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Abstract

Particle dampers show a huge potential to reduce undesired vibrations in technical applications even under harsh environmental

conditions. However, their energy dissipation depends on many effects on the micro- and macroscopic scale, which are not

fully understood yet. This paper aims toward the development of design rules for particle dampers by looking at both scales.

This shall shorten the design process for future applications. The energy dissipation and loss factor of different configurations

are analyzed via the complex power for a large excitation range. Comparisons to discrete element simulations show a good

qualitative agreement. These simulations give an insight into the process in the damper. For monodisperse systems, a direct

correlation of the loss factor to the motion modes of the rheology behavior is shown. For well-known excitation conditions,

simple design rules are derived. First investigations into polydisperse settings are made, showing a potential for a more robust

damping behavior.

Keywords Particle damping · Complex power · Energy dissipation · DEM · Design rules

1 Introduction

Particle dampers show a huge potential for the vibration sup-

pression of mechanical systems. They are very simple and

robust design elements. As a container for the granular mat-

ter, either a box or a hole in the vibrating structure is used.

Vibrational energy is transferred through the container onto

the particles. Inelastic collisions and frictional effects inside

the granular matter result in an energy dissipation and thus

reduce the structural vibrations.

As a derivative of classical impact dampers, particle

dampers show the same robust properties against harsh envi-

ronmental conditions [23,34]. In many cases they add only

little mass to the system [16] and can be applied to a wide

frequency range [4]. As a passive damping device, they addi-

tionally lead to inherently stable systems.

So far, particle dampers were successfully used in first

different technical applications, e.g., for a rotary printing

equipment [35], a Space Shuttle Main Engine liquid oxy-
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gen inlet tee [22], an oscillatory saw [14], or to spacecraft

cantilever beam type appendages [33]. Although particle

dampers show a huge potential, they are only little used in

other technical applications. The major reason for this is their

highly nonlinear behavior and the variety of influence param-

eters.

To obtain a better understanding of the complex mecha-

nisms inside particle dampers, the discrete element method

(DEM) is receiving more and more attention. The DEM has

been developed by Cundall and Strack [5] for the simulation

of granular systems consisting of discs and spheres. Nowa-

days, arbitrary particle shapes can be simulated [17,20] but

still spherical particles are mostly used due to efficiency rea-

sons. The particle dynamics are mainly influenced by the

particle interactions. Therefore, various contact models have

been developed. These penalty laws can be but do not need

to be based on physical laws [25].

To analyze the damping properties of particle dampers,

their energy dissipation can be directly analyzed, i.e., without

an underlying vibrating structure. Then, the energy dissi-

pation and the loss factor are calculated using the complex

power method, which was introduced for particle dampers

by Yang [37]. Similar studies have also been performed

by [7,27,36]. Also, Masmoudi [19] performed an extensive

study including the effect of the dynamical particle mass.
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Indeed, in all cases the excitation range concerning the fre-

quency and acceleration is relatively small. By Saluena [29]

the motion modes of the rheology behavior of vibrating gran-

ular material are analyzed and compared to the loss factor.

There, three different regimes are determined, namely the

solid-, convective, and gas-like ones. By Zhang [39] this

classification is refined into seven different motion modes to

solid-like, local fluidization, global fluidization, convection,

Leidenfrost effect, bouncing bed, and buoyancy convection.

Also, Yin [38] studied those regimes and found a correla-

tion to the loss factor. In all cases, no parameter analysis

is performed and only a small excitation range is analyzed

again. By Bannerman [3] and Sack [28] the bouncing bed

motion mode was studied under zero gravity and the effecting

parameters are determined. A simple formula for an opti-

mized damper under this condition is derived just based on

the gap clearance.

The insights of these results are combined in this paper

and are applied to a large excitation range. Thus, a better

understanding is obtained to develop a design methodology

for particle dampers in the future. The DEM model is vali-

dated by experiments. In the DEM different motion modes

are observed. Also, it is analyzed whether the formula of Ban-

nerman and Sack [3,28] for the bouncing bed motion mode

can be applied under the condition of gravity. Then, different

gap clearances are studied. These results are also extended

to different particle radii, container shapes, sizes, and rota-

tions. The simulation is also used to investigate the influence

of the micro-mechanical behavior. At last, an outlook on the

benefits of polydisperse systems is given.

This paper is organized in the following way: In Sect. 2 the

theory to the complex power method and the motion modes is

introduced. In Sect. 3 the experimental and numerical setups

are explained. The results and obtained insights are then pre-

sented in Sect. 4. Finally, the conclusion is given in Sect. 5.

2 Characterizationmethods

Throughout this paper, the granular matter is subjected to an

horizontal harmonic vibration by the container of form

x = X sin(Ωt), (1)

with amplitude X and angular frequency Ω = 2π f . The

corresponding container velocity and acceleration follow as

ẋ = XΩ cos(Ωt) and ẍ = −XΩ2 sin(Ωt). Often, the

dimensionless excitation intensity Γ is used

Γ =
XΩ2

g
, (2)

with g as gravity constant. For such a vibration, differ-

ent rheological behaviors of the granular material can be

observed. These rheological behaviors can be divided into

eight different motion modes. These motion modes describe

the dynamics of the particle system. As the system exhibits

different dynamics, also the amount of energy dissipation

varies. This can be analyzed by using the complex power.

The motion modes and complex power are described in the

following.

2.1 Motionmodes

Saluena [29] studied the motion modes of a horizontal

vibrating granular material. Three different regimes are deter-

mined, namely the solid-, convective, and gas-like regimes.

By Eshuis et al. [8] and Ansari et al. [2] additionally, the

Leidenfrost effect, bouncing bed, and undulation states are

reported for vertical vibrated granular matter. Zhang [39]

classified his vertical vibrated granular matter into seven dif-

ferent motion modes, namely solid-like, local fluidization,

global fluidization, convection, Leidenfrost effect, bouncing

bed, and buoyancy convection. This classification of Zhang is

also used by Yin [38]. To distinguish the different modes, ani-

mations, phase diagrams, and experimental observations can

be used. Indeed, this task is not always trivial and unambigu-

ous as the transition between the motion modes is smooth.

In this paper, five different motion modes are observed in

the simulation of the particle dampers and shown in Fig. 1.

In the upper picture, the absolute velocity of the granular

matter is shown. In the lower one, the relative velocity of

the granular matter to the container is pictured. All phase

diagrams are taken at a container position of x = 0, i.e., at

the center of the stroke and the maximum container velocity.

The solid-like state, see Fig. 1a, is characterized by almost

no relative motion between the particles and the container.

This causes the granular matter just to look like one added

block, staying at the container base and moving with the

same velocity as the container. Here, this mode is considered

as long as only one particle layer is showing some relative

motion. It is reported by Eshuis et al. [8] and Ansari et al.

[2] that this state occurs at low excitation intensities up to

Γ ≈ 1.

For excitation intensities Γ > 1, the granular systems

come first in a state of local fluidization, see Fig. 1b. Particles

located at the top surface become fluidized, i.e., irregular

relative motion between the particles, while particles at the

bottom still behave like a solid.

If the excitation intensity is further increased, the whole

particle system becomes fluidized, called global fluidiza-

tion, as shown in Fig. 1c. The transition from solid, to local

fluidization to global fluidization is also called solid–fluid

transition by Saluena [29].
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It is reported that from this state, the particle system can

migrate in different motion modes, like bouncing bed, con-

vection, or Leidenfrost effect [38]. However, the Leidenfrost

effect has only been observed for vertical vibrations. For the

investigated particle dampers, only the bouncing bed motion

mode is observed, see Fig. 1d. This means the particles move

like a single body, but in contrast to the solid-like state, they

do not stay on the container base but are distributed along

the plane perpendicular to the container excitation.

In this research we also observed a motion mode we called

decoupled, which is shown in Fig. 1e. This motion mode

also migrates from the global fluidization. It is characterized

by a very small absolute particle velocity compared to the

velocity of the container. Thus, the granular matter appears to

be decoupled. This can especially be observed at the relative

velocity, as this one is pointing against the container motion.

2.2 Complex power

In order to calculate the energy dissipation inside a vibrating

granular matter, the complex power P is used. This concept

was first applied to particle dampers by Yang [37]. Here,

it is used as well in the experiments as in the simulations.

For a given harmonic excitation, the complex power P is

calculated by

P =
1

2
FV ∗. (3)

Hereby, F denotes the fast Fourier transform (FFT) of the

excitation signal and V ∗ the conjugate FFT of the container

velocity signal. The dissipated power Pdiss and the maximum

power stored in a cycle Pmax follow from the complex power

as

Pdiss = Real(P) =
1

2
|F ||V | cos(φF − φV), (4)

Pmax = Imag(P) =
1

2
|F ||V | sin(φF − φV). (5)

The phase angles of the force and velocity signals are denoted

by φF and φV, respectively. Dividing the dissipated power by

the excitation frequency Ω , one obtains the dissipated energy

per radian Ediss and the dissipated energy per cycle Ẽdiss

Ediss =
Pdiss

Ω
, (6)

Ẽdiss = 2π Ediss. (7)

Following [37] the loss factor η is defined as the ratio of the

dissipated power to the maximum power stored in a cycle as

η =
Pdiss

Pmax
=

Ediss

Emax
. (8)

However, this classical definition of the loss factor is indeed

not meaningful for application to particle dampers, due to the

scaling with the maximum energy stored in a cycle. There-

fore, here instead we adopted the approach of [19]. The

reduced loss factor η∗ is calculated by a scaling of the dis-

sipated energy with the kinetic energy of the particle system

using the mass of the particle bed mbed to

η∗ =
Ediss

1
2

mbedV 2
. (9)

As a consequence, the reduced loss factor is independent of

the container and particle mass and enables the comparison

of different particle settings.

Another important quantity is the effective particle mass

meff . The effective particle mass describes how much mass

of the particle bed mbed is felt by the container, i.e., how

much the mass of the granular matter is coupled to the con-

tainer movement. It can be calculated by the effective moving

mass Meff , which consists of the container mass mcon and the

effective particle mass meff as Meff = mcon + meff [30]. The

effective moving mass is determined by dividing the FFT of

the excitation signal F by the FFT of the acceleration signal

A to

Meff =
F

A
=

F

V Ω
. (10)

3 Experimental and numerical setup

The experimental and numerical setups are developed, to ana-

lyze the motion modes and the resulting reduced loss factors

of different particle settings. In both setups, a particle damper

is subjected to a horizontal vibration over a large excitation

range. An experimental and a numerical setting is used as

this enables the analysis of various different settings. The

experimental one is especially suited for large or polydis-

perse systems. The numerical setup is based on the discrete

element method. With it, insights about the complex par-

ticle dynamics can be obtained, as, for instance, about the

motion modes. Also, the micro-mechanical behavior or dif-

ferent container geometries can be analyzed.

3.1 Experimental setup

The experimental analysis is performed with the system

shown in Fig. 2.

The particle container is realized as a cubical aluminum

box with an inner edge length of 4 cm and a mass of

mcon = 165 g. The container is excited by a controlled har-

monic force via a shaker. The excitation force is controlled

in such a way that the frequency and acceleration magni-
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Fig. 1 Different motion modes with the absolute particle velocity (top) and their relative velocity to the container (bottom) at x = 0. The colors

show the magnitude of the in-plane particle velocity normed by the container velocity Ẋ from low (blue) to high (red)

Fig. 2 Schematic representation (left) and picture (right) of the testbed

tude of the container stays constant. The force sensor, the

accelerometers, and the control system are from BrÜel &

Kjaer. Two accelerometers are used: the first for the con-

troller and the second to trigger the measurement. While the

container is excited by the LDS V455 shaker, its acceleration

is controlled via the LDS Comet system. Due to the impact-

ing particles on the container walls, the acceleration signal

is very noisy. In order to use this acceleration signal in the

control of the excitation, this accelerometer is additionally

equipped with a mechanical low-pass filter. It consists of a

plastic tube with a Young’s modulus of 86 N/mm2. This filter

element is designed in a way that its eigenfrequency is at 2.5

kHz. Hence, single particle impacts on the container walls

are filtered efficiently, as their contact frequency is normally

significantly above 5 kHz. Simultaneously, frequencies up to

the excitation range of 1 kHz are only little influenced.

The velocity of the particle container is measured via a

laser vibrometer (LV), the PSV-500, from Polytec. The data

acquisition of the velocity and force signals are accomplished

by the front end of the PSV-500 with a sampling frequency

of 40 kHz. The second accelerometer, seen in Fig. 2, is not

equipped with a filter as it is only used for triggering the

measurement. The feasible measurement range of the system

is between 40 Hz and 1 kHz and between Γ = 1 and Γ = 40.

The measurement range is divided into a logarithmic grid of

108 points. Nine frequencies and twelve acceleration values

are used, and each combination is measured for a duration of

2.5 s.

The setup is designed in a stiff way such that bending due

to the assembly and container weight are negligible. Thus,

only very little vibration in vertical (transvers) direction is

observed.

3.2 Discrete element method

The discrete element method (DEM) is a discrete simulation

method for granular materials. Every particle is considered

as an unconstrained moving body only influenced by applied
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Fig. 3 Contact states of two spheres

forces. The dynamics are described by Newton’s and Euler’s

equation of motion for every particle [25]. For spherical par-

ticles, this reads

mi ẍi = Fi , I i ω̇i = M i (i = 1, ..., Np), (11)

with ẍi and ω̇i being the translational and rotational acceler-

ations. The particle mass is denoted by mi and its diagonal

inertia tensor by I i , whereby all three entries of I i are iden-

tical. The applied forces and moments are Fi and M i , and

Np is the total number of particles. Equation 11 is in general

a coupled nonlinear differential equation with 6Np degrees

of freedom for 3D simulations. Particle systems often con-

tain a large number of particles (up to thousands or millions).

During the time integration, all existing contacts need to be

detected and resolved in every time step. Therefore, efficient

detection algorithms and contact laws are needed. Also, the

choice of an appropriate time integration scheme is crucial

[9]. In this research, the algorithms presented in [21] are used

and only shortly introduced.

3.2.1 Contact forces

In DEM simulations, particle–particle and particle–wall con-

tacts occur. The contact partners are treated as rigid, thus only

touching in a single point, as shown in Fig. 3. In continuous

contact modeling, the contact partners i and j are allowed to

overlap, and virtually connected by unilateral springs and

dampers. Hereby, the corresponding contact forces occur

which counteract the overlap δ.

In the simulations here, the formula of Gonthier [13] for

the normal contact force is used. It is based on the contact law

of Hertz [15] using physical parameters, namely the particle

radius ri/ j , the Young’s modulus Ei/ j and the Poisson’s ratio

νi/ j , and follows

FN = kδ3/2

(
1 +

d̄

e

δ̇

δ̇a

)
. (12)

Hereby, the contact stiffness and the material parameters are

given as

k =
4

3π(hi + h j )

√
rir j

ri + r j

, (13)

hi/ j =
1 − ν2

i/ j

π Ei/ j

. (14)

The penetration velocity and the initial penetration velocity

in normal direction are denoted as δ̇ and δ̇a respectively. The

coefficient of restitution e (0 < e < 1) controls the amount of

energy dissipation during the contact. The nonlinear param-

eter d̄ is only dependent on e and can be solved offline [13].

For spherical particles, the tangential forces result only

from sticking and sliding friction, whereas the resistance

of the surface is described by the coefficient of friction µ.

For highly dynamical systems the sticking friction can be

neglected [9]. When only sliding friction is considered, a

smoothing hyperbolic tangent function can be used, to avoid

jumps in the friction forces at zero velocity, see [1]. Then,

the sliding friction force reads

FR = −µ|FN|t tanh(τ |vt
P|), (15)

with v
t
P being the relative, tangential velocity at the bound-

ary point P and τ is the smoothing parameter. The tangential

direction is denoted by t . The resulting torques on the parti-

cles are only depending on the friction forces, as the normal

forces are always pointing toward the center of mass of the

spherical particles. For comparison also sticking friction is

implemented, see [6]. However, in the simulation, this model

is much more time-consuming and did not change the amount

of dissipated energy of the particle dampers.

3.2.2 Contact detection and time integration

Another very important component of the DEM is the con-

tact detection. All existing contacts have to be determined in

every time step. A variety of algorithms have been developed

for this task, such as sort-based, cell-based, or tree-based

ones, decreasing the complexity to an optimum of O(Np). In

the program, the verlet list in combination with the link cell

algorithm is used [25].

Also, the time integrator has a big influence on the simu-

lation speed and the overall stability. As the contact detection

and evaluation of the contact forces are most time-consuming

in DEM simulations, the numerical effort for the time integra-

tor itself is often negligible. But, its choice has a big influence

on the number of evaluations of the equation of motion. In

this research, good results with the fifth-order gear predictor–

corrector algorithm [11] have been achieved.
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Fig. 4 Quasi-static stress–strain curves

3.2.3 Velocity-dependent coefficient of restitution

In DEM simulations often a constant coefficient of restitution

(COR) is used. Indeed, this is in reality not the case, as the

COR can depend on a variety of influence parameters, like

the temperature or impact velocity. These influence parame-

ters are mainly associated with the energy dissipation effect

of the material. For the metals (S235 and Al6060) used in

this work, the energy dissipation comes mainly from plastic

deformations in the contact zone. Thus, the impact velocity

has a big influence on the COR. There exist different inves-

tigations on the COR, as, for instance, in [12,26,32]. In this

work, the finite element approach and material data from [32]

are used to determine the COR. Metals often behave elastic–

viscoplastic. This means that the plastic flow also depends

on the strain rate. For the material description, the Perzyna

model [24] is applied. This model relates the dynamic yield

stress σd by a factor β with the quasi-static yield stress σy

and the effective plastic strain rate ε̇ by

σd = βσy with β = 1 +

(
ε̇

γ

)m

. (16)

The material viscosity parameter is denoted by γ , and the

strain-rate hardening parameter by m. Both parameters are

obtained in [32] from split Hopkinson pressure bar tests.

In Fig. 4 the quasi-static yield stress for S235 and Al6060

is shown. In Table 1 the corresponding material data and

Perzyna coefficients are listed.

Finite element simulations of two impacting particles are

performed to determine the COR. A schematic representation

of the sphere–sphere model is shown in Fig. 5 (left). An

augmentation of the contact zone is shown in the lower part

of the picture, to give an impression of the different mesh

sizes. In the FE simulations, the spheres have an initial radius

of 5 mm. The model can be scaled for different sphere sizes.

Each sphere consists of 6093 axis symmetric 2D elements,

in Abaqus called CAX4R. The element size varies between

0.5 mm till 0.015 mm. Both spheres are assigned with half

the impact velocity with opposed signs.

Table 1 Material parameters obtained by the split Hopkinson pressure

bar test [32]

Material E (GPa) ν (−) ρ (kg/m3)

S235 208 0.3 7800

Al6060 67.7 0.33 2702

σy (MPa) γ (−) m (−)

230 305 0.403

205 5548 1

The COR is evaluated by the normal velocities of the

spheres before (0) and after (1) the collision of the sphere

I and II, reading

e =
v1

I − v1
II

v0
I − v0

II

. (17)

The velocities before impact are prior known. The veloc-

ities after impact are evaluated at the center points of the

spheres. The mean value of the last 200 time steps is taken,

as the velocity is oscillating a little bit due to mechanical

vibrations of the spheres, which are induced through the col-

lision. If instead of a sphere–sphere contact a sphere–wall

contact is simulated, one sphere is replaced by a wall. The

wall is modeled as a cylinder with its diameter and length

being the diameter of the sphere. The contour of the cylin-

der is completely clamped. In the later DEM simulations,

often steel spheres of 5 mm radius are used. The container

is made of aluminum. For these settings, the COR is shown

in Fig. 5 (right). A high dependency on the impact velocity

is observed. For both settings the COR is close to one for

small impact velocities. When the impact velocity increases,

the COR starts to decrease rapidly. For high velocities, the

COR drops below 0.5.

3.3 Model verification

At first, the experimental and numerical setups are validated

and compared. To check the experimental measurement sys-

tem, the empty particle container is analyzed. As only minor

damping effects exist, arising from the material damping and

air resistance, the energy dissipation is very small. The mean

value of the reduced loss factor is about 0.01.

In the next step, particles are filled in the container.

Unhardened, steel balls, which are used in the hardened form

for ball bearings, are utilized. These have a high degree of

roundness and accurate material parameters are available for

the later simulation purposes. For the first comparison, 58

particles with a radius of 5 mm are used. The maximum par-

ticle number to fit in the container is 65. The total weight of

the particles is 240 g.
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Fig. 5 Left: Schematic representation of the FEM model of two impacting spheres. Right: Velocity-dependent COR for a sphere–sphere and

sphere–wall contact for a sphere with 5 mm radius

In order to compare the numerical with the experimental

results, the measured frequencies and acceleration values are

applied to the DEM simulation. The measured frequencies

fit very well with the desired values. However, the measured

acceleration values are up to 15 % off. This is mainly at high

frequencies the case and caused through the transmissibility

of the low-pass filter in the experiments.

For the simulation, the movement of the container is

applied as given in Eq. (1). Using the computed particle–wall

forces on the container, the complex power is determined.

Each excitation grid point is simulated for 25 periods,

whereas the first five periods are cut off to remove the

irregular movement of the particles introduced by the ini-

tial conditions. The material parameters of Table 1 are used.

The main adjustment parameters are the force laws and

their influence variables. As normal force the formula of

Gonthier [Eq. (12)] is chosen, whereby a constant COR as

well as the velocity-dependent COR from Fig. 5 is utilized.

Indeed, not the same materials for the particles are used in

the experiment (V2A) as in the FEM simulation (S235), but

their characteristics are very similar. For the friction force

the three cases, e.g., no friction, sliding friction [Eq. (15)],

and sticking friction [6], are analyzed.

The best result between experiment and simulation is

achieved with the velocity-dependent COR and sliding fric-

tion which is pictured in Fig. 6 with the absolute values (top)

and relative difference (bottom). The friction coefficient is

set to µ = 0.1 as it is the typical value found for steel in liter-

ature. These settings are used in all the following simulations

if not specified differently. The relative mean difference of the

energy dissipation is 0.36 for this setting. As seen in Fig. 6,

there is a little discrepancy between both curves on the whole

measurement range with no clear tendency to higher or lower

values. This shows that the simulations meet the qualitative

characteristics of the energy dissipation very well, with some

quantitative differences in its magnitude. This result is also

observed for other particle number and radii. At this point, it

should be pointed out that using the velocity-dependent COR

and the typical value for the coefficient of friction of steel

means that no tuning at all was performed. This is remark-

able as the excitation range in terms of the frequency and

acceleration is over almost two decades. However, besides

the quantitative discrepancies the simulations are very useful

to give qualitative insights on the complex dynamics inside

the damper.

If instead a constant COR is used, the relative mean differ-

ence is 0.44, and the best COR has to be found by excessive

tuning. By neglecting friction the relative mean difference

becomes 0.43. Taking the sticking friction algorithm, the rel-

ative mean difference is also 0.36, but the simulation time is

much higher as with the sliding friction algorithm. The value

of the friction coefficient seems to be of minor importance.

4 Experimental and numerical insights

To gain insights into the complex behavior of particle

dampers and to analyze their damping efficiency, the numer-

ical and the experimental setups are used. This section is

further divided into monodisperse and polydisperse systems.

4.1 Monodisperse systems

At first, the rheology behavior of a monodisperse system is

analyzed using the DEM simulation. As the particle dynam-

ics are highly nonlinear, it is at first kind of arbitrary which

particle setup is analyzed. Here, 550 steel particles of 2.5

mm radius are taken. The maximum particle number to fit in

the container is 573. With this setting, there are about seven

to eight particle layers in the container and the qualitative

observations are also applicable to other particle settings.
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Fig. 6 Comparison of experimental and numerical result for the energy

dissipation of 58 steel particles of 5 mm radius. Top: Absolute values.

Bottom: relative difference

In Fig. 7 the reduced loss factor and the motion modes for

this setting are shown.

Different motion modes can be observed, depending on

both the frequency and acceleration of the container exci-

tation. The solid-like state is only once seen at the lowest

frequency and acceleration intensity (40 Hz, Γ = 1). The

solid-like state, see also Fig. 1a, is classified by almost no

relative motion between the particles and the container. This

results in a low energy dissipation and causes the reduced loss

factor to be low (η∗ = 0.22). In addition, the effective particle

mass [Eq. (10)] is relative high with meff = 0.88mbed.

From the solid-like mode the system goes into the local

fluidization mode, see also Fig. 1b, which is seen only for

low acceleration intensities and low to medium frequencies

( f = 40–250 Hz, Γ ≤ 2). As still most of the particles

behave like a solid and only the top layers show some relative

motion, the reduced loss factor is still low (η∗ = 0.2–0.35).

From the local fluidization mode, the system turns into

the global fluidization mode, see also Fig. 1c. This mode is

seen on a large area of the contour plot with low to medium

reduced loss factor values (η∗ = 0.2–0.5). The medium

reduced loss factor values occur at the transition from the

local to the global fluidization mode. This is the case at accel-

eration intensities of Γ ≈ 3 with a slight decrease to higher

Fig. 7 Reduced loss factor (top) and motion modes (bottom) of 550

steel particles of 2.5 mm radius

frequencies. This behavior can be explained with the transi-

tion to global fluidization. There is a lot of relative motion

between the particles, but the total kinetic energy is still com-

paratively low. This results in the medium reduced loss factor

values. When from this point the acceleration intensity is fur-

ther increased, the amount of relative motion is not increasing

as much as the total amount of kinetic energy, resulting in a

reduction of the reduced loss factor. It should be noted at this

point that in the equivalent experiment in this regime reduced

loss factor values up to η∗ ≈ 1 are achieved.

The bouncing bed and decoupled motion mode, see

Fig. 1d, e, develop from the global fluidization mode at

high acceleration intensities (Γ ≥ 10). The decoupled mode

occurs at the medium to high frequencies ( f > 150 Hz)

and is characterized by a very small reduced loss factor

(η∗ = 0.05 − 0.15). This is reasonable as a decoupling of

the particle mass from the container means that not much

energy is transferred onto the particles anymore which could

dissipate. This decoupling is also seen at the effective particle

mass which reduces down to meff = 0.45mbed.

The bouncing bed mode instead appears at the low fre-

quencies ( f < 100 Hz). The reduced loss factor range is

very large and goes from η∗ = 0.13 to η∗ = 0.87. In this
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mode, the particles form a packed layer, but they do have a

relative motion compared to the container. It is noticeable

that the contour lines of the reduced loss factor in this mode

agree very well with a constant container stroke, as indicated

in Fig. 7. The energy dissipation caused in this motion mode

is thus somehow very sensitive to the container stroke. In

Bannerman [3] and Sack [28] a formula is derived to calcu-

late the stroke of the maximum reduced loss factor. Indeed,

their formula is derived and proven under the assumption of

zero gravity. Also, their used frequencies are below 5 Hz. The

predicted particle movement in this motion mode is shown

in Fig. 8.

They assume that the particle bed forms a packed layer

on one container side, which is driven by the container. The

particle bed leaves the container wall at the end of the inward

container stroke, i.e., at position x = 0 and velocity ẋ = XΩ .

Maximizing now the relative impact velocity between the

particle bed and the opposite container wall at the next impact

should maximize the energy dissipation. This is achieved if

the particle bed hits the container on its next inward stroke

at its maximum velocity, i.e., at x = 0 and Ωti = π , with ti
being the impact time point. It is assumed that the particle bed

adopts instantaneous the container wall velocity. The instan-

taneous velocity adoption of the particles implies a perfectly

inelastic collision with the container wall. For a justification,

see [3,31]. Finally, they obtain that the optimal stroke is just

depending on the clearance h. This is the distance between

the packed particle bed and the opposite container wall, as

indicated in Fig. 8.

The optimal stroke is achieved to

Xopt =
h

π
. (18)

In this state, the dissipated energy per cycle follows

Ẽmax
diss = 4mbed Ẋ2

opt. (19)

If the container stroke is higher than the optimal stroke, i.e.,

an impact time point with Ωti < π , the energy dissipation is

obtained by

Ẽdiss =
1

4
Ẽmax

diss (1 − cos (Ωti))
2 . (20)

For lower strokes, i.e., an impact time point with Ωti > π ,

the particle bed begins to spread irregularly, resulting in a low

energy dissipation. The calculation of the clearance is indeed

not trivial, as a particle system never forms a flat top surface.

This leads especially for big particles and high filling ratios

to inaccurate results. Possibilities are to take the distance

from the highest particle or the medium distance from the

top layer. However, here the question arises which particle

belongs to the top layer and both methods are only applicable

to simulations. We instead introduce the relative clearance as

κ =
h

L
≈ 1 −

NP

NP,max
, (21)

with L being the length of the container in excitation direc-

tion. The number of particles and the maximum number of

particles to fit in the container are denoted by NP and NP,max.

Thus, the clearance can be calculated just using the filling

ratio of the container. For the current setting, the optimal con-

tainer stroke is pictured in Fig. 7. Indeed, the obtained value

via the DEM simulation (Xopt = 0.76 mm) is a little bit off

the one by the analytical formula Eq. (18) (Xopt = 0.51 mm).

Also, the dissipated energy is only reaching about 80 % of

the theoretical value by Eq. (19).

The difference of the optimal stroke obtained by the DEM

simulation and the analytical formula is caused by the com-

parable large particle radius and the high filling ratio of 0.96.

The particle radius is with a value of 2.5 mm on the same

scale as the optimal clearance of 2.4 mm. Thus, less than one

complete particle layer is free in the container. For these high

filling ratios, Eq. (21) is inaccurate. This is because even for

the maximum particle number still some free space remains

in the container. The energy dissipation of Eq. (21) is not

reached as the discretization of the excitation points is too

coarse and the assumption of zero gravity is not fulfilled.

Nevertheless, it is remarkable that Eq. (18) is a good

approximation for the optimal clearance, although a com-

pletely different setting and excitation range as in [3,28] is

used. In the following, it is analyzed if and how the just pre-

sented statements also hold true for other particle systems.

4.1.1 Particle size and number

In this section, the particle number and particle size are var-

ied using experiments. By this, their influence on the motion

modes is obtained and also the analytical formula for the opti-

mal stroke Eq. (18) is analyzed again. In Fig. 9 the reduced

loss factor for 40, 58, and 62 steel particles of 5 mm radius is

shown. Hereby, the maximum particle number which would

fit in the container is 65.

All three plots show a similar contour, but their values are

shifted. As Eq. (18) predicts, the optimum reduced loss factor

of the bouncing bed modes shifts to lower strokes for a higher

particle number. In Table 2 the optimal strokes obtained by

the analytical formula and the determined values from the

measurements are listed.

For the 40 particles the optimum does not lie in the mea-

surement range and can thus not be determined. The value

for the 58 particles is about a factor two off and for the 62

particles about a factor three. This can be explained by the

fact that with a higher particle number the approximation of

Eq. (21) gets more inaccurate. The same is true for bigger
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Fig. 8 Particle movement for the bouncing bed motion mode at maximum energy dissipation

Table 2 Optimal strokes obtained from the analytical formula

[Eq. (18)] and determined from the experiment (Fig. 9)

Particle number 40 58 62

Analytical formula (mm) 4.90 1.37 0.59

Experiment (mm) – 2.50 0.16

particles. The error of the 2.5 mm radius particles shown in

Fig. 7 is much lower. Although some quantitative discrep-

ancies between the experimental results and the analytical

formula exist, the Eq. (18) is a good first approximation for

the optimal stroke.

The other important regime is at the transition from local to

global fluidization mode. Here, medium reduced loss factor

values of about 0.5 are achieved for all particle settings at an

acceleration of Γ ≈ 3. Only for high frequencies ( f >500

Hz), a higher particle number seems to be advantageous with

reduced loss factor values even higher as one. We assume that

this is due to an increased number of particle layers.

Next, the influence of the particle radius is analyzed by

keeping the particle mass at a constant value of 240 g but

varying the particle radius. In addition to the steel spheres of

2.5 mm and 5 mm radius, also a steel powder with a radius of

200 µm-400 µm is used. The reduced loss factors are shown

in Fig. 10. Again, very similar contours are achieved. The

biggest differences occur at the transition from the local to

the global fluidization mode. Especially for the high frequen-

cies, the smaller particles yield to higher reduced loss factors

on a big excitation range. This is reasonable, as the mass

of the smaller particles is less and thus less energy is nec-

essary to introduce relative motion between them. Also, the

number of particle layers is much higher. The bouncing bed

state is indeed only little affected. All three settings lead here

to a high reduced loss factor at a similar container stroke. In

Table 3 the optimal strokes obtained by the analytical formula

[Eq. (18)] and the determined values from the measurements

are listed. For the smaller particle radii, the optimal stroke

slightly increases and the difference between analytical for-

mula and experiments gets less. Although the same particle

mass is used the optimal stroke is changing, as with a smaller

particle radius a higher particle mass fits into the container.

The result also proves the above statement that with a smaller

particle radius the approximation of Eq. (21) gets better.

At last, it is analyzed whether the observations of Fig. 9

and Fig. 10 can be combined. We test how the reduced loss

factor behaves for a small particle radius and different filling

ratios. Therefore, three settings of 240 g, 285 g, and 305 g of

steel powder are tested experimentally, with 310 g providing

approximately the maximum filling ratio. The result is shown

in Fig. 11.

Similar to Fig. 9, the settings with the higher filling ratios

lead to a lower optimal stroke in the bouncing bed case. The

value of the reduced loss factor at the optimal stroke is only

little influenced. The reduced loss factor for the transition

from the local to the global fluidization mode is, in contrast to

Fig. 9, only little affected. All three settings lead here to high

values on a big excitation range, with slightly higher reduced

loss factor values for a higher filling ratio. This proves the

above statement that an increased number of particle layers

is advantageous. The result also implies that the clearance

does not influence this regime.

4.1.2 Particle material

Three different particle materials are tested experimentally

to analyze their influence on the reduced loss factor. Steel

(V2A), tungsten, and polypropylene (PP) are used. The mate-

rial parameters are summarized in Table 4.

Tungsten has about twice the density, stiffens, and ten-

sile strength of steel. The density and tensile strength of

polypropylene are about one decade lower than those of steel,

and its stiffness is about two decades lower. This means that
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Fig. 9 Reduced loss factor of 40 (top), 58 (middle), and 62 (bottom)

steel particles with 5 mm radius

especially the PP exhibits a completely different material

behavior. For the comparison 58 particles of 5 mm radius are

used. The obtained reduced loss factors are shown in Fig. 12.

Although completely different materials are used, the

quantitative differences are only small between the reduced

loss factor curves. The same qualitative form from Fig. 7 can

be observed. This means that the reduced loss factor is only

weakly coupled to the particle material. This also implies

that the energy dissipation of the damper is depending lin-

early on the density of the particle material. This is due to

our definition of the reduced loss factor [Eq. (9)]. As a result,

Fig. 10 Reduced loss factors of steel particle systems with the same

mass of 240 g but different particle radii

Table 3 Optimal strokes obtained from the analytical formula

[Eq. (18)] and determined from the experiment (Fig. 10)

Particle radius (mm) 0.3 2.5 5

Analytical formula (mm) 2.83 2.42 1.37

Experiment (mm) 3.28 3.32 2.50

the particle material can be used for tuning the damper for

the desired energy dissipation.
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Fig. 11 Reduced loss factor of 240 g (top), 285 g (middle), and 305 g

(bottom) steel powder

Table 4 Material parameters of tested particles

Material E (GPa) ρ (kg/m3) σy (MPa)

V2A 210 7800 230

Tungsten 406 19250 520

PP 1.45 900 32

4.1.3 Container shape

In this section, the influence of the container shape and ori-

entation is analyzed using DEM simulations.

Fig. 12 Reduced loss factor of 58 particles with 5 mm radius for steel

(top), tungsten (middle), and plastic (bottom)

Cuboid Within the simulation the cubical particle container

is changed to a cuboid with the same volume but the edge

length are changed from 4 cm to 2, 4, and 8 cm, respectively,

as shown in Fig. 13.

In this way, three different cuboids are received with two

in-plane excitation possibilities each, resulting in six pos-

sible configurations. We simulated each configuration with

58 steel particles of 5 mm radius. The results are pictured

in Fig. 14 and compared to the result of the cubical parti-

cle container. For better readability, the graphs are sorted by

the edge length of the cubical particle container in excitation
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Fig. 13 Different cuboids used for analyzation with the edge length

given as [width,height,depth] in cm

direction, i.e., in short (L = 2 cm), medium (L = 4 cm), and

long (L = 8 cm).

Note that the short edge length of the container is only 2

cm. Thus, only two particles fit next to each other for that

edge, being a very extreme scenario. As a consequence, the

following results should not be overinterpreted. Within the

bouncing bed mode, big differences occur in the reduced loss

factor in its magnitude as well as in the optimal stroke for all

settings. The change of the optimal stroke is meaningful as

the length of the container in excitation direction is changing

and thus also the clearance, as seen in Eq. (21). It is inter-

esting that especially the excitation along the short edge, see

Fig. 14a, is leading to the highest reduced loss factors. This

is in contrast to [31], where it is stated that for vertical vibra-

tions at least three particle layers are necessary to obtain a

high energy dissipation. Settings b) and c), excited along the

medium and long container edge, even show lower reduced

loss factors as the cube. Also, the optimal strokes do not fit

to Eq. (18). Thus, these settings should be avoided. The flu-

idization modes are also affected. The cuboid II) is showing

the least reduced loss factor values. As this cuboid has the

biggest base area, only two particle layers exist. The cuboid

III)−z instead leads to the highest values. Both results prove

the above statement that a sufficient number of particle layers

are needed and more layers are advantageous. However, the

cuboid III)−x shows no improved behavior. This implies that

also a sufficient number of particles in excitation direction

are necessary to exhibit the fluidization mode efficiently.

Horizontal container layers Next, the influence of horizon-

tal layers inside the cubical container are analyzed by DEM

simulations. The cubical container is divided into four hori-

zontal layers in the next step. In this way, only one particle

layer is within a container layer. The corresponding result

for 56 steel particles of 5 mm radius is shown in Fig. 15.

The bouncing bed mode is hardly influenced. With container

layers slightly higher values are achieved in the bouncing

bed mode, as probably the gravitational acceleration has less

influence. Big differences occur in the local and global flu-

Fig. 14 Reduced loss factor of 58 steel particles with 5 mm radius for

different cuboid particle containers

idization area (1 < Γ < 5). With layers they do not exist

at all and very little reduced loss factors are obtained. This

is feasible, as the fluidization modes are characterized by

a movement between particle layers that do not exist here.

The usage of horizontal layers could thus be useful for large

containers operated in the bouncing bed mode.

Orientation The influence of the container orientation is

tested with three different configurations. For setting I), the

cubical container is rotated by 45◦ around the x−axis (exci-
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Fig. 15 Reduced loss factor of 56 steel particles with 5 mm radius

for the cubical particle container with layers (top) and without layers

(bottom)

tation direction). For setting II), the container is rotated by

45◦ around the y−axis, such that one container edge is point-

ing in excitation direction. For configuration III), the cube is

rotated such that one of its corners is pointing in excitation

direction. In Fig. 16 the results are shown for 58 steel parti-

cles of 5 mm radius. With all three orientations, the results are

very similar to the standard configuration. Only the fluidiza-

tion modes might be a little bit affected. As in this example

very extreme container orientations are used, for technical

applications little orientation inaccuracies should not be of

importance.

Cylinder In the next step, a new container is manufactured

as shown in Fig. 17 to analyze whether it is possible to adjust

the clearance to a desired value for a given particle setting.

The new container is a cylinder made of aluminum with an

inner radius of 2 cm and an adjustable height of 5 ± 0.5 cm.

To realize the adjustable height, the container and the cap

of the container are equipped with a fine thread. To prevent

the cap from moving during the experiments, it is fixed by

four screws. Therefore, the container has multiple stud holes

around its circumference on the top. With this setting, it is

possible to accurately tune the clearance of the particle bed.

Fig. 16 Reduced loss factor of 58 steel particles with 5 mm radius for

different container orientations

Fig. 17 Cylindrical particle container

We tested a clearance of 4 mm with 312 g of steel powder. The

cylinder is excited along its center line. The reduced loss fac-

tor is shown in Fig. 18 and exhibits the same characteristics as

already mentioned for Fig. 7. Nevertheless, the optimal stroke

of the bouncing bed mode obtained from the experiment is

with a value of about 1.5 mm close to the calculated one via

Eq. (18) of 1.27 mm. This shows that an accurate adjustment

of the clearance is possible. Also, this proves again that the

formula of Bannerman [3], e.g., Eq. (18), is also leading to

acceptable results under the condition of gravity and friction.

4.1.4 Microscopic effects

In Section 4.1.2 it was found experimentally that the reduced

loss factor is almost independent of the used particle materi-

als. Using the DEM, we now investigate in the effect of single

material properties and analyze their effect on the reduced

loss factor independent of each other and possibly for a big-

ger range of values.
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Fig. 18 Reduced loss factor of cylinder filled with 312 g steel powder

with 4 mm clearance

Fig. 19 Reduced loss factor of 58 steel particles of 5 mm radius for

different densities

Density In the following the influence of the density is inves-

tigated. Therefore, 58 steel spheres with radius 5 mm are used

as baseline simulation. Then, the density of the spheres is

changed from 7800 kg/m3 to 900 kg/m3 and 19250 kg/m3,

respectively. These are the densities of our other particles

used in the experiments (see Table 4) and are already very

extreme values. All other parameters are kept constant. The

result is shown in Fig. 19, and only minor differences can be

observed. This proves the independence of the reduced loss

factor on the density.

Young’s modulus Similar to the experiment, we found

almost no dependency of the reduced loss factor on the

Young’s modulus for the considered excitation range. Only if

extreme low Young’s modulus values are chosen a difference

can be observed. Therefore, 58 steel spheres with radius 5 mm

are used as baseline simulation. Then, the Young’s modulus

of the spheres is changed from 210 GPa to 1.1 MPa and 1000

GPa, respectively. These are the values of silicone and dia-

mond. All other parameters are kept constant. The results are

pictured in Fig. 20. For E = 1000 GPa the result is showing

almost no difference. For E = 1.1 MPa, we observed a shift

Fig. 20 Reduced loss factor of 58 steel particles of 5 mm radius for

different Young’s moduli

of the bouncing bed state too much higher container strokes.

This happens as the Young’s modulus is only affecting the

contact forces [Eq. (12)] and thus the penetration and contact

time of the contact partners. For very low Young’s modulus

values the effective clearance gets bigger, as the penetra-

tion of the container wall by the particles has to be taken

into consideration. The fluidization modes are only seen for

low excitation frequencies ( f < 100 Hz). This might be due

to the fact that for the high frequencies the particles stick

together due to their high penetration. First experimental tests

have shown that for a container material of PP (see Table 4)

but steel particles the clearance is not affected but a con-

siderable noise reduction is achieved. This could be a great

advantage for technical applications.

Contact parameters About the influence of the contact

parameters, namely the coefficient of restitution and fric-

tion partially opposite statements exist, see, for instance,

[3,18,36]. The main reasons are probably different areas of

application and the values of the chosen coefficients. Nowa-

days, it is also reported that the magnitude of the coefficients

might be of minor importance for the energy dissipation [10].

To obtain insights about the influence of the contact coef-

ficients for our excitation conditions and range, we analyzed

the energy dissipation of 58 steel particles of 5 mm radius

using the DEM simulation. The ratio of the energy dissipation

of normal contacts to frictional contacts is shown in Fig. 21.

There exist three major regions. First, the energy dissi-

pation is dominated by the normal contacts. Second is by

friction or third is on the same scale. For low accelerations

(Γ < 4), the dissipation is dominated by friction by a factor

up to two. When the acceleration is increased, the dissipation

becomes dominated by the normal contacts up to a factor of

three for low frequencies ( f < 500 Hz). In the area between

both dissipation effects are on a similar scale.

When the coefficients are changed (0.5 < e < 0.99, 0.1 <

µ < 0.5), the contour of the reduced loss factor is only lit-
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Fig. 21 Ratio of dissipated energy of normal contacts to frictional con-

tacts for 58 steel particles of 5 mm radius with µ = 0.1 and the COR

from Fig. 5

tle influenced, as shown in Fig. 22 for four different settings.

The corresponding ratios of the energy dissipation are shown

in Fig. 23. The first setting is the standard setting with the

COR obtained by FEM simulations, see Fig. 5, and µ = 0.1,

as discussed in section 3.3.

The second setting is simulated with an COR of e = 0.5,

which is a rather low value already. The optimal stroke of the

bouncing bed mode is shifted a little bit to higher strokes. The

energy dissipation is completely dominated by the normal

impacts.

The third setting is simulated with an COR of e = 0.99.

Although the optimal stroke of the bouncing bed mode is not

influenced, a high reduced loss factor value is observed on a

much bigger excitation area. These high reduced loss factor

values occur all below the optimal stroke of the bouncing

bed mode. This implies a contact time with Ωti > π and

leads for the other settings to a scattering of the particle bed.

For the third setting instead, the particle bed remains packed,

as observed from animations and the particle trajectories.

Further analyzations are indeed not the scope of this paper.

The energy dissipation is dominated by friction. Although

the bigger excitation range is a nice attribute, to realize such

a high COR in real applications might be not possible.

The fourth setting is simulated with a friction coefficient

of µ = 0.5 and the velocity-dependent COR from Fig. 5. The

bouncing bed mode stays unchanged, but for the transition

from the local to the global fluidization mode slightly higher

values are achieved. The energy dissipation is dominated by

friction again.

This leads to the conclusion that even if the ratio of nor-

mal to frictional losses might completely change due to the

chosen contact coefficients, the total amount of dissipated

energy is rather independent of the coefficient of restitution

and friction for monodisperse systems. The little effect of

the contact parameters on the bouncing bed mode might be

explained by the inelastic collision of the particle bed with

Fig. 22 Reduced loss factor of 58 steel particles of 5 mm radius for

different contact parameters

Fig. 23 Ratio of dissipated energy of normal contacts to frictional con-

tacts for 58 steel particles of 5 mm radius for different contact parameters

the container wall as shown in Fig. 8 and explained in [3,31].

During this inelastic collision, multiple particle collisions

occur and lead to an instantaneous velocity adaption of the

particle bed with the container wall. This process is rather

unaffected by the contact parameters. For the transition from

the local to the global fluidization mode, we assume a sim-

ilar explanation. This motion mode is characterized that in

the whole particle bed relative motion between the particles

is observed. As the energy dissipation per contact reduces,

the number of contacts is increasing, thus leading to a similar

energy dissipation.

4.1.5 Gravity

So far, the excitation occurred perpendicular to gravity. Next,

the influence of an excitation against gravity and under zero

gravity is analyzed. In Fig. 24 the reduced loss factor is

shown for 58 steel particles of 5 mm radius for these two

excitation conditions and compared to a horizontal excita-

tion. For both settings, the optimal stroke of the bouncing

bed mode is shifted to slightly higher values, as the effective
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Fig. 24 Reduced loss factor of 58 steel particles of 5 mm radius excited

in horizontal direction (top), vertical direction (middle), and under zero

gravity (bottom)

clearance is increasing. This happens as the particles better

distribute along the container wall in the corresponding exci-

tation directions. For the vertical excitation with Γ = 1 and

f < 350 Hz, the reduced loss factor reduces dramatically.

This happens, as no relative motion between the particles

occurs. By assuming zero gravity the fluidization modes

(Γ ≤ 5) are not visible at all anymore, as the relative motion

between the particle layers is reduced a lot. This results in

very low reduced loss factors in this area.

Fig. 25 Reduced loss factor for of 464 steel particles of 2.5 mm radius.

Top: Monodisperse system. Bottom: Polydisperse system filled up with

117 g steel powder

4.2 Polydisperse systems

For monodisperse systems the bouncing bed mode and the

transition from the local to the global fluidization mode can

be used for an efficient dimensioning of particle dampers.

Nevertheless, for the bouncing bed mode the excitation con-

ditions have to be accurately known. High reduced loss factor

values are achieved even at high accelerations. The fluidiza-

tion modes can also lead to high reduced loss factor values

but are only seen for comparable low accelerations.

The idea is to fill the gaps between big particles with par-

ticle powder to combine the benefits of both motion modes

and to achieve thus an improved damping behavior. We tested

experimentally 464 steel particles of 2.5 mm radius with and

without 117 g of steel powder with a particle radius of 200

µm-400 µm. The obtained reduced loss factors are shown in

Fig. 25. In the upper picture, the setting without additional

steel powder is shown, i.e., the monodisperse system, and

in the lower picture with additional steel powder, i.e., the

polydisperse system.

The resulting reduced loss factors show completely differ-

ent contours. For the polydisperse system, only small reduced

loss factors are achieved in the bouncing bed area. Instead,

the polydisperse system is showing a high reduced loss fac-
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tor for high frequencies ( f > 500 Hz) up to Γ = 15.

This area is also visible for pure steel powder, see, for

instance, Fig. 18, but is not as large. The polydisperse sys-

tem also shows an increased reduced loss factor at medium

frequencies ( f = 70 Hz till 250 Hz) and high accelerations

(Γ > 10). It seems like the maximum value of the reduced

loss factor occurs at a constant frequency of f ≈ 100 Hz.

This would be advantageous for technical applications as it

enables a damper design for a specific eigenfrequency of an

underlying structure as the damper is robust against the exci-

tation intensity.

Polydisperse systems might yield a segregation according

to size as time elapses. However, in the experiment this was

not observed so far. This might be due to the fact that the

particle box was almost completely filled up with the bigger

particles. Only the gaps between the bigger particles were

filled with the particle powder. Thus, there might not enough

space in the particle container for a complete segregation.

As simulations of the steel powder are very burdensome,

it is hard to judge about the exact dynamic processes inside

the polydisperse damper. Nevertheless, polydisperse systems

show a high potential to damp medium frequencies efficiently

on a robust level and this at a low cost basis. The deeper

understanding of the dynamical processes inside the damper

will be the aim of future research.

5 Conclusion

In this paper, the reduced loss factor of monodisperse as well

as polydisperse particle dampers is analyzed using simula-

tions and experiments. The obtained insights into the highly

nonlinear behavior of particle dampers are a first step to

enable an efficient dimensioning of particle dampers for

an underlying structure. The analyzed particle container is

driven at a grid of frequencies and accelerations in the range

of 40 Hz till 1000 Hz and 10 m/s2 till 400 m/s2. Using the

complex power method, the energy dissipation is obtained.

The reduced loss factor, a scaling of the dissipated energy

by the kinetic energy of the particles, is used to judge the

efficiency of the damper and to compare the systems, inde-

pendent of the container and particle mass.

For monodisperse systems multiple different motion

modes are observed. Particularly, the bouncing bed mode and

the transition from local to global fluidization lead to high

reduced loss factor values. The transition from local to global

fluidization occurs normally at accelerations of ≈30 m/s2 and

is thus only suited for very special application. High filling

ratios of the particle container and a small particle size are

advantageous. This mode is not observed if not a sufficient

number of particle layers exist or in the absence of gravity.

The bouncing bed state depends mainly on the clearance

between the particle bed and the opposite container wall.

The clearance is a function of the filling ratio and the con-

tainer size. The clearance controls at which container stroke

the maximum reduced loss factor occurs. The particle radius

and material are of major importance. By a smaller particle

radius, the estimation of the optimal container stroke gets

more accurate. With the particle material, the amount of dis-

sipated energy can be controlled. The material stiffness, the

contact parameters, and the gravitation are of less effect on

the reduced loss factor. The big drawback of the bouncing

bed mode is that the excitation conditions have to be accu-

rately known and for high frequencies the container stroke

and thus the necessary clearance get very small.

For polydisperse systems, consisting of two different

particle types with a magnitude difference in the radius,

completely different results are achieved. Besides the high

frequency area, also the medium frequency area (70 Hz till

250 Hz) is damped efficiently. The high reduced loss fac-

tor values occur at constant excitation frequency, making it

interesting for technical applications.
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