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A consensus map of science is generated from an analy-
sis of 20 existing maps of science. These 20 maps occur
in three basic forms: hierarchical, centric, and noncentric
(or circular). The consensus map, generated from con-
sensus edges that occur in at least half of the input maps,
emerges in a circular form. The ordering of areas is as
follows: mathematics is (arbitrarily) placed at the top of
the circle, and is followed clockwise by physics, physical
chemistry, engineering, chemistry, earth sciences, biol-
ogy, biochemistry, infectious diseases, medicine, health
services, brain research, psychology, humanities, social
sciences, and computer science. The link between com-
puter science and mathematics completes the circle. If
the lowest weighted edges are pruned from this con-
sensus circular map, a hierarchical map stretching from
mathematics to social sciences results. The circular map
of science is found to have a high level of correspon-
dence with the 20 existing maps, and has a variety of
advantages over hierarchical and centric forms. A one-
dimensional Riemannian version of the consensus map
is also proposed.

Introduction

There has been a great deal of interest in visualizing the
structure of science over the past five years. In 2003, the
U.S. National Academy of Sciences convened a conference
specifically on mapping science (Shiffrin & Borner, 2004).
Katy Borner, one of the conference organizers, followed up
this effort with a traveling exhibit of science maps (called
Places & Spaces) that has appeared at over 50 international
locations since 2005. This exhibit (an online version is avail-
able at http://www.scimaps.org/) reflects the work being done
by research groups from around the world, representing a
variety of academic disciplines and using a variety of tech-
niques and databases. Maps from this exhibit have found their
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way into the permanent map collection at the New York Public
Library and in the year-end edition of Nature (Marris, 2006).

Given the number of science maps that have appeared
in the literature with increasing frequency, we wondered
whether these maps are starting to converge on a common
solution, or if a consensus among maps was being formed.
We differentiate here between consensus and convergence;
they are two very different things. If convergence is occur-
ring, all recent maps that look at a similar slice of science
(e.g., all of science) should look nearly the same in terms of
form, content, and linkages. Consensus is a lower standard,
and implies that an aggregation of results from a variety of
input maps would share a large number of common features
with the individual maps.

A review of the literature has shown that convergence in
science maps is not occurring. However, we felt that consen-
sus was very possible. A consensus map, if it exists, would be
extremely helpful in the adoption and application of science
maps. A consensus map could be useful as a teaching aid in
elementary and secondary education. A consensus map can
raise the general awareness of the importance of science and
provide a common cognitive framework for the discussion of
science policy issues, such as fundamental changes in inter-
disciplinary relationships. More importantly for this work, a
consensus map can help highlight fundamental differences
in the complex maps that are being proposed by researchers,
and suggest how those differences might be bridged.

In this paper we examine and codify 20 existing maps
of science in an attempt to see if there is a consensus that
is forming. The paper proceeds as follows. We first set the
stage by discussing differences between classification, sci-
ence mapping, and knowledge mapping, and address the
specific criteria used to qualify an existing work as a map
that could be used as input for this study. A brief descrip-
tion of each of the 20 maps of science that were selected for
inclusion in the study is then given. We then generate a list of
high-level disciplines that seem to be common to the majority
of the 20 existing maps, and make them (and possible linkages
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between them) the basis for looking for consensus. Although
somewhat subjective, this is a necessary step to searching
for consensus, due to the fact that maps are generated from
a variety of different data sources at different levels using
different techniques. Each of the 20 maps is then codified in
terms of this basis set of high-level disciplines; each map is
reduced to a set of disciplines and the relationships between
them. A consensus map is then generated from these data,
and the consensus map is compared to each of the 20 input
maps in a quantitative manner.

The consensus map that emerges from these data is cir-
cular (or noncentric) in form. We conclude the paper with a
discussion of the reasons for adopting a noncentric model of
the structure of science, and a summary of our findings.

Classification, Science Mapping, and Knowledge
Mapping

Before considering the existing models or maps that form
the input for this study, it is useful to take a step back and
define what a science map is and what it is not. This requires a
discussion of classification and the differentiation of a science
map from a knowledge map.

Classification of science into partitions dates back into
the early 19th century, at least to the time of August Comte.
Comte not only named six fundamental sciences (i.e., classi-
fication), but also placed them in an ordered hierarchy (i.e.,
amap):

As a definitive result, mathematics, astronomy, physics,
chemistry, physiology, and social physics; such is the
encyclopedic formula which, among the great number of
classifications which the six fundamental sciences include,
is solely in logical conformity with the natural and invariable
hierarchy of phenomena. (Comte, 1830, p. 115)

That such efforts have always had critics was as true in the
19th century as it is today. For example, Herbert Spencer, an
English philosopher and social theorist, while not disagreeing
with the fundamental sciences named by Comte, was highly
opposed to Comte’s mapping of those sciences:

From our present point of view, then, it becomes obvious that
the conception of a serial arrangement of the sciences is a
vicious one. It is not simply that the schemes we have exam-
ined are untenable; but it is that the sciences cannot be rightly
placed in any linear order whatever . . . There is no one ratio-
nal order among a host of possible systems. (Spencer, 1864,
p. 144)

In general, a map of science consists of a set of elements
along with the relationships between the elements. These ele-
ments can be scientific fields or disciplines, journals, papers,
or any other unit that represents a partition of science. The
characteristics that differentiate a map from a simple clas-
sification system are (a) the visualization of the elements,
commonly represented by locating each of the elements in
two-dimensional space, and (b) the explicit linking of pairs of
elements by virtue of the relationships between them. From
the mapping perspective, classification is often thought of

as a step along the way to creating a visual map, but is
not equivalent with mapping if the relationships between the
classes are not explicitly specified. Maps of science are com-
monly visualized as node-edge diagrams, similar to those
used in network science.

Classification of science, or separation of science into
different partitions, is commonly accepted today, and is
extremely useful for the cataloging and retrieval of source
materials. Among such systems, the U.S. Library of Congress
(LOC) has perhaps the most well-accepted classification
system in use today (http://www.loc.gov/catdir/cpso/lcco/).
However, to the best of our knowledge, the LOC system has
not been mapped, meaning that it has not been placed in
a visual format where the links between the various cate-
gory codes are explicitly shown. There are some who would
argue that there is an inherent hierarchy to the LOC system
that could be mapped as a tree-like structure. For example,
class Q (Science) has eleven subclasses (QA-QR, represent-
ing disciplines such as mathematics, astronomy, physics, and
so forth, and one can assume that each of the subclasses
links to the parent class. The difficulty arises in that what
we call “all of science” is comprised of at least a half-dozen
classes (e.g., medicine, agriculture, social sciences, technol-
ogy, etc., are separate classes), and there is no explicit linking
between classes. This does not reduce the usefulness of the
LOC system as a gold standard for classification, but merely
means that it does not qualify as a map, using the definition
given here. A similar argument can be made for other wonder-
ful resources such as encyclopedias; Britannica’s Propaedia
while it gives an outline or classification of knowledge, is not
a map.

Science mapping, as practiced today, has a far less storied
history than classification, and has its roots in the realiza-
tion that multidimensional spaces can be projected down to
two dimensions using multidimensional scaling and related
techniques. A multitude of different two-dimensional pro-
jections can be derived from the same data due to the use
of different similarity measures, algorithms, and projection
choices. Consequently, arguments similar to that expressed
by Spencer are not uncommon today. When the additional
variance from the use of different data sources is added to
this mix, the thought of a consensus map of science becomes
even more compelling. If a consensus map does exist, over-
coming the differences in data sources and mapping variables,
it would be a strong indicator of robustness in the high-level
structure of science.

In contrast to science mapping, knowledge mapping relies
far more on the question of ontology, or what knowledge is
and how it might be classified. In addition, knowledge map-
ping uses a different definition of the word mapping. In
knowledge mapping, the concept of mapping deals with the
correspondence between a classification system and the phe-
nomena in question. In science mapping, the concept of a map
draws from cartography. Science maps are analogous to the
(hypothetical) floor plan of a library, where books are placed
inrooms (i.e., the classification system) and rooms are located
so that scholars minimize the distance they have to travel
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(i.e., related areas are proximate). Knowledge maps are
sensitive to levels; for example, infectious disease can be con-
sidered a subset of medicine. By contrast, science maps may
consider infectious disease and medicine as two categories
simply because, as a practical matter in a library, one might
have one room devoted to infectious disease and another room
with books and journals on other subsets of medicine.

Our application in this paper is entirely related to science
mapping. In essence, we are performing a meta-analysis to
determine if 20 different maps of the library have common
groupings of rooms. Common groupings of rooms in a large
majority of maps would indicate that there is a growing con-
sensus in a high-level structure of science. By contrast, this
effort has very little to do with knowledge mapping. We are
far more interested in the relative placement of the rooms
and a summary description of the contents of the rooms. We
are not addressing whether the descriptions of these rooms
correspond to an ontology of knowledge.

Selection Criteria

Now that we have discussed the differences between clas-
sification and mapping, let us set the criteria for including
an existing map of science in this study. First, and foremost,
it must be a map. Maps conform to the following two crite-
ria: (a) there must be partitions, where science is separated
into different parts, and (b) there must be information that
links partitions, either through explicit linkages (such as a
line drawn between two partitions), or through a combination
of proximate location (or physical adjacency on a one- or
two-dimensional projection) and accompanying explanation
that explicitly states that proximate location denotes linkage.
Of course, some maps will have both physical proximity and
additional linkages linking areas that are not physically prox-
imate. As mentioned above, neither the Library of Congress
classification system, nor the Britannica Propaedia qualify as
maps as defined in the previous section.

Second, we focus only on maps that we consider to be
comprehensive, meaning that they cover all of science—that

is, the physical, biological (including medical), and social
sciences—or at least the majority of that space. We note that
this is a subjective type of judgment; some maps that we
consider to be comprehensive enough for inclusion in the
study might be judged otherwise by others.

Basic Map Forms

Before discussing each of the selected existing maps indi-
vidually, it will be helpful to comment on one of the high-level
observations from our codification and analysis of 20 existing
maps. Although there are large differences in the complexity
of the 20 maps, when reduced to a common level (16 high-
level disciplines) we find that there are three basic map forms
that emerge (see Figure 1). First, there is a hierarchical form
(designated by some authors as a linear model), in which the
majority of the disciplines link in a linear sequence. Although
there can be a low level of branching in the hierarchical
form, the majority of the disciplines are connected by a lin-
ear structure. Second, there is a centric form; in this form one
discipline lies at the center of a hub-and-spokes type of net-
work in which there is a high degree of branching from the
central node. Not all maps with a centric form have the same
discipline at the center. The third form is neither hierarchi-
cal nor centric, but typically occurs in a ring-like or circular
structure. We call this a noncentric form. It differs from the
hierarchical form only in that the two ends of the hierarchy
are explicitly linked, thus forming a ring. As will be shown
for particular cases below, some maps exhibit characteristics
of more than one map form.

Selected Maps of Science

Generating a map of science that is relatively compre-
hensive from bibliographic data is an involved process. One
needs a large and highly representative set of data. The data
must be highly structured so that parts (clusters of papers,
clusters of journals, or disciplines) and the relationship
between parts can be adequately modeled. The matrices that

s

FIG. 1. Examples of hierarchical (or linear), centric, and noncentric (or circular) map forms, from left to right, respectively.

JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY—March 2009

457
DOI: 10.1002/asi



TABLE 1.
Arts & Humanities, and Proceedings Citation databases, respectively.

Characteristics of 20 comprehensive maps of science. Abbreviations SC, SS, AH, and PR refer to Thomson Scientific’s Science, Social Science,

Researcher(s) & reference Map name Method Elements # Clust Database & year Form
(Bernal, 1939) Bernal Expert 14,110 Hierarchical
(Ellingham, 1948) Ellingham Expert 13,51, 130 Hierarchical &
Non-centric
(Balaban & Klein, 2006) Balaban-I Expert 16 fields 16 Hierarchical &
Centric
(Griffith, Small, Stonehill, & Small74 Reference papers 1,150 papers 41 SC, 1972 Q1 Centric
Dey, 1974)
(Small & Garfield, 1985) Small85 Reference papers ~ 11,000 papers 51 SC+SS, 1983 Hierarchical &
Centric
(Small, 1999) Small99 Reference papers 36,720 papers 35 SC+ S8, 1995 Hierarchical
(Klavans & Boyack, 2008)? KB-Para Reference papers 800k papers 776 SC+ SS, 2003 Non-centric
(Klavans & Boyack, 2007) KBO06-TS Reference papers 1.9M papers 283 SC + S8, 2004 Non-centric
(Klavans & Boyack, 2007) KB06-SC Reference papers 2.1 M papers 554 Scopus, 2004 Non-centric
(Bassecoulard & Zitt, 1999) B-Z Journals ~ 2,000 jnl 29 SC/ICR, 1993 Hierarchical &
Centric
(Klavans, 2002) K02 Journals 5,647 jnl 69 SC+SS +AH, Non-centric
2000
(Boyack et al., 2005) Backbone Journals 7,121 jnl 205 SC + SS, 2000 Non-centric
(Boyack et al., 2009) BBKO02-S Journals 7,227 jnl 671 SC+SS, 2002 Non-centric
(Boyack, 2009) B03-ST Journals 8,667 jnl 852 SC+SS +PR, Non-centric
2003
(Klavans et al., 2008)b UCSD Journals 16,235 jnl 554 SC/SS/AH + Non-centric
Scopus,
2001-05
(Rosvall & Bergstrom, 2008)° Rosvall Journals 6,116 jnl 87 SC+ S8, 2004 Non-centric
(Moya-Anegon et al., 2004) Scimago-1 Journal categories 25 categ 25 SC+SS +AH, Non-centric
2000 Spanish
papers
(Moya-Anegén et al., 2007)¢ Scimago-II Journal categories 219 categ 219 SC+SS +AH, Centric
2002
(Leydesdorff & Rafols, 2008)° L-R Journal categories 6,164 jnl; 172 SC, 2006 Mixed
172 categ
(Balaban & Klein, 2006) Balaban-II Course prerequisites 11 Texas A&M Centric
undergraduate

2 http://commons.wikimedia.org/wiki/Image:Topic_map_of_science.jpg
b http://scimaps.org/dev/big_thumb.php?map_id=164

¢ http://www.eigenfactor.org/map/maps.htm

4 http://www.scimago.es/benjamin/US A-2002.jpg

¢ http://users.fmg.uva.nl/lleydesdorff/map06/index.htm

are required can be extremely large (ranging from a few hun-
dred to a few million rows and columns). Methodological
compromises are often necessary due to the lack of algorithms
that can handle this level of complexity (Boyack, Borner, &
Klavans, 2009). There is very little literature showing how
these methodological choices and compromises affect the
resultant maps.

Due to the time, costs, and difficulties involved, there are
relatively few maps of this scope that have been generated.
Twenty such maps are listed in Table 1. Each map meets
the criteria listed above: Each is a map of science with both
partitions and links, and each is comprehensive, covering all
or most of the physical sciences, biological sciences, and
social sciences.

We have organized the maps in Table 1 by the method used
to identify partitions in science. The earliest overall method,
expert judgment (with 3 maps), is followed by the earli-
est computational method, clustering of reference papers.

458
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References papers are used as a basis for identifying par-
titions in science in 6 of the 20 maps. Clustering of journals,
where journal clusters are the partitions, was the next method-
ology used to map science, and accounts for another 7 maps
of science. Disciplinary categories, using the Thomson Sci-
entific (TS) journal categories, account for another 3 maps
of science. The final map is based on an analysis of under-
graduate course prerequisites at an agricultural college in the
United States.

If the maps were placed in order based on the date they
were generated, one would see a shift from individual to col-
laborative activity. Before 2000, three of the six maps were
generated by individual efforts (Bernal, 1939; Ellingham,
1948; Small, 1999), and two by a pair of researchers
(Bassecoulard & Zitt, 1999; Small & Garfield, 1985). Maps
generated after 2000 are mostly by research groups. Eight
maps are by a group of three researchers in the United
States presenting separately (Klavans, 2002; Boyack, 2009),
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in pairs (Klavans & Boyack, 2007, 2008; Klavans, Boyack, &
Patek, 2008), or all three (Boyack, Klavans, & Borner)
together (Boyack, Klavans, & Borner, 2005; Boyack,
Borner, & Klavans, in press). Two maps are by individu-
als in a large research group in Spain (Moya-Anegén et al.,
2007,2004), two maps are in one paper by Balaban and Klein
(2006), and single maps were generated by two other research
groups (Leydesdorff & Rafols, 2007; Rosvall & Bergstrom,
2008).

Following is a summary of the major aspects of each map.
Our focus in this review will be on the characteristic shape of
each map, which is exemplified by its classification into one
of the three forms mentioned above: hierarchical, centric,
or noncentric. Designation of a map as hierarchical, cen-
tric, or noncentric is based on a combination of comments
by the original authors and our interpretation of the actual
maps presented in the referenced papers. Although cluster-
ing and visualization algorithms will be discussed in some
cases to make certain points, we will not provide an in-depth
review or comparison of all of the clustering and visualization
algorithms used to generate the 20 maps; this information is
available in the original literature.

Maps by Experts

We start with two relatively old hand-drawn maps that
were comprehensive with respect to the relevant science
of their time. Although science today has a different
distribution—in the 1940s the physical sciences dominated
biology and medicine, today the reverse is true—these older
maps are very detailed and well thought out, and deserve
to be mentioned. In addition, we find that these older maps
have more in common with current science than we would
have expected, and we include them to highlight those
similarities.

Bernal (1939), uses a3 x 2 table-like layout to locate areas
of science. The columns correspond to physical, biological,
and sociological sectors of science, while the rows corre-
spond to fundamental and technical approaches. Each of the
3 x 2 regions contains a hierarchical structure of disciplines,
and links are drawn between disciplines and labels on the
map. The 3 x 2 layout is not equally spaced. All sectors of
science are well represented but one; mathematics did not
appear on this map. The physical sciences sector (column)
represents almost 50% of the map, and the technical areas
(the bottom row, which includes topics such as engineering
and the social sciences) also accounts for more than 50% of
space on the map.

We considered this map hierarchical along two dimen-
sions. Along the x axis of his graph, Bernal clearly shows the
dominance' of the physical sciences over the biological sci-
ences, and then the dominance of the biological sciences over
the social sciences. Along the y axis, he makes the hierarchical
distinction between fundamental and applied science.

"Here, dominance is not meant as better, but rather as an ordering from
first principles, developmental history, and size in Bernal’s map.

Ellingham (1948) also uses three columns to orient his
map, but the primary axis here goes from top to bottom rather
than from left to right. The central column consists of a set
of connected disciplines that could be considered more fun-
damental. From top to bottom we find mathematics, physics,
chemistry, biology, and geology. Applied areas are to the right
or left of this central column. The left column consists (from
top to bottom) of civil engineering, mechanical engineering,
chemical engineering, metallurgy, and mining. The right col-
umn consists of electrical engineering, chemical engineering,
medicine, and agriculture. Social sciences are not included in
this map. The columns are of roughly equal size. Therefore,
the fundamental sciences (the central column) only cover
about one-third of the map.

We consider Ellingham’s map as hierarchical along one
dimension and noncentric along the other. The central col-
umn represents the traditional ranking of disciplines. The left
and right columns emphasize the branches from these cen-
tral disciplines. Given that they are branching points, physics,
chemistry, and biology could be considered as central, which
would suggest a centric map. However, the map has over-
riding noncentric features. In the words of Ellingham (1948,
pg. 480),

In many respects the outer edges of these side panels could
properly be joined by wrapping the chart around a cylin-
der; thus Mechanical Engineering and Electrical Engineering
would thereby be justifiably brought together, as well as
the two areas which it has been convenient to provide for
Chemical Engineering.

Balaban and Klein (2006, Figure 2) present a much
more recent expert-based map, and argue that that science
is hierarchically ordered. The same order of fundamental
disciplines is suggested—mathematics, physics, chemistry,
and biology—followed by applied areas. Branches from this
central core deal with the macroscale (earth sciences, envi-
ronmental science) or the nanoscale (computer technology
and engineering), or were branches off of biology (brain and
medical science, agricultural science). These branches then
converge to a single node at social sciences. This map was
unique among all maps examined here in one point: The
humanities were placed at both the top (logic feeding into
mathematics) and the bottom (law and ethics) of the hierar-
chy. Thus, although Balaban and Klein argue for a hierarchy
of disciplines, it takes little imagination to complete the circle
(bottom to top) by linking the two humanities areas.

Bernal (1939), Ellingham (1948), and Balaban (Balaban &
Klein, 2006) each stress the hierarchical nature of science. All
agree that there is an ordering between mathematics, physics,
chemistry, and biology. Medicine might be fifth in this set,
but all three maps place medicine as an applied area that is
proximate to biology.

Neither Bernal (1939) nor Ellingham (1948) suggest that
there is a dominant discipline that is centric. Rather, they
suggest that each fundamental discipline has its own set of
applied sciences. Balaban and Klein (2006), however, argue
that chemistry is more centric. In their map, it is the highest
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science in the hierarchy where branching occurs, and gives
rise to four applied areas (earth science, environmental sci-
ence, computer technology, and engineering). They argue that
chemistry is more central than biology since biology is both
lower in the hierarchy and only gives rise to three areas (brain
science, medical science, and agricultural science).

Reference Paper Maps

The earliest attempts to map all of science using bib-
liometric techniques were made by Henry Small and his
colleagues (Griffith, Small, Stonehill, & Dey, 1974; Small,
1999; Small & Garfield, 1985). These bibliometric tech-
niques focused on highly cocited papers (pairs of references
in bibliographies that cooccur perhaps five or more times in
one year). In those early days, and due to the high compu-
tational costs involved, high thresholds were used, resulting
in relatively small samples of documents. These small sam-
ples resulted in extreme disciplinary biases. Medicine had
the clear advantage since medical papers were more highly
cocited than those in other disciplines. Chemistry papers also
had reasonably high citation levels, but the remaining sci-
ences (including mathematics and physics) and the applied
sciences had much lower citation levels. These relatively
different citation rates by discipline persist today.

Small’s first map in 1974 illustrates this bias in disciplinary
citation levels. The high thresholds used then resulted in the
selection of only 1,150 papers to represent all of science. Two
nodes (out of 41) dominate. One node (medicine) accounted
for 70% of the papers and the second largest node (chemistry)
accounted for 8%. Of the 84 edges (links between nodes), 26
connect to the medicine node and 20 connect to the chemistry
node. The remaining graph is mostly a dispersed set of nodes
that are branches off of medicine or that link to both medicine
and chemistry.

This map can be clearly categorized as a centric map.
However, it is important to emphasize that Small was not
suggesting that medicine was the central discipline of science.
His training was initially in physics. The cocitation method
he developed was conceived of while he was working at the
American Physical Society on a project to map the history of
physics. This map was a proof of principle, and reflected the
inherent biases of using citations when references in medicine
tend to be more highly cited.

Small’s second map (Small & Garfield, 1985) was the
first attempt to overcome disciplinary bias and provide a map
that conformed more to common beliefs that physics had a
more central role in science. This map was able to replicate
the expected set of disciplines that were identified by experts.
However, Small de-emphasized the hierarchical nature of sci-
ence by ordering the disciplines from right to left. On the
far right was mathematics (a relatively small node with few
branches). This was followed by physics (the second largest
node), a set of smaller chemistry nodes, and then one very
large node that captured cell biology and medicine. The cell
biology/medicine node in this map was once again the largest
node.

We have listed this map as a combination of hierarchical
and centric. The expected hierarchical order of disciplines
is found, albeit in reverse order and not shown as a linear
ordering. The highly centric nature of medicine/cell biology,
consistent with the 1974 map, is also shown.

Small’s third map (1999) was a further attempt to over-
come disciplinary bias. This map is more similar to expert
maps. The largest node represents the physical sciences
(physics and chemistry are combined, as suggested by Bernal,
1939). The next largest node is biology, followed by medicine
and then an area of the social sciences. These nodes are placed
in a more traditional ordering, from left to right.

We considered this map as hierarchical. There is no sin-
gle centric node in this map. The grouping and ordering of
disciplines are similar to the hierarchical map of Bernal: The
physical sciences are predominant, followed by biology, and
then the social sciences. The differences between this map
and the expert maps are in the size of two applied areas of
science, medicine and engineering. The experts only allo-
cate 5% of their maps to medicine versus 20% in this map.
The experts allocate almost 50% of their maps to engineering,
while engineering can hardly be found on Small’s map. These
differences are likely due to a combination of actual changes
in the distribution of science over 50 years’ time (increase in
medical research), and disciplinary biases (which decrease
the relative share of engineering).

Klavans and Boyack started working together in 2003 in
an effort to scale up existing techniques to where millions
of papers could be accurately mapped. Both researchers had
their training in engineering, and were sensitive to the fact that
the applied sciences were still not adequately represented.
Klavans and Boyack (2006b) found that disciplinary biases
could be significantly reduced by increasing the sample size
dramatically, from a few thousands of reference papers to
nearly one million reference papers. Using a recursive clus-
tering technique similar to that used by Small (1999), but
without excluding references at each subsequent clustering
level, the map that emerged (Klavans & Boyack, 2008) had a
circular or noncentric shape. The same hierarchical ordering
of disciplines suggested by experts was found (mathematics,
physics, physical chemistry, chemistry, and biochemistry),
along with a second sequence linking biochemistry, biol-
ogy, and medicine. However, this map was circular rather
than hierarchical in that the ends of the hierarchy were
explicitly linked through the sequence of medicine, psy-
chiatry, psychology, social sciences, computer science, and
mathematics.

Klavans and Boyack also explored disciplinary bias as a
function of bibliographic database. All literature-based com-
prehensive science maps created between 1974 and 2006 used
the TS citation databases. For 30 years, these were the only
databases with sufficient scope, and with sufficiently clean
bibliographic information, to be used for this purpose. In
2004, Elsevier introduced a competitive database, Scopus,
that claimed to have better representation of the applied areas.
Two separate maps of science based on these two databases
were generated as a basis for comparing their coverage and
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corresponding impact of disciplinary bias on a map of science
(Klavans & Boyack, 2007). The TS-based science map and
the Scopus-based science map were very similar in structure
and layout. The same circle of science appears with the same
general ordering seen in other maps. However, each map also
shows earth sciences in a more central position than seen in
any other map. Despite this fact, we have classified both of
these maps in Table 1 as noncentric; in each case earth sci-
ences only links to one side of the ring; thus the ring structure
appears to be a more dominant feature than the centrality of
earth sciences.

Journal Maps

The next seven maps are based on a different method for
partitioning science: using clusters of journals that one might
then call disciplines. These maps are typically generated in
two steps. The first step is to divide journals into some num-
ber of clusters, and the second is to generate a layout of the
clusters using a layout or visualization algorithm.

Journals have been used as a basic unit for mapping science
for some 35 years, starting with the pioneering map of Narin,
Carpenter, and Berlt (1972). We do not include this map in
our study because it does not meet our measure of being
comprehensive. But we note that it was a hierarchical map
duplicating a portion of the hierarchy mentioned many times
above, starting with mathematics, and proceeding through
physics, chemistry, and biochemistry to biology.

The first comprehensive journal-level map of which
we are aware comes from a research group in France
(Bassecoulard & Zitt, 1999). Using a thresholded set of some
2,000 journals, they grappled with questions such as handling
of general journals, the choice of a measure of journal:journal
relatedness, and clustering or classification method. Although
they used a hierarchical clustering method, their map emerges
as a combination of the hierarchical and centric forms. There
is strong evidence of hierarchy. Physics is in the upper left.
The next major node is engineering, which branches out into
chemistry on one side and computer science on the other. The
third major node is biology. The centric nature of the map
is suggested by the large size, central location, and larger
number of links from biology and biochemistry. There is no
evidence that the map is noncentric (branches from medicine
do not link back to physics via social sciences or computer
science).

This map allocates roughly 15% of its area to the engineer-
ing disciplines and almost half to the medical fields. Some of
the links between fields that we have come to expect from
viewing other maps could only be partially observed, for
instance between computer science and math; physics, phys-
ical chemistry, and chemistry; and biochemistry, medicine,
and brain research. Some topics that were expected to be
proximate (such as physics and physical chemistry) had inter-
vening nodes. The reasons for these differences are difficult
to determine. They may be due to the low sample size (only
2000 journals) or the layout algorithm. It may be possible, but
far less likely, that these differences are due to fundamental
differences in the structure of science.

The next five journal-level maps were generated by mem-
bers of the U.S. research team of Klavans, Boyack, and
Borner. The first map, by Klavans in 2002 and presented
as a poster at the Sackler Colloquium on Mapping Knowl-
edge Domains (Shiffrin & Borner, 2004), appears as a circle
(noncentric), with roughly the same ordering of disciplines
as described previously (mathematics, physics, physical sci-
ence, chemistry, biochemistry, biology, infectious disease,
medicine, brain research, social science, computer science,
and connecting back to mathematics). Engineering and health
services were not identified as nodes on this map. Historically,
among the 20 maps considered in this study, this was the
first science map that proposed that the underlying structure
of science consisted of a circle of disciplines.

The next journal-level science map was generated with
a totally different purpose. Boyack, Klavans, and Borner
(2005) were interested in measuring the accuracy of a set of
maps of science in order to choose the most accurate related-
ness measure for mapping. The TS journal-category structure
was used as the standard against which the various maps
were compared. Only their most accurate map is reviewed
here. This map locates 205 journal clusters, and shows the
dominant citation flows between clusters. Although the visu-
alization filled the space (leaving no white space) and there
are clusters that appear to be in the center of the map, exami-
nation of the linkages shows that there is no central node. Nor
is there any evidence of a dominant, linear pathway through
the regions of the map. However, one could find the same
pathways of linked disciplines associated with the noncen-
tric models described previously. Thus, we labeled this map
as noncentric.

The third journal map by this research group used two lev-
els of clustering with the VxOrd visualization algorithm, now
known as DrLL (Martin, Brown, Klavans, & Boyack, 2008). As
aresult, this map contains far more white space than previous
maps, and has been used as the basis for a study of evolution in
chemistry research (Boyack et al., 2009). It is noncentric
in form, and is very similar to the first map by Klavans, despite
the use of different data sources and layout algorithms.

The last two journal-level maps by this research team
explored the effect of other biases in the TS databases on the
shape of these maps. First, Boyack (2009) combined the TS
Proceedings database with the Science and Social Science
databases. The Proceedings database had extensive coverage
in computer science and engineering. Inclusion of these data
resulted in a map that placed physics and chemistry in the
center of a pentagonal shape. The outer edge of this pentago-
nal shape was continuously connected, indicating a ring-like
structure. Although physics and chemistry are inside the ring,
most of their links are to areas at the top (computer science)
or right (physical chemistry, chemistry, and engineering) of
the map. For these areas on the interior of the map to be
considered as centric, there would need to be extensive link-
ing to the lower and left portions of the map. No such links
are shown. We thus labeled this map as noncentric. We note
that, by including the Proceedings database, the applied areas
(specifically engineering and computer science) were better
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articulated, and the disciplines feeding these areas (physics
and chemistry) had a more centric role in the map.

The most recent journal-level map by Klavans et al. (2008)
combined the TS and Scopus databases in order to generate a
more complete map in terms of journal coverage. By combin-
ing these data, it was possible to generate a matrix indicating
the relationship between more than 16,235 journals, proceed-
ings, and book series. This map differs from all of the other
maps in that it was laid out on the surface of a sphere. All
of the other maps were laid out on a plane, with the excep-
tion of the expert map by Ellingham, who proposed that his
map be wrapped around a cylinder. Ellingham had actually
proposed a spherical layout, but had not implemented it. The
reason that a spherical layout was adopted by Klavans et al.
(2008) was well articulated by Ellingham (1948, pg. 480)
almost sixty years ago:

By suitable reconstruction it would be possible to allow for
the chart to be spread over the surface of a sphere and this
would have the advantage of avoiding the need to select a
particular science to occupy the centre of the picture.

This map is clearly noncentric. The same circle of sci-
ence, as observed previously using Euclidean projections, can
be observed as circumscribing the sphere. Some branching
and reconnection does occur. For instance, a string formed
by engineering, earth science, and biology branches off
from physics and chemistry, and reconnects at biochemistry.
Health services branches off from medicine, and reconnects
with psychiatry.

The last journal-based map was recently published by
researchers at the University of Washington (Rosvall &
Bergstrom, 2008). This map, using methodologies that draw
more from network science than from bibliometrics, appears
as a circle of science that is similar to many of the noncen-
tric maps listed in Table 1. There is the expected sequence
of mathematics, physics, physical chemistry, chemistry, bio-
chemistry, infectious disease, medicine, brain research, psy-
chology, social science, computer science, and back to math.
Engineering areas are also noted, but are not linked together.

Journal Category (Discipline) Maps

The next three maps use the TS disciplinary classification
system. TS has two different sets of journal categories, a broad
set with some 25 categories, and a finer-grained set containing
well over 200 categories. At the fine-grained level, journals
are assigned to one or multiple categories. The average num-
ber of categories per journal is 1.6 (Leydesdorff & Rafols,
2007), thus providing the overlap to enable co-category types
of analyses.

Two of the discipline-based maps in Table 1 were created
by the SCImago research group in Spain. Their two maps,
however, show vastly different and contradictory pictures of
how science is structured. The first map (Moya-Anegén et al.,
2004), which used the broad category structure, replicates
the circle (noncentric) of science mentioned previously, and
shows the expected linkages mentioned above in conjunction
with other noncentric maps.

The second map used the fine-grained category structure,
and thus has far more detail (Moya-Anegén et al., 2007).
However, instead of showing a circular structure, this map
is highly centric. This map is the very epitome of a hub-
and-spokes type of diagram. The largest TS journal category,
Biochemistry and Molecular Biology, is the central node; all
other nodes attach back to the central node through one of
the 30 or more separate branches. The largest branch (47
nodes) leads to biology, and then branches out to mathe-
matics and the social sciences. The second largest branch
(43 nodes) leads to chemistry, engineering, and physics. The
third, fourth, and fifth largest branches lead to neuroscience,
pharmacology and earth sciences, and general medicine and
health services, respectively. This is the only map reviewed
here that uses Pathfinder networks (PFNet) for layout. In most
cases, PFNet constrains the number of links to be one less than
the number of nodes. This extreme pruning of links between
categories leads to disconnection of links that are found in the
majority of the other maps, and implies that mathematics is
not linked to computer science, social sciences are not linked
to psychology, and chemistry is not linked to geochemistry.
This extreme pruning of links creates a map with features that
are nonintuitive and in disagreement with most every other
map listed in Table 1.

Another discipline-based map was recently generated by
Leydesdorff and Rafols (2007). We consider this to be a mixed
map, much like the journal map by Bassecoulard and Zitt
(1999), in that it contains examples of multiple forms. There
is evidence of the expected hierarchical split between the
physical sciences (physics and chemistry) and the biologi-
cal sciences (biology, biochemistry, and medicine) that was
proposed by Bernal (1939). There is evidence of noncentric-
ity: The physical and biological sciences are linked by two
possible pathways: via the geosciences or via the computer
sciences. This map does have an intriguing feature: There is a
major link between biochemistry and computer science that
is unique among the maps reviewed here, a link that captures
the importance of bioinformatics.

Other Maps

The final map in our review presents a totally differ-
ent approach to mapping science. Balaban and Klein (2006,
Figure 3), in the second map shown in their paper, suggest a
hierarchy of science based on examination of course pre-
requisites in the undergraduate catalog of courses offered
at Texas A&M University. Their approach to partitioning
is similar to the one used by experts (including their own
“expert” map from the same paper); they start with tradi-
tional categories and then modify the categories based on the
collection of course requirements. Their approach to linkage
and relative location in the hierarchy is based on prerequi-
sites (which courses must be taken first). This rather unique
approach results in their hypothesis that chemistry is the
central discipline in science. Their map is therefore labeled
as centric, even though the authors present a picture that
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looks noncentric—they show that mathematics, at the top,
is directly linked to the bottom discipline of social sciences.

Data Biases and Map Forms

This diverse set of maps, generated using a variety of
datasets, methods, and algorithms, provides strikingly similar
results in terms of proximity of pairs of disciplines, but also
varies widely in terms of form (hierarchical, centric, noncen-
tric, or mixed). Although this variance in form can result from
differences and biases in data sources, as well as differences
in choices of relatedness measure, visualization algorithms,
and edge pruning, we find that form does tend to correlate
with biases in the input data sets.

Maps based on the least biased data sets (by this we mean
maps with the most comprehensive coverage in terms of their
input) that are not dominated by a few extremely large nodes
tend to be generated in the noncentric form. Maps based
on data that has been thresholded, or that are dominated by
one or a few highly dominant nodes, tend to be generated
as hierarchical or centric maps. Bias can be introduced in
several ways: through database bias, by setting arbitrarily
high thresholds for the data, or by selecting an inappropriate
measure of relatedness.

Database bias is particularly evident in the comparison
of the TS Science Citation Index and the Scopus database.
The TS Science Citation Index is weighted somewhat toward
life sciences and medicine. The Scopus database includes
the majority of journals covered by TS, but adds a signifi-
cant number of journals and proceedings from engineering,
computer sciences, and health services. The TS Proceedings
database, when added to the TS Science Citation Index, com-
pensates somewhat for this bias (Boyack, 2009). When the
TS and Scopus databases are combined, the resulting map is
even more balanced, and a noncentric map emerges.

High thresholds also introduce bias, and tend to result in
maps that are either hierarchical or centric in form. Computer
science, social sciences, and the humanities, when poorly
represented or not represented at all, tend to disconnect the
circular shape into a linear form that is then interpreted as
hierarchical. This is especially apparent in the two maps
of Balaban & Klein (2006). Their expert-based map clearly
shows the underpinnings of humanities at the top and bot-
tom of the hierarchy (logic is above math; ethics is below
the social sciences), but fails to link the two. Their course-
based map clearly states that the social sciences are at both
the top and bottom of the hierarchy, but again fails to com-
plete the circle. In other words, both of these maps could
be interpreted as noncentric, even though they are originally
shown as hierarchical. Another example of this effect can be
seen in the recent journal map by Samoylenko, Chau, Liu,
and Chen (2006). This map links journals above an impact
factor of 5 using minimum spanning trees. Given this high
threshold, mathematics, computer science, and engineering
are entirely excluded. We thus do not consider this map as
comprehensive due to its exclusion of fields, and have chosen
not to include it in our review and comparison.

The choice of the relatedness measure can also signif-
icantly bias the map. Boyack, Klavans and Borner (2005)
measured the accuracy of eight different maps, each gener-
ated using a different measure of journal:journal relatedness.
They found that the least accurate map was based on using
raw co-occurrence frequencies. One can also see in their
paper that the least accurate map, generated from raw co-
citation counts, is centric in form (pg. 359, Figure 1, lower
left). We are thus not surprised that the recent SCImago
map (Moya-Anegoén et al., 2007), which was generated from
raw category:category co-citation frequencies (modified by
small additions to avoid duplicate matrix entries), is highly
centric. We cannot assume that a map generated from raw
category:category co-citation counts is as inaccurate as a
map based on raw journal:journal co-citation counts with-
out testing. However, the structural similarities between the
two maps suggest that the accuracies cannot be too far dif-
ferent. It would be very interesting to see if the same map
generated from a more accurate relatedness measure would
produce a centric map. We expect that it would not.

A Consensus Map of Science

As mentioned in the section on selection criteria, to be
decomposable, maps of science must have partitions and
links. In this section, we introduce a consensus map of sci-
ence thatis based on 16 partitions in science. We then examine
the proximate locations of these 16 partitions of science on the
20 maps of science from Table 1. A link between pairs of par-
titions is counted as a consensus link if more than half of the
maps advocate that particular link. The correspondence of
this consensus map with the 20 input maps is then exam-
ined from multiple perspectives. Possible shortcomings of
the consensus map are discussed.

Areas of Science

We divided science into 16 broad areas for purposes of
codifying the 20 input maps (see Table 2). We started with
the four fundamental areas mentioned in most maps (mathe-
matics, physics, chemistry, and biology) and then considered
the six possible combinations of these four areas. Only two
of the combinations (physical chemistry and biochemistry)
were found to occur with any frequency among the 20
input maps. We then identified another six areas that were
more applied. Three areas (computer science, engineering,
and geoscience) represent the applied areas building off of

TABLE 2.
of science.

Sixteen areas of science used to characterize the 20 input maps

M — Mathematics

CS — Computer science

P — Physics

PC — Physical chemistry

C — Chemistry

E — Engineering

G — Earth sciences (geoscience)
BC - Biochemistry

B — Biology

I - Infectious disease

MD - Medical specialties

HS — Health services

N — Brain research (neuroscience)
PS — Psychology/psychiatry

SS — Social sciences

H — Humanities
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mathematics, physics, and chemistry. Note that we explicitly
include electrical engineering with computer science, while
the engineering area is comprised of all engineering disci-
plines other than electrical engineering. The other three areas
(infectious disease, medical specialties, and brain research)
represent the applied medical-related areas related to biology.

An additional three areas (health services, psychology,
and social sciences) represent applied areas that deal more
with social issues than with the hard sciences. These areas are
very large and diverse fields that were not well represented
in the expert maps or the bibliographic maps using the TS
database. The addition of the Scopus database helps to better
represent the role of these applied areas in science, particu-
larly in the case of health services (which includes nursing).
The final area, humanities, could be considered fundamental
to the social sciences (Balaban & Klein, 2006; Bernal, 1939).
Unfortunately, only a few of the maps in Table 1 explicitly
locate this area of research. However, given that one citation
database is specifically geared to the humanities, the TS Arts
and Humanities Citation Index, we felt it best to explicitly
include it as a separate area. Scopus has very scant coverage
of the humanities.

Although we realize that there is a certain subjective nature
to the selection of these 16 areas, and that other researchers
might define a different set of areas, we find a reasonable
balance in using the areas shown in Table 2. There are seven
fundamental areas and nine applied areas. The nine applied
areas are equally split between the physical sciences, the bio-
logical sciences, and the social sciences. The overall balance
between the 16 areas can be seen by examination of the rela-
tive sizes of different regions in the most recent journal map
by Klavans et al. (2008), which has the broadest coverage of
any map to date.

Coding of Input Maps

Each of the 20 maps of science reviewed here was analyzed
in detail to determine the locations of the 16 areas, overlaps or
proximate locations of pairs of areas, and additional linkages
between areas that were not proximate. This was done using
a four-step process as follows.

First, the 16 areas of science were located on the 20 maps
of science. In many cases this was done by simply placing a
single node for an area at the location on the map labeled with
the area name. In cases where a map was extremely complex
(many nodes and edges), the dominant locations of the 16
areas were found, and nodes placed at those locations. There
were some cases where an area seemed to be located in multi-
ple positions on one map; if so, this feature was preserved by
locating multiple nodes for that area. On occasion, a node was
labeled with multiple areas if it was clear that the author
was referring to a broader area of science than indicated by
only one of the areas listed in Table 2. This was also done if
the intentions of the author were unclear, although this was
rare. Note that not all maps contained all 16 areas of science.

Second, links (or edges) between areas of science were
drawn if the map and text suggested that these areas had

overlapping domains (proximate location) or were otherwise
connected (linkage). In cases where an input map showed
many nodes and edges, an edge was drawn between two areas
of science if the sum total of the original nodes and edges
seemed to indicate a strong relationship between the two
areas. Thus, only the dominant relationships between the
16 areas were captured if the edges in the map had not been
pruned.

At this point in the process, each of the 20 input maps
had been simplified into maps comprised of only the 16 (or
fewer) areas of science from Table 2 along with the domi-
nant linkages between areas. In each case, the simplified area
map was actually overlaid on top of the input map. Our third
step was to further simplify these maps. A map was simplified
if (a) two nodes with the same area code were linked (such
as an engineering area linked to another engineering area), or
(b) an edge was redundant. For example, if a medical node
linked to two different brain-research nodes, it was simpli-
fied to a medical node linked to one brain-research node. The
final step in the coding of each map was to convert the map
to a set of links based on paired relationships between areas.
This set of links for each map was then used as the basis for
further analysis.

To further clarify the coding process, we provide an illus-
tration (see Figure 2) of how one of the maps was coded.
We illustrate the process with the SCImago-II map (Moya-
Anegon et al., 2007) because it illustrates many of the issues
about biases that have been previously raised. The first frame
in Figure 2 is a copy of the map as originally published. The
second frame overlays the 16 areas of science listed in Table 2
using Steps 1 and 2 of the coding process detailed above. Note
that the central node in the coded map, which represents the
central node and several of the immediately surrounding, but
singly linked nodes in the SCImago-II map, is given three area
assignments (BC-Biochemistry, MD—Medical Specialties,
and I-Infectious Disease).

The major branches of the network in Figure 2b are rep-
resented using nodes and edges. The network on the right
involves the disciplines normally associated with the hierar-
chy of science: (C) chemistry, (PC) physical chemistry, and
(P) physics. Different (E) engineering disciplines branch off
of chemistry and physical chemistry, and the (CS) computer
science discipline branches off of physics. Note, however,
that mathematics is not found anywhere near this network.
Mathematics is on the opposite end of the map, emerging
from the central node through (B) biology to (M) math-
ematics and then ending in the (SS) social sciences, (H)
humanities, and (E) engineering.

The third frame (Figure 2c) simplifies the network using
the rules in Step 3 above, and marks those areas that
have duplicate locations in gray. There are a large number
of duplicate areas on this map. Engineering is in four differ-
ent locations, while the social sciences and geoscience each
have two separate locations. There are far more instances of
multiple locations in this map than in any of the other input
maps. We believe this to be an artifact of the relatedness mea-
sure and edge-pruning algorithm used to generate this map.
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FIG. 2. Coding of the SCImago-1I map (Moya-Anegon et al., 2007). The other 19 maps were all coded in a similar fashion.

When raw-count relatedness measures that are dependent not
only on discipline size but also on discipline citation culture
are used, smaller, lower-citing disciplines that are part of one
larger area can end up dispersed to far-flung locations. This
happens because these smaller disciplines link preferentially
to much larger disciplines in different scientific areas due to
the overall weight of the raw counts from the larger discipline,
rather than linking together in intuitive ways.

The fourth frame (Figure 2d) shows the conversion of the
simplified map into linked pairs of areas. There are 20 edges
in the network shown in Figure 2c. Note that four of these
edges link to the central node, which has three area assign-
ments. These edges are shown at the lower left of Figure 2d
as four coding pairs. For purposes of generating a consensus
map of science, we expand these four coding pairs into all
of their unique permutations (including the ones inside the
triple node, BC-I, BC-MD, and I-MD), which are shown as
the 12 pairs at the lower right of Figure 2d. In total there are 28
pairs of linked areas, 16 of which come directly from edges,

and another 12 that come from permutations from edges
associated with multiarea nodes. Note that some paired rela-
tionships that one would expect to see (such as mathematics
being linked to either computer science or physics) do not
appear in this representation. This would be one example of
local inaccuracy if there is a consensus that mathematics is
linked to physics.

Codings for all 20 maps are shown in Figure 3 in a
manner similar to that shown in Figure 2b. In addition, high-
resolution images of all 20 original maps and the codings for
those maps are available online at www.mapofscience.com/
history/maps. In the following sections, all paired relation-
ships from all 20 maps are analyzed in order to establish a
group consensus and the relative correspondences of each of
the input maps.

Consensus Maps of Science

One-dimensional and two-dimensional consensus maps
of science have been generated from the dominant paired
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FIG. 3. Images of the 20 maps of science that were used in this study along with their codings. The 20 maps are shown in the same order in which they

are listed in Table 1, from upper left to lower right.

relationships between areas across the 20 input maps of sci-
ence. First, all paired relationships from each of the input
maps were coded into a database. A consensus link was then
defined as any paired relationship that occurred in at least
50% of the maps in which it could have occurred.

We started with the initial list of all edges (400 in total) as
given in Appendix A. We then generated all of the permuta-
tions between pairs of areas arising from the implied edges
when a single node had multiple area assignments (e.g., the
central node in Figure 2a with assignments to BC, I, and
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TABLE 3. Consensus pairs of scientific areas from 20 maps of science.

Rank Pair N N-poss %

1 B-BC 20 20 100.0
2 I-MD 20 20 100.0
3 H-SS 8 8 100.0
4 C-PC 19 20 95.0
5 HS-MD 16 17 94.1
6 PS-SS 16 17 94.1
7 P-PC 18 20 90.0
8 MD-N 16 18 88.9
9 E-G 16 18 88.9
10 B-G 17 20 85.0
11 BC-I 16 20 80.0
12 E-PC 14 18 77.8
13 N-PS 14 18 77.8
14 CS-M 13 18 72.2
15 BC-MD 14 20 70.0
16 BC-C 14 20 70.0
17 E-P 12 18 66.7
18 B-1 13 20 65.0
19 CS-SS 10 16 62.5
20 H-PS 5 8 62.5
21 M-P 11 19 579
22 C-E 10 18 55.6
23 C-p 11 20 55.0
24 HS-N 8 15 53.3
25 CS-E 9 17 529
26 C-G 10 20 50.0
27 HS-PS 8 16 50.0

MD). This brought the total number of paired relationships
to 535. Less than 10% of the nodes (26 out of 275) in all
20 maps had multiple area assignments. Only seven nodes
had three area assignments, and none had four or more area
assignments. We then calculated which pairs of relationships
could appear in which maps. Some pairs of areas could not
occur in all 20 maps. For example, the engineering (E) and
physical chemistry (PC) areas were only present together in
18 of the 20 maps. They were connected by an edge in 14 of
those 18 maps; thus this edge occurred 77.8% of the times
possible. Consensus links are listed in Table 3.

Two-Dimensional Consensus Maps

Figure 4 illustrates how the pruning of edges affects the
final layout of a two-dimensional map generated from con-
sensus pairs of scientific areas. Figure 4a shows the effect of
extreme edge pruning. In this map, only the top 15 edges (and
the tie for # 15) from Table 3 were used to generate the map.
A hierarchical picture emerges. One sees a similar ordering
of areas to that seen in many of the individual maps; the hier-
archy starts with physics and continues through engineering,
the earth sciences, and biology/biochemistry. There is also a
separate branch from physical chemistry through chemistry
to biochemistry. The hierarchy then continues through the
medical areas to the social sciences and humanities. Com-
puter science and mathematics form a separate component in
this map; they do not link to the large component at a high
level of edge pruning.

Figure 4b shows what the two-dimensional consensus map
looks like if all of the edges from Table 3 are included. In this
case, we get the noncentric form, with the familiar progres-
sion of scientific areas seen in so many of the individual
input maps. Mathematics, arbitrarily placed at the top, is
followed clockwise around the circle by physics, chemistry,
biochemistry, and biology, the medical areas, brain research,
psychology, social sciences, and computer science, ending
up back at mathematics. Small branches off this main cir-
cle pick up the other areas of engineering, geology, and the
humanities. In neither case can one duplicate the centric pic-
tures suggested by some of the input maps in Table 1. As
previously mentioned, we suggest that the centric maps are
an artifact of the underlying bias in the database, the use of
inaccurate measures of relatedness, and/or a layout that does
extreme edge cutting. These biases lead to a false impression
that there is a center to science, and should be avoided.

We realize that generation of a consensus map of science
in which 8 of the 20 input maps come from members of our
collaborative team (Klavans, Boyack, and/or Borner) would
lead some researchers to suspect a bias toward our previous
results. To alleviate these concerns we have performed the
same analysis while excluding all 8 of our input maps. The
consensus maps in Figure 5 were generated from the remain-
ing 12 maps using the paired relationships and the same
thresholds, and thus have no direct input from maps generated
by our team.

Figure 5a shows the hierarchical structure from extreme
edge pruning, in which the map has been generated from the
top 15 edges. This map has some similarities and some dif-
ferences from the structure shown in Figure 4a. The biggest
difference between this map and the one generated from all
20 input maps is that the single large hierarchical component
from Figure 4a is not preserved; it splits into two components:
one for physics and chemistry, and one for the balance of the
hierarchy. There is also more linking between the life and
medical sciences in the lower component than was found in
the hierarchical structure of Figure 4a. In addition, both math-
ematics and computer science are now isolates. We also show
a dashed edge between physical chemistry and engineering,
which would have appeared if the threshold were lowered by
just one edge (this was the 16th edge). Figure 5b shows a
similar noncentric shape to that found in Figure 4b. Math-
ematics and computer science have switched positions. In
general, the number of links within the physical sciences and
the number of links within the medical and social sciences
have increased. However, the edge between mathematics and
physics is no longer present. This map seems every bit as
robust as the map in Figure 4b; there are similar numbers of
edges in the 90%—-100% and 70%—-90% consensus ranges in
both maps. Comparison of the number of times each of the
consensus edges occur in the two maps (Figures 4b and 5b)
gives a correlation of .81.

The consensus maps obtained by excluding the 8 input
maps from our research team are sufficiently similar to those
obtained using the full set of 20 maps that no bias based on
dominance of a single research team can be claimed. We thus
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FIG. 4. Two dimensional consensus maps of science from all 20 input maps.

advocate that the noncentric map of science based on all 20
input maps using all consensus edges (from Figure 4b) be
adopted as a consensus map of science. We have shown that
the map would take a hierarchical form if one wanted to
use high thresholds (15 edges) and ignore important relation-
ships. We have also shown that the data does not lend itself to
a centric form for reasons given above. The data does, how-
ever, generate a noncentric form if one wants to capture the
majority of the information from the 20 maps in Table 1.

One-Dimensional Consensus Maps

Figure 4 suggests a solution that is very close to being
one-dimensional. If math and physics are linked, 13 of the 16
areas in Figure 4a can be placed in a strict order. Most of the
remaining 3 areas can be placed in order so that they are only
one hop away from the area they were linked to. Figure 4b,
however, does not seem to be as easily collapsed into a circle
onto which the 16 areas are consecutively ordered. Despite
this, we have calculated the one-dimensional solutions that
have the highest correspondence with the 20 existing maps
(see Figure 6).

We find that the circular solution has higher correspon-
dence (74.1%) that the linear solution (70.4%). This is not

a surprising finding. One can prove, relatively easily, that a
solution based on a curved surface (Riemannian space) will
be equal to or superior than a solution based on a flat surface
(Euclidean space).

Take, for example, the Euclidean solution in Figure 6. If the
two ends of the solution are linked, creating the Riemannian
solution, the correspondence increases because of the link
between CS:SS and the one-hop links between SS:M and
CS:H. The Riemannian solution will always be equal to or
better than the Euclidean solution because votes for nodes
on the outer edges will be added in where applicable. Use of
Riemannian space does not mean that the ends must be linked,
but rather enables an additional linkage to be made where
appropriate.

Correspondence Between Maps

In much of our previous work we have been very careful to
establish the accuracy of our methods and the resulting maps
(Boyack et al., 2005; Klavans & Boyack, 2006a, 2006b).
In this case there is no objective standard that can be used
to measure the accuracy of the consensus map, but we can
measure the correspondence between the consensus map and
the 20 input maps. Multiple aspects of correspondence are
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TABLE 4. Characteristics of edges from 20 maps of science on the
consensus map of science.

Number of hops Count Percent Accuracy value
1 345 78.4 1.0

2 73 16.6 0.5

3 18 4.1 0

4 4 0.9 0

Total 440 100 0.867

examined here. First, we look at the overall ability of the
consensus map to capture the data from the 20 maps. Sec-
ond, we look at the correspondence of each of the 20 maps
from three perspectives. Two perspectives focus on local cor-
respondence based on an analysis of paired relationships.
This follows the method of Klavans and Boyack (2006a), in
which paired relationships in maps are compared with the
paired relationships of a gold standard. The third perspec-
tive focuses on a measure of regional correspondence, where
regional correspondence refers to the ability to put all of the
nodes representing one area in the same region of a map
(Klavans & Boyack, 2006b). Maps that split up an area of
science (such as chemistry appearing on the left and then
again on the right) have lower regional correspondence.

Table 4 shows the ability of the consensus map to cap-
ture the information in all 20 maps of science. Using the
400 edges listed in Appendix A and the 40 edges inferred
by the relationships inside the multiarea nodes (e.g., for the
node C;PC, we infer the edge C-PC), we used the consen-
sus map in Figure 4b to determine how many hops between
nodes it would take to traverse the path suggested by each
of the edges. For example, the simplified SCImago-II map in
Figure 1c suggests that biology (B) is linked to chemistry (C).
The consensus map suggests that one has make two hops, or
traverse two edges (B to BC, and then BC to C), to go from
B to C. Each edge was analyzed in this fashion. For edges
associated with multiarea nodes, the shortest path from any
of the areas in the multiarea node was used. For example, if
there was an edge between nodes [;MD and BC;C, the edge
was considered to have only one hop on the consensus map if
any of the four possible edge combinations (BC-1, BC-MD,
C-I, or C-MD) existed on the consensus map. The reason
for calculating correspondence in this manner is that we did
not want to arbitrarily penalize a map for having multiarea
nodes. Over three-quarters of the paired relationships from all
20 maps appear as a paired relationship in the consensus map
(number of edges traversed was 1). These 345 relationships
were coded as having 100% local correspondence.

We also assumed that traversing across two edges does not
indicate a complete lack of correspondence. This is analogous
to talking to someone sitting two chairs away while sitting
at a large table; it is not necessarily easy to do, but not too
hard either. This occurred in 17% of the cases, which we
coded as having 50% (partial) correspondence. By contrast,
talking to someone sitting three or more chairs away is very
difficult. Thus, the 22 cases where one had to traverse three or

more edges were considered to have no correspondence. The
overall ability of the consensus map to reflect the combined
input of the 20 individual maps is 86.7%.

The correspondence of individual maps can be calculated
in two different ways. First, one can assume that the con-
sensus map is the gold standard, and count the number of
hops associated with each of the edges in a particular source
map. This is the method used in Table 4, aggregated to all
20 input maps. Or, one can assume that the individual map is
the gold standard, and count the number of hops associated
with each of the edges of the consensus map. We calculate
correspondences using both of these bases.

Table 5 lists the correspondence of the 20 maps in Table 1
from these two perspectives. Type 1 local correspondence
is the latter case, where the individual map (called “Source
map” in the table) is the gold standard. This measures how
well the consensus map agrees with the source map. Type 2
local correspondence is the former case, in which the con-
sensus map is considered the gold standard. This measure
shows how well the source map agrees with the consensus
map. In each case, we calculated accuracies using the same
method (numbers of hops on the network) and the same cor-
respondence coding assumptions used to calculate the overall
correspondence of the consensus map in Table 4. These two
types of local correspondence are highly correlated, but not
identical. The majority of the difference comes from the
denominator of the calculation; in the Type 1 case the number
of edges in the source map is used as the denominator, while
in the Type 2 case the number of edges (27) in the consen-
sus map is used. Thus, there are cases where a source map is
communicating something unique that is not captured by the
consensus map. These unique contributions will be discussed
in a subsequent section.

Table 5 also lists several other values. Regional corre-
spondence is defined as the ability of a map to put all of
the research, for a specific area of science, in proximate
locations on a map (Klavans & Boyack, 2006b). In this
paper, we defined regional correspondence as the number
of unique areas of science represented on the map divided
by the number of total nodes. As mentioned above, regional
correspondence decreases when a scientific area appears in
multiple locations on a map. We note that experts who gen-
erated detailed maps by hand (Bernal, 1939, and Ellingham,
1948) made great efforts to maintain a high level of regional
correspondence. The map with the lowest regional correspon-
dence was the SCImago-II map (Figure 1). All 16 unique
areas of science were represented in their network; however,
many of these areas were given multiple positions in dis-
persed areas of the network. This type of dispersion only
occurred in 5 of the 20 maps.

Table 5 is ordered by a figure of merit that is the mean of the
three correspondence measures. This ordering suggests that
the correspondence of the expert maps has only recently been
matched by that of algorithmically generated maps. The two
detailed expert maps drawn 60 and 70 years ago by Bernal
(1939) and Ellingham (1948) are ranked fourth and sixth in
the set of 20 maps, both with figures of merit greater than 93 as
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TABLE 5. Correspondence measures for 20 maps of science.
Local Local2
correspondence correspondence Regional Figure of Multi-

Source map Year Type Typel Type2 correspondence merit # Areas nodes
KB06-SC 2006 Paper 95.8 94.0 100.0 96.6 15 0
Backbone 2004 Inl 97.6 88.0 100.0 95.2 15 0
UCsSD 2007 Inl 95.7 88.9 100.0 94.8 16 0
Ellingham 1948 Expert 90.0 92.1 100.0 94.0 12 1
KB-Para 2005 Paper 92.3 94.4 93.8 93.5 16 1
Bernal 1939 Expert 85.7 94.0 100.0 93.2 15 2
Scimago-1 2004 Categ 90.9 87.5 100.0 92.8 15 2
KBO06-TS 2006 Paper 91.7 90.7 93.8 92.1 16 1
B03-ST 2005 Inl 92.5 82.0 100.0 91.5 15 0
BBKO02-S 2004 Jnl 92.5 80.0 100.0 90.8 15 0
Rosvall 2007 Inl 78.3 93.2 100.0 90.5 14 2
Small99 1999 Paper 78.6 89.5 100.0 89.3 13 3
Balaban-II 2007 Pre-req 85.0 82.0 100.0 89.0 15 4
K02 2002 Jnl 84.2 81.8 100.0 88.7 15 1
LR 2007 Categ 86.1 73.9 100.0 86.7 14 0
Balaban-I 2007 Expert 73.9 79.6 100.0 84.5 16 3
Small85 1985 Paper 84.2 76.0 86.7 82.3 15 2
Small74 1974 Paper 69.2 76.5 100.0 81.9 13 2
B-Z 1999 Inl 80.6 71.7 933 81.9 14 1
Scimago-II 2007 Categ 90.0 75.9 75.0 80.3 16 1

evaluated against the consensus map. Although neither map
covered all 16 areas of science as listed in Table 2, when com-
pared against the consensus for the areas of science they cov-
ered, they agree very well with the consensus. The map with
the highest overall figure of merit is the paper-based map
generated from Scopus data by Klavans and Boyack (2007).
We also note that all of the journal- and paper-based maps
generated since 2002 have figures of merit above 88. Paper-
and journal-based maps generated before that time were sub-
ject to much higher levels of disciplinary bias, and thus have
lower figures of merit. Three of the four lowest ranked maps
are also those with the lowest regional correspondence values.

It is also interesting that, in general, the number of mul-
tiarea nodes increases as we progress down the list. Five of
the six maps with no multinodes are ranked in the top 10
maps. This finding was somewhat counterintuitive to us for
the following reason. Given the way correspondence was cal-
culated, with edges associated with multiarea nodes getting
the highest correspondence value found from any of their
permutations, one would expect the presence of multiarea
nodes to increase the correspondence value. We thus expected
the rankings to show more multiarea node maps near the
top. Table 5 shows that this was not the case. The results in
Table 5 also suggest that, of the algorithmically generated
map types, the paper- and journal-based maps seem com-
parable, and both have slightly higher correspondences than
category-based maps.

Shortcomings of the Consensus Map

The major shortcomings of the consensus map arise from
edges (from the 20 input maps) that would have to go part or
all of the way across the middle of the consensus map. While

JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY—March 2009

this only accounts for 5% of the edges (those requiring three
or more hops from Table 4) across all maps, these instances
are worth noting. The largest shortcoming of the map con-
cerns edges from mathematics and computer science. Twelve
of the 21 edges requiring 3 hops or more go from either math-
ematics or computer science to more distant nodes across the
map. These two disciplines seem to have broad application to
many areas. However, due to the low coverage of computer
science in most databases, and the lower level of citation
in both mathematics and computer science, they tend to be
poorly represented in many maps.

The best example of a map that overcomes this shortcom-
ing is the one by Leydesdorff and Rafols (2008). While this
map is listed in the lower half of the correspondence listings
in Table 5, its lower score is largely due to computer science
being located as an important bridge between the physical
and biological sciences. Therefore, one might argue that the
map does not have lower correspondence, but rather that it
highlights the interdisciplinary nature of computer science,
which is not picked up as well by other maps.

Another shortcoming is the proximate location and link-
age associated with the humanities. Most of the maps locate
the humanities as an appendage to the social sciences or do
not locate this field at all. Balaban’s (Balaban & Klein, 2006)
location of the humanities at the top and the bottom of his
hierarchy is quite intriguing, and is supported by anecdote (in
his paper), but not by strong analysis. Exactly where should
one locate the humanities, and what should the proper link-
ages be? The data and methodologies used to generate the
maps in Table 1 are not well designed to answer these ques-
tions. Future maps that better represent the role of the human-
ities through the use of more comprehensive data sources or
better algorithms may shed more light on this question.
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Discussion

The previous section has shown that the consensus map
emerges as a noncentric form, and represents the consensus
of the 20 maps listed in Table 1 in a suitable fashion (with
exceptions noted). In this section, we present the advantages
to adopting a noncentric consensus map along with other
findings from this study.

Maps of Scholarly Activity

Nineteen of the 20 maps we reviewed are maps of scholarly
activity. The maps are intended to describe the relation-
ships between different areas of research. We’ve also pointed
out that these 19 maps do not cover all areas of scholarly
work. Early maps of science provided little space for medical
research, and one did not include mathematics. The remain-
ing 17 maps are based on the journal literature, and reflect
the journal biases in the corresponding databases. For exam-
ple, we’ve discussed the fact that the TS database (which
underlies most of the maps we’ve reviewed) does cover the
humanities and social sciences, but does not have the nec-
essary depth in more applied areas such as health services
and engineering. Efforts to overcome this bias (i.e., using the
Scopus database) results in other biases (this database does
not cover the humanities).

An unbiased map of scholarly activity can provide insights
into regional and national values and beliefs. Scholarly
work is not simply about supporting researchers. It’s about
tradeoffs between supporting the arts, providing an under-
standing about how people behave, providing health and
well-being to society, pursuing technoeconomic goals, and
supporting basic research that may have no immediate
economic or social impact.

Maps can play an important role in communicating the
national orientation towards these different objectives. It is
important, however, that the layout does not automatically
imply that one area of scholarship is superior to another.
Stated differently, one needs a framework where the follow-
ing seemingly contradictory goals are met: each scholar is at
the center of the map, and no scholar is at the center of the
map.

The topological solution to this conundrum is to use
Riemannian space, to look at circles (where each area is
placed on the outside of a circle) or, as in the case of one
of the maps we reviewed, to place the areas of scholarship
on the surface of a sphere. One of the intriguing aspects of
these surfaces is that each node can be thought of as being
at the center of the surface (since there are no “ends” to the
surface), and at the same time no areas are at the center of
the geometry (i.e., the sphere) itself.

This begs the question as to why most maps are generated
in Euclidean space. In the previous section on the one-
dimensional consensus map, we provided a simple thought
experiment that proved that a solution in one-dimensional
Riemannian space will often be more accurate than a solution
in one-dimensional Euclidean space. This will be true if one
increases the dimensionality as well, because the underlying

cause (the ability to add in more links) will always appear
when one shifts from Euclidean to Riemannian topology.

Despite the inherent advantages of Riemannian topology,
there are few if any algorithms or statistical packages that are
written for simple forms of Riemannian space. Additionally,
we know of no simple test to determine what the underlying
Riemannian dimensions of a data set might be, or that would
tell us whether the underlying dimensions of a data set are
Riemannian or Euclidean. We hold this out as an important
need for new algorithms that would be very useful for this
area of research.

Maps of Educational Activity

Only one of the 20 maps reviewed here looked at educa-
tional activity. Instead of dismissing this map as an outlier,
we would like to emphasize that a map based on educa-
tional curricula or other indicators of educational activity
has some important implications for the way maps of sci-
ence are created. The following discussion explores some of
the implications of creating maps of and/or for educational
activity.

Science education is not simply about learning about spe-
cific scientific topics or subjects. It should be more about
teaching of the scientific method, about the acts of discov-
ery and exploration that enrich our lives in a multitude of
areas, about critical thinking, and about the fact that science
can and should be fun. Science education should be about
communicating that there are many more areas that can be
discovered, that students can take part in this process, and
that students need not be discouraged with initial difficult
experiences with mathematics or physics, or with an ineffec-
tive science teacher. (These are not uncommon occurrences
among our elementary and secondary students today.)

Maps can play a subtle role in communicating where both
old and new discoveries are located. Fundamentally new dis-
coveries are often located in the white spaces, or areas of a
map with little or no activity. For example, consider the maps
of the world that were drawn in the 13th or 14th century.
These maps would show the known world floating on a sea
of uncertainty. There would be labels on this open space such
as “here there be dragons” to indicate the inherent risks in
exploring these areas. The same is true for maps of science.
Each map has (or should have) white spaces. These white
spaces are where communities of researchers are not located.
New discoveries would nearly always appear in the white
spaces.

A noncentric map can tell a unique story about the location
of new discoveries. In the extreme case where all disci-
plines are lined up around the circle, new discoveries could
be located within the circumference of the circle. Assuming
that new discoveries are likely to be more interdisciplinary
than past ones, these new discoveries could be located closer
to the center of the circle. Their exact locations could reflect
the relative influences of existing areas of science on the new
work. Placing existing work along the circle, with all points
equidistant from a center, implies that all existing work can be
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valued equally. This is not to say that the obviously ground-
breaking discoveries of the past have been of no more value
to society than other work, but is intended to convey to the
student that new discoveries can arise from many directions.
A noncentric map can place high value on new discoveries
and on interdisciplinary research.

Centric and hierarchical maps, on the other hand, inher-
ently imply that there is more status in some areas of science
than in others. A hierarchical map will likely place more
emphasis on the role of the top discipline in the hierar-
chy (usually mathematics). The “hard sciences” have always
enjoyed higher status than the so-called “soft sciences.” A
centric map confers the highest status on the central (domi-
nant) area of research, and also implies that areas of science
at the ends of branches are of lower status, or perhaps even
dead ends. To us, neither of these two map forms conveys the
positive message of science to students in the same way that
a noncentric, or status-free, map can.

Use of a noncentric map also follows logically from the
differences between classification and mapping that were
mentioned earlier. Most classification systems are hierar-
chical within the various classes. If a higher-level node
is assumed, to which all of the classes are linked, these
systems then have a centric nature to them. By contrast,
algorithms that project multidimensional space down to
two dimensions have no centric or hierarchical assumption.
Thus, noncentric forms can emerge naturally from mapping
efforts, while most classification systems are constrained to
hierarchical or centric forms. For these reasons, we would
suggest that noncentric consensus maps, such as the ones
presented in Figure 5b or 6, would be the most applicable to
education.

We also wonder why more maps of science have not been
generated from information about educational activity. There
is a decided bias towards using the journal literature. While
the map generated by Balaban and Klein (2006) may be
biased—the data did not reflect what students choose and is
greatly influenced by the fact that the college is an agricultural
college—the underlying concept is extremely promising.
One could generate maps of elementary education, sec-
ondary education, and college using different inputs about
course curricula and the natural affinities or dislikes that stu-
dents have for pairs of courses. We hold this out as another
important area for future research.

Summary

Our goal in this paper has been to examine many maps of
science to see if a consensus map of science would emerge
from those data. We have examined, described, and analyzed
20 comprehensive maps of science generated by different
researchers, using different data and different methodolo-
gies. A consensus map of science did emerge from these
data, and takes a noncentric form if all consensus edges,
those occurring in over 50% of the input maps, are retained
in the map. In addition, the correspondence between the con-
sensus map and of each of the individual input maps was

measured. Some shortcomings of the consensus map were
also discussed.

We also discussed the inherent advantages of the noncen-
tric form, and showed how use of a Riemannian topology
in place of a Euclidean topology would increase the corre-
spondence of a map. In keeping with that finding, we suggest
that Riemannian maps of science be used where possible.
For instance, the simplest (one-dimensional) solution using
a Riemannian topology would be to place the 16 areas of
science around the perimeter of a circle. The network of sci-
ence in this simple case would be represented using 16 nodes
and 16 edges. Use of the consensus map in Figure 4b would
provide a more complex and more realistic shape, which
although not in Riemannian space, is noncentric and thereby
has a Riemannian flavor. The correspondence of these simple
shapes is extremely good. For instance, the two-dimensional
network of Figure 4b captures 75% of all paired relationships
from the initial sample of 20 maps. An additional 19% of the
paired relationships from the 20 maps are only two hops from
each other on the consensus map.

We’ve pointed out two fruitful areas for future research.
First, there is a need for algorithms that are based on Rie-
mannian space. These algorithms have the promise, almost
by definition, to generate more accurate maps of science. Sec-
ond, there is a need to generate more maps of science based
on educational activity. Previous work on science mapping
is mostly based on the existence of well-structured databases
of scholarly activity. Maps based on educational activity can
have a significant impact on our understanding of how to
teach and communicate the role of science in society. A map
of Library of Congress holdings may prove to be very useful,
and could have implications far beyond education.

We’ve also pointed out the difference between science
maps and knowledge maps. The maps presented here are
not knowledge maps. There is no attempt to answer basic
questions of ontology, or to make sure there is a direct and
unambiguous correspondence between the phenomena (sci-
ence) and the classification system. Rather, we address a
cartographic question—how one might partition science into
a small number of like-sized groups and which groups are
adjacent. The fact that these adjacency relationships have not
changed dramatically since 1939 is quite remarkable.

We would also like to point out that while this study has
produced a consensus map of science, it is not a convergent
map of science. There is a substantial difference between
the two. The consensus map is the result of an aggregation
of information from many different maps. It considers input
from experts as well as a variety of algorithmic approaches.
Although it is heavily weighted to newer maps, it maintains
some contact with maps that are decades old.

By contrast, convergence implies that researchers, over
time, are agreeing on partitions (how to divide science), and
the explicit linkages between those partitions. A quick look at
just three maps published in the last two years, the UCSD map
(Klavans et al., 2008), the SCImago-II map (Moya-Anegén
et al., 2007), and the co-category map of Leydesdorff and
Rafols (2008), shows a lack of convergence. Of these three,
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one is noncentric, one is centric, and the third is of a mixed
form. Due to the variety of data sources, relatedness mea-
sures, and mapping algorithms in use today, we do not expect
convergence anytime soon.

In lieu of convergence, we suggest that a consensus map
can still be very useful for a variety of purposes. We propose
that the one-dimensional (Figure 6) and two-dimensional
(Figure 4b) consensus maps of science be adopted for educa-
tional purposes. The two-dimensional map is more effective
for navigational purposes. The one-dimensional map, while
it has lower correspondence, is more effective for show-
ing patterns of interdisciplinary research. Given the need to
emphasize exploration and discovery, we lean towards adop-
tion of the one-dimensional map, which appears as a simple
circle of science.
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Appendix A: Matrix of Edges by Map

Bernal
Ellingham
Balaban-I

Edge

Small74

Small85

Small99

KB-Para

KBO06-TS

KB06-SC

B-Z

K02

Backbone

BBKO02-S

B03-ST

UCSD

SCImago-I

SCImago-II
L-R
Rosvall
Balaban-II
Total

B;I-BC

B;I-C

B;I-MD;N

B;I-PS

B-B;1

B-BC 1 1
B-BC;I 1
B-BC:;I;MD

B-C 1 1
BC:I;MD-C

BC;I;MD-CS

BC;I;MD-1

BC;I;MD-M
BC;I;MD-MD

BC;[;MD-N

BC:;I;MD-P

BC;I;MD-PC

BC:.I;MD-PS

BC;I;MD-SS

BC:I-C;PC

BC:I-E
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BC;I-N

BC;I-PS;SS 1
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BC-C 1 1
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B-E 1 1
B-G 1 1 1
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Appendix A. (Continued)

Edge
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Total

C-E

C-G
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E-PS;SS
E-SS

G-M

G-P

G-PC
G-PS;SS
H;SS-N
H;SS-PS
H-M
H-PS;SS
HS;I;MD-MD
HS:;I;MD-N
HS;I;MD-PS;SS
HS;MD-I
HS-T
HS-I;MD;N
HS-MD
HS-N
HS-PS
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