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Abstract. All things considered, electronic imaging systems do not ri-
val the human visual system despite notable progress over 40 years
since the invention of the CCD. This work presents a method that
allows design engineers to evaluate the performance gap between
a digital camera and the human eye. The method identifies limit-
ing factors of the electronic systems by benchmarking against the
human system. It considers power consumption, visual field, spatial
resolution, temporal resolution, and properties related to signal and
noise power. A figure of merit is defined as the performance gap
of the weakest parameter. Experimental work done with observers
and cadavers is reviewed to assess the parameters of the human
eye, and assessment techniques are also covered for digital cam-
eras. The method is applied to 24 modern image sensors of various
types, where an ideal lens is assumed to complete a digital camera.
Results indicate that dynamic range and dark limit are the most lim-
iting factors. The substantial functional gap, from 1.6 to 4.5 orders of
magnitude, between the human eye and digital cameras may arise
from architectural differences between the human retina, arranged
in a multiple-layer structure, and image sensors, mostly fabricated in
planar technologies. Functionality of image sensors may be signifi-
cantly improved by exploiting technologies that allow vertical stacking
of active tiers. © 2011 SPIE and IS&T. [DOI: 10.1117/1.3611015]

1 Introduction
Despite significant progress in the area of electronic imaging
since the invention of the CCD more than 40 years ago, digital
cameras still do not rival the human eye. Consider that, in his
keynote address to the 2010 International Solid-State Circuits
Conference, Tomoyuki Suzuki, the Senior Vice-President of
Sony, said “In developing the CMOS image sensor, the goal
is exceeding human vision.”1 Toward that end, this work
introduces a method to evaluate the performance gap between
a digital camera and the human eye. A clear definition and
quantification of limiting factors will help design engineers
realize a digital camera to rival the human eye.

The large diversity in design and fabrication technolo-
gies for electronic image sensors encouraged many re-
search groups worldwide to develop performance evaluation
methodologies for digital cameras or image sensors. Franz
et al.,2 for example, suggested a method that mainly consid-
ers the modulation transfer function (MTF) and the signal-to-
noise ratio (SNR). Rodricks and Venkataraman3 introduced
a method that includes metrics such as dark noise, linearity,
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SNR, and MTF, and compared the response of a camera with
a CCD sensor to that of a camera with a CMOS sensor at
various integration time and ISO speed values. The European
Machine Vision Association (EMVA) developed the EMVA
Standard 1288,4 for “Characterization and Presentation of
Specification Data for Image Sensors and Cameras,” to unify
the way image sensors are tested and evaluated. Spivak et al.5

analyzed high dynamic range image sensors, while focus-
ing on SNR, dynamic range (DR), and sensitivity. Janesick6

compared the performance of a back-illuminated CCD image
sensor to that of linear CMOS image sensors with photodi-
ode and pinned-photodiode configurations. Unlike the other
works, he does define a figure of merit for an image sensor,
which is determined by the SNR. This approach, however, is
limited because it discounts other important factors, such as
sensor dimensions and power consumption, that also affect
the overall performance. Most importantly, none of the above
methods uses a benchmark to evaluate electronic image sen-
sors or imaging systems.

In research on image quality assessment, rendering tech-
niques, and display technology, a benchmark is very well de-
fined. Systems have always been evaluated according to how
they match the characteristics of the human visual system
(HVS).7 Brémond et al.,8 for example, presented a method
for evaluation of still images that is composed of three indices
of HVS image quality metrics: visual performance, visual ap-
pearance, and visual attention. Ma et al.9 proposed a method
for quality assessment of still images and video frames that
is based on human visual attention. With any nonartificial
image that is displayed in a digital format, the process starts
when a scene is captured by an electronic imaging system.
This is followed by digital signal processing (DSP), which
includes steps such as tone mapping and compression. If
the performance of the imaging system is such that a large
amount of information is lost, even when sophisticated DSP
algorithms are used, a high quality reconstruction of the orig-
inal scene is infeasible.

In this work, digital cameras are evaluated with respect to
the human eye. A demand for a digital camera that can suc-
cessfully compete with the human eye exists in a large range
of applications, varying from consumer electronics to ma-
chine vision systems for robotic modules. The work reviews
the structure and operating principles of the human eye, and
discusses performance measures and testing techniques that
are used with human observers. For each one of the identi-
fied parameters, the work specifies the performance of the
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eye in healthy adults. This value is used as the performance
benchmark for digital cameras. To fairly compare between
imaging systems of different types, the evaluation is always
referred to the scene, i.e., the imaging system input. The pro-
cess is concluded with a single figure-of-merit (FOM), which
is given in decibel (dB) for an easy representation of large
numbers.

Section 2 discusses considerations in the selection of pa-
rameters for the evaluation process. It also explains how each
one of the chosen parameters is assessed for the human eye
and for digital cameras. Section 3 presents the results ob-
tained after the proposed method was applied to 24 modern
electronic image sensors of diverse types and sources, as-
suming an ideal thin lens is used to form a complete digital
camera. Section 4 discusses past trends in the area of elec-
tronic imaging, using them to predict which current trends
are likely to boost the performance of digital cameras, by
overcoming their most limiting factors, and to become a fu-
ture trend in electronic imaging. Finally, Section 5 concludes
the work.

2 Method
Various parameters can be used for characterization of imag-
ing systems. They include cost, physical properties such as
weight and size, power consumption, visual field, spatial res-
olution, temporal resolution, parameters related to signal and
noise power, and color mapping. The performance evaluation
presented here considers only some of these properties, but
the method may be readily extended in the future.

Cost is excluded because it is not fixed for a digital camera.
The price varies (usually drops) with time, and also depends
on the place of purchase. Moreover, the human eye is price-
less, and so all digital cameras are infinitely cheaper by com-
parison. Weight and size are excluded because they depend

on the design of the camera body and on the lens used. There
are too many optional combinations for a given image sensor,
and so these physical properties are excluded for simplicity.
To narrow the scope of this work further, color mapping is
not included in the performance evaluation method. All im-
age sensors are treated as monochrome ones, i.e., they are
evaluated according to their response to a varying intensity
of white light. In general, color mapping of a digital cam-
era depends not only on the image sensor, but also on the
algorithm used for image processing and display. Therefore,
various options can be applied to the same image sensor.

The eight parameters that are considered for performance
evaluation are: power consumption (PC), visual field (VF),
spatial resolution (SR), temporal resolution (TR), SNR,
signal-to-noise-and-distortion ratio (SNDR), DR, and dark
limit (DL). Two parameters, VF and SR, are related to the
geometry of the imaging system, and the last four param-
eters are related to signal and noise power. To guarantee
that performance is not limited by lens imperfections, and
for simplicity, an ideal thin lens is assumed to complete the
digital camera. In cases where the imaging system includes
DSP, the properties of the image that is read after the DSP is
applied are considered for the evaluation.

The evaluation process involves mathematical operations
and, most importantly, calculation of ratios. Therefore, it
requires explicit values to be defined for the parameters of
all imaging systems, including the human eye. Consequently,
the performance of the human eye is reviewed below, with
reference to experiments done using human cadavers and
observers.

2.1 Power Consumption
Figure 1 shows diagrams of (a) the human eye and (b) a
digital camera. There are many similarities between the two
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Fig. 1 (a) Horizontal cross-section of the right eye (top view). Light enters the eye through the iris aperture (the pupil). It is refracted by the
cornea and the lens before reaching the retina, which is a light-sensitive tissue. The fovea is rich in cone photoreceptors; it is responsible for
sharp central vision. (b) In digital cameras, light enters the camera body through the aperture in the iris diaphragm. It is refracted by a system of
lenses before reaching an image sensor located in the focal plane.
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Table 1 Approximate basal metabolic rates of different tissues that
compose the human eye (Ref. 11).

Metabolic rate

Type Tissues (W/m3)

Passive cornea, lens, sclera,
choroid, vitreous humor,
aqueous humor

0

Muscular lens zonules, scleral
muscle, ciliary muscle, iris
dilator muscle, iris
sphincter muscle

690

Neural retina (including fovea) 10,000

systems. Both include an iris with an aperture, which is called
a pupil. The sclera and the camera body prevent light from
entering the imaging system from any direction other than the
pupil. Refraction of light in the human eye is performed by the
cornea and the lens. While the cornea has a fixed focal length,
the focal distance of the lens can be varied by muscles that
change its shape. In digital cameras, refraction of light is done
by a system of lenses. The retina is a light sensitive tissue; it
is composed of a complex layered structure. Optics of the eye
form an image that appears upside down on the retina. The
retina converts the image into electrical signals that are sent
to the brain through the optic nerve. The image sensor plays
an equivalent role in digital cameras. It converts photons into
electrical signals, which are then read out through electrical
wires.

Comparison between the power consumption of a biologi-
cal system and an electronic system that serve similar roles is
established in electronic engineering. It is noteworthy when
biological systems can fulfill the same function while con-
suming less power. Mead, who did extensive research on
biologically-inspired electronics, emphasizes a comparison
of power consumption in his book “Analog VLSI and Neural
Systems.”10 He went on to found Foveon, a digital camera
company.

The power consumption of the human eye can be esti-
mated using the basal metabolic rate of the different tissues
from which it is composed. Some of the tissues, such as the
sclera and the lens, have a very low metabolic rate and, there-
fore, can be categorized as “passive.” There are also muscles
that take part in the functionality of the eye, such as those
that control the pupil and the lens. Their metabolic rate can
be taken as that of typical muscle tissue in the human body.
The retina is the most “power hungry” tissue in the human
eye. Its metabolic rate is considered to be equal to that of
brain gray matter. The metabolic rates of various tissues in
the human eye are given in Table 1, as reported by DeMarco
et al.11

To estimate the power consumption of the human eye,
one needs to assess the volume of the different tissues.
Straatsma et al.12 report statistical details about the dimen-
sions of the retina based on measurements done with 200
eyes from human cadavers. A mean value of 1340 mm2 was
calculated for the internal surface area of the retina from
the reported data. The retinal thickness in healthy adults
is 220 μm.13, 14 This shows that the volume of the retina

is approximately 295 mm3. Therefore, the power consump-
tion of the retina is approximately 3 mW. The metabolic
rate of the muscle tissue is about one-tenth of the reti-
nal metabolic rate. Assuming the overall volume of mus-
cle tissue in the human eye is less than 30 times the reti-
nal volume, the power consumption of the eye is less than
10 mW.

The power consumption of image sensors depends on the
technology used for device fabrication and on the circuit
design. In general, it increases with frame size and frame
rate because more power is consumed with an increase in
capacitance that needs (dis)charging, and with an increase in
cycle frequency. The power consumption of image sensors
is obtained from datasheets or other publications for one or
more frame rates chosen by the manufacturer or author.

2.2 Visual Field
The visual field of an imaging system is the overall volume
“viewed” by the system. The clinical method used to evaluate
the human visual field is called perimetry. Various techniques
and instruments have been developed for this purpose; they
can be categorized in several ways. The Goldmann perimeter
is an example of an instrument for manual perimetry, while
the Octopus perimeter and the Humphery visual-field ana-
lyzer are examples of computer-controlled instruments. In
kinetic perimetry, a stimulus of a known and constant lu-
minance moves at a steady speed from an area outside the
patient’s visual field to an area inside. The patient is asked
to report when the stimulus has been perceived. In static
perimetry, there are multiple stimuli with fixed locations.
However, the luminance may be either constant or varied.15

Threshold strategies determine the threshold luminance of
the patient at different locations by gradually increasing the
luminance intensity at fixed points until they are perceived.
In suprathreshold strategies, the patient is presented with
stimuli luminance above normal threshold values at various
locations in his or her visual field.16

The monocular visual field of a healthy adult extends ap-
proximately 50 deg to 60 deg superiorly and 70 deg to 75 deg
inferiorly in the vertical direction,15, 16 as shown in Fig. 2(a).
Horizontally, it extends about 60 deg nasally and 90 deg to
100 deg temporally, as shown in Fig. 2(b). The optic disk,
which is the exit point of the optic nerve from the eye to
the brain [see Fig. 1(a)], lacks photoreceptors. This causes a
“blind spot” in the visual field that is located between 10 deg
and 20 deg temporally. The binocular visual field extends
about 200 deg horizontally because there is an overlap in the
nasal monocular visual field of the two eyes, and each eye
covers about 100 deg temporally. Vertical extent of binocular
vision is similar to that of monocular vision.

To allow a fair comparison between the visual field of
imaging systems of different types, the solid angle subtended
by the imaging system is calculated. Moreover, an expression
of the visual field as a solid angle emphasizes the fact that
an imaging system captures a three-dimensional (3D) spatial
volume and not a two-dimensional (2D) area. To simplify the
calculations, which are required to estimate the solid angle
subtended by the human eye, its visual field is treated as a
right elliptical cone [see Fig. 2(c)]. The solid angle subtended
by an elliptical cone with opening angles θ⊥ and θ‖ (θ⊥ ≥ θ‖)
is given by17
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Fig. 2 (a) The visual field of a healthy adult extends, in the vertical direction, approximately 50 deg to 60 deg superiorly and 70 deg to 75 deg
inferiorly. (b) It extends, in the horizontal direction, about 60 deg nasally and 90 deg to 100 deg temporally. (c) For simplicity, the solid angle
viewed by the human eye is taken as the one seen by a right elliptical cone. (d) The solid angle viewed by a digital camera is the one seen by a
right rectangular pyramid. It varies with image sensor dimensions and lens focal length.

� = 2π [1 − �0(ϕ, α)] , (1)

where

ϕ ≡ 1

2
(π − θ‖), (2)

(sin α)2 ≡ 1 −
[

cos(θ⊥/2)

cos(θ‖/2)

]2

. (3)

�0 is Heuman’s lambda function, which is given by18

�0(ϕ, α) = 2

π
K (α)E (ϕ, π/2 − α) −

2

π
[K (α) − E(α)) F (ϕ, π/2 − α] , (4)

where K (α) and E(α) are complete elliptic integrals of the
first and second kind, respectively, and F(ϕ, φ) and E(ϕ, φ)
are incomplete elliptic integrals of the first and second kind,
respectively.

To estimate the solid angle subtended by the monocular
visual field of the human eye, the vertical opening angle,
θ‖, is taken as 127.5 deg, and the horizontal opening angle,
θ⊥, is taken as 155 deg. The blind spot in the visual field
is ignored. A calculation performed using MATLAB functions
for the elliptic integrals shows that the human eye captures a
solid angle of 4.123 sr, i.e., �eye ≈ 4.1 sr.

Conventional image sensors are rectangularly shaped.
Therefore, a digital camera views a solid angle of a right
rectangular pyramid, as shown in Fig. 2(d). Its visual field
depends on the width, w , and length, 	, of the sensor array,
and on the focal length of the lens, f	. In this pyramid, the
image sensor is considered as the base, and the apex is lo-
cated at a distance f	 from the center of the base. The solid
angle subtended by the image sensor, �s , is given by19

�s = 4 arcsin [sin(αw/2) · sin(α	/2)] , (5)

where αw = 2 arctan [w/(2 f	)] and α	 = 2 arctan [	/(2 f	)]
are the apex angles of the right rectangular pyramid.

2.3 Spatial Resolution
The spatial resolution of an imaging system represents the
finest detail or the highest spatial frequency that can be per-
ceived by the system. It may be derived from the system’s re-
sponse to varying spatial frequency. For simplicity, the spatial
resolution is examined here only for one-dimensional (1D)
patterns. The spatial response, for each spatial frequency, is
defined through the Michelson contrast ratio, C , which is
given by

C = Imax − Imin

Imax + Imin
. (6)
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Fig. 3 (a) A pattern to test the spatial response of human observers. L0 is the adaptation luminance. The examiner varies 
L until a threshold
level, 
Lth, can be determined. (b) The CSF of an observer with good vision at four adaptation levels.21 (c) The normalized MTF of a digital
camera with f	 = 20 mm, p = 10 μm, and a = 2.5, 5, and 7.5 μm. Spatial frequencies at 15 dB deterioration are indicated. (d) The temporal
response of an observer with good vision, using data from Kelly (Ref. 22).

This is a general definition, where the term I can refer to var-
ious quantities. Although the spatial response is defined for
sinusoidal-wave spatial patterns, testing is often performed
with square-wave spatial patterns.

The spatial resolution of the eye is not uniform across the
whole visual field. It is sharpest at the center and gradually
declines toward the periphery or, as described by Traquair,
it is “an island of vision or hill of vision surrounded by a
sea of blindness.”20 This evolves from the nonuniformity of
the retina. The fovea is the retinal area that is responsible for
sharp central vision. Sharp vision of the whole visual field
is obtained thanks to saccades, which are constant fast eye
movements that bring different portions of the scene to the
fovea.

A test pattern to characterize the spatial response of human
observers is shown in Fig. 3(a), where L0 is the adaptation
luminance and 
L = Lmax − Lmin is the tone difference. For
a central pattern with a constant spatial frequency, fx-sc, the
examiner varies 
L and the observer is asked to specify
whether the tone difference is perceived. This is repeated

until a threshold value, 
L th, usually defined as the level
with 50% probability of detection, can be determined. For
a comprehensive characterization of an observer’s spatial
response, tests need to be repeated with different fx-sc and
L0 conditions.

The threshold values can be used to construct a plot of the
contrast sensitivity function (CSF), which is the inverse of
the threshold contrast, Cth, as given by

CSF = 1

Cth
= Lmax + Lmin


L th
. (7)

Figure 3(b) shows the CSF of a young adult observer at four
different adaptation levels. The spatial frequency is given in
units of cycles per degree (cpd). The plot was constructed
according to data presented by Patel.21 The experiment
was performed with an artificial pupil, whose diameter
was smaller than the natural pupil diameter even at very
bright conditions. Although original results were given in Td
(Trolands), they were converted to cd/m2. One Td, which
represents the retinal illuminance, equals the scene lumi-
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nance in cd/m2 multiplied by the area of the pupil’s aperture
in mm2. Conversion was done according to interpolation of
data presented by De Groot and Gebhard23 on the relation-
ship between pupil diameter and scene luminance. The retinal
illuminance (Td) was calculated from the expected pupil di-
ameter (mm) at the corresponding scene luminance (cd/m2).
Figure 3(b) shows that spatial response of the human eye
improves with increasing L0.

To define a benchmark for the spatial response of the HVS,
Snellen visual acuity charts are considered. These charts have
been used since the 19th century as an evaluation standard for
spatial response of human observers. During examination,
the observer is asked to identify letters, or other patterns,
of different sizes from a distance of 20 ft (or 6 m). Those
who can clearly perceive the letters in the row that matches
visual acuity of 20/20 are considered to have good acuity.
The letter E in that row corresponds to a spatial frequency
of 30 cpd. One may conclude from Fig. 3(b) that, at 30 cpd,
the spatial response of the HVS in typical office luminance,
i.e., about 100 cd/m2, is about 15 dB lower than its maximal
value. Therefore, for the performance evaluation, the spatial
frequency at which the spatial response of a digital camera
deteriorates by 15 dB is compared to the HVS benchmark of
30 cpd.

Unlike testing methods with human observers, which have
to be based on threshold values, with digital cameras one may
gradually change the spatial frequency of the scene stimulus
and measure the system response directly. However, as results
of such measurements are often not published, the spatial
response is estimated here by calculations based on system
geometry. The overall spatial response of a digital camera is
affected by the response of the image sensor and the response
of each component that is placed in the path of the light, such
as lenses and filters.

The image sensor is usually composed of a 2D array of
rectangularly shaped pixels. The pattern of light formed on
the image plane is sampled in each pixel by the photodetec-
tor. Because image sensors may be considered as linear and
space-invariant (isoplanatic) systems,24 the sampled image
is a two-dimensional convolution of the pattern on the image
plane with the impulse response of the array, also called the
point spread function. The impulse response is derived from
the sampling pattern of the array.

The Fourier transform of the impulse response is called the
optical transfer function (OTF). It defines the image sensor
response to varying spatial frequencies along the x and y
axes on the image plane, fx and fy , respectively, which are
expressed in units of line-pairs per mm (lp/mm). The MTF
is the magnitude of the OTF.

To simplify calculations, the MTF is given here for one-
dimensional patterns and does not consider aliasing. Yadid-
Pecht25 shows that, for an array with pixel pitch p and pho-
todetector pitch a, the 1D MTF is given by

MTF( fx ) = a

p
sinc(a fx ), (8)

where

sinc(x) =
{

sin(πx)/(πx), x �= 0;

1, x = 0.
(9)

The lens MTF needs to be multiplied by the MTF of the
image sensor to calculate the spatial response of the digital
camera. However, the lens is considered here to have an ideal
spatial response, i.e., to have a unity MTF. While this is a sim-
plification, the actual spatial resolution of the digital camera
would not surpass the value taken here for the performance
evaluation.

To refer the spatial response of the digital camera to the
scene, the spatial frequency fx in lp/mm on the image plane
needs to be converted to fx-sc in cpd of the scene. Because
an opening angle of 1 deg corresponds to a length of d
= 2 f	 tan 0.5 deg on the image plane, fx-sc = fx d.

The MTF is often normalized in order to represent the
contrast ratio, C , of the frequency response. Theoretically,
one concludes from Eq. (8) that the bandwidth of the spatial
response improves without limit as the photodetector pitch
diminishes. However, practically, the photodetector must be
large enough to absorb an adequate number of photons to
generate a detectable electrical signal. Figure 3(c) shows the
normalized MTF as calculated for a digital camera, where
the sensor has a pixel pitch of p = 10 μm and the lens has
a focal length of f	 = 20 mm. Calculations were performed
for three values of photodetector pitch. The spatial frequency
at 15 dB deterioration, which is considered here as the spatial
resolution, is shown for each case.

To conclude, the spatial response of the HVS can be
extracted from experiments performed with human ob-
servers. The benchmark is determined using a commonly
used standard—the 20/20 row of the Snellen chart. With
digital cameras, although the spatial response can be mea-
sured directly, experimental results are usually not provided.
Therefore, it is estimated here according to the image sensor
geometry and the given focal length.

2.4 Temporal Resolution
The temporal response of the human eye has been tested by
different groups worldwide, who have experimented with hu-
man observers. In general, the published works agree that the
response improves with retinal illuminance, and that tempo-
ral changes with frequencies greater than 80 to 90 Hz cannot
be detected even at high luminance levels.

The method used to test the temporal response somewhat
resembles the one used to test the spatial response of human
observers. The main difference is that instead of working with
spatial variations in frequency and contrast, these factors
are now required to vary with time. Kelly,22 for example,
performed experiments using an apparatus that generates a
stimulus in the form of

L(t) = L0[1 + m · cos(2π f t)], (10)

where L0 is the adaptation luminance, m is the modulation
amplitude, and f is the frequency. The modulation amplitude
is an example of the Michelson contrast ratio defined in
Eq. (6), i.e.,

m = Lmax − Lmin

Lmax + Lmin
, (11)

where Lmax and Lmin are the maximum and minimum of
L(t), respectively.

During the experiment, while L0 and f are kept constant,
the observer is asked to report whether temporal changes can
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be detected for different m values. The threshold modulation
amplitude, m th, is defined as the minimal m that the observer
requires to be able to notice temporal changes in the scene,
and the ratio between L0 and m th defines the sensitivity.
Experimental results are shown in Fig. 3(d). As before, the
original data was given in Td and was converted to cd/m2

based on the dimensions of the artificial pupil used in the
experiment. Results show that, in typical office conditions,
the human eye can detect temporal changes up to frequencies
of 65 Hz. This value is used in the performance evaluation.

The temporal resolution of a digital camera is propor-
tional to the frame rate of its image sensor, as indicated by
the manufacturer. According to the Nyquist theorem, in or-
der to reconstruct a signal, the sampling rate needs to be at
least two times higher than the highest frequency it contains.
Therefore, the highest temporal frequency that can be prop-
erly captured by a digital camera, and which determines its
temporal resolution, equals half the frame rate of its image
sensor in the best case.

2.5 Signal and Noise Power
The signal and noise power of an imaging system determines
four important measures: the SNR, the SNDR, the DR, and
the DL. Noise sources can be found in the imaging system and
in the scene. For a fair comparison, all the noise is referred
to the scene, i.e., the input of the imaging system.

Two types of noise affect the performance of imaging
systems: temporal noise and fixed pattern noise (FPN). In
this paper, the SNR considers only the temporal noise. The
SNDR considers both temporal noise and FPN, where the
two are assumed to be uncorrelated. In some works,5, 26 both
temporal noise and FPN are included in the definition of
SNR, i.e., their definition of SNR is equivalent to SNDR
here. The SNDR of an imaging system cannot be greater
than its SNR under the same operating conditions.

FPN exists in any array of analog or mixed-signal sen-
sors due to inherent variability. With digital cameras, it is re-
duced by methods such as correlated double-sampling (CDS)
and/or calibration. However, the residual FPN causes distor-
tion. With the human eye, FPN is avoided because the retina
is sensitive to the temporal derivative of the stimulus intensity
and not to the intensity itself.27 One proof of this mechanism
is that static images formed on the retina without saccadic
influence fade away to the observer. Although the best way to
represent the ratio between signal and noise power is through
the SNDR, both SNR and SNDR are considered here because
only the temporal noise is specified for some image sensors.

The dark limit is the lowest luminance level at which
the SNDR begins to exceed 0 dB. At this operating point, the
signal and noise power are equal. The dynamic range is the
maximal range of luminances that the imaging system can
safely capture with SNDR greater than 0 dB. Therefore, it is
limited by the DL at one end. The bright limit (BL) of the DR
is determined by the luminance level that causes the SNDR
to drop abruptly to zero, or that damages the imaging system,
or that causes other undesirable conditions, such as a sudden
increase in distortion.

An intrascene DR and an interscene DR can be defined
for every imaging system, including the human eye. The in-
trascene DR is the maximal luminance range that the imaging
system can capture using fixed operating conditions. It may

)b()a(

L0

L0+ΔL
L0

L
L+ LΔ

Fig. 4 Test patterns to examine (a) the interscene, and (b) the in-
trascene response of human observers. L0 is the adaptation lumi-
nance. In both cases, 
Lth, the minimum increment an observer
requires to distinguish two luminances, is determined. Assuming that
signal power equals total noise power at the threshold level, SNDR
may be calculated.

depend on an adaptation point. With the human eye, the
pupil size should be constant and, with digital cameras, pa-
rameters such as gain and exposure time should be constant.
The interscene DR is the maximal luminance range that the
imaging system can capture with adaptation included. With
the human eye, time may be allowed for adjustment to new
luminance conditions and, with digital cameras, operating
parameters may be likewise varied. Only the intrascene DR
is considered here for performance evaluation. Nonetheless,
the interscene response of the human eye is explained below
because it is needed to explain the intrascene response.

Measures related to signal and noise power of the human
eye may be assessed using contrast-sensitivity test patterns.
The test pattern shown in Fig. 4(a) can be used to examine
the interscene response of human observers.28 The observer
is first given enough time to adapt to a new background
luminance level, L0, and is then asked to indicate whether
the scene looks uniform or whether the central pattern is
perceived. The test pattern shown in Fig. 4(b) may be used
to examine the intrascene response of human observers. In
this test, while L0 and L are kept constant, 
L is varied.
The observer is asked to indicate whether the central pattern
looks uniform or whether the tone difference between the
two sections is perceived. Reported results are the threshold
levels.

Assuming that a signal cannot be detected as long as its
power is smaller than the noise power, the threshold lumi-
nance, 
L th, represents the luminance level for which the
signal power and the noise power are equal. Therefore, the
SNDR may be written as

SNDRinterscene = 20 log

(
L0


L th

)
(12)

for the interscene response, and as

SNDRintrascene = 20 log

(
L


L th

)
(13)

for the intrascene response.
Hecht29 presents results of experiments done with human

observers according to data reported by Koenig and Brod-
hun in 1889. The goal of these experiments was to find the
interscene response of the human eye. The response was
tested at luminance levels that cover the whole range in
which the eye can function, from the dimmest perceptible
luminance to intense levels that cause temporary blindness.
The results, presented in Fig. 5(a), show that the interscene
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Fig. 5 (a) The interscene response obtained from experiments with human observers (Ref. 29). Using a model developed by Barten (Ref. 31)
the intrascene response was calculated at adaptation levels of 0.1 and 100 cd/m2 for a 4 deg ×4 deg visual field. (b) A simplified model of an
imaging system that is used to refer the scene luminance, Lsc, to the image plane illuminance, Eim. (c) The interscene response of the human eye
exhibits a high DR but a low SNDR, and resembles the intrascene response of logarithmic CMOS image sensors. (d) The intrascene response
of CCD and linear CMOS image sensors is characterized by a low DR but a high SNDR. It is compared to the intrascene response of the human
eye. When multiple sampling is used to increase the DR, the SNDR has a sawtooth pattern.

DR of the human eye extends at least 170 dB. They also
show that the peak SNDR of the human eye equals 36 dB,
which is reached in typical office luminance. This value is
used for both peak SNR and peak SNDR benchmarks in the
evaluation process.

The retina includes two types of photoreceptors: cones
and rods. Cones are responsible for color vision and operate
in bright light; they are mostly concentrated in the fovea.
Rods are responsible for vision in dim light. The interscene
response of the human eye is composed of three regions
of operation.30 Color vision, or photopic vision, occurs at
luminances greater than 3 cd/m2. Mesopic vision occurs at
luminances between 3 and 0.001 cd/m2. In this range, the

response of the eye to color gradually deteriorates. Finally,
vision at luminances lower than 0.001 cd/m2, in which only
rods are operative, is called dark vision, or scotopic vision.
As the human eye can detect color until the luminance drops
to 0.001 cd/m2, this value is considered as its dark limit in
the performance evaluation.

The intrascene response was calculated according to
a mathematical model developed by Barten,31 based on
experimental work performed by Rogers and Carel.32 It
expresses the effect of background luminance on the CSF as a
Gaussian function of the logarithm of L0 divided by L . Al-
though originally developed for the CSF, this model may be
used to estimate the intrascene SNDR because SNDR tests
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are equivalent to CSF tests at low spatial frequencies. In
general, the performance of the eye is best when the back-
ground luminance is similar or somewhat lower than the ob-
ject luminance. Calculation of the intrascene response was
performed at two adaptation levels. Results are shown in
Fig. 5(a), along with the inter-scene response. The response
around 100 cd/m2 is blocked by the BL of the human eye.
The DL of the intrascene response around 0.1 cd/m2 corre-
sponds to the DL of the mesopic region. The intrascene DR
at this adaptation luminance covers 126 dB, and this value is
used in the performance evaluation.

To estimate the dark limit of a digital camera, one needs to
refer to scene luminance, Lsc, which is expressed in cd/m2,
to image plane illuminance, Eim, which is expressed in lux, as
shown in Fig. 5(b). The two measures are related as follows:

Lsc = Eim

T

1

π

(
2 f	
D

)2

= Eim

T

4 f 2
#

π
, (14)

where T is the lens transmission, D is the aperture diame-
ter, and f# = f	/D is the f-number of the lens. This formula
is derived from Smith.33 The dark limit of an image sen-
sor, Eim-DL, may be calculated for integrating sensors if the
sensitivity, the dark signal, and the dark noise are given, as
explained in Section 3.2

CMOS image sensors with logarithmic pixel circuits are
characterized by a high DR but low SNR. Their response is
somewhat similar to the interscene response of the human
eye [see Fig. 5(b)]. The BL of logarithmic image sensors
is determined by the image plane illuminance that gener-
ates photocurrent that causes a nonlogarithmic response of
the pixel circuit. Above such an illuminance, residual FPN
would increase substantially. With an ideal lens model, image
plane illuminance (lux) may be referred to scene luminance
(cd/m2), using Eq. (14), for comparison with the human eye.

Although CMOS image sensors with linear pixel circuits,
as well as CCD image sensors, achieve high SNDR, they
have a low DR. Their BL is determined by the image plane
illuminance that causes a saturating response because the
charge generated during the integration time is greater than
the well capacity. At this point, the SNDR drops abruptly
to zero. There are several methods to increase the DR of
low DR image sensors. Those based on multiple readouts
of each pixel to construct one frame are characterized by a
sawtooth SNDR in the region where the bright limit of the
DR is extended. Such methods include multimode sensors
and multiple-capture methods, which can be based on either
global or local control of integration time.5 Figure 5(c) com-
pares the response of linear CMOS image sensors, with and
without extension of DR, to the intrascene response of the
human eye around 100 cd/m2.

Although SNR and SNDR should be represented as a
curve that covers the whole DR of an image sensor, a single
value is usually given in datasheets. This value is either the
peak SNR or the SNR at a certain operating point chosen
by the manufacturer. Similarly, data for the photoresponse
nonuniformity (PRNU), which allows calculation of SNDR,
is normally specified only for certain operating conditions.
Assuming an ideal lens, the peak SNR, peak SNDR, and DR
of an image sensor are equal to those of the digital camera
that accommodates it.

2.6 Figure of Merit
The performance evaluation method considers eight param-
eters: PC, VF, SR, TR, SNR, SNDR, DR, and DL. For a
digital camera, each parameter is evaluated and compared to
the corresponding benchmark of the human eye. The FOM
is defined as the performance ratio, expressed in decibels, of
the parameter that proves to be the weakest one according to
such ratios. To rival the human eye, a digital camera needs to
demonstrate performance that is equivalent to or better than
that of the human eye at every single measure. If the FOM
of a digital camera is negative, there is at least one parameter
for which the performance of the human eye exceeds that of
the digital camera. If the FOM is positive, the digital camera
is superior to the human eye in all eight parameters.

To refer the VF, SR, and DL to the scene, the focal length,
f	, and f-number, f#, of the lens need to be specified. For
simplicity, the calculations are done using a thin-lens model,
which means only the image sensor specifications are re-
quired. Moreover, to eliminate the effect of lens imperfec-
tions on overall performance, the lens is assumed to be ideal,
i.e., with unity transmission and unity MTF.

There is a trade-off between VF and SR, which depends
on the focal length of the lens. When f	 is short, as with
wide angle lenses, a large volume is captured by the imaging
system. However, small details would not be distinguished.
Therefore, short f	 results in high VF but low SR. Similarly,
when f	 is long, as with telephoto lenses, one can clearly
see small details but the volume captured is very limited.
To compare digital cameras having the same lens model, the
same f	 and f# values are used with all image sensors in the
performance evaluation.

The reduced eye model treats the refracting surfaces in the
human eye, i.e., the cornea and the lens, as a single equiva-
lent lens.34 Considering refractive indices and other physical
properties, one concludes that the power of the equivalent
lens is 60 diopters. This gives a focal length of 17 mm. In
film cameras based on the full-frame format (24×36 mm2),
lenses with focal lengths of 35 to 70 mm are considered
normal lenses, i.e., neither wide angle nor telephoto.35 Elec-
tronic image sensors are usually smaller than the full-frame
format. Therefore, lenses with shorter focal lengths are typi-
cally used to achieve a similar VF. A focal length of 17 mm,
the equivalent focal length of the human eye, is in the range
of normal lenses for electronic image sensors. Therefore, it
does not give priority to the VF over the SR, or vice versa,
and is taken as f	 in the performance evaluation.

At the DL benchmark (0.001 cd/m2) the pupil diameter
of the human eye is 6.5 mm.23 This value, along with f	 =
17 mm, results in f# = 2.6. This f-number, which lies in the
2 to 16 range that is typical for photography, is used in the
performance evaluation.

3 Results
The performance of 24 modern image sensors combined with
an ideal lens is evaluated with respect to the human eye.
The evaluation was based on data provided in commercial
datasheets or academic publications that describe the image
sensors. Therefore, the main criteria in the selection of image
sensors for the survey was the sufficiency of details provided
in the documentation. Example calculations are shown for
two of the surveyed sensors. The FOM and the two most
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limiting factors are summarized for all the suveyed image
sensors.

3.1 Modern Image Sensors
A list of the surveyed image sensors is presented in Table 2.
The zeroth row of the table is dedicated to the human eye,
which sets the benchmark for the performance evaluation.
Data given for frame size and pixel pitch in this row refers
to the number of cone photoreceptors and their diameter,
respectively. Values are taken from Wyszecki and Stiles.60

Table 2 includes raw data that characterizes the image
sensors. Some of the details, such as pixel size and fill fac-
tor, are required for calculations related to the performance
evaluation. Parameters that do not require any complicated
processing for the evaluation, such as power consumption
and frame rate, are not shown in the Table 2 because they are
presented in a figure (Fig. 6). Details related to control and
operation of an image sensor are excluded because they are
not considered in the evaluation. Raw data for calculations
of signal and noise power are also excluded because there
is no uniformity in the way data was measured or reported,
even for image sensors of similar types. Moreover, not all pa-
rameters are relevant to all image sensors. For example, the
term “full well capacity” is meaningful for CCD and linear
CMOS image sensors, but not for logarithmic ones.

The image sensors included in the survey are divided
into three groups. Image sensors 1 to 7 were fabricated in
CCD technology. They include full-frame, frame-transfer,
and interline-transfer CCD image sensors. Image sensors 8
to 16 are commercial CMOS ones, where all are based on
linear integration. Image sensors 17 to 24 are called aca-
demic CMOS image sensors because they were described in
scientific publications rather than commercial ones. In each
group, the image sensors are presented in chronological or-
der, which was determined by the publication date.

The design of each academic image sensor focuses on
boosting one or more performance measures. Lim et al.36

and Dubois et al.37 target temporal resolution. Matsuo
et al.38 aimed to achieve low temporal noise by using
pixel circuits based on the pinned-photodiode configura-
tion. Kitchen et al.39 show a digital pixel sensor with pulse-
width-modulation control that is used to improve the DR.
Hoefflinger40 and Storm et al.41 use logarithmic pixel circuits
to achieve high DR image sensors. Mase et al.42 and Lulé
et al.43 also target the DR. However, they use methods that
are based on multiple integration times to construct a single
frame. The image sensor described by Lulé et al.43 is the only
one not fabricated in a planar technology. It is a vertically-
integrated (VI) CMOS image sensor, in which hydrogenated
amorphous-silicon photodetectors were deposited on top of
CMOS circuits.

3.2 Example Calculations
Calculation examples for the signal and noise power param-
eters are presented here for two image sensors: a commercial
CCD sensor and an academic CMOS sensor that uses two
modes of operation to construct a single frame.

Image sensor 6 (Texas Instruments, TC237B44) is a CCD
sensor. With linear sensors, changes in the response are pro-
portional to changes in the scene luminance. The DR of
sensor 6 with CDS is 64 dB, and its typical full-well capac-

ity, vsat, is 30 k electrons. Therefore, the rms voltage of the
temporal noise in the dark, Ndark-rms, may be derived from

DR = 20 log

(
vsat

Ndark-rms

)
, (15)

i.e.,

64 = 20 log

(
30000

Ndark-rms

)
, (16)

which results in Ndark-rms = 19 e− or 0.246 mV when using
the charge conversion factor 13 μV/e−.

With image sensors that are based on integration time,
i.e., CCD and linear CMOS ones, Eim-DL may be calculated
as follows:

S · Tint · Eim-DL − DS · Tint = Ndark-rms, (17)

where S is the sensitivity, given in V/(lux s), Tint is the inte-
gration time, and DS is the dark signal, which is expressed in
V/s. This equation shows that if DS · Tint � Ndark-rms, which
can be achieved with long integration times, Eim-DL ≈ DS/S.
Therefore, the DL cannot be improved beyond a certain limit
even when Tint is increased.

The sensitivity of sensor 6 with an infrared (IR) filter is
32 mV/lux, and its dark signal is 1 mV. Since S and DS are
expressed in mV/lux and mV, respectively, the integration
time is, actually, not required for calculation of the dark limit.
The datasheet does specify that a 16.67 ms exposure time was
used to estimate the smear. However, it is not clear whether a
similar integration time was also used to find S and DS. The
minimum detectable image plane illuminance is calculated
by

(32 mV/ lux) · Eim-DL − 1 mV = 0.246 mV, (18)

which gives Eim-DL = 0.039 lux and results in Lsc-DL
= 0.336 cd/m2.

RMS value of the distortion, σ d
v , and rms value of the

temporal noise, σ t
v , are needed to calculate the SNDR. The

datasheet specifies that the spurious nonuniformity under
illumination (usually called PRNU) is 15%. No data is given
for the temporal noise under illumination. Therefore, the
value of Ndark-rms is used instead, which gives:

SNDR = 20 log

⎡
⎣ vsat√(

σ d
v

)2 + (
σ t

v

)2

⎤
⎦

= 20 log

(
30000√

45002 + 192

)

= 16.5 dB. (19)

Image sensor 21 (Storm et al.41) has two modes of opera-
tion: linear and logarithmic. At the beginning of each readout
cycle, the photodiode capacitance is precharged, and the pix-
els are set to work in linear mode. Afterward, the pixels are
switched to operate in logarithmic mode. Therefore, the lin-
ear mode targets dim scenes, whereas the logarithmic mode
targets increased DR in bright scenes.

Storm et al. report that the sensitivity of the image sen-
sor is S = 726 mV/(lux s), and its dark noise is Ndark-rms
= 0.95 mV. The pixel dark current is 0.388 fA. Using the
specified conversion factor of 15.35 μV/e−, the dark signal is
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Table 2 The 24 image sensors included in the performance evaluation: 1 to 7 are commercial CCD, 8 to
16 are commercial CMOS, and 17 to 24 are academic (VI) CMOS image sensors. The zeroth row refers
to the retina and fovea of the human eye.

Image sensor Technology Data conversion Sensor size Pixel pitch

(Supply voltage) (ADC bits) (frame size) (fill factor)

(V) mm2 (Mp) μm (%)

0. Human retina organic pixel level 1341.5 4.5–9

(5–6.5)

Human fovea organic pixel level 1.77 1–4

(0.11–0.115)

1. Kodak (Ref. 45) CCD full frame board level 49.1×36.8 6

KAF-50100, 2010 (15) (50)

2. Dalsa (Ref. 46) CCD full frame board level 24.5×24.4 12

FTF2021M, 2009 (24) (4.2) (94)

3. Kodak (Ref. 47) CCD interline board level 8.8×6.6 5.5

KAI-02050, 2008 (15) (1.9)

4. Atmel (Ref. 48) CCD full frame board level 35×23 10

AT71200M, 2003 (15) (8.1)

5. Sony (Ref. 49) CCD interline board level 8.8×6.6 6.45

ICX285AL, 2003 (15) (1.4)

6. Texas Instruments (Ref. 44) CCD frame tr. board level 4.9×3.7 7.4

TC237B, 2001 (26) (0.3)

7. Philips (Ref. 50) CCD frame tr. board level 8.2×6.6 5.1

FXA 1012, 2000 (24) (2.1)

8. Hynix (Ref. 51) CMOS linear chip level 2.8×2.1 1.75

YACD5B1S, 2010 (2.8) (10) (1.9)

9. Samsung (Ref. 52) CMOS linear column level 3.7×2.7 1.4

S5K4E1GA(EVT3), 2010 (2.8) (10) (5.1)

10. Cypress (Ref. 53) CMOS linear chip level 24.6×24.6 12

Lupa-4000, 2009 (3.5) (10) (4.2) (37.5)

11. Aptina imaging (Ref. 54) CMOS linear chip level 5.7×4.3 2.2

MT9P031, 2006 (2.8) (12) (5)

12. Aptina Imaging (Ref. 55) CMOS linear chip level 6.7×5.3 5.2

MT9M001C12STM, 2004 (3.3) (10) (1.3)

13. Samsung (Ref. 56) CMOS linear column level 4.9×3.9 3.8

S5K3A1EA, 2004 (2.8) (10) (1.3)

14. STMicroelectronics (Ref. 57) CMOS linear chip level 3.6×2.7 5.6

VS6502, 2004 (3.3) (10) (0.3)
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Table 2 (Cont.)

Image sensor Technology Data conversion Sensor size Pixel pitch

(Supply voltage) (ADC bits) (frame size) (fill factor)

(V) mm2 (Mp) μm (%)

15. National Semiconductor (Ref. 58) CMOS linear chip level 6.2×7.7 6

LM9638, 2002 (3) (10) (1.3) (49)

16. Hynix (Ref. 59) CMOS linear chip level 6.4×4.8 8

HV7141D, 2001 (3.3) (8) (0.5) (30)

17. Lim et al. (Ref. 36) CMOS linear column level 1.8×1.3 5.6

(2.8) (10) (0.1)

18. Matsuo et al. (Ref. 38) CMOS linear column level 17.3×9.1 4.2

(3.3) (14) (8.9)

19. Dubois et al. (Ref. 37) CMOS linear board level 2.2×2.2 35

(3.3) (0.004) (25)

20. Hoefflinger (Ref. 40) CMOS log. chip level 7.7×5.0 10

VGAy (3.3) (10) (0.4) (40)

21. Storm et al. (Ref. 41) CMOS lin-log column level 2.0×1.6 5.6

(3.6) (0.1) (33)

22. Kitchen et al. (Ref. 39) CMOS linear pixel level 2.9×2.9 45

(3.3) (8) (0.004) (20)

23. Mase et al. (Ref. 42) CMOS linear column level 6.6×4.9 10

(3.3) (12) (0.3) (54.5)

24. Lulé et al. (Ref. 43) VI-CMOS linear board level 14.1×10.2 40

(5) (12) (0.1) (100)

DS = 37.173 mV/s. According to the description of the sen-
sor activation, one may conclude that at a frame rate of 26 Hz,
the integration time in linear mode is Tint = 50 μs. Using
Eqs. (14) and (17), one may find that the DL equals
226 cd/m2.

However, this DL, which is very high, is inconsistent with
the plot shown in Fig. 22 of Storm et al.41 that presents SNR
against image plane illuminance. A halogen light source is
used for the measurement, and the light intensity is given in
units of mW/m2. Assuming a color temperature of 3200 K,
which is typical for this type of light source, the luminous
efficacy is 28 lm/W.61 One may conclude from this plot that
a digital camera with this image sensor can detect lumi-
nance levels of at least 3.4 cd/m2, and this value is used for
performance evaluation. It is not clear, though, whether the
measurement was done at a frame rate of 26 Hz. If Tint is large
enough, so that Eim-DL ≈ DS/S, the DL is 0.43 cd/m2, which
is comparable to that of the other image sensors included in
the survey.

The plot in Fig. 22 of Storm et al.41 shows that peak
SNR is achieved when the sensor is activated in linear
mode and equals 44.5 dB. This value defines the SNR

for the performance evaluation. Data regarding distortion
is provided only for the logarithmic mode, and it is re-
ferred to the sensor response. Therefore, the SNDR may
be calculated only for logarithmic operation. The plot
also shows that peak SNR in logarithmic mode equals
32.5 dB.

In logarithmic sensors, changes in the response are propor-
tional to the changes in the logarithm of the scene luminance.
The response y of a pixel operating in logarithmic mode to
stimulus x is:62

y ≈ a + b · ln x + ε, (20)

where a and b are temporally-constant spatially-varying pa-
rameters, and ε is temporally-varying noise with spatially-
constant statistics.

The rms value of the temporal noise in the scene, σ t
x , is

calculated as follows:

SNR = 20 log

(
x

σ t
x

)
= 32.5 dB. (21)

Therefore, σ t
x is 2.37% of the scene luminance.
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Fig. 6 Performance evaluation results: (a) visual field versus power consumption, (b) spatial resolution versus temporal resolution, (c) peak
SNDR and SNR versus dynamic range, and (d) dark limit versus dynamic range. The quadrant in which performance is superior to the human
eye is indicated by the quadrant label.

Storm et al. report that, after 2-parameter calibration, the
FPN is 2% of the logarithmic response, i.e., b · ln(10), which
equals 77 mV per decade. To refer the rms value of the dis-
tortion in the sensor response, σ d

y , to the rms value of the
distortion in the scene, σ d

x , one needs to express changes in
the stimulus in terms of changes in the response, which may
be done with a derivative:

dy

dx
= b · ln(10)

x · ln(10)
= σy

σx
. (22)

Therefore,

σ d
x

x
= σ d

y

b
= 0.02 · ln(10) = 0.046, (23)

or σ d
x is 4.6% of the scene luminance.

The SNDR of sensor 21 may now be calculated as follows:

SNDR = 20 log

⎡
⎣ x√(

σ d
x

)2 + (
σ t

x

)2

⎤
⎦

= 20 log

(
1√

0.0462 + 0.02372

)

= 25.7 dB. (24)

This section presented example calculations of the signal
and noise power properties for two modern image sensors.
These sensors differ by their technology and by their operat-
ing principles. The first example considered a CCD sensor,
which is linear, and its calculation process was straightfor-
ward. The second example considered a CMOS image sensor
that operates in two modes, linear and logarithmic, to con-
struct a single frame. It required a more complicated calcu-
lation process. Therefore, this section demonstrates how the
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performance evaluation method of Sec. 2 can be applied to
extract performance properties in a unified way that makes
it possible to compare two significantly different imaging
systems.

3.3 Performance Evaluation
Results obtained for all the parameters considered in the
performance evaluation are shown in Fig. 6. Image sensors
located in the second quadrant of plot (a), first quadrant of
plots (b) and (c), and fourth quadrant of plot (d) perform bet-
ter than the human eye in both parameters shown. In cases
where information was not available for a certain parameter,
the FOM was used instead of the missing parameter to de-
termine the point in the plot, and a line is drawn parallel to
the missing parameter axis. For example, image sensor 20 in
Fig. 6(a) is missing information regarding power consump-
tion. If the actual point is located to the right, the missing
parameter is the most limiting factor (MLF) and determines
the FOM, which would be lower. If the actual point is to the
left, it would not change the FOM.

Figure 6(a) shows that, with an ideal lens, none of the sur-
veyed image sensors is superior to the human eye in terms
of PC and VF. The VF depends on sensor dimensions. In
general, one sees a deterioration in the PC with improvement
in the VF. However, this does not apply to all cases because
there are other factors that affect the PC, such as frame rate
and circuit design. This plot also shows that commercial CCD
and CMOS image sensors with similar dimensions have com-
parable power consumption. However, one should consider
that CCD sensors operate under higher voltage levels (see
Table 2), and also require more complicated power systems
to activate the charge transfer mechanism. Although these
issues are significant from a camera cost and complexity
perspective, they are outside the scope of this paper.

The PC might be misleading for image sensors with off-
chip analog-to-digital converters (ADCs). ADCs are an inte-
gral part of any digital camera, and the actual PC of a system
that includes such an image sensor and an external ADC
is higher. Likewise, the very low VF of several academic
CMOS image sensors might underestimate their potential.
These image sensors were designed to prove a concept and,
therefore, only a small array was fabricated to save resources.

The TR is shown in Fig. 6(b) along with the SR. While
the TR obtained for CCD image sensors ranges from 0.5
to 34 Hz, the TR of commercial CMOS image sensors lies
in a much narrower band that ranges from 7 to 15 Hz. The
academic CMOS image sensors have, in general, higher TR
than commercial ones, and sensors 17 and 19 perform even
better than the human eye at this measure. All this may
indicate that commercial CMOS image sensors are targeting
video applications rather than still imaging, and that high
video rate imaging is one of the current trends in CMOS
image sensors. Sensor 22 is represented by an arrow because
no data was specified for its frame rate, and using its FOM
resulted in a point located out of the range of the plot.

The SR depends on pixel pitch and fill factor. In cases
where the fill factor was not mentioned (see Table 2), reason-
able values were assumed for the calculation. Full frame and
frame transfer CCDs can have a fill factor as high as 100%,
while interline transfer CCDs can have a fill factor as low as
20%.63 To estimate the SR, fill factors of 80% and 40% were

assumed for the frame transfer and interline transfer CCDs,
respectively, in Table 2. A fill factor of 40% was also assumed
for the CMOS image sensors missing this data. This value
is close to the average fill factor of the other CMOS image
sensors in Table 2, excluding the vertically-integrated one.

The pixel pitch of sensor 24 is relatively large because of
a bond pad for vertical integration and a complicated circuit
that are placed in the pixel to increase the DR. This manifests
in a low SR. In general, Fig. 6(b) shows that the SR that can
be achieved with modern electronic image sensors is at least
comparable to that of the human eye, even when a normal
focal-length lens, rather than a long focal-length one, is used.

Figure 6(c) shows the peak SNDR and SNR of the sur-
veyed image sensors versus their DR. If the specifications
were given with and without an IR-cut filter, the perfor-
mance with the filter is considered. With some of the linear
CMOS image sensors, e.g., sensor 16, the magnitude of the
temporal noise was specified only for dark conditions. This
value was used to calculate the peak SNR, which resulted in
this measure being equal to the sensor’s DR. However, the
actual peak SNR would be lower. Image sensors for which
both SNR and SNDR data was provided are represented by
a line with two end points. The top one refers to the SNR,
and the bottom to the SNDR. Cases where only the SNR
could be calculated, such as sensor 18, are represented by
a downward line with one end point, and cases where only
the SNDR could be calculated, such as sensor 19, are rep-
resented by an upward line with one end point. Sensor 5 is
represented by a double arrow because its datasheet does not
provide any information related to noise, and use of its FOM
resulted in a negative value.

Commercial CCD image sensors can have better SNR
than CMOS ones. However, the DR of both is comparable
and rarely exceeds 70 dB. Sensor 10 has an operating mode
that allows an increased DR by multiple exposure times. Five
of the academic CMOS image sensors have a DR of at least
100 dB, among which sensors 20 and 21 demonstrate a DR
that is superior to the benchmark defined by the human eye.
This indicates that a current trend in electronic imaging is
improved DR. Image sensor 24 achieves both high DR and
high SNR. However, this comes at the expense of large pixels
[see Fig. 6(b)].

Figure 6(d) presents the DL versus the DR. The DL could
not be extracted for image sensors 1, 3, 8, 11, 12, 15, 18, and
19. The FOM is used instead with a line parallel to the DL
axis. The documentation of sensor 20 specifies Eim-DL in lux.
For sensor 22, Eim-DL was determined from a plot [Fig.11(a)
of Kitchen et al.39] for the longest integration time shown.
One may conclude from the figure that none of the image
sensors has a DL that is lower than the benchmark set by the
human eye. The DL of commercial CCD image sensors is
somewhat better than that of CMOS ones.

Table 3 summarizes the performance evaluation results for
each image sensor. The number of entries is out of the eight
parameters considered for the evaluation. Also included are
the first MLF, which determines the FOM, and the second
MLF. Table 3 shows that with each one of the surveyed
image sensors, at least one parameter is significantly weak,
even with the benefit of an ideal lens. The DR proved to be
the most limiting factor in most cases, and it is followed by
the DL and the VF. Currently, no digital camera rivals the
human eye.
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Table 3 Summary of results for the 24 image sensors in Table 2. “En-
tries” refers to how many of the eight parameters in the performance
evaluation could be determined. The FOM is the performance gap of
the MLF of a digital camera, composed of the corresponding image
sensor and an ideal lens, with respect to the human eye.

Sensor Entries FOM (dB) 1st MLF 2nd MLF

1. 7 − 56 DR TR

2. 8 − 50 DR DL

3. 7 − 62 DR PC

4. 8 − 59 DR DL

5. 6 − 88 DR DL

6. 8 − 62 DR DL

7. 8 − 56 DL DR

8. 6 − 66 DR VF

9. 7 − 64 DR DL

10. 8 − 40 DL DR

11. 6 − 56 DR VF

12. 6 − 58 DR PC

13. 8 − 66 DR DL

14. 8 − 74 DR DL

15. 6 − 69 DR VF

16. 7 − 78 DR DL

17. 7 − 61 DR DL

18. 6 − 47 DR PC

19. 6 − 58 DR VF

20. 6 − 31 VF DL

21. 8 − 71 DL VF

22. 6 − 90 DL VF

23. 8 − 39 DL VF

24. 7 − 53 DL PC

4 Discussion
Section 3 demonstrated not only the room for improvement
but also the large variability in electronic image sensors. They
differ by properties such as fabrication technology, readout
mechanism, architecture, and pixel design. Past trends in the
area of electronic imaging may suggest which of the present
trends will lead to a significant improvement in performance
and, therefore, have the potential to become dominant in the
future.

The first electronic image sensors were based on MOS de-
vices. Various configurations fabricated in n-channel MOS
(NMOS), p-channel MOS (PMOS), and bipolar technolo-
gies were demonstrated in the 1960s.64 However, their

image quality was poor, mainly due to a high FPN. The
invention of the CCD by Willard Boyle and George Smith in
the late 1960s, for which they were granted the Nobel Prize
in Physics in 2009, enabled the first generation of electronic
image sensors. CCD technology created the image sensor
market because it showed a significant improvement in im-
age quality when compared to MOS technology. CCD image
sensors were almost free of FPN, and achieved a higher spa-
tial resolution because CCD technology allowed fabrication
of smaller pixel dimensions than MOS technology. For three
decades, CCD was the dominant technology in the area of
electronic image sensors.

The second generation of electronic image sensors
emerged in the 1990s when various groups around the world,
and mainly the NASA Jet Propulsion Laboratory,65 decided
to put more effort into the development and improvement
of CMOS active pixel sensors. The advantages of these im-
age sensors over CCD devices included increased chip-level
functionality, lower cost, and the ability to operate with a
simple power system. These advantages made CMOS image
sensors suitable for mobile applications, where there was a
demand for compact systems that are also low power. Other
properties, which prevented CMOS image sensors from com-
peting with CCD in the early days, improved with develop-
ments in the CMOS industry and, particularly, in the area of
CMOS image sensors.

As they still do not rival the human eye, further work
needs to be done to improve modern digital cameras. Using
a design approach that is inspired by biological systems too
literally is not the best way to accomplish comparable func-
tionality. A better approach is to develop methods that use
available technologies for implementation of systems that
can compete with natural ones. Nonetheless, one should ex-
amine how structural differences between the human retina
and electronic image sensors lead to a functional gap between
the two. For example, the retina has a multilayered structure,
whereas electronic image sensors are usually fabricated in
single-tier technologies.

A schematic cross-section of the human retina is shown
in Fig. 7(a). The retinal pigment epithelium delivers nutri-
ents to the retina and disposes of the metabolic waste. It also
prevents reflections of light rays that are not absorbed by
photoreceptors.60 Rod and cone cells absorb light, and con-
vert it into a neural response in the form of impulses. The
human retina contains 115 to 120 million rods and 5 to 6.5
million cones, which are not distributed uniformly. Impulses
travel vertically through the bipolar cells and finally reach
the ganglion cells. Each ganglion cell transmits the impulses
through its nerve fiber (an axon) to the brain.

Both horizontal and amacrine cells form lateral connec-
tions between bipolar cells, the former at the receptor-bipolar
synapse (a “node” where cells are connected electrically and
chemically), and the latter at the bipolar-ganglion synapse.
Horizontal cells have a role in retinal processing, which pos-
sibly involves chromatic interaction between photoreceptors.
Amacrine cells play a role in modulation of signals that are
transmitted to the ganglion cells.66

Conversion of light into impulses by the retinal photore-
ceptors is equivalent to data conversion that is done at pixel
level. In image sensors, digitization of the analog signals
generated by the photodetectors can be done at four differ-
ent levels: board level, chip level, column level, and pixel
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Fig. 7 (a) The human retina has a vertically-integrated structure. Photoreceptors absorb light and generate electric pulses, which are transmitted
to bipolar and ganglion cells, and then to optic nerve fibers. The retina also has horizontal and amacrine cells that form lateral connections. (b) A
vertically-integrated CMOS image sensor, made by TSV technology, has multiple tiers. For example, photodetectors, analog circuits, and digital
circuits may be optimized independently with three tiers.

level. The level of data conversion is mentioned in Table 2
for each of the image sensors. In CCD image sensors, where
integration of electronics with photodetectors is, at large, im-
possible, the data conversion must be done at board level. In
almost all CMOS image sensors in Table 2, the ADCs are
integrated with the sensor array. The benefits of this inte-
gration include reduction in system size, power consump-
tion, and noise. Noise reduction is essential for improvement
of performance in parameters related to signal and noise
power.

The longer the path an analog signal needs to travel
to reach an ADC, the greater the noise power it accumu-
lates. The travel distance is minimal when the data conver-
sion is done at pixel level. Digital pixel sensors have been
demonstrated.67–69 However, ADCs are composed of a large
number of transistors. In planar technologies, the pixel area
is shared between photodetector and electronics. Working
with deep submicron CMOS processes, which allows in-
creased device density, is undesirable for image sensors due
to poor optical performance.70 Therefore, implementation of
more circuits in the pixel area results in large pixel dimen-
sions, which degrades the SR. See, for example, sensor 24 in
Sec. 3.

Fabrication of ICs in 3D structures, where two or more
dies are stacked to form a multiple-tier device, allows more
pixel-level circuitry while reasonable pixel dimensions are
maintained. Moreover, each tier can be fabricated in a process
that best suits the type of devices it contains. Therefore,
digital circuits can be fabricated in a high-density nanoscale

CMOS process, while photodetectors are prepared in a large
scale process. Analog circuits can be either fabricated in
the same process as the digital ones or in an intermediate
scale process. Furthermore, vertical integration allows more
degrees of freedom in the design of the photodetectors. In
some fabrication methods, it is feasible to use materials that
are other than crystalline silicon.

The DL, which proved to be an important limiting factor
in modern digital cameras can be improved by photodetector
optimization. Image sensors fabricated by planar technolo-
gies that include avalanche photodiodes for photodetection
in dim light have been presented.71 However, this architec-
ture requires a large pixel area and, therefore, suffers from
low SR.

The horizontal connections between the retinal cells al-
low mechanisms of feedback and control. A processed image
rather than “raw data” is sent from the retina to the brain. This
is equivalent to DSP that is used for image enhancement in
camera systems. Image sensors that include analog circuits
for implementation of image enhancement features have been
demonstrated in planar technologies.72 However, also in this
case, the additional circuitry came at the expense of an en-
larged pixel area and reduced SR. In general, the DSP is done
at board level in modern digital cameras.

Among the various technologies for vertical integration
of IC devices,73 through-substrate via (TSV) technologies74

are the only ones that allow fabrication of multiple-tier ICs
with vertical integration at pixel level. In TSV technologies,
via holes are etched through the substrate, and then filled
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with metal to form electrical connections between tiers. The
process also requires alignment and attachment at either die
or wafer level. A VI-CMOS image sensor has been demon-
strated in stacked-SOI technology,75 which is one of the TSV
methods. Figure 7(b) shows a schematic of a multiple-tier
image sensor fabricated by this technology.

There are issues that need to be overcome before tech-
nologies for vertical stacking of ICs can be widely used.
For example, alignment of small features at die or wafer
level is a mechanical challenge. Moreover, heat dissipation
is a major problem in such structures because of the in-
crease in volumetric device density. Finally, to make these
devices affordable for consumers, fabrication costs need
to drop. Nonetheless, the interest in fabrication of 3D ICs
has increased in recent years because these devices have
widespread advantages.76

5 Conclusion
The human factor has been widely considered for evaluation
of digital displays. However, it is rarely used as a reference
point in the design and evaluation of digital cameras and
electronic image sensors, although these are fundamental
systems at the heart of every process of digital recording of
scenes. This work introduces a method that evaluates perfor-
mance of digital cameras with respect to the human eye. It
is motivated by a wide range of applications in which digital
cameras are expected to observe scenes the same way they
are perceived by the human eye and, therefore, to rival the
human eye.

After considering various parameters that can be used to
characterize an imaging system, eight are taken for the evalu-
ation. The process is concluded with a figure of merit, which
represents the performance gap for the parameter that ap-
pears to be the weakest when compared to the human eye.
Assessment methods for the eight parameters are covered
for the human eye and for digital cameras. Experiments per-
formed with human observers and cadavers are reviewed to
determine and justify benchmark values for the human eye.
Information given in datasheets or other detailed publications
is needed to assess the performance of digital cameras.

The performance evaluation method has been applied to
24 modern CCD and CMOS image sensors, both commercial
and academic ones, where an ideal lens is assumed to com-
plete the electronic imaging system. In the majority of cases
the dynamic range proved to be the most limiting factor with
respect to the human visual system, and this parameter was
followed by the dark limit. Overall, the evaluation concludes
that modern digital cameras do not rival the human eye. The
functional gap ranges from 31 to 90 dB, or from 1.6 to 4.5
orders of magnitude.

Past trends in the area of electronic imaging were initially
concerned with image quality of low dynamic range scenes.
This was succeeded by image sensors more suitable for mo-
bile devices. Image sensor capabilities can be improved by
photodetector optimization and increased pixel-level data
processing. But implementations in planar technologies re-
sult in degradation of the spatial resolution. Although more
effort needs to be put into the development of reliable and
economical fabrication methods, vertical stacking of pixel
components is promising for boosting the performance of
image sensors and digital cameras.
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