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The surface of a liquid near a moving contact line is highly curved owing to diverging viscous
forces. Thus, microscopic physics must be invoked at the contact line and matched to the
hydrodynamic solution farther away. This matching has already been done for a variety of models,
but always assuming the limit of vanishing speed. This excludes phenomena of the greatest current
interest, in particular the stability of contact lines. Here we extend perturbation theory to arbitrary
order and compute finite speed corrections to existing results. We also investigate the impact of
different contact line models on the large-scale shape of the interface. ©2004 American Institute of
Physics. [DOI: 10.1063/1.1776071]

The moving contact line problem is a famous example of
hydrodynamics failing to describe a macroscopic flow phe-
nomenon. But it was only in 1971 that Huh and Scriven1

discovered that the viscous dissipation in the fluid wedge
bordered by a solid and a fluid–gas interface is logarithmi-
cally infinite if the standard no-slip boundary condition2 is
applied at the solid surface. Thus infinite force would be
required to submerge a solid body, and a drop could never
spread on a table.

This result is of course contradicted by observation, and
physical effects that relieve the singularity have to be in-
voked near the contact line, which go beyond the standard
description. A great variety of possible mechanisms have
been proposed, and indeed there is no reason to believe that
for different solid–fluid–gas systems always the same
mechanism is involved. However, a question rarely consid-
ered is whether the choice of different microscopic mecha-
nisms would make a great difference when looked at macro-
scopically.

In a recent paper3 we compared various microscopic
models in the case of perfect wetting(see also Ref. 4). We
found that the length scale that appears in the expression for
the interface shape isstronglyspeed dependent, in a fashion
that depends on the model. Here we are going to show that
this dependence is much weaker in the case of partial wet-
ting, and differences only come in at higher order in an ex-
pansion in capillary number Ca=Uh /g, whereh is the vis-
cosity of the fluid andg is the surface tension between liquid
and gas. Finite capillary number corrections are of interest
for various situations of “forced” wetting, in which Ca is no
longer asymptotically small, and previous theories for the
dynamic interface angle break down.5

For simplicity, we perform our calculations within the
framework of lubrication theory, thus limiting ourselves to
the case of small contact angles, but without altering the
essential structure of the problem. We consider the neighbor-
hood of a contact line moving with speedU across a solid in
a frame of reference in which the contact line is fixed at the
origin of the coordinate system(see Fig. 1). To relieve the
corner singularity, we allow the fluid to slide across the solid
surface, following the generalized Navier slip law6–8

uuy=0 − U = l2−aha−1U ] u

] y
U

y=0
s1d

at the plate, wherehsxd is the thickness of the fluid layer, and
l is taken as a constant rather than a speed dependent quan-
tity. The casea=1 corresponds to the usual Navier slip, and
Eq. (1) is a simple generalization involving only a single
length scalel. The resulting lubrication equation is7

3Ca

h2 + 3l2−aha = − h-. s2d

The left-hand side corresponds to viscous forces, diverg-
ing as the contact line positionhs0d=0 is approached, but
weakened by the presence of slip. Viscous forces are bal-
anced by surface tension forces on the right, resulting in a
highly curved interface near the contact line. In comparison,
other forces like gravity have been neglected. This restricts
the validity of (2) to a distance from the contact line below
the capillary length,c=Îg / srgd. We also assume that the
angle at the contact lineh8s0d=ue is constant, independent of
speed. Hence it has to coincide with the equilibrium contact
angle, in order to give the right result at vanishing speed.

Since we want to investigate the neighborhood of the
contact line, it is convenient to introduce the scaled variables

hsxd = 31/s2−adlHsjd, j = xue/f31/s2−adlg, s3d

which leads to

d

H2 + Ha = − H-, s4d

whered=3Ca/ue
3 is the rescaled capillary number.

From the scaling(3) it is evident that the curvature of the
interfaceh9sxd scales likel−1, where l is in the order of
nanometers.3 Thus, in order to match the local solution near
the contact line to an outer profile with a curvature of order
1/,c, the curvatureH9sjd has to vanish for largej. This
means the boundary conditions for the solution of(4) are
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Hs0d = 0, H8s0d = 1, H9s`d = 0. s5d

The only parameter now appearing in the problem is the
rescaled capillary numberd.

For d.0, Eqs. (4) and (5) have a unique asymptotic
solution, proposed by Voinov,9 for which the slope behaves
like

H8sjd = f3d lnsj/j0dg1/3, j @ 1. s6d

This solution has vanishing curvature at infinity and only
contains a single free parameterj0, to be determined by
matching to the contact line. In the present paper, we are
going to deal exclusively with this case of an advancing
contact angle. Ifd,0, the mathematical structure of(4)
changes completely. This can be seen from considering the
simpler equationd /H2=−H-, valid for largeH. Namely, it
follows from an exact solution10 to this equation, that for
d,0 all solutions have strictly positive curvature at infinity.
The consequences of this observation for the stability of con-
tact lines are explored in our forthcoming paper, “Hydrody-
namic theory of forced dewetting.” Ford.0, (6) is recov-
ered from the exact solution.10

The mathematical problem to be tackled in this paper
consists in computingj0 as a function ofd. Our procedure to
do so can be outlined as follows. First, we obtain a solution
of the full problem(4),(5) as a perturbation expansion in the
small parameterd. Second, we compute an asymptotic ex-
pansion ofHsjd in the limit of j→`, which containsj0 as its
only adjustable parameter. By comparing the two represen-
tations ofHsjd for largej, we find j0 as an expansion ind.
As was done in previous works,7,11–13we proceed by expand-
ing around the trivial solution at zero speedd=0. In this
case, the solution of(4) and (5) is evidently given byHsjd
=j. Hence the perturbation expansion we seek looks like

H8sjd = 1 +dH18sjd + d2H28sjd + ¯ s7d

for the slope.
This is to be compared to the full asymptotic expansion

of d /H2=−H- in flnsjdg−1, p. 158 of Ref. 14

Hsjd = j f3d lnsjdg1/3H1 +
A

lnsjd
−

A2 + 10/27

lnsjd2 + ¯J ,

s8d

which contains exactly one free parameterA. Once the struc-
ture (8) of the expansion is known, it is easy to substitute it
into the differential equation and to compute the coefficients.
Note that the same expansion is valid for the full equation
(4), since the two equations differ only by terms of order
1/j, which is beyond all orders14 in an expansion in
flnsjdg−1. We now write the derivative of(8) in a form cor-
responding to Voinov’s solution(6),

H8sjd = f3d lnsj/j0dg1/3H1 + o
i=2

`
bi

flnsj/j0dgiJ , s9d

where the one-parameter freedom is now contained inj0.
Notice that the sub-leading termb1/ lnsj /j0d is missing from
the sum, because in aflnsjdg−1 expansion it would simply
contribute toj0.

All coefficients b2=−7/27,b3=−10/9. . . are readily
computable, using, e.g., Maple. Expanding(9) in d and com-
paring to(7) leads to the following structure of the expansion
of lnsj0d:

− 3 lnsj0d =
1

d
+ o

i=0

`

ci+1d
i . s10d

Substituting this back into(9), the large-j behavior of the
Hisjd in (7) is given in terms of the coefficientsci:

5H18sjd = lnsjd + c1/3,

H28sjd = − ln2sjd − 2c1/3 lnsjd
+ c2/3 − c1

2/9 − 7/3,
6j → `. s11d

To computec1 we have to solve(4) to first order ind,

H1- = −
1

j2 + ja ; rsjd s12d

with boundary conditionsH1s0d=0,H18s0d=1, andH09s`d=0.
According to(11), the constantc1 is given by

c1/3 = lim
j→`

H18sjd − lnsj + 1d. s13d

Integrating(12) twice, we can thus write

c1/3 =E
0

` Èj̃ Frsj̄d +
1

sj̄ + 1d2Gdj̄dj̃

= −E
0

` E
0

j̄ Frsj̄d +
1

sj̄ + 1d2Gdj̃dj̄

=E
0

` F j1−a

j2−a + 1
−

j

sj + 1d2Gdj

= F 1

2 − a
lnsj2−a + 1d − lns1 + jd −

1

1 + j
G

`

0

= 1

independentof a. We thus findc1=3 for the first-order cor-
rection toj0, regardless of how the length scalel is intro-
duced near the contact line.

FIG. 1. A schematic of the interface near the contact line. In the frame of
reference in which the contact line is stationary, the solid moves to the right
in the case of an advancing contact angle, considered here. At the contact
line, hs0d=0, the slope of the interface isue.
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The problem at second order can be tackled in precisely
the same manner, using the equation for the second-order
problem

H2- = H1sjd
2j + 1

j2sj + 1d2 , s14d

where we have specialized to the standard casea=1 for
simplicity. The casea=0 can be treated analogously. Inte-
grating the first order equation(12) three times gives

H1 = flnsj + 1dsj + 1d2 − j − j2lnsjdg/2,

thus specifying the right-hand side of Eq.(14). The trick
used to calculatec1 at first order can be repeated at the next
order, using the second equation of(11) and c1=3. Simpli-
fying the resulting double integral as before, we find

c2/3 − 10/3 = lim
j→`

H28sjd + ln2sj + 1d + 2 lnsj + 1d

=E
0

` F− jH1sjds2j + 1d + 2j3lnsj + 1d
j2sj + 1d2 Gdj

= p2/6 − 7/2.

In summary, we thus havec2=sp2−1d /2 for a=1 and c2

=s3p2−4d /8 for a=0, which follows from a very similar
calculation. It is evident that the same procedure can be re-
peated at arbitrary order, although the calculation rapidly be-
comes analytically intractable.

Rewriting the rescaled solutionHsjd in terms of the
physical profilehsxd, in the limit of large argumentsx we
find the slope of the interface to be

h83sxd − ue
3 = 9Ca lnsx/Ld s15d

for any capillary number. This is the form originally pro-
posed by Voinov,9 using more qualitative arguments. The
lengthL appearing inside the logarithm can be computed by
comparing (15) to H8sjd=f3d lnsj /j0dg1/3 in the limit of
largej. The perturbation calculation presented above directly
leads to an expansion ofL in the capillary number,

L =
31/s2−adl

eue
F1 −

c2Ca

ue
3 + OsCa2dG . s16d

Integrating Eq.(2) numerically, a comparison with(15)
can be made, givingL as function of capillary number. In
Fig. 2 it is clearly seen that our expansion(16) describes the
initial departure from the leading order result quite well.
However, when the corrections amount to about 10% of the
leading order, higher-order terms become important. Thus as
a rough estimate, the present approach can be trusted ifd
=Ca/ue

3&0.05. It would be interesting to systematically in-
vestigate the dependence ofL on the capillary number be-
yond that value.

In Ref. 15 de Gennes used a free energy balance to ar-
rive at an expression for the interface angleh8sxd. In the
present notation, this balance reads

h82sxd = ue
2 + 6CaE

l

z dz8

h
. s17d

Using the simple approximationhsxd=ux for the interface
profile, one obtains15

fh82sxd − ue
2gh8sxd = 6Ca lnsx/ld, s18d

which agrees with(15) if the departure ofh8sxd from ue is
small.

Beyond linear order inh8sxd−ue, however,(18) and(15)
are different. This difference can be traced back to the ap-
proximationhsxd=ux being used to evaluate the integral in
(17). Namely, differentiating(17) one findsh9h8=3Ca/h.
Using the transformationushd=h8sxd, this can be integrated
to give

u3 − fush0dg3 = 9Ca lnsh/h0d. s19d

To leading order in Ca,hsxd=uex, so using the boundary
condition h8sld=ue, which follows from (17), we finally
have

h83 − ue
3 = 9Ca lnsx/ld, s20d

which is consistent with(15) and(16) to within the approxi-
mations considered. This also calls into question de Gennes’
theory15 of contact line instability, which crucially uses(18).

Many contact line models other than the slip law(1),
combined withh8s0d=ue, have been discussed in the litera-
ture. For example, in the case of van der Waals forces being
dominant near the contact line,12 one findsL~ue

−2 to leading
order instead ofL~ue

−1, as given by the present calculation
[cf. Eq.(16)]. If other sources of dissipation become relevant
near the contact line, they will appear as additional speed-
dependent terms on the right-hand side of(17).9,16,17 This
will effectively lead to a speed dependence of the micro-
scopic contact angle, taken as constant in the present treat-
ment.

Finally, we reiterate that our analysis did not include the
influence of an outer length scale, always present in real
physical situations. Such a scale would be the capillary

FIG. 2. A comparison of Eq.(16) with the numerical result for the charac-
teristic lengthL, using numerical integration of(2) for a=1.
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length,c in the case of a liquid meniscus climbing up a solid
wall, the radiusR of a spreading drop,7,9 or the radiusRc of
a capillary9 into which a fluid is pushed. To investigate how
the profile hsxd depends on any of these lengths, a local
solution governed by Eq.(2) has to be matched to an outer
profile. This has been done7,9,11 to leading order in Ca, but
not taking into account higher-order corrections as we do
here. Investigating the interplay between external scales and
the local dynamics near the contact line remains a challeng-
ing open problem.

Thanks are due to Howard Stone for many discussions
on the subject of contact lines, to Rich Kerswell for help
with the analytical calculation of integrals, and to Len Pis-
men for alerting me to a serious error in an earlier version of
this manuscript.
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