
Towards a General I/O Layer for Parallel Visualization Applications

Wesley Kendall and Jian Huang

Department of Electrical Engineering and Computer Science

The University of Tennessee

Email: {kendall, huangj}@eecs.utk.edu

Tom Peterka, Rob Latham, and Robert Ross

Mathematics and Computer Science Division

Argonne National Laboratory

Email: {tpeterka, robl, rross}@mcs.anl.gov

I. INTRODUCTION

Parallel visualization as a tool is regularly needed for

handling scientists’ growing data demands. For many main-

stream visualization algorithms, the computation parts are

inherently data-parallel and amenable for efficient scaling

on even the largest of today’s parallel architectures [1].

Accompanying architectural shifts, however, the primary

limiting factor in scalability of large scale visualization

applications has shifted from computation to I/O [1], [2].

Our viewpoint is that, with some urgency, the visualization

community calls for general designs to efficiently perform

parallel I/O in large scale visualization applications. In par-

ticular, more generalized I/O designs in parallel visualization

should center around a partitioning strategy as opposed to a

file format. We motivate our viewpoint by discussing current

limitations of parallel I/O APIs with respect to the needs of

the field, and show that the use of a simple design pattern can

greatly alleviate I/O burdens without needing to “reinvent

the wheels.” We also show greatly accelerated performance

with an implementation of this design in the context of a

large-scale particle tracing application – an otherwise very

challenging use case. We hope our work will instill further

research efforts to address the I/O bandwidth challenge in

the large data visualization domain.

II. THE BURDEN OF I/O ON PARALLEL VISUALIZATION

I/O can place an expensive burden on parallel visualiza-

tion practitioners. The example in Figure 1 is one illustration

of this dilemma. In this scenario, a simulation generates data

on an IBM BlueGene/P architecture. The simulation com-

putes the physics of a time-varying phenomenon and saves

a three-dimensional rectilinear volume at each time step.

Many parallel I/O libraries are available to the simulation

for storage, with some examples including PnetCDF (for the

network Common Data Form), HDF5 (for the Hierarchical

Data Format), and MPI-I/O for other custom formats.

While there are many visualization options, such as path-

line tracing for vector fields or volume rendering for scalar

fields, a parallel visualization approach must first partition

the domain across processing elements (PEs). Block-based

partitioning is one of the most popular choices for rectilinear

grids. In our example, PEs are each assigned multiple blocks

for more efficient workload balancing.

Figure 1. Example of a typical simulation and visualization scenario
that illustrates some of the primary steps, including data generation, data
partitioning, and the resulting visualization. In this example, blocks are
distributed and colored by their assignment to four processing elements.
The two visualizations show common time-varying techniques, which are
pathline tracing and volume rendering.

The partitioning strategy, which is important for scaling

computation, conflicts with physical data storage. If PEs

were to issue separate I/O requests for blocks, the many disk

seeks and reads will likely result in poor performance. Read-

ing and distributing the dataset from one PE is often the first

step taken to avoid this consequence, however, this does not

effectively utilize standard parallel file system architectures.

Transforming the dataset into a more I/O-efficient format is

also another common step. While there has been success



in using multi-resolution or compressed out-of-core [3] for-

mats, many of these techniques are optimized for serial file

systems. Only very recently has parallel access been studied

for multi-resolution formats [4]. Furthermore, metadata from

higher-level formats which is needed for scientific analysis

can easily be lost during this transformation.

The most practical approach uses the same parallel I/O

library that the simulation used to write out the data. This

approach, however, is still not ideal because of the many

possible simulation formats and the difficulties in tuning and

understanding low-level details about the parallel I/O APIs.

For example, efficiently reading the block pattern in Figure 1

requires significant knowledge about MPI Datatypes, the

newer non-blocking interface in PnetCDF, or the hyperslab

functionality in HDF5. Furthermore, the semantics of these

APIs restrict I/O operations to a single file at a time.

As we will show in Section V, this can lead to a major

underutilization of the available I/O bandwidth for multi-file

datasets.

These complexities prompt many challenges for parallel

visualization practitioners. Do all researchers and developers

have to be parallel I/O experts to create applications that are

scalable and portable across scientific formats? Production

applications like Visit and ParaView have over one hundred

different file readers in use. Will others that desire the same

level of ubiquity in their parallel applications also have to

pay this much attention to I/O? We believe that there is a

need for more generalized parallel I/O solutions that scale

across scientific data formats and storage conventions.

III. PROPERLY UTILIZING PARALLEL FILE SYSTEMS

It is necessary to understand standard parallel file system

architectures in order to efficiently perform parallel I/O. Fig-

ure 2 shows a typical design. A parallel file system is usually

a separate entity that is accessed through storage servers via

high-speed networks. Some machines have dedicated I/O

nodes that communicate with storage servers while others

may use the compute nodes. Systems also often include one

or more metadata servers that are responsible for handling

information about the file, such as permissions and storage

location.

When a file is stored on a parallel file system, it is

striped across storage servers. Each of these storage servers

obtain pieces of the entire file and may split them into finer

grained portions across multiple underlying disks. Data is

obtained in parallel among the disks and forwarded to the

I/O nodes from the storage servers when requested. Large

contiguous accesses aid in amortizing disk latency, allow

more efficient prefetching of data, and also help obtain more

total concurrency during retrieval.

Since large contiguous accesses provide the highest per-

formance from parallel file systems, distributed and noncon-

tiguous patterns such as those shown in Figure 1 must be

transformed prior to file system access. The standard method

Figure 2. A typical parallel file system design. The bottom of the
illustration represents how a file may be distributed across the disks of
a parallel file system.

of enabling these transformations is via collective I/O. This

technique aggregates distributed requests into larger more

contiguous requests. It can be implemented on the disk,

server, or client level. When performed on the client level,

clients will communicate and aggregate their requests, per-

form I/O on more contiguous regions, and then exchange the

data back to the requesting clients. This technique is known

as two-phase collective I/O since it involves an additional

phase of data exchange.

IV. A MORE GENERALIZED APPROACH

We believe that a more generalized I/O design should

center around a partitioning strategy instead of a file format.

Rather than having to deal with many formats and API

complexities, applications should have access to a simple I/O

layer optimized for their partitioning strategy that abstracts

file formats and even other intricacies like multi-file dataset

storage.

A block-based I/O layer is a motivating example for our

viewpoint. Block-based partitioning, such as the example

shown in Figure 1, is not only popular in many parallel

visualization strategies, but also prevalent in other applica-

tions like parallel matrix analysis. To illustrate how such a

layer would operate, we have designed and implemented a

prototype software, known as the Block I/O Layer (BIL). In

the BIL interface, PEs specify a collection of blocks that they

individually intend to access, then they collectively operate

on the global collection. The interface is designed to simply

have two functions:

• BIL Add block {file format} – Takes the starts and

sizes of a block along with the variable and file name.

PEs call it for as many blocks as they need, whether

they span multiple files or variables. Currently it oper-

ates on raw, netCDF, and HDF formats.



Figure 3. An example of how our I/O implementation performs reading of requested blocks. This illustration uses four PEs that each request two blocks
that are in separate files. The procedure uses a two-phase I/O technique to aggregate requests, schedule and perform large contiguous reads, and then
exchange the data back to the requesting PEs.

• BIL {Read, Write} – Takes no arguments. The blocks

that were added are either read in or written from the

user-supplied buffers.

The implementation is illustrated in Figure 3, which

shows a simple example of four PEs reading a block-based

pattern spanning two files. The PEs first add the desired

blocks and then call BIL Read. The requested blocks, which

start out as noncontiguous storage accesses for each PE, are

aggregated and scheduled into large contiguous accesses.

Reading then occurs in parallel and data are exchanged back

to the original requesting PEs.

Although the semantics of the underlying parallel I/O

APIs would normally restrict users to operate on single

files at a time, this design allows the implementation to

collectively perform I/O across multiple files. Furthermore,

the implementation can use advanced features of I/O li-

braries when necessary and can be configured for different

file systems. For example, we are able to detect when the

individual reads of each PE are less than the file system’s

striping size. When this occurs, we have found that it is

generally best to use collective I/O strategies or simply

perform I/O from a smaller subset of PEs.

BIL’s communication is also built upon advanced MPI

mechanisms. For exchanging of data, we use collective

communication routines to take advantage of the underlying

MPI implementation, which is able to efficiently utilize

certain network topologies and architectures. Exchanging

data usually takes less than 10% of the overall time, as

communication bandwidths are typically orders of magni-

tude larger than storage bandwidths.

V. A DRIVING APPLICATION - PARALLEL PATHLINE

TRACING

Particle tracing is one of the most pervasive methods for

flow visualization, and also one of the hardest to parallelize

in a scalable manner. Seeds are placed within a vector field

and advected over a period of time. The traces that the

particles follow, streamlines in the case of steady-state flow

and pathlines in the case of time-varying flow, can be used to

gain insight into flow features. For example, Figure 1 shows

a visualization of major ocean currents with pathlines.

We have integrated BIL into OSUFlow, a particle tracing

library originally developed by the Ohio State University

in 2005 and recently parallelized. The application partitions

the domain into four-dimensional blocks (time blocks) and

assigns them round-robin to each of the PEs (similar to the

illustration in Figure 1). For an extensive explanation, we

refer the reader to [5].

OSUFlow has the ability to load time blocks that span

multiple files, primarily because scientists often store one file

per time step. Its original implementation used parallel I/O

libraries to collectively read one file at a time until blocks

were completely read. Although this implementation used

the I/O libraries in their intended manners, it would still

often lead to mediocre performance results.

We compared the original I/O methods with BIL on

Intrepid, an IBM BlueGene/P system at Argonne National

Laboratory that consists of 40,960 quad-core 850 MHz Pow-

erPC processors and a GPFS parallel file system. The com-

parison used two test datasets. The first is generated from

the Parallel Ocean Program (POP), an eddy-resolving global

ocean simulation [6]. Our version of the dataset consists of

u and v floating point variables on a 3,600×2,400×40 grid

spanning 32 time steps that are saved in separate netCDF

files (82 GB total). The second dataset is a Navier-Stokes

jet propulsion simulation that has u, v, and w floating point

tuples on a 256×256×256 grid across 2,000 time steps in

separate raw binary files (375 GB total).

Bandwidth results appear in Figure 4. The top line rep-



 100

 1,000

 10,000

 100,000

64 128 256 512 1 K 2 K 4 K 8 K 16 K

B
an

d
w

id
th

 (
M

B
/s

)

Processes (One core per node)

I/O Bandwidth Comparison

IOR
BIL Jet

BIL Ocean
Original Ocean

Original Jet

Figure 4. Bandwidth results (log-log scale) of our parallel I/O method ver-
sus the original parallel I/O method in OSUFlow. All tests were conducted
using one core per node (to maximize the amount of I/O nodes used)
on Intrepid with two different datasets. The top line represents the IOR
benchmark. The original method was using the newer non-blocking Parallel
netCDF routines for the ocean dataset and collective MPI-I/O for the jet
dataset. The original procedure, however, was restricted to collectively
reading one file at a time, leaving much of the available bandwidth unused
for these multi-file datasets.

resents IOR 1, a popular bandwidth benchmark for parallel

I/O systems, while the others represent the total bandwidths

achieved by the original method vs. BIL. The differences

are significant at large scale. At 16 K PEs, we observed a

factor of 5 improvement for the ocean dataset and a factor

of 45 improvement for the jet dataset. Both BIL results were

able to maintain bandwidth rates that were very close to the

peak IOR rates. For the jet dataset, BIL obtained roughly

30 GB/s at 16 K PEs and reduced I/O time from 9 minutes

to 12 seconds. At such large PE counts, the amount of data

accessed by any given PE when accessing one file at a time is

too small to attain any substantial bandwidth; the capability

in BIL to concurrently schedule reads to multiple files makes

a difference.

For scaling an application like OSUFlow that has irregular

access patterns, using parallel I/O is required, not an option.

This is true even when the use of parallel I/O may not be

optimal. POSIX I/O is impractical, because reading the jet

dataset on 64 PEs through POSIX I/O led to a ≈30 MB/s

bandwidth. In fact, this number could only be estimated

since the one-hour time limit on our tests expired before

the data could be read.

VI. CLOSING REMARKS

When used properly, parallel file systems can greatly

enhance the interactivity that is crucial to visualization

applications, especially those that perform post-analysis after

simulations. We have shown one way to integrate advanced

1http://www.cs.sandia.gov/Scalable IO/ior.html

parallel I/O methods under a simple and robust design that

applies to a broad spectrum of scientific data formats. More

solutions of this kind are needed as more and more data anal-

ysis applications are to be scaled to HPC architectures. This

need is urgent and will require community effort to tackle

the broad spectrum of parallel visualization applications and

I/O needs.

Also addressing the “bandwidth challenge” are many

advanced cases that pose even bigger I/O challenges. Out-of-

core, data compression, and multi-resolution are just a few

common examples. Due to space limit, herein we can only

mention that other researchers have already started working

in those tough areas with initial success [3], [4]. Future

study in those areas will be crucial for progressing towards

more accepted and standardized practices of parallel I/O in

the visualization community. For dissemination and also for

verification by the community, we have released BIL under

LGPL at http://seelab.eecs.utk.edu/bil.

ACKNOWLEDGMENT

We would like to acknowledge Han-Wei Shen, as his

collaboration has been pivotal to this work taking place. We

would also like to thank Kwan-Liu Ma for providing the

jet dataset and the Argonne Leadership Computing Facility

for computing resources and support. This work is funded

primarily through the Institute of Ultra-Scale Visualization

(http://www.ultravis.org) under the auspices of the SciDAC

program within the U.S. Department of Energy.

REFERENCES

[1] H. Childs, D. Pugmire, S. Ahern, B. Whitlock, M. Howison,
Prabhat, G. H. Weber, and E. W. Bethel, “Extreme scaling
of production visualization software on diverse architectures,”
IEEE Computer Graphics and Applications, vol. 30, no. 3, pp.
22–31, 2010.

[2] T. Peterka, H. Yu, R. Ross, K.-L. Ma, and R. Latham, “End-
to-end study of parallel volume rendering on the IBM Blue
Gene/P,” in Proc. of the Intl. Conference on Parallel Process-
ing, 2009.

[3] P. Lindstrom and M. Isenburg, “Fast and efficient compression
of floating-point data,” IEEE Trans. on Visualization and
Computer Graphics, vol. 12, pp. 1245–1250, Sept. 2006.

[4] S. Kumar, V. Pascucci, V. Vishwanath, P. Carns, M. Hereld,
R. Latham, T. Peterka, M. Papka, and R. Ross, “Towards
parallel access of multi-dimensional, multi-resolution scientific
data,” in Petascale Data Storage Workshop, 2010, pp. 1–5.

[5] T. Peterka, R. Ross, B. Nouanesengsey, T.-Y. Lee, H.-W. Shen,
W. Kendall, and J. Huang, “A study of parallel particle tracing
for steady-state and time-varying flow fields,” in Proc. of the
IEEE Intl. Symp. on Parallel and Distributed Processing, 2011.

[6] M. E. Maltrud and J. L. McClean, “An eddy resolving global
1/10 ocean simulation,” Ocean Modelling, vol. 8, no. 1-2, pp.
31–54, 2005.


