
ORIGINAL ARTICLE

Toward a cooperative programming framework

for context-aware applications

Bin Guo • Daqing Zhang • Michita Imai

Received: 17 November 2009 / Accepted: 22 April 2010

� Springer-Verlag London Limited 2010

Abstract OPEN is an ontology-based programming

framework for rapid prototyping, sharing, and personaliza-

tion of context-aware applications. Unlike previous systems

that provide programming support for single group of users,

OPEN provides different programming support for users

with diverse technical skills. According to the programming

requirements of different users, several cooperation patterns

are identified, and the mechanisms to facilitate resource

sharing and reuse are built into the framework. Three cor-

responding programming modes are elaborated by showing

how a context-aware game has been developed with the

support of the OPEN framework, and the usability of our

system is validated through an initial user study.

Keywords Context-aware computing � Cooperation �

End user programming � Semantic web

1 Introduction

With the advent of sensor networks and the prevalence of

networked embedded devices, we are moving much closer

to realizing the vision of context-aware spaces. As we

create context-aware systems, we must think ahead to

consider how they can be programmed and tailored by

users. Here, the term ‘‘users’’ refers to both professional

developers and non-expert end users. There have been

recently various context-aware applications and prototypes

developed by researchers to demonstrate the benefits of this

new paradigm. However, the dynamic nature of ubicomp

environments and the diverse, changing requirements from

end users often make these ‘‘hard-programmed’’ applica-

tions inadequate in terms of flexibility.

Enhancing end user participation in the initial design of

context-aware systems can somehow relieve this problem.

However, given the fact that end users differ greatly in

terms of their environments and expectations about how

their applications should behave under different situations,

and it is hard to precisely identify all these possibilities

beforehand, the traditional ‘‘design-before-use’’ method is

not sufficient to program evolving context-aware spaces.

Instead, it is more reasonable to empower end users to

build and adapt systems that fit their individual needs. This

insight has fostered a new research topic called end user

programming (EUP), whose main goal is to provide a set of

methods and toolkits that allow non-expert users to create

or modify a software system [1].

A number of toolkits have been developed to allow

programming of context-aware applications by either

developers or end users (see related work in Sect. 2). These

systems always provide certain kind of programming

abstraction, such as context processing APIs for develop-

ers, and graphical or tangible interfaces for end users, to

ease the development process.

However, there are still several challenges that need to

be addressed. First, existing systems do not take the

diversity of user skills and interests into account. From a

user-centered design perspective, they each provide single

B. Guo (&) � D. Zhang
Telecommunication Network and Services Department,

Institut TELECOM SudParis, 9, Rue Charles Fourier,

91011 Evry Cedex, France

e-mail: bin.guo@it-sudparis.eu; bingo@ayu.ics.keio.ac.jp

D. Zhang

e-mail: daqing.zhang@it-sudparis.eu

B. Guo � M. Imai

Keio University, Hiyoshi 3-14-1, Kohoku-Ku,

Yokohama 223-0061, Japan

e-mail: michita@ayu.ics.keio.ac.jp

123

Pers Ubiquit Comput

DOI 10.1007/s00779-010-0329-1



programming support that fits only a certain group of users

(e.g., professional or non-expert level), failing to support

other category of users. Second, existing systems rarely

consider the cooperation among users. For example, the

communication gap between developers and end users can

lead to a situation where a professional application created

by a developer cannot be easily tailored by an end user

according to his particular needs, and on the other hand, the

feedback from end users cannot be easily communicated to

application developers.

To address these issues, we have developed the OPEN

framework, with an aim at allowing a broad category of

users’ participation and cooperation in the development of

context-aware applications. Unlike previous studies, OPEN

follows the ‘‘gentle slope’’ principle [1] by designing a set

of programming modes with diverse complexity, which

enables different users to develop and tailor more context-

aware applications. Taking advantage of the Semantic Web

technologies, people utilizing different programming

modes can cooperate with each other by publishing, reus-

ing, and tailoring shared resources (e.g., application tem-

plates, rules, etc.), which substantially enhances the

cooperation among users and speeds up the development

process. The effectiveness of our system is evaluated

through a user study, with users testing different pro-

gramming modes.

2 Related work

Over the last decade, a lot of researchers have been

working on programming support for context-aware sys-

tems. Much attention has been paid to providing support to

professional developers. The pioneering work of Context

Toolkit presents an object-oriented architecture for rapid

prototyping of context-aware applications [2], including a

set of programming abstractions that separate context

acquisition from context consumption. Similar to Context

Toolkit, the Solar platform also uses attribute-value pairs to

represent contexts [3]. It facilitates developers’ work by

providing a series of reusable ‘planets’ for context collec-

tion and a subscription mechanism for context consump-

tion. The two systems all used informal method to

represent contexts, which cannot provide good support on

knowledge sharing and reuse. Therefore, most developers

have to start from scratch when building new context-

aware applications. Recent studies have explored the

Semantic Web technologies to address this issue [4–8]. In

the CoBrA project [4], Chen et al. leverages the Web

Ontology Language OWL to define ontologies that can be

shared and reused by developers in the smart meeting room

domain. Wang et al.’s Semantic Space infrastructure

exploits the Semantic Web-related technologies to support

explicit representation, expressive querying, and flexible

reasoning of contexts in smart spaces [5]. Gu et al.’s SO-

CAM [6] is an ontology-based, service-oriented middle-

ware that supports rapid prototyping of context-aware

services. Yu et al.’s CMM context-aware architecture [7]

aims at supporting context-based content filtering and

recommendation in the development of multimedia appli-

cations. Our earlier work [8] provides a rule-based infra-

structure that allows developers to deal with possible

sensor failures in context-aware systems by writing heu-

ristic rules. All these systems intend to provide program-

ming-level abstractions for developers, rather than

targeting non-expert users developing context-aware

applications.

In recent years, a few researchers began to work on

enhancing end user programming to ease the development

of context-aware applications, and they explore different

ways to achieve this. Some systems attempt to provide

alternative input mechanisms (in most cases, a visual

programming environment) to avoid coding, as reported by

iCAP [9]. The UbiPlay project utilizes a ‘‘finite-state-

machine’’ metaphor to enable non-expert users to program

a smart playground [10]. Physical or tangible programming

methods are also exploited. The two projects, StoryRoom

[11] and AutoHan [12], empower end users to construct

programs by manipulating physical objects. A detailed

survey on existing high-level abstraction programming

toolkits for context-aware applications can be found in

Tang et al. [13]. While these are very imaginative meth-

ods, they are only designed for certain kind of end users.

For example, some systems, like [11, 12], are easy to use

but their functionality is limited; other systems, like [9,

10], support relatively complex application designs but

they may place a significant cognitive load upon non-

expert users (most of them are based on the structured

programming metaphor which is mainly familiar to

programmers).

As previous systems are designed to suit the needs of a

certain group of users (e.g., professional or non-expert

level), the sharing and reuse in resources, applications and

user experiences, are almost neglected, though it has been

investigated in [9] that there is quite big overlapping

among users’ needs over context-aware applications.

Our system differs from and perhaps outperforms pre-

vious work in the following respects. To meet both the

‘‘functionality’’ requirement from developers and the

‘‘simplicity’’ requirement from end users, multiple pro-

gramming supports are provided, ranging from program

tailoring to program creation. Furthermore, we identify

several cooperation patterns among users and embed them

into our programming framework, which greatly facilitates

the programming process as well as the creation of more

flexible context-aware applications.

Pers Ubiquit Comput

123



3 Requirements and solution guidelines

A typical context-aware application consists of a set of

IF–THEN templates (e.g., if a person enters a room, then

turning on the light of this room), within which the IF part

consists of several contexts (to depict a particular situation)

that can be derived by using inference rules (e.g., a rule to

determine that a person enters a room) and the THEN part

is specified by desired actions (e.g., turning on a light).

Traditional context-aware programming frameworks

usually provide a programming toolkit for users to define

inference rules (we call it the inference-rule part) and

specify actions in response to context changes (we call it

the action setting part) at a certain abstraction level. The

term ‘action setting’ used here has a broad meaning in

terms of adapting system behavior to context changes,

which includes specifying device behaviors (e.g., turning

on a light) and configuring system parameters (e.g., QoS

settings). Our work mainly supports device behavior

specification in its current implementation. To support the

programming toolkit’s work, two modules are often asso-

ciated: a context manager for representing and processing

contexts, and a context aggregator that collects contexts

from heterogeneous sensors. The design goal of our

framework is to support a broad category of users’ par-

ticipation and cooperation in the development of context-

aware applications. To build such a framework, many new

challenges are specified. We focus here on three key issues.

(1) A unified, evolving context model to be shared among

context-aware applications. Context representation

provides the foundation for sharing, reuse, interoper-

ation among context-aware applications. As a collab-

orative environment, users must agree on a shared

conceptualization of a particular domain (e.g., smart

homes, smart offices), which provides a unified way

for context representation and an unambiguous way

for user cooperation. Emerging ontology standards,

such as RDF and OWL, have been previously

explored to explicitly represent contexts [4–8]. As

those systems are designed for a small group of users,

the ontology used can simply be extended to meet the

evolving context-aware environment (e.g., a new kind

of sensor is equipped). However, this may result in

context inconsistency under a collaborative environ-

ment, given that users from different groups may

extend the domain ontology in an arbitrary way.

Therefore, a unified, consistent management mecha-

nism should be used to control evolvable context

ontology.

(2) Providing multiple programming modes with different

complexity. Users differ from each other on their

technical abilities. Professional developers are able to

exert control over all components of a context-aware

environment (e.g., adding new sensors, extending

domain ontology). Some end users have certain

technical skills and they are willing to create appli-

cations using a EUP toolkit. Most other end users

have little or no technical skills and they may lose

interest in maintaining a context-aware system if the

operations are complex. Therefore, there are broadly

three different technical levels—high, middle and

low—which makes it hard to meet their different

requirements by using a single programming method.

Instead, we should provide appropriate support to

users with diverse skills and interests.

(3) Supporting cooperation among users. Despite users

are diverse in their technical abilities, there is big

overlapping among their needs on context-aware

services, which leads to the requirement on user

cooperation and sharing. Users can cooperate with

each other in various styles (e.g., individual-based or

group-based, synchronously or asynchronously, etc.).

Here, we concentrate our discussion on potential

cooperation patterns raised by diverse technical

background of individual users. Indeed, we exploit

the following three cooperation patterns.

• Cooperation between developers and end users:

The diverse technical ability of these two user

groups leads to an interesting bi-directional

cooperation pattern. On one hand, a developer

can develop a ‘‘template’’ application and publish

it as a shared one. An end user can simply

configure some parameters to the inference-rule

part of this application and specify preferred

actions in its action setting part. For actions, we

mean physical actions (e.g., turning on a light) or

virtual/multimedia actions (e.g., playing a music

clip, displaying an image). Users can share

multimedia resources to enrich their action setting

operation. On the other hand, when end users find

some problems or new requirements in using the

shared application, they should be able to send

their feedback to developers, which results in the

requirement for a communication channel. In

summary, from this cooperation pattern, three

types of sharable resources can be derived, they

are, application templates, multimedia action

resources, and a communication channel.

• Cooperation among developers: When creating

applications, developers define various rules to

detect different situations. Since an individual

situation can involve different applications (e.g., a

no-person-in-house situation should both be rec-

ognized by an energy-saving application and a

Pers Ubiquit Comput

123



safety-monitoring application), the associated

inference rules can be reused by different devel-

opers. This leads to another type of sharable

resource—inference rules.

• Cooperation among end users: If an end user

tailors an interesting application, he may expect to

share his finding or experience with his friends or

colleagues. Therefore, there should be a way to

facilitate this process.

4 The OPEN cooperative programming framework

Based on the identified requirements, we developed the

OPEN cooperative programming framework. As shown in

Fig. 1, it consists of several collaborating modules: the

context providers, the context manager, programming

toolkits, and the resource-sharing server.

• Context providers provide context abstraction to sep-

arate low-level context sensing implementation from

context manipulation, which is achieved by introducing

the wrappers. The wrappers are self-configuring com-

ponents that can communicate with various sensors

and actuators, abstracting raw contexts or adjusting

the behaviors of actuators according to decisions

made by applications. Decoupling wrappers from actual

implementation of sensors/actuators ensures the open-

ness and makes it possible to include new sensors

available (e.g., OSGi [7, 14]).

• The context manager is a middleware layer, and it can

separate context processing from context usage. It

integrates several components. The context aggregator

gathers context makeups from wrappers and asserts

them into the individualized ontology server. The

individualized ontology server maintains the individu-

alized context ontology extended from the domain

ontology shared through the resource-sharing module

(depicted in Sect. 4.1). The context query engine

provides an abstract interface for applications to extract

desired contexts from the ontology server. By executing

inference rules, the context reasoner infers abstract,

higher-level contexts from raw-sensed contexts.

• The programming toolkits provide support for users to

program context-aware applications. Three different

user technical levels, high, middle and low, are specified

in last section, and we provide three programming

modes accordingly: incremental mode, composition

mode, and parameterization mode. While the incremen-

tal mode and the composition mode allow developers

(high and middle level) to program new applications,

those applications can be transformed into templates that

can be used in end user (low-level) programming. With

the aid of the configuration interface design widget, end

Fig. 1 The OPEN framework

Pers Ubiquit Comput

123



users (low-level) are empowered to customize the

templates created by the two higher-level modes through

the parameterization mode. More details about each

programming mode will be discussed in Sect. 4.2.

• The resource-sharing module enables users to share and

reuse resources such as application templates, rules and

multimedia files. On one hand, the components in this

module provide common building blocks on templates

for the three programming modes. On the other hand,

the programming toolkits generate new components

(e.g., rules, application templates) for this module. The

cooperative interaction process between these two

modules will be explained in Sect. 4.3.

4.1 Evolvable context model

As a collaborative programming environment, users must

agree on a shared conceptualization of a domain. For the

OPEN framework, we adopted the ontology-based method

for context modeling. The ontology, called SS-ONT, is built

using the Semantic Web language—OWL.

4.1.1 Hierarchical definition

As illustrated in Fig. 2, the SS-ONT ontology is defined using

a hierarchical approach. The higher two levels of ontology,

upper ontology and domain ontology, follow the general

ontology-design principle proposed in [5, 14]. While the

upper ontology defines the high-level concepts that are

common among different context-aware spaces (e.g., homes,

offices), the domain ontology is an extension of upper

ontology, defining the details of general concepts and their

properties for a particular domain (More detailed informa-

tion about the defined SS-ONT ontology concepts can be

found in our prior work [8]) The third level of ontology,

named the individualized ontology, contains both the infor-

mation defined in a domain ontology (e.g., a smart home)

and the context instances. The context instances contain:

• User-defined context instances: some contexts, such as

user profile, relationship among users, ownership of

objects, seldom change in an individual space, and the

information is often supplied by end users.

• Sensed context instances: referring to the dynamic

context instances acquired from various context pro-

viders (e.g., smart artifact status, user location, etc.),

which are collected at runtime.

4.1.2 Ontology evolution

In OPEN, domain ontologies are designed and maintained

by a community of domain experts (e.g., service providers

and sensor makers) and shared through the resource-sharing

module, while each individualized ontology is maintained

by the ontology server of an individual smart space. Since

the evolution nature of the context-aware field, the context

ontology often needs to be extended to meet new require-

ments. To ensure concept-level’s consistency among dif-

ferent-level’s ontologies, the following ontology-updating

principles are deployed in our framework:

• The domain ontology can only be extended by domain

experts;

• Users are strictly restricted to specify the context

instances related;

• Once the domain ontology is extended, an ‘‘update’’

command will be automatically sent to individualized

ontology servers to update their ontology.

4.2 Three programming modes

In order to support users with different technical skills, the

OPEN framework provides three different programming

modes. In this section, we explain the difference and

relationship among them, as well as the user interface

implementation in OPEN.

4.2.1 Programming modes

The three programming modes supported by OPEN differ

from each other in various aspects, as summarized in

Table 1.

• Incremental mode is a programmingmode for high-level

users, which supports the creation of new context-aware

applications. The developers can construct the inference-

rule part of an application by preselecting existing rules,

modifying existing rules and writing new rules. All rules

are represented using a formal rule language—SWRL

(http://www.w3.org/Submission/SWRL/). For the action

setting part, developers are allowed to specify default

action settings (physical or multimedia actions) for the

application. A sample context-aware application (called

Smart Agent) is shown in the upper part of Fig. 3.

• Composition mode is a programming mode for middle-

level users. Similar to the first mode, it also empowers

developers to create new applications. However, to

reduce complexity, this mode only allows them to

select and modify the rules that other developers have

already created. Developers of this mode can also

specify default action settings just as the incremental

mode allows.

• Parameterization mode is a programming mode for

low-level users. In this mode, users can customize an

existing application by setting the parameters

Pers Ubiquit Comput

123

http://www.w3.org/Submission/SWRL/


predefined by its developer, and thus they can tailor the

behavior of the application according to their particular

settings. The parameterization mechanism is described

in the next subsection.

4.2.2 Relationship among the three modes

Both incremental mode and composition mode can create

new applications. The parameters of applications are then

Fig. 2 SS-ONT ontology design: three levels

Table 1 Support for different

programming modes
Support Parameterization

(customization)

Composition Incremental programming

Creating new rules - - H

Constructing new

applications

- H H

Configuring applications H H H

Power of expression Low (simple words) Middle (reading rules) High (writing/modifying rules)

Fig. 3 The application

customization mechanism

Pers Ubiquit Comput

123



specified by the developers and can be configured by end

users through the parameterization mode. The parameters

usually come from different parts of an application and

thereby lead to distinct parameterization methods.

• Individualizing a variable: The developer can specify a

variable of a rule as a configurable parameter. End

users are allowed to choose among alternative instances

within the scope of this variable (determined by OWL

axioms) and replace it by a preferred instance. For

example, in the example shown in Fig. 3, ‘?x’ is

selected as a parameter and user-B replaces it by the

‘Alice’ person instance.

• Specifying constant values: Developers can also specify

a constant used in a rule as a parameter. End users are

allowed to configure a constant-based parameter by

resetting its value within its scope. For example, in

Fig. 3, ‘CupA’ is an instance of class ‘Object’ and an

end user can replace it by another instance (‘PanM’) of

this class.

• Specifying actions: All default action settings designed

by developers can be reconfigured by end users. As

shown in Fig. 3, after configuring the constant value

from ‘Drink’ to ‘Cooking’ in the rule, the user action

setting can be changed from speaking a sentence to

playing a combination of audio and video clip.

4.2.3 User interface

Having described the three programming modes, in this

subsection, we present how OPEN’s user interface supports

these programming modes.

The interfaces for the incremental and composition

programming modes are shown in Fig. 4. To create an

application by using the incremental mode, the developer

should first create a new application via the main interface

page (shown in Fig. 4a). He can then start constructing the

inference-rule part of the new application. This can be done

by preselecting existing rules and writing new rules. Taking

the sample application illustrated in Fig. 3 as an example,

to develop the inference-rule part of it, the developer firstly

selects rules with the keyword ‘Behavior’, as demonstrated

in Fig. 4b. After checking existing rules, he finds out that

existing ones cannot meet the application’s requirement but

give him good references to create the required rule. The

new rule can be created through the rule-creation page, as

shown in Fig. 4c. When creating a new rule, the developer

can meanwhile specify the parameters that can be config-

ured by end users, as well as the default action settings.

Finally, to allow end users to simply configure the param-

eters, the developer should make a ‘‘simple-word’’-based

configuration front-end setting for end users, as illustrated

in the configuration-interface-design page (see Fig. 4d). At

this step, each configurable rule will be given a configu-

ration introduction that guides other users’ configuration.

For example, the following introduction for the inference

rule in Fig. 3 is given: ‘‘The application can detect your

behavior according to your interaction with a smart object

in your house. For example, if a cup is in your hand and the

cup is moving up, it informs that you are drinking. Please

specify the following parameters according to your daily

behaviors’’. Besides, each parameter (e.g., ‘?x’ in Fig. 3)

in the rule will be assigned a so-called ‘nickname’

(e.g., ‘‘Your name’’ for ‘?x’) that can be easily understood

by end users.

Programming through the composition mode is similar

to the incremental mode. However, in the composition

mode, the developer does not need to create new rules

through the rule-creation page (see Fig. 4c).

The parameterization mode implements all the three

parameterization methods mentioned in Sect. 4.2.2. In

order not to place high cognitive load to end users, it fol-

lows a simple preference-setting approach applied by many

Web sites (e.g., city setting in Yahoo Weather), where the

parameterization tasks are mapped to simple-word-based

form-filling questions (see Fig. 5a). This kind of configu-

ration interface is designed by application developers

through the configuration-interface-design page (see

Fig. 4d). In Fig. 5a, the sample example shown in Fig. 3 is

used to illustrate how a ‘‘code-based’’ application is con-

figured by end users through the form-based configuration

interface. The configuration tasks such as parameter set-

tings and action settings (e.g., multimedia contents) can all

be performed through this configuration interface.

Providing three programming modes with different

complexity ensures that a user can find the right pro-

gramming tools according to his skill set and can easily

move up from simple function/programming support to

more complicated ones with a moderate increase in com-

plexity. In other words, it builds a ‘‘gentle slope’’ for users

to scale up from low-level programming activities to

higher-level ones, and vice versa.

4.3 Collaborative programming patterns

Having described the three programming modes, we dis-

cuss here different cooperation patterns across the three

programming modes.

4.3.1 Pattern-1: cooperation between developers and end

users

According to our analysis previously, this bi-directional

cooperation pattern is achieved through sharing and reus-

ing three resource types via the resource-sharing module.

Pers Ubiquit Comput

123



• Applications: Through the parameterization mode,

application templates created by developers can be

used by end users (as depicted in Sect. 4.2.3).

• Multimedia resources: Sharing multimedia contents can

greatly enrich the resources for action setting. Users can

on one hand publish the multimedia resources they

generated (flash movies, images, video/audio clips) in

the resource-sharing module, and on the other hand,

they can import the resources created by other users (as

shown in Fig. 5b, c).

• Communication channel: Feedback information from

end users can help developers to improve the devel-

opment of context-aware applications. In OPEN, users

can choose to communicate with each other by

sending instant messages, sending emails or presenting

problems in a Web-discussion forum. For example,

through the Smart Agent configuration interface

(shown in Fig. 5a), users can find the developer’s

contact information (an email address) from the

‘‘application description’’ part. If any questions are

found, they can directly contact the developer for

help. This bridges the communication gap between

developers and users.

4.3.2 Pattern-2: cooperation among developers

The cooperation among developers is achieved in the form

of reusing the rules they created. This pattern is reflected

both in the composition mode and incremental mode. New

created rules via the incremental mode will also be pub-

lished to the resource-sharing module. As illustrated in

Fig. 4, developers can search among the shared rules

through the rule-browsing page (Fig. 4b). The new rule

created in Fig. 4c will be added into the rule repository for

sharing.

4.3.3 Pattern-3: cooperation among end users

When an end user finds an interesting context-aware

application, he can share his experience with other end

users (e.g., his friends) by the following two ways. First,

the end user can simply recommend this application to

others through the communication channel. For example,

he can send an email to his friend to recommend an

application. Second, he can authorize others to share and

modify the application he has customized. As shown in

Fig. 5a, the configuration interface allows a customizer to

Fig. 4 Screenshots of the main-interface (resource-search) page (a) and the pages for incremental/composition programming mode (b–d)

Pers Ubiquit Comput

123



view reference settings shared by his friends. One reference

setting can be displayed in the form of an html that sum-

marizes the relevant parameters and contents specified by

the sharer.

5 The treasure-game scenario

We demonstrate how to provide different programming

support with OPEN by developing a context-aware game.

Similar to the previous entertainment systems [10, 11] that

developed for smart homes, the game exploits a few smart

artifacts in a smart home as interactive game props (e.g., a

box can be used to act as a treasure-box), and enables

people to play it by physically interacting with these

objects. Several smart devices are used to present multi-

media actions in response to the interactions between

players and objects. This game, called Treasure, is

described as follows:

There are various smart artifacts in a smart home. A

game designer can choose some of them to be hided.

The selected objects are specified by the designer to

act as different roles in the game. He should firstly

select a box and a key to act as the roles of ‘‘treasure

box’’ and ‘‘treasure-box-key’’. If the player finds both

the two objects, he will win this game. Besides the

two fixed roles, the designer can select a few other

objects to act as other imagined roles. For example, a

cup can be used to act as a ‘‘guide’’ that hints the

player about the hidden place of the ‘‘treasure-box’’;

a drawer can be used to act as the ‘‘shelter of a

monster’’ and when it is opened, a monster residing in

it appears on the wall and shouts ‘‘Don’t disturb me, I

am now sleeping’’.

5.1 Programming the application

Programming of the context-aware game ‘‘Treasure’’ con-

tains three distinct phases: ontology individualization,

application development, and application customization.

Before developing Treasure, the context ontology needs

to be first agreed by all developers and end users. To

include new concepts used in game applications, such as

status of smart artifacts (e.g., hidden/found status) and

games (e.g., win/lose status), we extend the SS-ONT home-

domain ontology by adding some new terms (the whole

definition is available at ‘‘http://www.ayu.ics.keio.ac.jp/

members/bingo/SS-ONT-v1.5.owl’’). As there are different

smart artifacts deployed in different homes, in the ontology

individualization phase, users should insert these instances

into the extended ontology. The individualized ontology

will be maintained in the individualized ontology server.

Fig. 5 Screenshots of the configuration front-end for the parameterization mode (a), and the animation and image setting pages (b, c)

Pers Ubiquit Comput

123

http://www.ayu.ics.keio.ac.jp/members/bingo/SS-ONT-v1.5.owl
http://www.ayu.ics.keio.ac.jp/members/bingo/SS-ONT-v1.5.owl


In the application development phase, the developers

identify and construct the context-aware game functionali-

ties by using the composition or incremental programming

modes. First, the situations to be detected are examined. In

Treasure, two particular situations are identified: (1) the

situation that a hidden object is found should be detected, and

(2) the condition that a player wins the game should be

defined. The developers then check whether the rules to

detect these situations have been defined by others (via the

main interface page shown Fig. 4a). Though there are no

rules that can directly report the hidden status of smart arti-

facts, two rules that can determine the update status of the

location sensors equipped on the smart artifacts are found.

From the descriptions on the rule-browsing page (see

Fig. 4b), the developers learn that this kind of sensor does not

update datawhen it is not exposed to its readers,which can be

indirectly used to detect hidden objects. These rules are

imported into the new application (see upper part of Fig. 6)

and a new rule is created to describe an object-found situation

by using the conclusions from the two imported rules:

Objectð?xÞ ^ U3Dð?yÞ ^ hasSensorð?x; ?yÞ

^ statusð?y;UpdatedÞ ! statusð?x; FoundÞ

As the second identified situation is an application-specific

situation, the developers cannot find a related rule to detect

it and he creates the following rule by himself.

GameðTreasureÞ ^ Keyð?xÞ ^ Boxð?yÞ

^ statusð?x; FoundÞ ^ statusð?y; FoundÞ

! GameStatusðTreasure,WinÞ

To enable others to customize the application, the devel-

opers also specify rule-interfaces and associated configu-

ration settings for this game, as illustrated in Fig. 6. For

each included rule, a default action setting for it can be

given by choosing from shared multimedia resources (see

Fig. 5). For example, according to the settings in Fig. 6,

once an object is found, a ‘‘smiling’’ agent will be dis-

played on the wall and inform the player that ‘‘You have

found a target object’’.

In the application customization phase, end users can

customize the shared Treasure game via the parameteri-

zation mode. This is achieved by answering form-filling

questions through Treasure’s configuration interface. For

example, one of the form-filling questions asks the cust-

omizer to select several objects from the ones he owns to

play the roles (e.g., a treasure box) of this game. Four

objects are selected to be hidden in the given example

shown in Fig. 6, where a room key and a keyboard box are

used to play the roles of the treasure-box-key and the

treasure box. Two other objects, a bicycle key and a wallet,

are respectively used to confuse players and to transmit

cues to players.

End users can either follow the default actions given by

developers or change the settings (partly or totally)

according to their imagination. For example, if an end user

imagines that a wallet can hint the player of treasure-

box-key’s location when the wallet is found, he can replace

the video to be displayed by an image of a cardboard box

(the treasure-box-key’s hidden place), as shown in Fig. 6.

After playing the customized game, the end user who

customizes this game can communicate with the develop-

ers for any technical problems (supposing that a hidden

object cannot be ‘‘found’’ though exposing to the ‘‘air’’) or

potential improvements. If he finds the Treasure game very

interesting, he can share his experiences with his friends by

sending recommendations to them (e.g., the website of this

game) or, further, authorizing some friends to access the

game application he customized. In the latter case, his

friends can play Treasure by only performing simple

modifications.

5.2 System implementation

Corresponding to the Treasure scenario, we built numerous

smart artifacts by attaching sensors to everyday objects. As

shown in the left part of Fig. 7, two types of sensors are

used: ultrasonic location tags to localize objects [8, 15, 16]

and MICA2 Mote sensors (http://www.xbow.com) to

detect object status.

To present multimedia actions to players, two smart

devices are used. The smart projector displays information

in the form of animation or image on the wall that the

player is currently facing, and the smart ultrasonic speaker

generates voices related (it makes players feel that the

voices are coming from walls, please refer to [17, 18] for

technical details). A snapshot of this use scenario imple-

mentation is shown in the right part of Fig. 7.

Our prototype system is built upon the Java 2 platform.

We adopted SPARQL (http://www.w3.org/TR/rdf-sparql-

query/) as the context querying language. An open-source

Java library—Protégé-OWL API (http://protege.stanford.

edu/plugins/owl/api/)—is used for parsing OWL at the

programming level. Jess (http://www.jessrules.com/), a

forward-chaining inference engine is used to execute

user-defined rules. The interaction between SWRL rules

and the Jess rule engine is implemented through the

SWRL-Jess Bridge API [19].

6 Evaluation

We conduct a user study to evaluate OPEN’s usability. The

main purpose is to validate whether users can correctly

program context-aware applications using the three dif-

ferent programming modes.

Pers Ubiquit Comput

123

http://www.xbow.com
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/rdf-sparql-query/
http://protege.stanford.edu/plugins/owl/api/
http://protege.stanford.edu/plugins/owl/api/
http://www.jessrules.com/


To conduct the user study, fifteen students from Keio

University were recruited by email (ages ranging from 21

to 34). The subjects varied widely in gender (three

females), discipline, and programming ability (20% of

them have good knowledge of programming, while 67% of

them have none). Each subject was invited to program the

designed context-aware application with OPEN, answer a

questionnaire, and give feedback about our system at the

end of each session. It lasted for approximately 60–80 min

for each subject’s test session.

We first evaluated the composition mode. Subjects

were asked to construct an application by selecting three

rules from the rule-browsing page. All subjects except

three successfully chose the right rules from the fifteen

rule candidates in a mean time of 5 min. This illustrates

that it is not a very difficult task for them to perform.

This observation is further proved by the questionnaire

result shown in Fig. 8, where about 60% of subjects

considered that it was not difficult to program using this

mode.

Fig. 6 Programming the treasure game

Fig. 7 Prototypical smart

artifacts and the action devices

Pers Ubiquit Comput

123



For the incremental mode, we evaluated it by examining

whether subjects could create a new rule. This evaluation

was designed in a form-filling style, and subjects had to

build a rule (choosing four right atoms from thirteen can-

didates) with the premise that it can remind the household

who is going to leave home to take an umbrella if it rains

outside. Less than half of the subjects (40%) gave the right

answer with little or no assistance. Three subjects corrected

their answer after a discussion with us. The rest (40%) had

one or more errors in their answer. The result shows that

even designed in a relatively simple testing form, it is still

difficult for many users to create new rules. The ques-

tionnaire result shown in Fig. 8 illustrates that about two-

thirds of the subjects found this programming mode diffi-

cult, whereas there were still five subjects (33%) thinking

that they were able to learn to create rules after several

days’ training during the feedback session.

We finally evaluated the parameterization mode. To test

this, we asked the subjects to customize the shared Treasure

game through the configuration interface (see Fig. 5a).

During the test sessions, we observed that most testers could

perform this task with little or no guidance, although the

time taken to accomplish this task varied from subject to

subject (ranging from 8 to 17 min). Many interesting scenes

were defined by them. For example, one subject added a

‘‘bonus’’ scene, which could give the player an added bonus

when he found a ‘‘hidden-magic-book’’. The data shown in

Fig. 8 clearly reveal that most subjects (80%) found it much

easier to program using this mode. But there were still 4

subjects who did not perform the task according to

instructions. For example, the requirement given by the first

configuration item, namely ‘‘You must specify a box and a

key to act as treasure-box and treasure-box-key’’, was

ignored by some of them. The feedback from them indi-

cated that the text-based interface was boring to them and

made them easily miss some important points. They sug-

gested us to improve it by using more graphical icons.

Allowing users to program context-aware applications

creates a number of issues concerning correctness,

consistency, as well as security. Although OPEN has built

up a communication channel among users for discussion of

technical problems, some criticisms were still raised on

this. Some subjects suggested that in addition to diagnosing

the problems arising at runtime, the system should provide

better error-checking mechanisms that could automatically

detect errors and prompt users to assist them during the

programming process.

7 Conclusion

OPEN represents our early efforts to build a cooperative

programming environment for context-aware applications.

To meet diverse user requirements in the development and

customization of context-aware applications, three pro-

gramming modes with diverse complexity were proposed

and implemented. OPEN further identifies and implements

three user-cooperation patterns to facilitate the sharing and

reuse of resources and user experiences. The evaluation

results from our preliminary user study reveal that OPEN

can provide appropriate programming support to a broad

category of users, ranging from novices to programmers.

Based on the feedback from the subjects, we intend to

make OPEN more user-friendly by replacing text-based

configuration interface with graphical ones. The privacy

and security issues among cooperation patterns are also

planned to be explored in our future work.

References

1. Lieberman H, Paternò F, Wulf V (2008) End user development.

Springer, Dordrecht

2. Salber D, Dey AK, Abowd GD (1999) The context toolkit: aiding

the development of context-enabled applications. In: Proceedings

of CHI’99, pp 434–441

3. Chen G, Kotz D (2002) Solar: an open platform for context-aware

mobile applications. In: Proceedings of the 1st international

conference on pervasive computing, pp 41–47

4. Chen H, Finin T, Joshi A, Perich F, Chakraborty D, Kagal L

(2004) Intelligent agents meet the semantic web in smart spaces.

IEEE Internet Comput 19(5):69–79

5. Wang XH, Zhang DQ, Dong JS, Chin CY, Hettiarachchi S (2004)

Semantic space: an infrastructure for smart spaces. IEEE Perva-

sive Comput 3(3):32–39

6. Gu T, Pung HK, Zhang DQ (2005) A service-oriented middle-

ware for building context-aware services. Elsevier J Network

Comput Appl 28(1):1–18

7. Yu ZW, Zhang DQ, Zhou XS, Chin C, Yu ZY (2006) An OSGi-

based infrastructure for context-aware multimedia services. IEEE

Commun Mag 44(10):136–142

8. Guo B, Satake S, Imai M (2008) Home-explorer: ontology-based

physical artifact search and hidden object detection system.

Mobile Inf Syst 4(2):81–103

9. Dey AK, Sohn T, Streng S, Kodama J (2006) iCAP: interactive

prototyping of context-aware applications. In: Proceedings of

pervasive 2006, pp 254–271Fig. 8 Evaluation results

Pers Ubiquit Comput

123



10. Mattila J, Väätänen A (2006) UbiPlay: an interactive playground

and visual programming tools for children. In: Proceedings of the

conference on interaction design and children, pp 129–136

11. Montemayor J, Druin A, Chipman G, Farber A, Guha ML (2004)

Tools for children to create physical interactive storyrooms.

Comput Entertain 2(1):12

12. Blackwell AF, Hague R (2001) AutoHAN: an architecture for

programming the home. In: Proceedings of the IEEE symposium

on human-centric computing languages and environments,

pp 150–157

13. Tang L, Yu ZW, Zhou XS, Wang HB, Becker C (2010) Sup-

porting rapid design and evaluation of pervasive applications:

challenges and solutions. Personal and ubiquitous computing

14. Gu T, Pung HK, Zhang DQ (2004) Toward an OSGi-based

infrastructure for context-aware applications. IEEE Pervasive

Comput 3(4):66–74

15. Guo B, Satake S, Imai M (2006) Sixth-sense: context reasoning

for potential objects detection in smart sensor rich environment.

In: Proceedings of the IEEE/WIC/ACM international conference

on intelligent agent technology (IAT’06), Hong Kong

16. Nishida Y et al (2003) 3D ultrasonic tagging system for observing

human activity. In: Proceedings of IEEE international conference

on intelligent robots and systems, pp 785–701

17. Nakadai K, Tsujino H (2005) Towards new human-humanoid

communication: listening during speaking by using ultrasonic

directional speaker. In: Proceedings of robotics and automation,

pp 1495–1500

18. Ishii K, Yamamoto Y, Imai M, Nakadai K (2007) A navigation

system using ultrasonic directional speaker with rotating base. In:

Proceedings of HCI07, pp 526–535

19. O’Connor MJ, Knublauch H, Tu SW (2005) Supporting rule

system interoperability on the semantic web with SWRL. In:

Proceedings of the 4th international semantic web conference

Pers Ubiquit Comput

123


	Toward a cooperative programming framework for context-aware applications
	Abstract
	Introduction
	Related work
	Requirements and solution guidelines
	The OPEN cooperative programming framework
	Evolvable context model
	Hierarchical definition
	Ontology evolution

	Three programming modes
	Programming modes
	Relationship among the three modes
	User interface

	Collaborative programming patterns
	Pattern-1: cooperation between developers and end users
	Pattern-2: cooperation among developers
	Pattern-3: cooperation among end users


	The treasure-game scenario
	Programming the application
	System implementation

	Evaluation
	Conclusion
	References


