reduction) of the evolution of the subject compared to

the evolution of the mean scenario. The mean of the curves

for each group is plotted in Fig. 14-b. Although the mean

of all curves seem to be biased (overall over the x = y axis),

this bias is not proven to be statistically significant (ratio

of mean over standard deviation being equal to 1.21). We

compute the intrinsic first mode of variations in the space

of smooth monotonic functions (see Sec. 3.3) in Fig. 14-c,

and in Fig. 14-d by excluding the autistic outlier. From these

results, we cannot conclude that an autistic or a developmen-

tal delayed patient is systematically delayed or in advance

compared to controls, even at a given age. However, both

the autistics and the controls has a much narrower variability

interval than the developmental delays. It seems also that the

autistic on average are more advanced than the control at the

earlier stages of growth (between 2 and 3 years of age). This
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Fig. 14 Estimated time warps from the hippocampus database. a- The monotonic curves indicates how the real age of each subject maps to the

virtual physiological stage estimated in the mean growth scenario. When curves are above the x = y axis, the subject is in advance with respect to

the mean scenario. The dashed red curve corresponds to the outlier. b- Intrinsic means of each group (also monotonic functions). c- Limits of the

first mode of variation at ± one standard deviation. d- Same as c, but excluding the outlier. It shows that autistics tend to be in advance with respect

to the control and that the developmental delays have a much greater variance than the other two groups.

suggests that the hippocampus develops faster among autistic

children.

To investigate this more in depth, we also compute the

spatiotemporal atlas for the amygdala of the right hemisphere

(using the the parameters λχ = 15 mm, λφ = 15 mm, σφ = 1,

λψ = 1 year, σψ = 1, λW = 3 mm, γχ = 10−3 mm2year,

γφ = 10−3 mm2 and γψ = 10−6 mm4year−2). Again, the

analysis of the morphological deformations does not high-

light informative patterns. By contrast, the analysis of the

time warps shown in Fig. 15 reveals that the autistics and the

controls share a similar pattern, namely a strong acceleration

of the growth with respect to the mean scenario, but at a dif-

ferent age. The acceleration occurs between age 2.5 and 3.5

years for the autistics and between age 4 and age 5 years for

the controls. The developmental delays also display a similar

pattern, but it occurs at a more variable age. This confirms

the hypothesis of an over-growth of the autistics compared

to the controls at the earlier stages of development. This also
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Fig. 15 Estimated time warps from the amygdala database a- time warps for the 12 subjects, b- limits of the first mode of variation at ± 1 standard

deviation for each group. Autistics and controls show the same evolution pattern, namely a reduction of speed with respect to the mean scenario

(slope smaller than 1) and then a quick acceleration (slope greater than 1). This pattern for the autistics group seems to occur later than for the

control group. The developmental delays presents also such pattern but at an arbitrary age. Mean and modes are computed as monotonic functions

within the space of 1D diffeomorphisms.

confirms that fact that the developmental delays do not build

a very homogeneous group because of much more variable

patterns.

These preliminary results on both the geometrical and

temporal parts of the variability suggest that the discrimi-

native information between classes might not be inferred

from the anatomical variability at a given age, but rather

from variations of the growth process. It suggests that autism

may more strongly affect the growth speed of the deep brain

structures rather than its shape, a finding related to brain

overgrowth discussed in Hazlett et al (2011). Note that the

hypothesis of an over-growth of the brain of autistic patient

has been reported in the literature, for instance in Courchesne

et al (2011). We believe that this new methodology is well

adapted to test this hypothesis thanks to the introduction of

the time warps, which models explicitly the possible devel-

opmental delays between subjects both in shape and in size.

Of course, one would need to test it on much larger database:

the more time-points per subjects, the more constrained the

mean scenario estimation; the more subjects, the more robust

the statistics.

5 Comparison of the endocast growth between

chimpanzees and bonobos

5.1 Framework of the study

In this section, we aim at using our methodology to char-

acterize the differences of growth patterns between the two

closest human relatives: the bonobo (Pan paniscus) and the

chimpanzee (Pan troglodytes). We will also assess the robust-

ness of the method with respect to parameter changes and

changes in age labels.

Since bonobos were discovered to science in 1929, the

analysis of what distinguishes them from the common chim-

panzee has been controversial. After several morphological

and behavioral studies (Kuroda, 1989; Shea, 1989; Kano,

1992; de Waal, 1995), the hypothesis has emerged that the

bonobos may be a “juvenilized” version of the chimpanzee, in

the sense that the growth of the bonobos may share common

patterns with the one the chimpanzees but with a different

tempo. The tools that we have developed, and in particular

the introduction of the time warps, seem to be well adapted

to test this hypothesis.

For this purpose, we will use one the largest collections

of endocasts available for the two species, which comes from

the collection of the “Musée de l’Afrique centrale” in Ter-

vuren, Belgium. The endocast is a mold of the endocranium,

which provides a replica of the inner surface of the skull and

therefore has often played an important role for the analysis

of the evolution of the brain in fossil mammals. This data set

consists of samples from wild-shot animals: 59 chimpanzees

and 60 bonobos, with approximately equal numbers of male

and female. They have been scanned with slice thickness be-

tween 0.33 and 0.50 mm. The segmentation of the endocasts

using itkSNAP (Yushkevich et al, 2006) leads to surface

meshes. These surfaces have been rigidly co-registered using

gmmreg (Jian and Vemuri, 2005).
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It has been observed in Kinzey (1984) that the sequences

of teeth emergence in bonobos and chimpanzees are essen-

tially identical. This gives a way to estimate the “dental age”

of each skull. We will use this dental age as a common proxy

of growth, and not the true age of the specimen, which is

not available. As a consequence, each skull has been associ-

ated to one the 6 dental ages defined in Shea (1989): infant,

child, young juvenile, old juvenile, sub-adult and adult. To

refine the classification, we associated some skulls with the

intermediate class ‘child/young juvenile’. Age distribution is

shown in Fig 1. Without loss of generality, we assume that

each dental development stage lasts the same amount of time,

namely 1 unit of time. Each unit of time has been discretized

with 5 time-points, so that the samples are associated to the

time-points ti = 5,10,15,20,25,30 according to the dental

development of the specimen. The age child/young juvenile

has been associated to the time-point 13.

# samples infant child
child/young

juvenile

Bonobos 4 8 3

Chimpanzees 2 6 4

young

juvenile

old

juvenile

sub-

adult
adult TOTAL

11 7 9 18 60

10 13 10 14 59

Table 1 Distribution of the dental ages across samples for both species:

chimpanzee and bonobo.

Obviously, this database is cross-sectional by nature. It

is unthinkable to have several observations of the same wild

animals over time. To make the best of this situation, we

choose to estimate first a typical growth scenario for each

species independently, applying the regression tool to the

cross-sectional data. Second, we analyze the differences be-

tween the two growth scenarios using the spatiotemporal

registration to measure both morphological differences and

possible developmental delays, a key feature we aim at de-

tecting in regards to the bonobos hypothesis.

An alternative approach would consist in using the spa-

tiotemporal atlas construction to estimate an hybrid growth

scenario and its deformations to each species, considered

as 2 subjects. One the one hand, this would prevent biasing

the analysis by choosing a reference species and the inter-

species comparison would take into account the fact that

the different age groups have a different number of samples.

On the other hand, the methodology we choose enables a

more direct comparison between species. In particular, the

estimation of the species’ specific growth scenario, which is

done independently for each species, is not constrained by

the assumption that the two growth scenarios should derived

from the same hybrid scenario.

5.2 Typical growth scenario estimation for each species

We choose the smallest endocast within the child class as

the baseline S0 and associate it to the time point t = 2. Then,

we perform a temporal shape regression of the endocasts (in-

dependently for each species), as explained in Sec. 3.1.1 and

Algorithm 1. We set the typical spatial interaction between

currents λW = 10 mm, the spatial scale of deformation consis-

tency λ χ = 20mm and the trade-off between fidelity-to-data

and regularity γχ = 10−3 mm2(unit of time). The diameter

of the endocasts are typically between 60 and 70 mm.

Significant samples of the species specific growth sce-

narios are shown in Fig. 16. The complete scenarios can be

seen in the companion movies (see Online Resource 2 (chim-

panzees) and 3 (bonobos)). Besides the increase of volume,

the most salient effect in both scenarios is an elongation along

the posterior/anterior axis and a slight contraction along the

superior/inferior axis. As a consequence, the endocast which

has an almost spherical geometry at birth has an increasingly

ellipsoidal geometry. However, it seems that the chimpanzee

endocasts have a stronger anisotropy and that this anisotropy

increases faster in time. The subsequent spatiotemporal reg-

istration will measure the differences in both scenarios more

precisely.

The two growth scenarios differ considerably during in-

fancy and childhood, mainly because of the small amount

of data in infancy. The two infant chimpanzees have a larger

endocasts compared to both the infant bonobos and the chil-

dren chimpanzees. To have a more relevant estimation of

the growth in infancy, we expect to scan more infant chim-

panzees skulls in the future. Note that in the next section we

will not take the infancy data into account and will consider

the growth scenarios starting at childhood.

We can deduce from the growth scenario an estimation of

the evolution of the endocranial volume across ages, as shown

in Fig. 17 (Note that we have not performed a regression of

the volume but of the shapes instead). Besides the evolution in

infancy, one intriguing feature is the apparent decrease in en-

docranial volume of bonobos at sub-adulthood. This feature

is also present in the endocranial volume distribution in the

original endocasts (mean and standard deviation are shown in

Fig. 17): the mean of the volume at sub-adulthood is smaller

than the one of old juveniles. However, the Mann-Whitney

U test gives a p-value of 0.47 when comparing the volume

distribution of old juveniles and sub-adults: the median of the

two distributions are not proved to be statistically different.

The test run for every pair of consecutive distributions shows

a significant increase of volume in only three occasions: (i)

between infancy and childhood for the bonobos (p-value:

9 10−3); (ii) between childhood and young juvenility for the

chimpanzees (p-value: 0.07); (iii) and between old-juvenility

and sub-adulthood for the chimpanzees (p-value: 0.02).
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Temporal regression of chimpanzees endocasts

Temporal regression of bonobos endocasts

Fig. 16 Temporal shape regression of endocast of the chimpanzees (top) and the bonobos (bottom) estimated from the

original endocasts. In each species, the endocast seems to evolve from a spherical geometry at infancy to an ellipsoidal

one at adulthood. However, the dynamics of such changes seem to differ for both species. The quite unrealistic

evolution of the chimpanzee endocast at infancy is due to the small amount of data at this age (2). Here, only 6 stages

of the growth are shown, although the estimated scenario is continuous. Best seen as movies: see Online Resource 2

(chimpanzees) and 3 (bonobos)

5.3 Spatiotemporal registration between the two growth

scenarios

We perform a spatiotemporal registration between the

two estimated growth scenarios as explained in Sec. 3.1.2

and Algorithm 2. For the reasons explained in the previ-

ous section, we consider the part of these scenarios - be-

tween childhood and adulthood - discarding the portion be-

tween infancy and childhood. We consider the chimpanzee

growth scenario as the reference scenario (i.e. the source).

The bonobo scenario is sampled every 2 time-steps. These

samples play the role of the target shapes. We set the scale

of currents to λW = 10mm as for the regression estimation.

We run the registration for different sets of parameters and

pick the ones which enable to achieve the smallest discrep-

ancy term in (4). This gives the scale of the morphological

deformation: λ φ = 10mm, the scale of the time warp λ ψ = 1

unit of time (i.e. duration of one time-point), the spatial

power σφ = 40, the temporal power σψ = 5, the morpho-

logical trade-off γφ = 10−5mm2 and the temporal trade-off

γψ = 10−5mm4/(unit of time).

The morphological deformation changes the shape of

each frame of the chimpanzee growth as shown in Fig. 18

(this is the equivalent figure to the first and second row in

Fig. 6, although we plot here an intermediate step of the

deformation). It shows that, independently of the age, the

bonobos endocasts are rounder than the chimpanzees. The

movie of this deformation clearly shows a twist at the anterior

and posterior part of the endocast (see companion movie:

Online Resource 4).

The graph of the estimated time warp is shown in Fig. 19.

This plot shows the correspondence between the ages of

the bonobos and the chimpanzees. It mostly shows an im-

portant speed reduction of the growth of the bonobos with

respect to the chimpanzees between old-juvenility and sub-

adulthood. The almost constant slope of the curve during this

period of time indicates that the bonobos growth speed is

0.25 times that of the chimpanzees. The graph shows also

that the bonobos seem to be slightly in advance with respect
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Fig. 17 From the continuous shape regression shown in Fig. 16, we

deduce an estimation of the evolution of the endocast volume during

growth. Mean and standard deviation of the volume of the original

endocasts are superimposed. The intriguing decrease of volume of

bonobos at sub-adulthood is not shown to be statistically significant.

The unrealistic regression at infancy of chimpanzees is due to the very

small number of samples at this age (2).

Fig. 18 Morphological part of the spatiotemporal registration between

chimpanzees and bonobos growth scenarios. The morphological defor-

mation maps the morphological space of the chimpanzees to that of the

bonobos, independently of the age. It is applied here to the chimpanzees

endocasts at old juvenility: endocasts from the chimpanzees growth

scenario (top row), their deformation to the bonobos space (bottom row)

with an intermediate stage of deformation (middle row). This shows

that, on average, the endocast of a chimpanzee is more elongated and

less round than the one of a bonobo. Note that the deformed endocasts

do not match the ones of the bonobo growth at the same age, but at the

age given by the correspondence graph shown in Fig. 19. Best seen as a

movie: see Online Resource 4

to the chimpanzees at childhood and that the delay of the

bonobos growth at sub-adulthood seems to be reduced at

adulthood.
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Fig. 19 Time warp between chimpanzee and bonobo growth. It shows

that the growth of the bonobos is in advance with respect to the chim-

panzees at childhood and then that it drastically slows down during

juvenility (almost linearly by a factor 0.24 between old-juvenility and

sub-adulthood). This delay seems to decrease at adulthood. Dashed ma-

genta lines indicate the limits of the 90% confidence interval estimated

by bootstrap. Dashed cyan lines indicate the limits of the 90% variation

intervals due to random age shifts.

We show the effect of this spatiotemporal registration

on the evolution of endocast volume of the chimpanzees in

Fig. 20(left). It shows that the spatiotemporal warping en-

ables to match the volume evolution of the chimpanzees endo-

cast closer to that of the bonobos endocast. Besides volume,

we also analyze the differences of a measure of the shape,

namely the ratio between the height (in the superior-inferior

direction) and the width (in the anteroposterior direction) of

the endocast. Ratio close to 1 indicates a rounded endocast

in the sagittal plane. The evolution of the ratio computed

from the species specific scenario is shown in Fig. 20(right):

the decrease of the curves indicates that the endocast be-

come more and more asymmetric (ellipsoidal) during growth.

This ratio is always smaller for the chimpanzees than for the

bonobos, thus showing a stronger asymmetry for the chim-

panzees. As expected, the morphological deformation moves

the curves of the chimpanzees closer to the one of the bono-

bos, except between sub-adulthood and adulthood. Indeed,

we have shown in Fig. 18 that the morphological deforma-

tion tends give the endocast a more ellipsoidal aspect. The

time warp tends to align the slope of the chimpanzee curve

to the slope of the bonobos curve. However, we notice that

the spatiotemporal warping aligns the evolution of this ratio

with less accuracy than that of the volume (see Fig. 20(left)).
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It is likely that the registration is primarily driven by the

volume information, which may act as a stronger constraint

than the shape asymmetries. Multi-scale approaches, with

decreasing rigidity scale of the morphological deformation

λφ for instance, should be able to achieve a better matching,

which would show an alignment of the measures of shape

asymmetries with the same accuracy as the volume.

     
2.8

2.9

3

3.1

3.2

3.3

3.4

3.5

3.6

3.7
x 10

5

E
n

d
o

c
a
s
t 

V
o

lu
m

e
 (i

n
 m

m
3
)

 

 

child young
juvenile

old
juvenile

sub adult adult

Dental Age

bonobos

chimpanzees

chimp. after morphological deformation

chimp. after morph. def. and time warp

     

0.58

0.6

0.62

0.64

0.66

S
u
p
e
ri
o
r
In
fe
ri
o
r/
A
n
te
ro

P
o
s
te
ri
o
r

e
lo
n
g
a
ti
o
n

 

 

child young
juvenile

old
juvenile

sub adult adult

bonobos

chimpanzees

chimp. after morphological deformation

chimp. after morph. def. and time warp

Fig. 20 Effects of the spatiotemporal deformation on the evolution

of the volume and the geometry of the endocasts. Top: Evolution of

the endocast volume for the original growth scenarios of both species

starting at childhood (in red and blue as in Fig. 17). Dashed cyan curve

correspond to the volume of the chimpanzee growth scenario after the

morphological deformation. Magenta curve is derived from the cyan

curve by applying the time warp. The combination of the morphological

deformation and the time warp approximate the volume evolution of the

bonobos. Bottom: Same experiments but for the evolution of the ratio

between the elongation in superior-inferior direction and that in the

anteroposterior direction, which gives an indication of how the endocast

deviates from a circular shape in the sagittal plane. The closer the ratio

to 1, the “rounder” the endocast.

5.4 Impact of the temporal scale

Here, we analyze the variability of the spatiotemporal

registration with respect to variations of the temporal scale

λψ , while keeping the other parameters fixed. This parameter

determines the scale at which the time warp may vary. A

large scale means a nearly rigid time warp with very slow

variations. A small scale allows quick variations of the time

warp during small time intervals.

Fig. 21 shows the different values of the data term ob-

tained for different values of the temporal scale λψ . It shows

that the optimal value is for λψ = 1 unit of time, namely the

the duration of one age group. This is the value chosen in this

study. Fig. 22 shows the impact of this temporal scale on the

profile of the time warp. The larger the scale, the more rigid

the time warp, the less its ability to capture highly non-linear

variations. The smaller the scale, the more expensive the cost

of a regular deformation.
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Fig. 21 Effect of the temporal scale λψ on the registration accuracy.

Value of the residual data term after registration for different values of

the temporal scale λψ (the other parameters being fixed to λφ = 10mm,

σφ = 40, σψ = 5, γφ = 10−5 and γψ = 10−5). It indicates the optimal

value of λψ = 1 unit of time.

5.5 Estimation of confidence intervals via bootstrap

In this section, we aim at studying the robustness of the

estimation of the growth scenario with respect to the samples

we have. We use here a bootstrap procedure: a resampling

with replacement procedure is applied within each age group

of each species, yielding a new data set of the same size

as the original. Then, we estimate the two growth scenarios

using this new set of data. We repeat the procedure 100 times,
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Fig. 22 Effect of the temporal scale λψ on the time warp. If λψ is too

large, it cannot capture fast variations in the dynamics of growth of

both species. If λψ is too small, it costs more to capture the large-scaled

variations. Optimal solution is for λψ = 1 unit of time.

so that we end up with 100 growth scenarios for each species,

which simulates the variability of these scenarios with respect

to the choice of the samples.

For each simulation, we compute the evolution of the

endocranial volume given by the estimated growth scenario.

Fig 23(top,left) shows the 90% confidence interval of the

volume evolutions. It shows that the variability of the volume

estimation is relatively small, in particular with respect to the

difference in volume between the two species at adulthood.

To gain more insight into the variability of the geometry

of the growth scenario, we compute the distance between

the endocast of a simulated growth scenario and the refer-

ence one at each time-step, using the norm on currents. In

Fig. 23(top,right), we show the 90% confidence interval of

this difference expressed in terms of percentage of the norm

of the endocast of the reference scenario. It shows a large de-

viation in bonobos infancy and chimpanzees childhood. This

large variability is expected due to the small number and the

large variability of data at those ages. This confirms that more

data are needed for a more robust estimation of the endocra-

nial growth at these ages. The variance of the endocranial

geometry during old-juvenility and sub-adulthood is much

larger for the bonobos than for the chimpanzees. This may

explain the decrease of volume at bonobos sub-adulthood,

as many more samples would be needed to converge to the

“true” mean. This might also indicate a bi-modal distribution

for male and female.

Eventually, we notice that the estimation of the volume

seems much less variable than the estimation of the geometry.

This is not surprising since one needs much more data to

robustly estimate the whole geometry (which has potentially

an infinite number of degrees of freedom) than the scalar

measure of volume.

Then, we compute the spatiotemporal registration be-

tween every pair of growth scenarios. The estimation of the

90% confidence interval of the time warp is shown in Fig. 19.

These experiments allow us to give also a confidence interval

of the developmental delay between the bonobos and the

chimpanzees: the slope of the time warp at old juvenility falls

into the interval [0.14,0.34] in 90% of the cases.

5.6 Estimation of variability intervals via random age shifts

Here, we study the robustness of our estimations to per-

turbations of the age estimates. For this purpose, we simulate

age perturbations by adding a zero-mean Gaussian variable

with standard deviation 1 time-point to the dental age of

each sample. This means that in 50% of the cases the den-

tal ages have been shifted by +1 or −1 time-point, in 10%

of the cases they have been shifted by more than one time-

point, and in 40% of the cases they have not moved. We

recall that the duration of every dental age group was of five

time-points (i.e. 1 unit of time) in the original experiments,

which means that in 10% of the cases, the age estimate was

shifted at or beyond the boundaries its group. Given these

new age estimates, we compute two growth scenarios and

then the spatiotemporal deformations between the portion of

the scenarios between childhood and adulthood. We repeat

this procedure 100 times. We define a 90% variability inter-

val by discarding the five largest and five smallest values of

any scalar measurements taken out of these simulations.

In Fig. 23(bottom,left), we show the limits of the 90%

variability interval of the volume evolution measured from

the growth scenario. In Fig. 23(bottom,right), we show the

90% variability interval of the distance between the perturbed

growth scenario and the reference one.

We compute the spatiotemporal registration between ev-

ery pair of perturbed growth scenarios. The 90% variability

interval of the estimated time warp is shown in Fig. 19.

All these experiments show that the perturbations induced

by randomly shifting the age estimates are always smaller

than the perturbations due to the bootstrap resampling. There-

fore, these perturbations are not statistically significant, thus

illustrating the robustness of our method to the uncertainty

of the age estimates.

6 Conclusion

In this paper, we introduced a new growth model for

shape evolution, as a continuous diffeomorphic deformation

of a baseline shape over time. Its estimation allows us to infer
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Fig. 23 Bootstrap confidence intervals due to resampling (top) and due to random age shifts (bottom). Left: Evolution of the endocranial volume

given by the reference growth scenario (bold line) and its 90%-confidence interval estimated via a bootstrap procedure. Right: Discrepancy between

the reference growth scenario and the ones estimated by bootstrap, measured as the current norm between the frames. 90% confidence interval is

shown at every time-step. On average, the bootstrap makes the frames to vary in the space of currents within a neighborhood of radius 10% the norm

of the reference frames.

a continuous shape trajectory from few observations sparsely

distributed in time.

We introduced a new registration scheme for the compar-

ison of individual growth trajectories. We proposed to model

the differences between individual trajectories as a combina-

tion of time-independent shape differences and a difference

in the pace of shape changes over time. For this purpose, we

introduced the generic construction of 1D diffeomorphisms:

smooth and monotonic functions called time warps. This

model supposes that the individual trajectories are compara-

ble, in the sense that they contain the same growth patterns,

but with a different appearance and a different timing. The

presence of new growth patterns in one of the trajectories

would not be considered by the registration and would lead

to a large residual misalignment after the registration.

Eventually, we introduced an original statistical model

for the study of longitudinal databases. This model assumes

that the consecutive observations of different subjects derive

from a spatiotemporal deformation of an unknown prototype

scenario of evolution. The estimation of this models leads

to an atlas, which consists of (i) a prototype shape called

the template, (ii) the continuous diffeomorphic deformation

of this prototype shape over time, called the mean scenario

of evolution and (iii) the spatiotemporal deformations of

this mean scenario, which map the set of time-dependent

observations of each subject. The template shape and the

mean scenario of evolution captures the invariants in the

population: common shape features and common growth

patterns. The spatiotemporal deformations summarize the

variations of these invariants in terms of various appearances

and various paces of shape change. The characteristics, which

are specific to a given individual, are not taken into account

and are considered as outliers since it does not comply with

the hypotheses of the model.

In addition, we provided a statistical framework to com-

pute intrinsic statistics in the space of spatiotemporal defor-

mations (space of 3D diffeomorphisms for the morphological

deformation and space of smooth monotonic functions for

the time warp). Mean and modes of deformations are com-

puted as deformations themselves. This is not only useful

to perform statistical processing like hypothesis testing or

classification for instance, but also gives a way to visualize
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and interpret the geometrical features captured by the model.

Our method could be seen as a longitudinal extension of

the concept of Karcher mean, which estimates at the same

time the mean (first moment) and the covariance (second

moment) from data lying on a manifold. Extensions of other

manifold-related methods for shape averaging could be also

investigated (Gerber et al, 2010; Xie et al, 2010).

We illustrated our approach with two biological examples.

The study of a longitudinal database of deep brain structures

from autistic, developmental delays, and controls, shows

that a given pathology might be characterized more by the

differences in the pace of maturation of a structure, rather

than the differences in shapes at a given age. The study of a

time-series data set of endocast of bonobos and chimpanzees

allows us to give new insights into the differences in terms of

development of the endocranium between these genetically

very close species. In particular, we were able to give an

estimate of the expected developmental delay of bonobos

relative to chimpanzees at juvenility. Moreover, we show the

robustness of this estimation with respect to variations in the

age estimates.

The principle approach that we proposed leads to the

definition of new objective functions, for which we proposed

efficient algorithms. The shape regression and the spatiotem-

poral registration are solved using a single gradient descent

scheme. The estimation of the spatiotemporal atlas relies

on an alternated minimization procedure. Future work will

investigate the possibility to derive a single gradient scheme

for the estimation of the whole atlas. This should lead to a

faster and more controllable procedure. Another important

direction of research is to include the residuals into the statis-

tical analysis in the spirit of Durrleman et al (2009a, 2011),

in order to better characterize possible outliers, or to detect

consistent subgroups in the population.

We emphasized that our approach relies on a set of ex-

plicit hypotheses and that alternatives models are also worth

investigating. We hope that this approach, which has been

driven more by methodological considerations than by the

applications, will help to better appreciate the challenges,

which are inherent to the joint modeling of time and shape

variations. This might contribute to the emergence of an ax-

iomatic approach for the statistical analysis of longitudinal

shape data.
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A Differentiation of the temporal shape regression

criterion

A.1 Matrix notations

For the sake of simplicity, we introduce matrix notations: x0 =
{xp}p=1,...,N denotes the 3N vector which is the concatenation of the

coordinates of N vertices of the baseline shape M0. Using the notations

of Sec. 3.2.2, we denote the moving points x(t) (resp. the parameterizing

vectors α(t)) the 3N vector: (xp(t))p=1,...,N (resp. (αp(t))p=1,...,N ). We

denote also Kχ (x(t),x(t)) the 3N-by-3N block matrix whose block

p,q is given by the 3-by-3 matrix (Kχ (xp(t),xq(t))). This matrix is

symmetric, positive definite by definition of the kernel Kχ .

Thanks to these notations, the norm of the speed vector vt is writ-

ten: ‖vt‖
2
V χ = α(t)t Kχ (x(t),x(t))α(t). For A, a function from R

3 to

R, we denote by dxA its Jacobian matrix at point x, so that for any

vector V : (dxA)V = (∇xA)tV . By extension, ∇xA denotes the 3N vector

(∇x1
A, . . . ,∇xN

A).
With these notations, the regression criterion (17) becomes:

E
(
(α(t))t∈[0,T ]

)
= ∑

ti

Ai(xti )+
∫ T

0
Lχ (x(t),α(t))dt (39)

subject that:

dx(t)

dt
= f (x(t),α(t)) with x(0) = x0 (40)

where we denote:

f (x(t),α(t)) = Kχ (x(t),x(t))α(t)

Lχ (x(t),α(t)) = γχ α(t)t f (x(t),α(t))
(41)

For the sake of simplicity, we will denote in the sequel, f (t) and

Lχ (t) instead of f (x(t),α(t)) and Lχ (x(t),α(t)).

A.2 Gradient in a matrix form

Let δE be a variation of the criterion E with respect to a variation

δα(t) of the momenta α(t):

δE = ∑
ti

(
dx(ti)Ai

)
δx(ti)+

∫ T

0
(∂xLχ (t))δx(t)+(∂α Lχ (t))δα(t)dt

(42)

where δx(t) denotes the variations of the positions x(t) with respect

to the variations of the momenta α(t). The differentiation of the flow

equation (40) shows that these variations δx(t) satisfy a linear ODE

with source term:

d

dt
δx(t) = (∂x f (t))δx(t)+(∂α f (t))δα(t) with δx(0) = 0 (43)

We introduce the flow Rut for u, t ∈ [0,T ] which is solution of the

homogeneous equation:

dRut

dt
= Rut(∂x f (t)) with Rtt = Id (44)

The method of the variations of the parameters leads to the follow-

ing solution of the ODE:

δx(t) =
∫ t

0
Rut ∂α f (u)δα(u)du (45)



33

In particular, this shows that we can write the variations δx(ti) as:

δx(ti) =
∫ T

0
Rtti ∂α f (t)δα(t)1{t≤ti}dt (46)

where 1{t≤ti} = 1 if t ≤ ti and 0 otherwise.

Now, we can plug these last two equations into (42). Using Fubini’s

theorem, which implies that
∫ T

0

∫ t
0 F(u, t)dudt =

∫ T
0

∫ T
u F(u, t)dtdu =

∫ T
0

∫ T
t F(t,u)dudt for any L2 function F(u, t), this leads to:

δE =
∫ T

0

(

∂α Lχ (t)

+
(

∑
i

dx(ti)AiRtti 1{t≤ti}+
∫ T

t
∂xLχ (u)Rtudu

)

︸ ︷︷ ︸

η(t)t

∂α f (t)

)

δα(t)dt (47)

This gives the gradient of E with respect to the L2 metric as:

∇α E(t) = ∂α Lχ (t)t +∂α f (t)t η(t) (48)

where we denote the auxiliary variable η(t):

η(t) = ∑
i

(Rtti )
t ∇x(ti)Ai1{t≤ti}+

∫ T

t
(Rtu)

t ∂xLχ (u)t du (49)

The auxiliary variable η(u) depends on the flows Rut and there-

fore satisfies an ODE. To make this ODE explicit, we write the in-

verse flow Rut in integral form. Noticing that RtuRut = Id, we have
dRut
du

=−∂x f (u)Rut , which gives in integral form (noticing that Rut and

f commute):

Rut = Id+
∫ t

u
Rst ∂x f (s)ds. (50)

Now, we can plug this equation into the definition of η(t) in (49).

Writing Rtti = Id+
∫ T

t Ruti ∂x f (u)1{u≤ti}du and noticing that for any L2

function F(u,s), the Fubini’s theorem implies that
∫ T

t

∫ u
t F(u,s)dsdu =

∫ T
t

∫ T
u F(s,u)dsdu, this leads to:

η(t) = ∑
i

∇x(ti)Ai1{t≤ti}+
∫ T

t
∂xLχ (u)t+

∂x f (u)t

(

∑
i

(Ruti )
t ∇x(ti)Ai1{u≤ti}1{t≤ti}+

∫ T

u
(Rus)

t ∂xLχ (s)t ds

)

︸ ︷︷ ︸

(⋆)

du

(51)

Now, we notice that t ≤ u within the integral, which implies that

1{t≤ti}1{u≤ti} = 1{u≤ti}. Hence, (⋆) is exactly equal to ηu. Therefore, η t

is the solution of the integral equation (integrated upstream in time):

η(t) = ∑
i

∇xti
Ai1{t≤ti}+

∫ T

t
∂xLχ (u)t +∂x f (u)t η(u)du (52)

A.3 Gradient in coordinates

Due to the definition of the functions f and Lχ in (41), we have:

∂x f = (∂1 +∂2)(K
χ (x,x)α) ∂α f = Kχ (x,x)

∂xLχ = γχ α t ((∂1 +∂2)K
χ (x,x)α) ∂α Lχ = 2γχ α t Kχ (x,x)

(53)

Therefore, the gradient of the regression criterion with respect to

the L2 metric given in (48) is now equal to:

∇α E(t) = Kχ (x(t),x(t))
(
2γχ α(t)+η(t)

)
.

The matrix Kχ (x(t),x(t)) is precisely the Sobolev metric induced by

the kernel on the set of L2 functions (see Sec. 3.2.2), so that the gradient

with respect to this metric is given by:

∇αp E(t) = 2γχ αp(t)+ηp(t) (54)

The auxiliary variable η(t) satisfies the ODE (52), now written as:

η(t) = ∑
i

∇xti
Ai1{t≤ti}

+
∫ T

t

(

(∂1 +∂2)K
χ (x(u),x(u))α(u)

)t (
γχ α(u)+η(u)

)
du (55)

The 3N vector ∇xti
Ai is equal to (∇x1(ti)Ai, . . . ,∇xN (ti)Ai). For generic

3N vectors x, y and α , the kth coordinate of the 3N-vector Kχ (x,y)α is

given as: (Kχ (x,y)α)k = ∑
N
p=1 Kχ (xk,yp)αp. The kernel Kχ is scalar,

namely of the form Kχ (x,y) = kχ (x,y)Id for a scalar function kχ . We

have therefore for every i, j = 1, . . . ,N:

∂xi
(Kχ (x,y)α) j =

N

∑
p=1

αp (∇1kχ (xi,yp))
t δ (i− j)

∂yi
(Kχ (x,y)α) j = αi (∇2kχ (x j,yi))

t
(56)

Therefore, for a generic 3N-vector β , we have:

(
(∂1 +∂2)(K

χ (x,y)α)t β
)

k
=

N

∑
p=1

α t
pβk∇1kχ (xk,yp)+α t

kβp∇2kχ (xp,yk)

(57)

Now, we can apply this equation with y = x and β = γχ α +η and

combine it with (55). Noticing that for a symmetric kernel, we have

∇1k(x,y) = ∇2k(y,x), we get eventually the set of ODEs satisfied by

the functions ηp(t) as given in (19).

B Differentiation of the spatiotemporal matching

criterion

B.1 Matrix notations

Let t0 = {t j} j=1,...,Ntarget be the vector of time-points associated to

the target shapes. The 1D diffeomorphism ψu changes t0 into t(u) =
{t j(u)} j=1,...,Ntarget for u ∈ [0,1]. This vector satisfies the ODE: dt

du
(u) =

Kψ (β (u),β (u))t(u) with t(0) = t0, where β (u) is the concatenation of

the vectors β j(u) defined in (23), Kψ (β (u),β (u)) is the block matrix

whose block (i, j) is given by: Kψ (βi(u),β j(u)).
Similarly, we denote x0(t) = {xp(t)}p=1,...,N be the concatena-

tion of the positions of all the points of the source evolution S(t)
for any time-point t and x0(t(1)) the concatenation of the x0(t j(1))
for j = 1, . . . ,Ntarget. The diffeomorphism φu maps this vector to x(u),

which satisfies the ODE: dx
du

= Kφ (x(u),x(u))α(u) with initial condi-

tion: x(0) = x0(t(1)) (which depends on the final time-points t(1)),
where α(u) is the concatenation of the vectors αp, j(u) defined in (22)

for p = 1, . . . ,N and j = 1, . . . ,Ntarget.

Therefore, we can write the matching criterion (4) as:

E(α(u),β (u))=A(x(1))+
∫ 1

0
Lφ (x(u),α(u))du+

∫ 1

0
Lψ (t(u),β (u))du

(58)

subject to:







dx(u)

du
= f (x(u),α(u)) with x(0) = x0(t(1))

dt(u)

du
= g(t(u),β (u)) with t(0) = t0

(59)
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where we denote:

f (x(u),α(u)) = Kφ (x(u),x(u))α(u)

g(t(u),β (u)) = Kψ (t(u), t(u))β (u)

Lφ (x(u),α(u)) = γφ α(u)t f (x(u),α(u))

Lψ (t(u),β (u)) = γψ β (u)t g(t(u),β (u))

(60)

For the sake of simplicity, we will write in the sequel f (u), g(u),
Lφ (u) and Lψ (u) instead of f (x(u),α(u)), g(t(u),β (u)), Lφ (x(u),α(u))
and Lψ (t(u),β (u)) respectively.

B.2 Gradient in a matrix form

Now, let δE be a variation of the criterion E induced by a variation

of the momenta δα(u) and δβ (u):

δE = (dx(1)A)δx(1)+
∫ 1

0
(∂xLφ (u))δx(u)+(∂α Lφ (u))δα(u)

+(∂tL
ψ (u))δ t(u)+(∂β Lψ (u))δβ (u)du (61)

where we denote δx(u) and δ t(u) the variations of the path x(u) and

t(u) induced by the variations of the momenta δα(u) and δβ (u). These

vectors satisfy the linear ODEs with source term derived from (59):

d

du
δx(u) = (∂x f (u))δx(u)+(∂α f (u))δα(u) with δx(0) = δx0(t(1))

d

du
δ t(u) = (∂tg(u))δ t(u)+(∂β g(u))δβ (u) with δ t(0) = 0

(62)

We introduce the flows Psu and Rsu for all s,u ∈ [0,1], which are

solution of the homogeneous equations:

d

du
Psu = Psu(∂x f (u)) with Puu = Id

d

du
Rsu = Rsu(∂tg(u)) with Ruu = Id

(63)

The method of variations of the parameters leads to the following

solution of the ODEs:

δx(u) = P0uδx(0)+
∫ u

0
Psu∂α f (s)δα(s)ds

δ t(u) =
∫ u

0
Rsu∂β g(s)δβ (s)ds

(64)

where the variations of the initial condition δx(0) = δx0(t(1))
equals:

δx(0) = (dt(1)x0)δ t(1) = (dt(1)x0)
∫ 1

0
Ru1∂β g(u)δβ (u)du, (65)

according to (64).

Plugging (64) into (61) leads to the variation of the criterion (notic-

ing that for any L2 function F(s,u) we have that
∫ 1

0

∫ u
0 F(s,u)dsdu =

∫ 1
0

∫ 1
s F(s,u)duds =

∫ 1
0

∫ 1
u F(u,s)dsdu):

δE =
(

(dx(1)A)P01 +
∫ 1

0
∂xLφ (u)P0udu

︸ ︷︷ ︸

η(0)t

)

δx(0)

+
∫ 1

0

(

∂α Lφ (u)+
(

(dx(1)A)Pu1 +
∫ 1

u
∂xLφ (s)Pusds

︸ ︷︷ ︸

η(u)t

)

∂α f (u)
)

δα(u)du

+
∫ 1

0

(

∂β Lψ (u)+
∫ 1

u
∂tL

ψ (s)Rusds∂β g(u)
)

δβ (u)du (66)

Now, we denote,

η(u)t = (dx(1)A)Pu1 +
∫ 1

u
∂xLφ (s)Pusds (67)

which appears twice in (66) as η(0) and η(u). Given the expression of

δx(0) in (65), we have:

δE =
∫ 1

0

(
∂α Lφ (u)+η(u)t ∂α f (u)

)
δα(u)du+

∫ 1

0

(

∂β Lψ (u)

+
(

η(0)t(dt(1)x0)Ru1 +
∫ 1

u
∂tL

ψ (s)Rusds

︸ ︷︷ ︸

ξ (u)t

)

∂β g(u)

)

δβ (u)du (68)

Denoting

ξ (u)t = η(0)t(dt(1)x0)Ru1 +
∫ 1

u
∂tL

ψ (s)Rusds, (69)

we end up with the gradient of the criterion with respect to the L2 metric

written as:

{
∇α E(u) = ∂α Lφ (u)t +∂α f (u)t η(u)
∇β E(u) = ∂β Lψ (u)t +∂β g(u)t ξ (u)

(70)

The auxiliary variables η(u) and ξ (u) depend on the flows Rus and

Pus. Therefore they satisfy a ODE, which we need to make explicit now.

The inverse flows are written in integral form as:

Pus = Id+
∫ s

u
Prs∂x f (r)dr Rus = Id+

∫ s

u
Rrs∂tg(r)dr, (71)

so that the auxiliary variable η(u) satisfies:

η(u) = ∇x(1)A+
∫ 1

u
∂xLφ (s)t ds+

∫ 1

u
∂x f (s)t(Ps1)

t(∇x(1)A)ds

+
∫ 1

u

∫ s

u
(∂x f (r))t(Prs)

t(∂xLφ (s))t drds (72)

where we denote ∇xA = (dxA)t
for any scalar function A.

Since we have for any L2 functions F(r,s),
∫ 1

u

∫ s
u F(r,s)drds =

∫ 1
u

∫ 1
s F(s,r)drds by permuting the two integrals, we have:

η(u) = ∇x(1)A+
∫ 1

u
∂xLφ (s)t+

∂x f (s)t
(

(Ps1)
t ∇x(1)A+

∫ 1

s
(Psr)

t(∂xLφ (r))t dr

︸ ︷︷ ︸

η(s)

)

ds (73)

The term in the brackets is exactly η(s), so that the integral equation

satisfied by η(u) is eventually given by:

η(u) = ∇x(1)A+
∫ 1

u
(∂xLφ (s))t +(∂x f (s))t η(s)ds. (74)

Similar computations using the integral form of the flow Rus leads

to the integral equation satisfied by ξ (u):

ξ (u) = (dt(1)x0)
t η(0)+

∫ 1

u
(∂tL

ψ (s))t +(∂tg(s))
t ξ (s)ds. (75)
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B.3 Gradient in coordinates

Given the definition of the functions f , g, Lφ and Lψ , we have:

∂x f = (∂1 +∂2)(K
φ (x,x)α) ∂α f = Kφ (x,x)

∂tg = (∂1 +∂2)(K
ψ (t, t)β ) ∂β g = Kψ (t, t)

∂xLφ = γφ α t
(

(∂1 +∂2)K
φ (x,x)α

)

∂α Lφ = 2γφ α t Kφ (x,x)

∂tL
ψ = γψ β t

(

(∂1 +∂2)K
ψ (t, t)β

)

∂β Lψ = 2γψ β t Kψ (t, t)

(76)

so that the gradient with respect to the Sobolev metric (the matrices

Kφ (x,x) and Kψ (t, t) factorize in (70)) is given as:

{
∇α E(u) = 2γφ α(u)+η(u)
∇β E(u) = 2γψ β (u)+ξ (u)

(77)

where

η(u) = ∇x(1)A+
∫ 1

u

(

(∂1 +∂2)K
φ (x(s),x(s))α(s)

)t

(γφ α(s)+η(s))ds

(78)

and

ξ (u) = (dt(1)x0)
t η(0)+

∫ 1

u

(

(∂1 +∂2)K
ψ (t(s), t(s))β (s)

)t

(γψ β (s)+ξ (s)) (79)

The 3NNtarget vector ∇x(1)A is the concatenation of the vectors

∇xp(t j(1))A for p= 1, . . . ,N and j = 1, . . . ,Ntarget. Similarly, the 3NNtarget

vector is the concatenation of the vectors {xp(t j(1))}p=1,...,N, j=1,...,Ntarget .

dt(1)x0 is the 3NNtarget-by-Ntarget matrix: (dt1(1)x0, . . . ,dtNtarget
x0). In the

vector dt j(1)x0 almost every coordinate vanishes except the ones corre-

sponding at the jth block of size 3N: (dt j(1)x1(t j(1)), . . . ,dt j(1)xN(t j(1)))

(since dt j(1)xp(ti(1))= 0 when i 6= j). Therefore, we have: (dt j(1)x0)
t η =

∑
N
p=1

(
dxp

dt
(t j(1))

)t

ηp, j , which is the jth coordinate of the Ntarget vector

(dt(1)x0)
t η .

Eventually, using the generic expression (57) for scalar kernels

Kφ (x,y) = kφ (x,y)Id and Kψ (x,y) = kψ (x,y)Id, the evolution of η(u)
and ξ (u) in (78) are written in coordinates as in (28) and (29).

C Algorithms

Algorithm 1 Temporal shape regression

1: Input:

2: A set of time-indexed shapes {(S j, t j)}
3: A baseline S0 = {xp}p=1,...,N

4: A discretization of the interval [0,T ]: t0 = 0, . . . , tNtime
= T

5:

6: Initialization:

7: for all p = 1, . . . ,N, for all n = 0, . . . ,Ntime, αp(tn)← 0

8:

9: {Gradient descent}

10: repeat

11: {Compute positions of the moving baseline (forward integra-

tion)}

12: xp(t0)← xp

13: for n = 0, . . . ,Ntime−1 do

14: for i = 1, . . . ,N do

15: v = ∑
N
q=1 Kχ (xp(tn),xq(tn))αq(tn)

16: xp(tn+1)← xp(tn)+ v

17: end for

18: end for

19:

20: {Compute Gradient (backward integration)}

21: ηp(tNtime
)← 0

22: for n = Ntime, . . . ,1 do

23: if tn is one of the t j (time-points associated to the shape S j)

then

24: for p = 1, . . . ,N do

25: ηp(tn) ← ηp(tn) + ∇pAn (gradient of the matching

term)

26: end for

27: end if

28: for p = 1, . . . ,N do

29: vη = ∑
N
q=1

(

αp(tn)
t ηq(tn)+αq(tn)

t ηp(tn)

30: +2γχ αp(tn)
t αq(tn)

)

∇1kχ (xp(tn),xq(tn))

31: ηp(tn−1)← ηp(tn)+ vη

32: end for

33: end for

34:

35: {Update momenta α according to the gradient}

36: for n = 0, . . . ,Ntime do

37: for p = 1, . . . ,N do

38: αp(tn)← αp(tn)− τ (2γχ αp(tn)+ηp(tn))
39: end for

40: end for

41: until convergence

42:

43: Output: the shape evolution xp(tn).
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Algorithm 2 Spatiotemporal Registration

1: Input:

2: A source growth scenario xp(tn) for p = 1, . . . ,N and n =
1, . . . ,Ntime

3: Target shapes U j associated to time-points t j , j = 1, . . . ,Ntarget

4: Discretization of the interval [0,1]: u0 = 0, . . . ,uNu = 1

5:

6: Initialization:

7: for p = 1, . . . ,N, for j = 1, . . . ,Ntarget do αp, j← 0 end for end for

8: for j = 1, . . . ,Ntarget do β j ← 0 end for

9:

10: {Gradient descent}

11: repeat

12: {Compute spatiotemporal deformation of the source (forward

integration: time then space)}

13: t j(u0)← t j

14: for k = 0, . . . ,Nu−1 do

15: for j = 1, . . . ,Ntarget do

16: v = ∑
Ntarget

i=1 Kψ (t j(uk), ti(uk))βi(uk)
17: t j(uk+1)← t j(uk)+ v

18: end for

19: end for

20: xp, j(u0)← xp(t j(uNu ))
21: for k = 0, . . . ,Nu−1 do

22: for j = 1, . . . ,Ntarget,p = 1, . . . ,N do

23: v = ∑
Ntarget

i=1 ∑
N
q=1 Kφ (xp, j(uk),xq,i(uk))αq,i(uk)

24: xp, j(uk+1)← xp, j(uk)+ v

25: end for

26: end for

27:

28: {Compute Gradient (backward integration: space then time)}

29: ηi,p(uNu )← ∇xp,i(1)A {Gradient of the matching term}

30: for k = Nu, . . . ,1 do

31: for p = 1, . . . ,N, i = 1, . . . ,Ntarget do

32: vη = ∑
N
q=1 ∑

Ntarget

j=1

(

αp,i(uk)
t ηq, j(uk)+ηp,i(uk)

t αq, j(uk)

33: +2γφ αp,i(uk)
t αq, j(uk)

)

∇1kφ (xp,i(uk),xq, j(uk))

34: ηi,p(uk−1)← ηi,p(uk)+ vη

35: end for

36: end for

37: ξ j(uNu )← ∑
N
p=1

dxp(t)
dt

(t j(uNu ))
t ηp, j(u0)

38: for k = Nu, . . . ,1 do

39: for j = 1, . . . ,Ntarget do

40: vξ ← ∑
Ntarget

i=1

(

β j(uk)
t ξi(uk)+ξ j(uk)

t βi(uk)

41: +2γψ β j(uk)
t βi(uk)

)

∇1kψ (t j(uk), ti(uk))

42: ξ j(uk−1)← ξ j(uk)+ vξ

43: end for

44: end for

45:

46: {Update momenta α and β according to the gradient}

47: for k = 0, . . . ,Nu do

48: for p = 1, . . . ,N, j = 1, . . . ,Ntarget do

49: αp, j(uk)← αp, j(uk)− τ
(
2γφ αp, j(uk)+ηp, j(uk)

)

50: β j(uk)← β j(uk)− τ (2γψ β j(uk)+ξ j(uk))
51: end for

52: end for

53: until convergence

54:

55: Output:

56: the registered source shapes φ(xp(ψ(t j))) = xp, j(uNu )
57: the parameterization of the morphological deformation

(xp, j(uk),αp, j(uk))
58: the parameterization of the time warp (t j(uk),β j(uk))

Algorithm 3 Spatiotemporal Atlas Construction

1: Input: A set of time-indexed shapes {(Ss
j, t

s
j)}

s=1,...,Nsubj

j=1,...,Ns
target

, where Ss
j

is the jth scan (out of Ns
target) of the sth subject (out of Nsubj) at age

ts
j .

2:

3: M0←
1

Nsubj

Nsubj

∑
s=1

Ss
1

4: M(t)← χt(M0) the regression of every shapes Ss
j at time points ts

j

(using Algorithm 1)

5: repeat

6: {Template-to-subject registration}

7: for s = 1 . . .Nsubj do

8: (φ s,ψs)← spatiotemporal registration of M(t) to Ss
j for j =

1, . . . ,Ns
subj (using Algorithm 2)

9: end for

10:

11: {Center the template}

12: Φs, j ← φ s ◦χψs(ts
j)

for all s = 1, . . . ,Nsubj and j = 1, . . . ,Ns
target

13: M0← CenterTemplate(M0,{Φs, j},{S
s
j}) (Algorithm 4 of Dur-

rleman (2010))

14:

15: {Update the mean scenario}

16: M(t)← χt(M0) the regression of every shapes (φ s)−1(Ss
j) at

time points ψs(ts
j) (using Algorithm 1)

17: until convergence

18:

19: Output:

20: One mean scenario M(t) = χt(M0)
21: Nsubj spatiotemporal deformations (φ s,ψs)
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