
64 PERVASIVE computing Published by the IEEE CS   n   1536-1268/08/$25.00 © 2008 IEEE

S O F T W A R E  A R C H I T E C T U R E

Toward a General 
Software Infrastructure 
for Ubiquitous 
Computing
This general software architecture is designed to support ubiquitous 

computing’s fundamental challenges, helping the community develop 

and assess middleware and frameworks for this area.

Cristiano André da Costa

Federal University  

of Rio Grande do Sul 

Adenauer Corrêa Yamin

Catholic University of Pelotas

Cláudio Fernando Resin Geyer

Federal University  

of Rio Grande do Sul

T
he most profound technologies 

are those that disappear. They 

weave themselves into the fab-

ric of everyday life until they are 

indistinguishable from it.”1 Mark 

Weiser’s visionary statement summarizes what’s 

expected from pervasive or ubiquitous comput-

ing (ubicomp): user access to 

the computational environ-

ment, everywhere and at all 

times, by means of any device. 

The difficulty lies in how to 

develop applications that will 

continually adapt to the envi-

ronment and remain work-

ing as people move or change 

devices.2 

The more traditional mobil-

ity goal of providing compu-

tation “all the time, every-

where”3 is considered a reactive 

approach to information access. However, it 

represents a proactive step toward ubicomp. For 

this purpose, we need a new class of software, 

but the limited number of languages and tools 

available still hinders this field’s development.4

Ubiquitous applications need middleware to 

interface between many different devices and 

end-user applications.3 The aim is to hide envi-

ronment complexity by isolating applications 

from the explicit management of protocols, 

distributed memory access, data replication, 

communication faults, and so on. Middleware 

can also solve heterogeneity problems related to 

architectures, operating systems, network tech-

nologies, and even programming languages, 

promoting their interoperation. On the other 

hand, a framework is an environment, compris-

ing APIs, user interfaces, and tools, that simpli-

fies software development and management in 

a specific domain. We can use frameworks to 

develop middleware and to build software that 

runs on that middleware.

Our proposed general architectural model for 

ubicomp supports frameworks and middleware 

while considering all the challenges we believe 

significant in the field. Here, we highlight the 

numerous requirements that are essential to the 

area and that software infrastructure should 

cover. 

Ubiquitous computing challenges
Previous studies present issues that are unique 

or still open in ubicomp (see the “Related Work 

in Ubiquitous Computing” sidebar). Table 1 

summarizes the main issues.

Heterogeneity is a concern derived from 

distributed systems. Ubicomp software must 

hide infrastructure differences from users and 

manage the required conversions from one 

environment to another, addressing protocol 

mismatches. In this scenario, developers using 

a device-independent approach have to create 

application logic only once. 

“



JANUARY–MARCH 2008 PERVASIVE computing 65

Another related issue inherited from 

distributed systems is scalability. Ubi-

comp systems will likely involve count-

less users, devices, applications, and 

communications on an unprecedented 

scale. We must avoid centralized solu-

tions, reduce distant interactions, and 

prevent bottlenecks.

Sometimes the system can’t execute 

according to functional specifications. 

Additionally, problems related to mis-

specifications might arise. Such situa-

tions lead to failures. Avoiding failures 

that are more frequent and more severe 

than what is acceptable leads to depend-

ability, a concept that integrates the attri-

butes of availability, reliability, safety, 

integrity, and maintainability. The term 

pervasive dependability refers to these 

needs in the scope of ubicomp.5 

Security is a concept strictly related 

to dependability. A system is secure if 

measures exist to ensure availability, 

integrity, and confidentiality. We could 

also use many distributed-systems secu-

rity mechanisms in ubicomp, but they 

must be lightweight to preserve both 

S calability, heterogeneity, integration, invisibility, context 

awareness, and context management are all challenges to 

be addressed, according to Debashis Saha and Amitava Mukher-

jee.1 Except for integration, which we discuss indirectly as part 

of spontaneous interoperation and integration in invisibility, we 

include all these aspects in the article and in table 1.

Tim Kindberg and Armando Fox base their work on two fun-

damental characteristics: physical integration and spontaneous 

interoperation.2 They also emphasize some common areas in 

ubicomp scenarios, all directly or indirectly discussed in our pro-

posed model.

The article by Guruduth Banavar and his colleagues at IBM 

envisions a device-independent application-development pro-

cess with a highly dynamic load-time system that embraces 

discovery, negotiation, and dynamic selection of presentation.3 

This model at execution involves dynamic resource sharing, 

application migration, and failure detection and recovery. Of 

these, data sharing is the only feature that we don’t list; instead, 

we consider it to be a part of (logical) mobility.

Eila Niemelä and Juhani Latvakoski propose interoperability, 

heterogeneity, mobility, survivability and security, adaptability, 

self-organization, and augmented reality with scalable content.4 

Their concept of self-organization amplifies the idea of adapta-

tion by adding a virtual context to the one sensed by users.

Robert Grimm and his contemporaries at the University of 

Washington suggest three “fault lines” for ubicomp: transpar-

ency, heterogeneity, and the use of a single abstraction for data 

and code.5 To address this last issue, they recommend keeping 

data and functionality separate. We don’t tackle this in this 

article, but satisfying this condition would be possible using a 

different data representation, such as tuples.6 

An article by Intel researchers Roy Want and Trevor Pering 

proposes power management, discovery, user interface adapta-

tion, and location-aware computing.7 We don’t directly con-

sider power management in this article; as an alternative, we 

present the more general issue of context management. The 

same applies to location awareness. 

Martin Modahl and his colleagues propose a taxonomy for the 

building blocks of a software infrastructure called UbiqStack. 8 

It has five subsystems: registration and discovery, service and 

subscription, computation sharing, context management, and 

data storage and streaming. The first four categories corres-

pond roughly to our more generic discovery, interoperation, 

cyber foraging, and adaptation. We don’t address the fifth one 

directly, but we believe our proposal is more comprehensive 

because we allow for several other categories. Of the research 

projects mentioned here, Modahl and his colleagues’ work is 

the only one that proposes a software architecture for ubicomp, 

although Banavar and colleagues offer a new application model 

considering its life cycle.3 

REFERENCES

 1. D. Saha and A. Mukherjee, “Pervasive Computing: A Paradigm for the 

21st Century,” Computer, vol. 36, no. 3, 2003, pp. 25−31.

 2. T. Kindberg and A. Fox, “A System Software for Ubiquitous Comput-

ing,” IEEE Pervasive Computing, vol. 1, no. 1, 2002, pp. 70−81.

 3. G. Banavar et al., “Challenges: An Application Model for Pervasive 

Computing,” Proc. 6th Int’l Conf. Mobile Computing and Networking 

(MOBICOM 00), 2000, ACM Press, pp. 266−274.

 4. E. Niemelä and J. Latvakoski, “Survey of Requirements and Solutions 

for Ubiquitous Software,” Proc. Mobile Ubiquitous Computing Conf., 

ACM Press, 2004, pp. 71−78.

 5.  R. Grimm et al., “Systems Directions for Pervasive Computing,” Proc. 

8th Workshop Hot Topics in Operating Systems (HOTOS VIII), 2001, IEEE 

CS Press, pp. 147−151.

 6. R. Grimm et al., “System Support for Pervasive Applications,” ACM 

Trans. Computer Systems, vol. 22, no. 4, 2004, pp. 421−486.

 7. R. Want and T. Pering, “System Challenges for Ubiquitous and Perva-

sive Computing,” Proc. 27th Int’l Conf. Software Eng. (ICSE 05), 2005, 

ACM Press, pp. 9−14.

 8. M. Modahl et al., “UbiqStack: a Taxonomy for a Ubiquitous Comput-

ing Software Stack,” Personal and Ubiquitous Computing, vol. 10, no. 

1, 2006, pp. 21−27.

Related Work in Ubiquitous Computing



66 PERVASIVE computing www.computer.org/pervasive

SOFTWARE ARCHITECTURE

the spontaneity of interactions and the 

limitations of some devices.6 

Moreover, privacy—guaranteeing 

how such information will be used 

or passed on—will be extremely dif-

ficult. Another associated challenge is 

trust, which should be considered in 

this kind of heterogeneous, dynamic 

scenario. Since there’s neither a fixed 

infrastructure nor a specific domain, 

we must use a trust management sys-

tem to measure how much information 

should be disclosed.7

Spontaneous interoperation is the 

bringing together of constantly chang-

ing components from several devices, 

enabling reciprocal communication.8 

We need this spontaneity because of 

the volatile nature of ubicomp, whose 

components are in continual motion 

and interacting with different sets of 

services. 

Another challenge, mobility, provides 

access to applications and data wher-

ever users go and however they move. 

Mobility can be either physical (related 

to equipment or users) or logical (related 

to code or data). Applications should be 

able to move from one device to another, 

and data access should be maintained 

(“follow-me” applications).9 

Mobile computing has also intro-

duced the idea of context awareness—

that is, inferring context to supply infor-

mation or services in the case of limited 

or intermittent availability.10 Context 

awareness is broader in ubicomp than 

in mobile computing, as devices must 

sense changes and software should act 

proactively. 

Context management is action in 

response to sensed data, adapting 

services to environmental changes. It 

can also expand devices’ capacity by 

using available resources in the cur-

rent context.

HCI design is also a significant fac-

tor. As computers become “smarter,” 

HCI’s intensity and quality are bound 

to increase.3 The focus on user inter-

faces evolved from software design, but 

it acquired a different meaning after 

mobile computing and new modes of 

interaction emerged. Another issue is 

the merging of user data with the real 

environment, redirecting attention to 

transparent user interaction.

TABLE 1 

Ubiquitous computing issues and challenges.

Issue Alias Focus area Motive

Heterogeneity Distributed systems Allowing a variety of services
Providing different types of devices, networks, systems,  
and environments

•
•

Scalability Localized 
scalability*

Distributed systems Enabling large-scale deployments
Increasing the number of resources and users

•
•

Dependability  
and security

Fault tolerance† Mission-critical  
and distributed  
systems

Avoiding failures that are more frequent and more  
severe than acceptable
Providing availability, confidentiality, reliability, safety,  
integrity, and maintainability

•

•

Privacy and trust Internet and mobile 
computing

Protecting against bad use of personal data
Defining the trustworthiness of interacting components

•
•

Spontaneous  
interoperation

Volatility Mobile computing Allowing interaction with a set of components that can  
change both identity and functionality
Permitting association and interaction

•

•

Mobility Follow-me 
applications

Mobile computing Providing application and data access anywhere, anytime
Enabling the user environment to go along with the user

•
•

Context  
awareness

Perception Mobile computing Perceiving the user’s state and surroundings
Inferring context information

•
•

Context  
management‡

Smartness, masking 
uneven condition,  
adaptability

Mobile computing Modifying system behavior based on perceived context  
information
Adapting to the current situation

•

•

Transparent  
user interaction

HCI** Ubiquitous  
computing

Merging the user interface with the real world
Letting users focus on tasks with minimal distraction

•
•

Invisibility Ubiquity,  
pervasiveness

Ubiquitous  
computing

Letting users focus on tasks, not tools 
Making computers disappear in the background

•
•

* Physical distance is a significant issue in pervasive computing: we must consider the important role that local interactions play. 
† 

This term is more restrictive than “dependability,” which community use is converging on.
‡

 Some authors consider context management a part of context awareness.
** This term is used in a more general sense.



JANUARY–MARCH 2008 PERVASIVE computing 67

The last issue, invisibility, is directly 

related to ubicomp itself. It’s about keep-

ing user focus on the task rather than 

the tool.1 To fulfill this vision, software 

must satisfy user intent by helping (not 

obstructing) it. Software should learn 

with the user and, in some cases, let the 

user change preferences, interacting, as 

Mahadev Satyanarayanan suggested, 

“almost at a subconscious level.”11

Proposed model
Figure 1 presents the general infra-

structure model we propose, including 

each issue we highlighted in table 1 

and the corresponding characteristics 

that should be available to address it. 

The structure is then divided consider-

ing application life cycle (design time, 

load time, and runtime).12 Design time 

is when the application is conceived, 

extended, or maintained. At load time, 

applications are loaded onto specific 

devices. At runtime, the user executes 

and uses applications. 

Each row in the figure presents a 

challenge (in an oval box on the far 

left) and the essential characteristics to 

be addressed at design time, load time, 

and runtime, respectively. Some chal-

lenges, such as “privacy and trust” and 

“dependability and security,” are more 

closely related than others (there’s no 

horizontal line separating these ovals). 

In this situation, we can define depend-

ability as the ability to deliver services 

that we can justifiably trust. Moreover, 

to attain privacy protection, collected 

personal data should be secure. Close 

dependence also involves context man-

agement and context awareness, and 

invisibility and transparent user inter-

action, making it difficult to draw an 

exact borderline.

The issues’ order in the figure doesn’t 

imply a layered model, in which each 

tier depends on the services provided by 

the other. From the bottom of the figure 

up, services are organized from lower 

level to higher level. The challenges that 

distributed systems already tackle are at 

the bottom, the issues related to mobile 

computing are in the middle, and the 

challenges that arise with ubicomp are 

at the top. 

A framework can provide the 

abstractions ubicomp needs at design 

time. The design-time column shows 

all the characteristics of this stage. The 

same applies to load time and runtime. 

However, to provide the characteris-

tics required in these stages, we suggest 

using middleware. Let’s take a closer 

look at each row of the general archi-

tectural model.

Heterogeneity

Several levels of heterogeneity exist, 

in both hardware (including networks, 

devices, screen sizes, and power capabil-

ity) and software (including languages, 

component models, and structures). To 

facilitate the bridging between hetero-

geneous systems, we should use open 

standards, with published interfaces and 

standardized communication mecha-

nisms, enabling easier system extension 

and reimplementation. 

Also, frameworks for device-inde-

pendent projects can make it possible 

for different hardware, even from 

diverse vendors, to use the same source 

code, sometimes with little alteration. 

Thus, we can keep the developed 

application almost unmodified, limit-

ing change to device drivers or to the 

framework itself. 

The current solution to heterogeneity 

is to use middleware with a common, 

Invisibilty

Transparent
user interaction

Transparent
user interaction

Context
management

Context
awareness

Mobility

Spontaneous
interoperation

Privacy and
trust

Dependability
and security

Scalability

Heterogeneity

Adaptable
applications

Design time

Interact devices

Abstract services

High-level interfaces

Abstract user interfaces

Abstract interaction
elements

Privacy standards

Trust reasoning

Verification

Security design

Spontaneous
component design

Device-independent

Open standards

Scalable solutions
without bottlenecks

Mobile code and
data design

Framework

Minimal user
intervention

Load time Runtime

Seamless integration Preserve user attention

Contextual services

Discovery

Dynamic generation of interfaces

Adaptation and cyber foraging

Code and data (logical) mobility

Middleware

Trust management

Fault, error, and failure handling

Security mechanisms

Association and composition

Virtual machine

Interoperability languages and protocol

Automatic deploy
and installation

Maximize local
interactions

Privacy protection

Interoperation

Physical mobility

Tangible interaction

Meet user intent

Actuator service

Figure 1. General architectural model for 

ubiquitous computing.



68 PERVASIVE computing www.computer.org/pervasive

SOFTWARE ARCHITECTURE

integrated API and a unified binary for-

mat. This binary file should run on a vir-

tual machine, such as Java, that would 

be available on all platforms. How-

ever, different device capabilities mean 

that we can’t always employ the same 

virtual machine, run the same binary 

code, or expect the available features 

to remain unchanged. For instance, 

Java has different virtual machines for 

mobile devices and PCs. Nevertheless, 

using a virtual machine reduces the cost 

of heterogeneity because fewer changes 

are needed compared to languages that 

generate specific machine codes.

Finally, we must focus on components’ 

interoperability, the “ability to under-

stand the exchanged information and to 

provide something new originating from 

the exchanged information.”13 Interoper-

ability languages such as XML are com-

monly used, making it possible to repre-

sent data in a standard, structured form, 

more portable between applications. In 

other cases, software converts source 

data into a format that’s both expected 

and transparent to the user. However, 

differences might occur between the 

source and destination versions. Besides, 

protocols that can negotiate services 

and resources between applications and 

devices must be available, allowing inte-

gration during load and execution.

Scalability

To address the problem of scalability, 

we must develop software that consid-

ers the abundance of users, interactions, 

components, and devices, avoiding 

centralized solutions and bottlenecks. 

Applications should be automatically 

loaded and managed at load time. 

Besides, whenever a new application 

is available, it should be automatically 

deployed and installed, because manual 

software distribution and installation 

for each device would be impractical. 

During execution, we should reduce 

interaction with distant resources. This 

idea, localized scalability,11 should be 

a ubicomp goal even if it conflicts with 

the current guideline of network trans-

parency (in which local and remote 

resources are accessed with identi-

cal operations, their physical location 

notwithstanding). We should consider 

resources’ location and give priority to 

local interactions over distant ones.

Dependability and security

In the scope of ubicomp, reliabil-

ity, availability, and safety must be 

maximized. Minimizing the cost of 

maintainability and the effort to pre-

serve integrity is also vital. In terms 

of security, we must deal directly with 

the attribute of confidentiality but also 

with availability and integrity. 

During application development, 

verification could diagnose and remove 

faults.

The failure-detection and recovery 

strategies we use today (such as check-

pointing, compensation, isolation, or 

reconfiguration) could be applied to 

ubicomp as well. Because applications 

execute in environments and there’s 

always a context involved, require-

ments differ from those of traditional 

computing. Also, devices are a means 

of access to applications, but some 

device failures might not be speci-

fied in the application or middleware. 

Besides device and application failure, 

we should also consider network and 

service failure. 

We ought to differentiate failures (sit-

uations requiring detection and recovery 

mechanisms) from system changes (situ-

ations where adaptation takes place). To 

have an adaptable system, we must spec-

ify which types of changes will cause 

adjustments, even though we can’t pre-

dict all possible situations. Sometimes, 

unpredicted change occurs, or the sys-

tem might generate unspecified results. 

We should detect and recover these 

examples of failures (no adaptation is 

possible). Also, we shouldn’t consider 

disconnections as failures but rather as 

part of the system specifications, treat-

ing them with adaptation mechanisms.

We must design a ubiquitous system’s 

security with certain characteristics in 

mind:14

User centricity. Users should be able 

to circumvent security mechanisms 

that are discordant with common 

practices.

Context mechanisms. The security 

mechanism should be near the activ-

ity in which it makes sense.

Selection. Users should be able to 

understand and manage the employed 

solutions. Only in this way can they 

choose a suitable mechanism accord-

ing to the security needed in each 

action and context.

Security mechanisms should scale 

to devices with limited resources, 

expect lack of knowledge, and allow 

dynamicity of mobility.7 For instance, 

user authentication through login and 

password wouldn’t be feasible for every 

device. We need other methods; for 

•

•

•

 To have an adaptable system, we must specify 

which types of changes will cause adjustments, 

even though we can’t predict  

all possible situations. 



JANUARY–MARCH 2008 PERVASIVE computing 69

example, the system could exploit bio-

metric information or authenticate on 

the basis of people’s locations.

Privacy and trust

Privacy and trust relate directly to 

security concerns. We treat them sepa-

rately from dependability and security 

because of their magnitude in ubicomp. 

Although we try to deal with privacy 

through legislation, we should also 

apply technology because of the risk 

of a user exposing too much personal 

information to an environment. The 

user might even be unaware of the sur-

veillance. Moreover, the amount and 

accuracy of sensor-collected data will 

likely increase as ubicomp advances. 

Furthermore, privacy protection is par-

ticularly difficult in ubiquitous systems 

because of location sensitivity. The con-

text-aware mechanism of sensing the 

exact user location could be exploited 

for tracking purposes. With this mech-

anism, we can infer users’ movements 

and activities, associating them with 

their personal information.

During design, we should apply pri-

vacy standards. Each standard, enforced 

by jurisdiction and market, comprises 

a group of procedures that we should 

observe in data collection.7 During the 

execution phase, we should employ 

protection mechanisms to realize these 

standards. For instance, data could be 

accumulated anonymously or deleted 

after a period of time. 

Trust management can establish the 

reliance on exchanged information and 

ensure only authorized users can access 

that information. The difficulty lies in 

precisely defining an interacting entity’s 

trustworthiness and granting permis-

sions on the basis of that decision. In 

some cases, little or no evidence is avail-

able about an entity and, as in our daily 

trust decisions, it’s more of a subjective 

notion. Apart from being subjective, 

trust is nonsymmetric (two interact-

ing components have different degrees 

of trust in each other), situation-spe-

cific (dependent on context), dynamic 

(increasing or decreasing over time), 

and inherently associated with risk (no 

reason to trust if risk isn’t involved).15 

Because of these, there should be trust-

reasoning support. This reasoning 

analysis is made on the basis of avail-

able information and considering the 

various aspects of trust. Solutions for 

uncertainty should also be present.

Spontaneous interoperation

The first step is to design spontane-

ous components—that is, entities that 

support frequent change among com-

municating partners and that can easily 

interact with others. To accomplish this 

design, we need a dynamic environ-

ment with assorted infrastructures and 

partners. The framework can facilitate 

the development of spontaneous com-

ponents and provide a generic interface, 

which will be combined to create spe-

cific entities during execution. Ideally, 

we should specify components using a 

uniform description language and then 

build them independently of context.13

During execution, components asso-

ciate with each other. Association is the 

logical relationship established between 

components that allow interactions; we 

call these interactions interoperation.6 

When we assess association, three 

points are important: 

scale—efficiently choosing compo-

nents to associate in a scenario with 

•

various possible partners; 

scope—defining the extent to which 

components must be considered and 

including all possible partners; and

boundary principle—considering the 

physical limits (or other criteria) when 

defining the scope of association.6,8 

We can also use discovery services (in this 

article, a context-awareness characteris-

tic) as part of the association solution.

Interoperation depends on the com-

munication models employed. In ubi-

comp, we tend to use models based on 

event systems or tuple spaces because of 

the asynchronous nature of the former 

or the ease of development and inher-

ent persistence of the latter. Occasion-

ally, both models are used in the same 

middleware. Conversely, we can apply 

other forms of communication such as 

message passing, remote invocation, or 

agent systems. 

Composition is a special case of asso-

ciation in which external components 

control internal ones; all interoperation 

passes through those external compo-

nents, redirecting or modifying the asso-

ciation. Composition facilitates adapta-

tion and mobility. Each device can have 

a specific component nesting all others 

and making all the required changes to 

their specific interfaces and capabilities. 

When a component migrates from one 

device to another, it enters in the spe-

cific device components and continues 

to issue the same set of operations. The 

adaptation process is up to each device’s 

outer component, as is the redirection 

•

•

The difficulty in trust management lies 

in precisely defining an interacting entity’s 

trustworthiness and granting permissions  

on the basis of that decision.



70 PERVASIVE computing www.computer.org/pervasive

SOFTWARE ARCHITECTURE

of messages or events arriving after an 

inner component has migrated. 

Mobility

In ubicomp, users change devices fre-

quently, but user applications and data 

must always be available. This means 

that the environment should migrate 

from one device to another. Besides, 

migration also helps in reducing com-

munication costs and preventing dis-

connection. 

To support code migration during 

load and runtime, components must be 

designed with mobile technology. We 

can obtain this by using languages and 

systems compatible with code mobil-

ity. During execution, middleware has 

to deal with the mobile component and 

manage migration. To achieve this, the 

middleware should be aware of the 

network and not treat it in a transpar-

ent manner.

We must also address data mobility. 

We can’t always employ remote data 

access, owing to the possibility of dis-

connection or deficiency of resources. 

In these situations, we could move or 

copy data to different locations, pro-

vided we pay attention to data coher-

ence and synchronization. Also, specific 

applications or hardware might require 

conversion between different formats.

Besides logical mobility, we need to 

consider physical mobility. As people 

move, the devices in use will change 

their network addresses. This is because 

they will be communicating with dif-

ferent access points and being assigned 

to different IP addresses. The DHCP 

(Dynamic Host Configuration Proto-

col) provides this dynamic acquisition 

of addresses, allowing devices to main-

tain service access, regardless of loca-

tion. However, it might be difficult for 

other components to interoperate with 

those devices, because the IP routing 

mechanism is based on fixed locations 

and might lose packets when addresses 

change. In addition, their updating on 

the DNS is slow, due to extensive use 

of cache.

To support physical mobility, we can 

employ a location management strategy. 

Conceptually, this strategy consists of 

two operations: search, which a node 

invokes when it needs to communicate 

with a mobile device; and update or reg-

istration, which the mobile node per-

forms to inform its current location.16 

Another crucial concern is ensuring that 

a mobile node remains connected while 

moving from one scope to another. 

This handoff involves deciding when 

to change to a new scope, selecting it, 

acquiring resources, and rerouting pack-

ets to the new location.16

Context awareness 

To be ubiquitous, middleware must 

use relevant information and services 

available in the surroundings. Dis-

covery is the component that detects 

services and devices in the current con-

text, while sensors infer the significant 

information that the context manager 

can use to reason about actions to take. 

Adding context awareness to middle-

ware increases device usability and 

allows better user interaction.

We need framework support to assist 

the implementation of context-aware 

applications. In particular, we need a 

set of abstract services that program-

mers can employ when building their 

components, and we need high-level 

interfaces that hide specific devices or 

sensor details from the user.10 Thus, we 

can split the acquisition of context from 

its use, which is one of the most impor-

tant issues toward a more disseminated 

use of context.17

To manage this contextual informa-

tion, middleware must provide at least 

four categories of contextual services:

context subscription and delivery—a 

service that can notify a component 

when an event occurs;

context query—a mechanism to find 

a suitable information or service;

context transformation—the conver-

sion of low-level data into high-level 

information; and

context synthesis—the aggregation 

of context information to generate a 

more precise or detailed context.10,16 

These services can supply contextual  

information to applications. Context 

management can be further improved 

by offering various imperceptible layers 

of interpretation, such as transforma-

tion and synthesis; by using distributed 

sensors transparently; by making con-

text acquisition constantly available; 

and by storing context and history.17 

We also need dynamic resource discov-

ery (a mechanism to dynamically locate 

and enumerate resources) available in 

the environment or matching certain 

requirements.18 A resource could be a 

service, application, device, or any other 

component. Requirements are sets of 

specifications or characteristics to which 

the needed resource must comply. 

Many resource-discovery systems 

exist today with different purposes 

and design. However, when applied to 

ubicomp, these approaches have some 

limitations—for example, in terms of 

•

•

•

•

In ubicomp, users change devices frequently, 

but user applications and data must  

always be available. 



JANUARY–MARCH 2008 PERVASIVE computing 71

their interoperability, integration with 

users, and scalability.18 We desire a 

system that doesn’t need manual or 

static configuration and that can find 

required resources in every environ-

ment at any time.

Context management

By detecting context, we can affect 

system behavior. This change can be 

made by adapting the system to the new 

conditions or augmenting the available 

resources to compensate for the lack 

of some feature. Another possibility is 

changing the context using actuators—

that is, software-controlled devices that 

affect the real world. An actuator can 

activate a device, alter a physical condi-

tion such as temperature or luminosity, 

or execute a logical action (such as load-

ing code, altering parameterization, or 

moving components). To support this 

management, we need abstract inter-

action elements in design time. We can 

also use these elements during execu-

tion, according to context. 

Adaptability is a central concept in 

ubicomp. Adaptation consists in adjust-

ing aspects of applications to changes in 

operating environments. The most com-

mon use of adaptation is in resource-

aware applications, when there is a sig-

nificant difference between resources 

presented in the environment and those 

needed.9 These resources could be, 

among others, network bandwidth, 

energy, storage space, or computing 

power. Some approaches to resource 

adaptation include fidelity reduction, 

QoS systems, or the suggestion of cor-

rective actions.11 The first method con-

sists in changing the application to a 

minimal use of limited resources. The 

second keeps a certain resource at a 

satisfactory level. The last one relies on 

user intervention to make the desired 

resources available.

Adaptation is important to other 

kinds of applications besides resource-

aware ones: location-aware applica-

tions need to consider physical loca-

tion; context-aware applications use 

sensors or monitors to infer state and 

choose a strategy; and situation-aware 

applications use the most general form 

of adaptation, perceiving other nearby 

applications and their usage context.9 

In the latter case, adaptation takes 

place depending on usage context and 

user preferences, since adaptation deci-

sions are external to applications.

A special case of adaptation is cyber 

foraging. Mobile devices usually have 

limited capabilities, such as processor 

power, memory, and battery life. With 

those constraints, it’s sometimes diffi-

cult to satisfy the user’s computational 

needs. To minimize this problem, we 

can use nearby machines as computing 

and data-staging servers, thus augment-

ing capability.11 Cyber foraging means 

sharing or dividing code or data among 

servers and mobile devices, which mid-

dleware can do automatically during 

load- and execution-time. Alternatively, 

it could be user-initiated—for instance, 

when anticipating changes in connec-

tivity or device. 

Servers used to augment capabilities 

of mobile devices are sometimes called 

surrogates.19 These surrogates may 

employ encryption algorithms in stored 

data. Thus, the users of these servers 

can’t access information saved there. 

Transparent user interaction

We should design device-neutral 

applications—that is, we shouldn’t 

start with the presentation and then 

build up the programming logic from 

that.12 To accomplish this, during 

design, we can define abstract user 

interfaces and predict different types 

of interaction so that deciding which 

interface to use can be postponed 

until execution. Another option is 

to dynamically generate the inter-

faces during execution on the basis 

of abstract definitions, specific device 

features, and contextual information. 

This option requires less effort dur-

ing design and tends to consume more 

processor power and communication 

latency during execution. However, it 

facilitates the use of contextual data.

Generating interfaces suited to each 

specific device eases the design of trans-

parent user interaction. These interfaces 

must consider the most natural form of 

interaction for those specific devices, 

and also contextual information and 

user behavior (such as preferences and 

history needs). 

A broader concept wouldn’t focus 

only on the human-computer inter-

face of devices but rather on design-

ing the physical interaction itself. This 

idea leads to tangible interaction and 

its use in the scope of ubicomp. The 

idea of tangible interaction is to create 

a richer interaction experience by cou-

pling digital information with physical 

artifacts, using the human body as an 

interface and combining real objects 

and devices with computers in interac-

tive spaces.20 The challenge consists 

in creating interfaces seamlessly inte-

grated with the real world and consid-

ering social, personal, and emotional 

human experience. Finally, to achieve 

a proper transparency, people should 

We desire a system that doesn’t need manual 

or static configuration and that can find required 

resources in every environment at any time.



72 PERVASIVE computing www.computer.org/pervasive

SOFTWARE ARCHITECTURE

be able to focus on their task intui-

tively, with minimal involvement in 

system issues.

Invisibility

The first step toward an invisible 

system is to design adaptable applica-

tions. We need framework support that 

eases this development, following the 

goals of disappearing computing and of 

keeping the user focused on the task. At 

runtime, we require uninterrupted use, 

with minimal user intervention. For 

instance, disconnection periods could 

occur in mobile devices. Actually, the 

system must mask this disconnection 

by keeping services uninterrupted and 

still satisfy the user’s needs, maybe with 

some degradation.

An important characteristic toward 

invisibility is seamless integration. This 

requires much effort from middleware 

and the careful development of each 

system element, considering many 

aspects presented on the other layers of 

the proposed architecture. Guruduth 

Banavar and his colleagues propose a 

task-based model that links the abstract 

interaction to the application logic.12 

This model facilitates integration, since 

tasks are highly abstract and can be 

used at load- and runtime to build sys-

tems with other applications, services, 

and capabilities that are available in the 

pervasive environment. This can bring 

the notion of a task-aware system.19 

To be invisible during runtime, a 

system must act unobtrusively, meet-

ing the user’s expectations without 

human intervention. Debashis Saha 

and Amitava Mukherjee affirm that 

“humans can intervene to tune smart 

environments when they fail to meet 

user expectations automatically.”3 We 

can anticipate user needs by capturing 

user intent. We should also preserve 

user attention. The user is the most 

important resource in a system,19 and 

keeping him or her focused on the task 

can foster invisibility. 

I
t’s still difficult to find a software 

infrastructure that has all the nec-

essary characteristics presented 

here. In the past, projects such 

as Aura,19 CoolTown, 6 Gaia,4 One.

World,2 and ISAM21 tried to accom-

plish many aspects of ubicomp. How-

ever, it’s hard to address several open 

research topics in one project. The ten-

dency today is to provide middleware 

or frameworks for specific issues. In 

spite of this tendency, we think that a 

general infrastructure model for soft-

ware can help to develop pervasive 

middleware or frameworks. We trust 

that this model could also be useful 

as a standard for assessing proposals 

and suggesting needed features. To ful-

fill Weiser’s vision, future ubiquitous 

infrastructures should, as this model 

proposes, seamlessly integrate many 

different challenges.

REFERENCES

 1. M. Weiser, “The Computer for the 
Twenty-First Century,” Scientific Am., 
vol. 265, no. 3, 1991, pp. 94–101.

 2. R. Grimm et al., “System Support for Per-

vasive Applications,” ACM Trans. Com-
puter Systems, vol. 22, no. 4, 2004, pp. 
421−486.

 3. D. Saha and A. Mukherjee, “Pervasive 
Computing: A Paradigm for the 21st Cen-
tury,” Computer, vol. 36, no. 3, 2003, pp. 
25−31.

 4. M. Román et al., “A Middleware Infra-
structure for Active Spaces,” IEEE Perva-
sive Computing, vol. 1, no. 4, 2002, pp. 
74−73.

 5. C. Fetzer and K. Högstedt, “Challenges in 
Making Pervasive Systems Dependable,” 
Future Directions in Distributed Com-
puting, A. Schiper et al., eds., Springer, 
2002, pp.186−190.

 6. G. Coulouris et al., “Mobile and Ubiqui-
tous Computing,” Distributed Systems: 
Concepts and Design, 4th ed., Addison-
Wesley, 2005, pp. 657−719.

 7. P. Robinson et al., “Some Research Chal-
lenges in Pervasive Computing,” Privacy, 
Security and Trust within the Context of 
Pervasive Computing, P. Robinson et al., 
eds., Springer, 2005, pp. 1−16.

 8. T. Kindberg and A. Fox, “A System Soft-
ware for Ubiquitous Computing,” IEEE 
Pervasive Computing, vol. 1, no. 1, 2002, 
pp. 70−81.

 9. I. Augustin et al., “Towards Taxonomy 
for Mobile Applications with Adaptive 
Behavior,” Proc. 20th Int’l Symp. Paral-
lel and Distributed Computing and Net-
working (PDCN 02), ACTA Press, 2002, 
pp. 224−228.

 10. A. Dey, “Understanding and Using Con-
text,” Personal and Ubiquitous Comput-
ing, vol. 5, no. 1, 2001, pp. 4–7.

11. M. Satyanarayanan, “Pervasive Com-
puting: Vision and Challenges,” IEEE 
Personal Comm., vol. 8, no. 4, 2001, pp. 
10-17.

 12. G. Banavar et al., “Challenges: An Appli-
cation Model for Pervasive Computing,” 
Proc. 6th Int’l Conf. Mobile Computing 
and Networking (MOBICOM 00), 2000, 
ACM Press, pp. 266−274.

 13. E. Niemelä and J. Latvakoski, “Survey of 
Requirements and Solutions for Ubiqui-
tous Software,” Proc. Mobile Ubiquitous 
Computing Conf., ACM Press, 2004, pp. 
71−78.

 14. P. Dourish et al., “Security in the Wild: 

The user is the most important resource  

in a system, and keeping him or her focused  

on the task can foster invisibility. 



JANUARY–MARCH 2008 PERVASIVE computing 73

User Strategies for Managing Security as 
an Everyday, Practical Problem,” Personal 
and Ubiquitous Computing, vol. 8, no. 6, 
2004, pp. 391−401.

 15. V. Cahill et al., “Using Trust for Secure 
Collaboration in Uncertain Environ-
ments,” IEEE Pervasive Computing, vol. 
2, no. 3, 2003, pp. 52−61.

 16. F. Adelstein et al., Fundamentals of Mobile 
and Pervasive Computing, McGraw-Hill, 
2005.

 17. A. Dey et al., “A Conceptual Framework 
and a Toolkit for Supporting the Rapid 
Prototyping of Context-Aware Applica-
tion,” HCI J., vol. 16, nos. 2–4, 2001, pp. 
97−166.

 18. F. Zhu, M. Mutka, and L. Ni, “Service 
Discovery in Pervasive Computing Envi-
ronments,” IEEE Pervasive Computing, 
vol. 4, no. 4, 2005, pp. 81−90.

 19. D. Garlan et al., “Project Aura: Toward 
Distraction-Free Pervasive Computing,” 
IEEE Pervasive Computing, vol. 1, no. 3, 
2002, pp. 22−31.

 20. E. Hornecker, “A Design Theme for Tan-
gible Interaction: Embodied Facilitation,” 
Proc. 9th European Conf. Computer Sup-
ported Cooperative Work (ECSCW 05), 
2005, Kluwer, pp. 23−43.

 21. I. Augustin et al., “ISAM, Joining Con-
text-Awareness and Mobility to Building 
Pervasive Applications,” ch. 4, Mobile 
Computing Handbook, M. Ilyas and I. 
Mahgoub, eds., CRC, 2004, pp. 73−94.

For more information on this or any other com-

puting topic, please visit our Digital Library at 

www.computer.org/csdl.

the AUTHORS

Cristiano André da Costa is an associate professor at the University of Vale 

do Rio dos Sinos and a doctoral candidate at the Federal University of Rio 

Grande do Sul. His research interests include software infrastructure for ubiq-

uitous computing, context awareness, distributed systems, and operating 

systems. He received his MSc in computer science from the Federal University 

of Rio Grande do Sul. He’s a member of the IEEE, the ACM, and the Brazilian 

Computer Society. Contact him at Instituto de Informática, Universidade do 

Vale do Rio dos Sinos (UNISINOS), Av. Unisinos 950, 93022-000, São Leopoldo, 

RS, Brazil; cac@unisinos.br.

Adenauer Corrêa Yamin is an associate professor in the Computer Science 

Department at the Catholic University of Pelotas and works on the technical 

staff of the Informatic Center of Federal University of Pelotas. His research  

interests include ubiquitous, grid, parallel, and distributed computing. He 

obtained his PhD in computer science from the Federal University of Rio Grande 

do Sul. He’s a member of the ACM and the Brazilian Computer Society. Con-

tact him at Universidade Católica de Pelotas, Rua Félix da Cunha 412, Pelotas, 

96010-000, RS, Brazil; adenauer@ucpel.tche.br.

Cláudio Fernando Resin Geyer is an associate professor at the Informatics 

Institute of the Federal University of Rio Grande do Sul. His research interests 

include ubiquitous computing, parallel and distributed computing, grid com-

puting, and distributed objects. He received his PhD in informatics from the 

Joseph Fourier University. He’s a member of the ACM and the Brazilian Com-

puter Society. Contact him at Universidade Federal do Rio Grande do Sul, Av. 

Bento Gonçalves 9500, Porto Alegre, 91501-970, RS, Brazil; geyer@inf.ufrgs.br.

Engineering and Applying  

the Internet

IEEE Internet Computing reports emerging tools, 

technologies, and applications implemented 

through the Internet to support a worldwide 

computing environment.

In 2008, we’ll look at:

• Crisis Management

• Virtual Organizations

• Useful Computer Security

• Mesh Networking

• Service Mashups

• and more! www.computer.org/internet/


