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Abstract

It is a deep-seated tradition in science to view uncertainty as a province of
probability theory. The Generalized Theory of Uncertainty (GTU) which isoutlined in
this paper breaks with this tradition and views uncertainty in a broader perspective.

Uncertainty is an attribute of information. A fundamental premise of GTU isthat
information, whatever its form, may be represented as what is called a generalized
constraint. The concept of ageneralized constraint is the centerpiece of GTU. InGTU, a
probabilistic constraint is viewed as a specia—albeit important—instance of a
generalized constraint.

A generalized constraint is a constraint of the form Xisr R, where X isthe
constrained variable, Ris a constraining relation, generally non-bivalent, and r is an
indexing variable which identifies the modality of the constraint, that is, its semantics.
The principal constraints are: possibilistic (r=blank); probabilistic (r=p); veristic (r=v);
usuality (r=u); random set (r=rs); fuzzy graph (r=fg); bimodal (r=bm); and group (r=g).
Generalized constraints may be qualified, combined and propagated. The set of all
generalized constraints together with rules governing qualification, combination and
propagation constitutes the Generalized Constraint Language (GCL).

The Generalized Constraint Language plays akey rolein GTU by serving asa
precisiation language for propositions, commands and questions expressed in a natural
language. Thus, in GTU the meaning of a proposition drawn from a natural language is
expressed as ageneralized constraint. Furthermore, a proposition playsthe role of a
carrier of information. Thisis the basis for equating information to a generalized
constraint

In GTU, reasoning under uncertainty istreated as propagation of generalized
constraints, in the sense that rules of deduction are equated to rules which govern
propagation of generalized constraints. A concept which plays akey rolein deductionis

" Telephone: +1-510-642-4959; Fax: +1-510-642-1712.

E-mail: zadeh@eecs.berkeley.edu .
! Dedi cated to Didier Dubois, Henri Prade and the memory of my mentors, Richard Bellman and Herbert
Robbins.




January 20, 2005

that of a protoform (abbreviation of prototypical form). Basically, a protoformisan
abstracted summary—a summary which serves to identify the deep semantic structure of
the object to which it applies. A deduction role has two parts. symbolic—expressed in
terms of protoforms—and computational.

GTU represents a significant change both in perspective and direction in dealing
with uncertainty and information. The concepts and techniques introduced in this paper
areillustrated by a number of examples.

1. Introduction

Uncertainty is an attribute of information. The path-breaking work of Shannon
has led to a universal acceptance of the thesis that information is statistical in nature. A
logical consequence of thisthesisisthat uncertainty, whatever its form, should be dealt
with through the use of probability theory. To quote an eminent Bayesian, Professor
DennisLindley, “ The only satisfactory description of uncertainty is probability. By this|
mean that every uncertainty statement must bein the form of a probability; that several
uncertainties must be combined using the rules of probability; and that the calculus of
probabilities is adequate to handle all situations involving uncertainty...probability isthe
only sensible description of uncertainty and is adequate for al problemsinvolving
uncertainty. All other methods are inadequate...anything that can be done with fuzzy
logic, belief functions, upper and lower probabilities, or any other alternative to
probability can better be done with probability,” (Lindley, 1987).

The Generalized Theory of Uncertainty (GTU) is achallenge to the thesisand its
logical consequence. Basically, GTU puts aside the thesis and itslogical consequence,
and adopts a much more general conceptual structure in which statistical information is
just one—albeit an important one—of many forms of information. More specificaly, the
principal premise of GTU isthat, fundamentally, information is a generalized constraint
on the values which avariable is allowed to take. The centerpiece of GTU is the concept
of ageneralized constraint—a concept drawn from fuzzy logic, aswill be described in
greater detail in the sequel. The distinguishing feature of fuzzy logic is that in fuzzy logic
everything is—or is allowed to be—a matter of degree. The principal toolswhich GTU
draws from fuzzy logic include Precisiated Natural Language (PNL) and Protoform
Theory (PFT), (Zadeh [56]).

In GTU, uncertainty is linked to information through the concept of granular
structure—a concept which plays akey role in human interaction with the real world,
Zadeh [43, 52].

Informally, a granule of avariable X isaclump of values of X which are drawn
together by indistinguishability, equivalence, similarity, proximity or functionality. For
example, an interval isagranule. Soisafuzzy interval. And so is a probability
distribution.
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Granulation is pervasive in human cognition. For example, the granules of Age
are fuzzy setslabeled young, middle-aged and old, Fig. 1. The granules of Height may be
very short, short, medium, tall, and very tall. And the granules of Truth may be not true,
quite true, not very true, very true, etc. The concept of granularity underlies the concept
of alinguistic variable—a concept which was introduced in my 1973 paper “Outline of A
New Approach to the Analysis of Complex Systems and Decision Processes,” Zadeh [41,
42]. The concept of alinguistic variable plays a pivotal role in aimost all applications of
fuzzy logic [12], [15], [18], [29], [31], [38].

There are four basic rationales which underlie granulation of attributes and the
concomitant use of linguistic variables. First, the bounded ability of sensory organs, and
ultimately the brain, to resolve detail and store information. For example, looking at
Monika, | seethat sheisyoung but cannot pinpoint her age as a single number. Second,
when numerical information may not be available. For example, | may not know exactly
how many Spanish restaurants there are in San Francisco, but my perception may be “not
many.” Third, when an attribute is not quantifiable. For example, we describe degrees of
Honesty as: low, not high, high, very high, etc because we do not have anumerical scale.
And fourth, when there is atolerance for imprecision which can be exploited through
granulation to achieve tractability, robustness and economy of communication. For
example, it may be sufficient to know that Monikais young; her exact age may be
unimportant. What should be noted is that thisis the principal rationale which underlies
the extensive use of granulation, in the form of linguistic variables, in consumer products.

Thereis a close connection between granularity and uncertainty. Assumethat X is
avariable and | am asked, “What isthe value of X?’ If my answer is® Xisa,” wherea is
asingleton, then there is no uncertainty in the information which I am providing about X.
In thisinstance, information is singular. But if the answer is“ X is approximately a,” or
“Xis*a,” for short, then there is some uncertainty in my answer. In thisinstance,
information and its uncertainty will be described as granular. Closely, but not exactly,
granularity may be equated to non-singularity. In the instance of “Xis*a,” information is
non-singular.

A basic question which arisesis: How can the meaning of *a be precisiated? In
the context of standard probability theory, call it PT, *a would normally be interpreted as
aprobability distribution centering on a. In GTU, information about X isviewed as a
generalized constraint on X. More specifically, in the context of GTU, *a would be
viewed as agranule which is characterized by a generalized constraint. Aswill be seenin
the sequel, a probability distribution is a special case of ageneralized constraint. In this
sense, GTU ismore general than PT. Actually, GTU is ageneralized theory of
uncertainty in the sense that most, and possibly all, existing approaches to representation
of uncertain information fit within its conceptual structure. (Bloch et al [3], Bouchon-
Meunier, Yager and Zadeh (eds) [4], Bubnicki [5], Dubois and Prade [8], [9], Klir [20],
Shafer [33], Singpurwalla and Booker [34], Smets[35], Y ager [36])
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So what isthe rationale for GTU? Thereis a demonstrable need for GTU because
existing approaches to representation of uncertain information are inadequate for dealing
with problems in which uncertain information is perception-based and is expressed in a
natural language. (Zadeh [54]) Fig. 2. More specifically, the existing approaches do not
address the problem of semantics of natural languages, Novak, Perfilieva and Mockor
[25], and the need for avariety of calculi of generalized constraintsto deal with it. The
simple examples which follow are intended to serve as illustrations.

The Robert example. Usually Robert returns from work at about 6:00 pm. What is
the probability that Robert is home at about 6:15 pm?

The balls-in-box example. A box contains about twenty black and white balls.
Most are black. There are several times as many black balls aswhite balls. What is the
number of white balls? What is the probability that a ball drawn at random is white?

Thetall Swedes problem. Most Swedes aretall. What is the average height of
Swedes? How many Swedes are short?

The partial existence problem. X is areal-valued variable; a and b are real
numbers, with a< b. | am uncertain about the value of X. What | know about X isthat (a)
Xismuch larger than approximately a, *a; and (b) that X is much smaller than
approximately b, *b. What is the value of X?

Vera s age problem. Verahas ason who isin mid-twenties, and a daughter, who
isin mid-thirties. What isVera s age?

A common thread which runs through these examples relates to the nature of
given information. More specifically, the given information, e.g., “Most Swedes are tall,”
IS perception-based and imprecise, Fig. 2. One of the basic limitations of standard
probability theory, PT, isrooted in the fact that its conceptual structure does not
accommodate perception-based information which is imprecise (Zadeh [55]).

To dedl effectively with problems of this kind what is needed is the machinery of
fuzzy logic. One of the principal toolsin this machinery is granular computing, Zadeh
[4], [52], [53], Bargielaand Pedrycz [1], and Lin [21]. A key concept in granular
computing isthat of a generalized constraint Zadeh [49]. Thisiswhy the concept of a
generalized constraint is the centerpiece of GTU. A brief discussion of this concept
follows.

Note: GTU draws on many concepts and techniques which relate to fuzzy logic. To
facilitate understanding of GTU by those who are not conversant with fuzzy logic, our
exposition includes a larger than usual number of examples and figures.
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2. The Concept of a Generalized Constraint

Constraints are ubiquitous. A typical constraint is an expression of the form XeC,
where X is the constrained variable, and C is the set of values which X is allowed to take.
A typical constraint is hard (inelastic) in the sense that if u isavalue of X then u satisfies
the constraint if and only if ue C.

The problem with hard constraints is that most real-world constraints are not hard,
that is, have some degree of elasticity. For example, the constraints “ check-out timeis 1
pm,” and “speed limit is 100 km/hr,” have, in reality, some elasticity. How can such
constraints be defined? The concept of a generalized constraint is motivated by questions
of thiskind.

Real-world constraints may assume avariety of forms. They may be smplein
appearance and yet have a complex structure. Reflecting this reality, a generalized
constraint, GC, is defined as an expression of the form. (Zadeh [49]),

GC: Xig R

where X isthe constrained variable; Ris a constraining relation which, in general, is non-
bivalent; and r is an indexing variable which identifies the modality of the constraint, that
IS, its semantics.

The constrained variable, X, may assume avariety of forms. In particular,

Xisann-ary variable, X=(Xy, ..., Xn)

Xisaproposition, e.g., X=Ledlieistall

Xisafunction

Xisafunction of another variable, X=f()

Xis conditioned on another variable, X/Y

X has a structure, e.g., X=L ocation(Residence(Caral))

Xisagroup variable. In this case, there isagroup, G[A]; with each member of the
group, Name, i=1, ..., n, associated with an attribute-value, Ai. Ai may be vector-
valued. Symbolically

G[A]: Namey/As+...+Name/A..
Basically, G[A] isarelation.
Xisageneralized constraint, X=Yisr R.
A generalized constraint, GC, is associated with a test-score function, ts(u), (Zadeh
[45]) which associates with each object, u, to which the constraint is applicable, the

degree to which u satisfies the constraint. Usually, ts(u) isapoint in the unit interval.
However, if necessary, the test-score may be a vector, an element of a semi-ring
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(Rossi [32]), an element of alattice (Goguen [16]) or, more generally, an element of a
partially ordered set, or abimodal distribution—a constraint which will be described
later in this section. The test-score function defines the semantics of the constraint
with which it is associated.

The constraining relation, R, is, or is allowed to be, non-bivalent (fuzzy). The
principal modalities of generalized constraints are summarized in the following.

2.1. Principal modalities of generalized constraints.
(a) Possibilistic (r=blank)
XisR
with R playing the role of the possibility distribution of X. For example:
Xis[a, b]
means that [a, b] isthe set of possible values of X. Another example:
Xissmall.

In this case, the fuzzy set labeled small is the possibility distribution of X. If mpyg isthe
membership function of small, then the semantics of “ X issmall” is defined by

Poss{ X=u} = Mymai(u)
where u is ageneric value of X.
(b) Probabilistic (r=p)
XispR,
with R playing the role of the probability distribution of X. For example.
Xisp N(m, s?)
means that X is anormally distributed random variable with mean m and variance s>.

If X isarandom variable which takes valuesin afinite set {uy, ..., un} with
respective probabilitiespy, ..., pn, then X may be expressed symbolicaly as

Xisp (p1\ urt...+ pn\ up),

with the semantics
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Prob(X=u;)=p;, =1, ...,n.

What isimportant to noteisthat in GTU a probabilistic constraint is viewed as an
instance of a generalized constraint.

When Xis ageneralized constraint, the expression
XispR

isinterpreted as a probability qualification of X, with R being the probability of X, Zadeh
[44]. For example.

(Xissmal) isp likely,
where small is afuzzy subset of the real line, means that the probability of the fuzzy
event { X issmall} islikely. More specificaly, if X takesvaluesintheinternet [a, b] and

g isthe probability density function of X, then the probability of the fuzzy even “Xis
small” may be expressed as (Zadeh [40])

Prob(Xissmall) = & m,_, (u)g(u)du
Hence

t9) = My, (F 9(u)my, (U)).

This expression for the test-score function defines the semantics of probability
gualification of a possibilistic constraint.

Verigtic (r=v)

XisvR,
where R playstherole of a verity (truth) distribution of X. In particular, if X takes values
inafiniteset {us, ..., uy} with respective verity (truth) valuesty, ..., t,, then X may be
expressed as

Xisv  (tzjust ... +tp|up),
meaning that Ver(X=uj)=t;, i=1,...,n.
For example, if Robert is half German, quarter French and quarter Italian, then

Ethnicity(Robert) isv 0.5|German+0.25|French+0.25|Italian.

When X isageneralized constraint, the expression
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XisvR
isinterpreted as verity (truth) qualification of X. For example,
(Xissmall) isv very.true,

should be interpreted as“It is very true that X is small.” The semantics of truth
gualification is defined in (Zadeh [40])

Ver(XisR)ist — Xis m(t),

where n;' isinverse of the membership function of R andt is afuzzy truth value which
isasubset of [0, 1], Fig. 3.

Note: There are two classes of fuzzy sets: (a) possibilistic, and (b) veristic. In the case of
apossibilistic fuzzy set, the grade of membership isthe degree of possibility. In the case

of averistic fuzzy set, the grade of membership is the degree of verity (truth). Unless
stated to the contrary, afuzzy set is assumed to be possibilistic.

Usuality (r=u)

XisuR.
The usuality constraint presupposes that X is arandom variable, and that the probability
of the event { X isu R} isusually, where usually playsthe role of afuzzy probability
which isafuzzy number (Kaufman and Gupta[19]. For example.

Xisu small
means that “usually Xissmall” or, equivalently,

Prob{ X issmall} isusualy.
In this expression, small may be interpreted as the usua value of X. The concept of a

usual value has the potential of playing asignificant role in decision analysis, sinceit is
more informative than the concept of an expected value.

Random-set constraint (r=vs)

In
XisrsR,

Xisafuzzy-set-valued random variable and R is a fuzzy random set
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Fuzzy-graph constraint (r=fq)

In
Xisfg R,

Xisafunction, f, and Ris afuzzy graph (Zadeh [51]) which constrainsf (Fig. 4). A fuzzy
graph isadigunction of Cartesian granules expressed as

R=A;" Bi+...+A; By,
wherethe Ay and By, i=1, ..., n, are fuzzy subsets of thereal ling, and " isthe Cartesian
product. A fuzzy graph is frequently described as a collection of fuzzy if-then rules
(Zadeh[52], Pedrycz and Gomide [29], Bardossy and Duckstein [2]).
R if X isAythenYisBy, i=1 ...,n
The concept of afuzzy-graph constraint plays an important role in applications of fuzzy
logic [2], [15], [18].
Bimodal (r=bm)
In the bimodal constraint,
XisbmR,
Risabimodal distribution of the form

R S PWAW ,i=1,...,n.
which means that Prob(X isA) is P. (Zadeh [55])

Example:

R: lowAsmall+high\medium+low\large.

There are two types of bimodal distributions. Intype 1, X is a real-valued random
variable; the A are fuzzy subsets of thereal line; and the P, are granular probabilities of
the A (Fig. 5). Thus

Prob(XisA)isP, i=1,...,n.

In type 2, X is afuzzy-set-valued random variable taking the values Ay, ..., A, with

respective granular probabilities Py, ..., Pn. Unless stated to the contrary, a bimodal
distribution is assumed to be of type 1.
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The importance of bimodal distributions derives from the fact that in many
realistic settings abimodal distribution is the best approximation to our state of
knowledge. An example is assessment of degree of relevance, since relevanceis
generally not well defined. If | am asked to assess the degree of relevance of a book on
knowledge representation to summarization, my state of knowledge about the book may
not be sufficient to justify an answer such as 0.7. A better approximation to my state of
knowledge may be “likely to be high.” Such an answer is an instance of abimodal
distribution.

What is the expected value of abimodal distribution? This question is considered
in Section 5.

Group (r=0)
In
XisgR,

Xisagroup variable, G[A], and Ris a group constraint on G[A]. More specifically, if X is
agroup variable of the form

G[A]: Name/A +...+ Name/A,
or
G[A]: SiNamey/A |, for short, =1, ...,n,
then Risaconstraint on the A.. To illustrate, if we have a group of n Swedes, with Name

being the name of ith Swede, and A being the height of Name, then the proposition
“most Swedes aretall,” is aconstraint on the A; which may be expressed as (Zadeh [25])

1 & Count( tall Swvedes) is most
n
or, more explicitly,

%(mau(Ai)"'---"'mau(Ah)) is most,

where most is afuzzy quantifier which isinterpreted as a fuzzy number

2.2. Operations on generalized constraints
There are many ways in which generalized constraints may be operated on.
The basic operations—expressed in symbolic form—are the following.

Conjunction

10
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XisrR

YissS

XY)igT
Example (possibilistic constraints) (Fig. 6)

XisR

YisS

XY)isR' S
where” isthe Cartesian product.
Example (probabilistic/possibilistic)

XispR

(X.Y)isS

XY)issT
In this example, if Sisafuzzy relation then T is afuzzy random set. What isinvolved in
this exampleis a conjunction of a probabilistic constraint and a possibilistic constraint.
This type of probabilistic/possibilistic constraint plays a key role in the Dempster-Shafer
theory of evidence, and in its extension to fuzzy sets and fuzzy probabilities (Zadeh [43]).
Example (possibilistic/probabilistic)

XisR

XY)isp S

Y/Xisp T
This example, which isadual of the proceeding example, is an instance of conditioning.
Projection  (possibilistic) (Fig. 7)

XY)isR

XisS
where X takes values in U={u}; Y takes valuesin V={v}; and the projection

S=Projx R,

isdefined as

I’TE(V) = rnDronR(V) = rT‘la‘xv m(UN),

11
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where nk and ng are the membership functions of Rand S, respectively.
Projection (probabilistic)

(XY) ispR
XispS

where X and Y are real-valued random variables, and R and S are the probability

distributions of (X,Y) and X, respectively. The probability density function of S, ps, is
related to that of R, pg, by the familiar equation

ps(u) = 0pg(u,v)dv
with the integral taken over thereal line.
Propagation
f(X) isr R
g issS
where f and g are functions or functionals.
Example (possibilistic constraints) (Fig. 8)

f(X) isR
g(X) isS

where R and Sare fuzzy sets. In terms of the membership function of R, the membership
function of Sis given by the solution of the variational problem

my (V) = sup, (me(f(u))
subject to

v=g(u).
Note: The constraint propagation rule described in this example is the well-known
extension principle of fuzzy logic, Zadeh [39, 42]. Basically, this principle provides a

way of computing the possibilistic constraint on g(X) given a possibilistic constraint on
f(X).

12
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2.3. Primary constraints, composite constraints and the Generalized Constraint
Language (GCL)

Among the principal generalized constraints there are three that play the role of primary
generalized constraints. They are:

Possibilistic constraint: XisR

Probabilistic constraint: XispR
and

Veristic constraint: XisvR

A generalized constraint, GC, iscomposite if it can be generated from other
generalized constraints through conjunction, and/or projection and/or constraint
propagation and/or qualification and/or possibly other operations. For example, a
random-set constraint may be viewed as a conjunction of a probabilistic constraint and
either apossibilistic or veristic constraint. The Dempster-Shafer theory of evidenceis, in
effect, atheory of possibilistic random-set constraints. The derivation graph of a
composite constraint defines how it can be derived from primary constraints.

The three primary constraints—possibilistic, probabilistic and veristic—are
closely related to a concept which has a position of centrality in human cognition—the
concept of partiality. In the sense used here, partial means: a matter of degree or, more or
less equivalently, fuzzy. In this sense, almost all human concepts are partial (fuzzy).
Familiar examples of fuzzy concepts are: knowledge, understanding, friendship, love,
beauty, intelligence, belief, causality, relevance, honesty, mountain and, most important,
truth, likelihood and possibility. Is a specified concept, C, fuzzy? A ssimpletestis: If C
can be hedged, then it isfuzzy. For example, in the case of relevance, we can say: very
relevant, quite relevant, dlightly relevant, etc. Consequently, relevance is afuzzy concept.

The three primary constraints may be likened to the three primary colors: red,
blue and green. In terms of this analogy, existing themes of uncertainty may be viewed as
theories of different mixtures of primary constraints. For example, the Dempster-Shafer
theory of evidence is atheory of a mixture of probabilistic and possibilistic constraints.
The Generalized Theory of Uncertainty embraces al possible mixtures, and in this sense
the conceptual structure of GTU accommodates most, and perhaps all, of the existing
theories of uncertainty.

2.4. The Generalized Constraint Language
A concept which plays an important role in GTU isthat of Generalized Constraint
Language (GCL). Informally, GCL isthe set of all generalized constraints together with

the rules governing syntax, semantics and generation. Simple examples of elements of
GCL are:

13
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((XY) isp A) U (XisB)
(XispA) U((X,Y) isvB)
Projv((XisA) U(X,Y) isp B)

where Uis conjunction.
A very simple example of asemantic ruleis:
(XisA) U(YisB) —— Poss(X=u, Y=v) = my(u) Ung(V),

where u and v are generic values of X, Y, and my and g are the membership functions of
A and B, respectively.

In principle, GCL is an infinite set. However, in most applications only a small
subset of GCL islikely to be needed.

3. The Concept of Precisiation and PNL

How can precise meaning be assigned to a proposition, p, drawn from a natural
language?

The problem is that natural languages are intrinsically imprecise. Imprecision of
natural languages is a consequence of the fact that (a) a natural language is, basically, a
system for describing perceptions; and (b) perceptions areintrinsically imprecise asa
consequence of (@) the bounded ability of sensory organs, and ultimately the brain, to
resolve detail and store information; and (b) incompl eteness of information.

Given these facts, how can we precisiate the meaning p?

A key ideawhich underlies the concept of Precisiated Natural Language (PNL),
Zadeh [55] isto represent the meaning of p as ageneralized constraint, Fig. 9. In
symbols.

p—»XisrR

Thisideais consistent with the fundamental premise of GTU, namely, that information is
representable as a generalized constraint. The basis for the consistency isthat a
proposition, viewed as an answer to a question, isacarrier of information. In this sense,
the premise “Information is representabl e as a generalized constraint,” is equivalent to the
premise“A proposition is representable as a generalized constraint.” A forerunner of

PNL is PRUF (Zadeh[48]).

14
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Given that the Generalized Constraint Language, GCL, isthe set of all
generalized constraints, representing p as a generalized constraint is equivalent to
trandating p into an element, p*, of GCL. Thus, precisiation of a natural language, NL,
may be viewed as trandlation of NL into GCL. Equivalently, translation of p into GCL
may be viewed as explicitation of X, Randr, Fig. 10.

A proposition, p, is precisiable if it is trandlatable into GCL. Not every
proposition in NL is precisiable. But since GCL includes every possible constraint, it is
more expressive in relation to NL than any existing synthetic language, among them the
languages associated with first order logic, modal logic, Prolog and LISP.

Trangdlation of p into GCL is made more transparent though annotation. To
illustrate,

(& p: Monikaisyoung — » X/Age(Monika) is Rlyoung

(b) p: Itislikely that Monikaisyoung — Prob(X/Age(Monika) is R/young) is
Slikely

Note: Example (b) is an instance of probability qualification.
More concretely, let g(u) be the probability density function of the random variable,
Age(Monika). Then, with reference to our earlier discussion of probability quaification,
we have
Prob(Age(Monika) isyoung) islikely ———»
& g(U)Mygg(u)du s likely
or, in annotated form,
GC(g)= X / ¢ g(u)m,,,(u)du isR/likely.
The test-score of this constraint on g is given by
tS(9)= My (F° (UM, o(U)dU) .
(©) p: Most Swedes are tall.
Following (b), let h(u) be the count density function of Swedes, meaning that
h(u)du= fraction of Swedes whose height liesin the interval [u, u+dul].

Assume that height of Swedesliesin theinterval [a, b]. Then,

15
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fraction of tall Swedes: & h(u)m,, (u)du is most.

Interpreting this relation as a generalized constraint on h, the test-score may be expressed
as

ts(h)=m, (& h(u)m,, (u)du).

In summary, precisiation of “Most Swedes are tall” may be expressed as the
generalized constraint.

Most Swedes aretall ——» GC(h) =, (& h(u)m,, (u)du).

An important application of the concept of precisiation relatesto precisiation of
propositions of the form “ X is approximately a,” where a is areal number. How can
“approximately a”, or *a for short, be precisiated? In other words, how can the
uncertainty associated with the value of X which is described as * a, be defined precisely?

Thereisahierarchy of waysin which this can be done. The simplest is to define
*a asa. Thismode of precisiation will be referred to as singular precisiation, or s-
precisiation, for short (Fig. 11) s-precisiation is employed very widely, especially in
probabilistic computations, in which an imprecise probability, * a, is computed with as if
it were an exact number, a.

The other ways (Fig. 12) will be referred to as granular precisiation, or g-
precisiation, for short. In g-precisiation, * a istreated as a granule. What we seeis that
various modes of precisiating * a are instances of the generalized constraint.

The concept of precisiation has an inverse—the concept of imprecisiation, which
involves replacing a with * a, with the understanding that *ais not unique.

A basic problem which relates to imprecisiation is the following. Assume for
simplicity that we have two linear equations involving real-valued coefficients and real-
valued variables:

aX+a2Y=by
ax X+ax2Y=hy.

Solutions of these equations read,

X= ayb - a,b,
8,8, - a8y

Y= allbz - aZlbl .
a,,8,, - a,a,
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Now suppose that we imprecisiate the coefficients, replacing, a;; with * &;j, i, j= 1, 2, and
replacing by with * by, i= 1,2. How can we solve these equations when imprecisiated
coefficients are defined as generalized constraints?

Thereisno general answer to this question. Assuming that all coefficients are
defined in the same way, the method of solution will depend on the modality of the
constraint. For example, if the coefficients are interval-valued, the problem falls within
the province of interval analysis (Moore [24]). If the coefficients are fuzzy-interval-
valued, the problem falls within the province of the theory of relational equations (Di
Nolaet d [6, 7], Mares [23]). And if the coefficients are real-valued random variables,
we are dealing with the problem of solution of stochastic equations. In general, solution
of asystem of equation with imprecisiated coefficients may present complex problems.

One complication isthe following. If (a) we solve the origina equations, aswe
have done above; (b) imprecisiate the coefficients in the solution; and (c) employ the
extension principle to complete X and Y, will we obtain solutions of imprecisiated
equations? The answer, in general, is: No.

Nevertheless, when we are faced with a problem which we do not know how to
solve correctly, we proceed as if the answer is. Y es. This common practice may be
described as Precisiation/Imprecisiation Principle which is defined in the following.

3.1. Precisiation/Imprecisiation Principle (P/l Principle)

Informally, let f be afunction or afunctional. Y=f(X), where X and Y are assumed
to beimprecise, Pr(X) and Pr(Y) are precisiations of X and Y, and * Pr(X) and * Pr(Y) are
imprecisiations of Pr(X) and Pr(Y), respectively. In symbolic form, the P/l Principle may
be expressed as

FO)*=*1(Pr (X))

where * = denotes “ approximately equal,” and *f isimprecisiation of f. In words, to
compute f(X) when X isimprecise, (a) precisiate X, (b) compute f(Pr(X)); and (c)
imprecisiation f(Pr(X)). Then, usualy, *f(Pr(X)) will be approximately equal to f(X). An
underlying assumption is that approximation, are commensurate in the sense that the
closer Pr(X) isto X, the closer f(Pr(X)) isto f(X). Thisassumption is related to the
concept of gradual rules of Dubois and Prade [9].

Asan illustration, suppose that X is areal-valued function; f is the operation of
differentiation, and * X is the fuzzy graph of X. Then, using the using the P/l Principle,
*f(X) will have the form shown in Fig.13. It should be underscored that imprecisiation is
an imprecise concept.

Use of the P/l Principle underlies many computations in science, engineering,
economics and other fields. In particular, as was aluded to earlier, this applies to many
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computation in probability theory which involve imprecise probabilities. It should be
emphasized that the P/l Principle is neither normative (prescriptive) nor precise; it
merely describes imprecisely what is common practice—without suggesting that
common practiceis correct.

4. Precisiation of Propositions

In the preceding section, we focused our attention on precisiation of propositions
of the special form“Xis*a.” In the following, we shall consider precisiation in amore
general setting. In this setting, the concept of precisiation in PNL opens the door to a
wide-ranging enlargement of the role of natural languages in scientific theories,
especialy in fields such as economics, law and decision analysis. Our discussion will be
brief; details may be found in Zadeh [56]

Precisiation of propositions—and the related issues of precisiation of questions,
commands and concepts—fall within the province of PNL (Precisiated Natural
Language). As was stated earlier, the point of departurein PNL is representation of the
meaning of a proposition, p, as a generalized constraint.

p— XisR.

To illustrate precisiation of propositions and questions, it will be convenient to
consider the examples which were discussed earlier in Section 1.

The Robert example

p: Usually Robert returns from work at about 6 pm.
g: What is the probability that Robert is home at about 6:15 pm?

Precisiation of p may be expressed as
p: Prob(Time(Return(Robert)) is*6:00 pm) is usually
where “usualy” is afuzzy probability

Assuming that Robert stays home after returning from work, precisiation of g may
be expressed as

g: Prob(Time(Return(Robert)) is£ ° 6:15 pm) isA?
where ° isthe operation of composition, and A is afuzzy probability

The balls-in-box problem

pa: A box contains about 20 black and white balls
p2: Most are black
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ps: There are several times as many black balls as white balls
g1: What is the number of white balls?
02: What is the probability that aball drawn at random iswhite?

Let X be the number of black balls and let Y be the number of white balls. Then,
in precisiated form, the statement of the problem may be expressed as:

p1: (X+Y) is*20
p2: Xismost~ *20 % data
ps: Xisseveral © Y

gi: Yis?A
Y } guestions

T ——is?B
%20

where Y /*20 is the granular probability that aball drawn at random iswhite

Solution of these equations reduces to an application of fuzzy integer
programming (Fig.14).

Thetal Swedes problem

p: Most Swedes are tall.
g: What isthe average height of Swedes?
g: How many Swedes are short?

Aswas shown earlier,
p: Most Swedes are tall — & h(u)m,, (u)du is most
where h isthe count density function.
Precisiations of ¢z, and g» may be expressed as
gy ouh(u)du is?A
where A is afuzzy number which represents the average height of Swedes, and
g2: oh(u)m,(u)du is?B
where Mot 1S the membership function of short, and B is the fraction of short Swedes.

The partial existence problem
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Xisarea number. | am uncertain about the value of X. What | know about X is;

p1: Xis much larger than approximately a
p2: X is much smaller than approximately b

where a and b are real numbers, with a<b.
What isthe value of X?

In this case, precisiations of data may be expressed as

p1: Xismuch.larger - *a
p2: Xismuch smaller o *b

where ° isthe operation of compostion. Precisiation of the questioniis:
g: Xis?A
where A isafuzzy number. The solution isimmediate:

Xismuch.larger » *a Umuch.smaller o *b

when Uismin or at-norm. In this instance, depending on a and b, X may exist to a
degree.

These examples point to an important aspect of precisiation. Specifically, to
precisiate p we have to precisiate or, equivalently, calibrate its lexical constituents. For
example, in the case of “Most Swedes aretall,” we haveto calibrate “most” and “tall.”
(Fig. 7) Likewise, in the case of the Robert example, we have to calibrate “about 6:00
pm,” “about 6:15 pm” and “usually.” In effect, we are composing the meaning of p from
the meaning of its constituents. This processisin the spirit of Frege's principle of
compositionality, Zadeh [47], Montague grammar [28] and the semantics of
programming languages.

An important aspect of precisiation which will not be discussed here relates to
precisiation of concepts. It is a deep-seated tradition in science to base definition of
concepts on bivalent logic. In probability theory, for example, independence of eventsis
abivalent concept. But, in reality, independence is a matter of degree, i.e., isafuzzy
concept. PNL, used as a definition language, makes it possible, more realistically, to
define independence and other bivalent concepts in probability theory as fuzzy concepts.
For this purpose, when PNL is used as a definition language, a concept isfirst defined in
anatural language and then its definition is precisiated through the use of PNL.

5. Reasoning Under Uncertainty
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Reasoning under uncertainty has many facets. The facet that is the primary focus
of attention in GTU isreasoning with, or equivalently, deduction from, uncertain
information expressed in a natural language.

Precisiation is a prelude to deduction. In this context, deduction in GTU involves,
for the most part, computation with precisiations of propositions drawn from a natural
language. A concept which plays akey rolein deduction isthat of a protoform—
abbreviation of “prototypical form” (Zadeh [56]).

The concept of aprotoform

Informally, a protoform of an object isits abstracted summary. More specificaly,
aprotoform is a symbolic expression which defines the deep semantic structure of an
object such as a proposition, question, command, concept, scenario, case or a system of
such objects. In the following, our attention which will be focused on protoforms of
propositions, with PF(p) denoting a protoform of p. (Fig.15). Abstraction has levels, just
as summarization does. For this reason, an object may have a multiplicity of protoforms
(Fig.16). Conversely, many objects may have the same protoform. Such objects are said
to be protoform-equivaent, or PF-equivalent, for short. The set of protoforms of all
precisiable propositionsin NL, together with rules which govern propagation of
generalized constraints, constitute what is called the Protoform Language (PFL).

Examples:
instantiation
v |
Monikaisyoung —» Aige(Moqika) isyoung —Pﬁ\(B) isC

abstraction
Monikais much younger than Pat — (A(B), A(C)) isR
Age Agelal much younger
Monika
distance between New Y ork and Boston is about 200 mi — A(B, C) isR
usually Robert returns from work at about 6pm——>"

Prob{AisB} is%‘
usually

about 6 pm
Time(Robert.returns.from.work)

Carol livesin asmall city near San Francisco —

AB(C) is (D and,F)
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— small city
— city near SF
—Carol
—Residence
Location

most Swedesaretall ——»1/n SCount(G[A] isR) isQ

| | | A A A T

Height

Protoformal deduction

The rules of deductionin GTU are, basically, the rules which govern constraint
propagation. In GTU, such rulesreside in the Deduction Database (DDB), Fig.18. The
Deduction Database comprises a collection of agent-controlled modules and submodules,
each of which contains rules drawn from various fields and various modalities of
generalized constraints. A typical rule has a symbolic part, which is expressed in terms of
protoforms; and a computational part which defines the computation that has to be
carried out to arrive at a conclusion. In what follows, we describe briefly some of the
basic rules, and list anumber of other rules without describing their computational parts.
The motivation for doing so is to point to the necessity of developing a set of rules which
is much more compl ete than the few rules which are used as examplesin this section.

(@) Computational rule of inference (Zadeh [18])

Symbolic part Computational part

XisA

X Y)isB M (v) = max, (m, (u) Umy (u,v))
YisC

A, B and C are fuzzy sets with respective membership functions m,m,m. Uis
min or t-norm (Fig. 19).

(b) Intersection / product syllogism (Zadeh [46])

Symbolic part Computational part
Q:A'saeB's
Q2(A&B)'saeC's Q:=Q1* Q2

QsA'sare(B&C)'s

Q1 and Q; are fuzzy quantifiers; A, B, C are fuzzy sets; x is product in fuzzy
arithmetic. [14]
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(c) Basic extension principle (Zadeh [39])

Symbolic part Computational part
XisA my (V) = sup, (M,(u))
f(X) isB subject to

v =g(u)

gisagiven function or functional; A and B are fuzzy sets. (Fig.20)

Extension principle  (Zadeh [55])

Thisisthe principal rule governing possibilistic constraint propagation (Fig.8)

Symbolic part Computational part
f(X) isA m (V) = sup, (my( f(u))
g(X) isB subject to

v =g(u)

Note: The extension principleisaprimary deduction rule in the sense that many other
deduction rules are derivable from the extension principle. An exampleis the following

rule.

(d) Basic probahility rule

Symbolic part Computational part

Prob(XisA) isB m, (V) = sup, (Mg ( om, (u)g(u)du))
U

Prob(XisC) isD subject to

v:lg‘)rrb(u)r(u)du

or(u)du=1.
U
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Xisareal-valued random variable; A, B, C and D arefuzzy sets. r isthe
probability density of X; and U={u}. To derive thisrule, we note that

Prob(XisA)isB — q, r(u)m,(u)du isB
Prob(XisC)isD —— q, r(u)m.(u)du isD

which are generalized constraints of the form

f(r) isB
o(r) isD.

Applying the extension principle to these expressions, we obtain the expression for D
which appears in the basic probability rule

(e) Bimodal interpolation rule

The bimodal interpolation ruleis arule which resides in the Probability module of
DDB. With reference to Fig. 21, the symbolic and computational parts of thisrule
are:

Symbolic

Prob(XisA) isP, =1, ...,n
Prob(XisA) isQ

Computational

m, (V) = sup, (my, ( 6m, (u)r(u)du)) U---U%n(fmAn(U)r(U)du )
subject to
v = 0m,(u)r(u)du
U
or(u)du=1
U
Inthisrule, X is areal-valued random variable; r isthe probability density of X;
and U isthe domain of X.
Note: The probability rule is a specia case of the bimodal interpolation rule.

What is the expected value, E(X), of abimodal distribution? The answer
follows through application of the extension principle:
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M (V) = SUp, (M (omy (u)r(u)du)) U... U, ( 0m, (u)r(u)du))
subject to
v = our(u)du
U

or(u)du=1
U

Note: E(X) isafuzzy subset of U.

(f) Fuzzy-graph interpolation rule

Thisruleisthe most widely used rule in applications of fuzzy logic (Zadeh [51]).
We have afunction, Y = f(X), which is represented as afuzzy graph (Fig.22). The
guestion is: What isthe value of Y when X isA? The A;, B; and A are fuzzy sets.

Symbolic part

XisA

Y = f(X)

f(X) isfg éi A" B
YisC

Computational part

C=4a, mUB,

where my is the degree to which A matches A

m = sup,(m,(u)Um, (u)) , i=1,...,n.
When Aisasingleton, thisrule reduces to
X=a

Y =1(X)

f(X)isfg & A B, , i=1,..,n.
Y= & m, (a)UB;

In this form, the fuzzy-graph interpolation rule coincides with the Mamdani

rule—arule which iswidely used in control and related applications. (Mamdani
and Assilian [22]) Fig. 23.

In the foregoing, we have summarized some of the basic rulesin DDB which

govern generalized constraint propagation. Many more rules will have to be devel oped
and added to DDB. A few examples of such rules are the following.
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(a) Probabilistic extension principle

f(X)isp A
g(X)isr B

(b) Usuality-qualified extension principle

f(X) isuA
g(X)isr B

(c) Usuality-qualified fuzzy-graph interpolation rule

XisA
Y =1(X)
f(X) isfg & .

if XisA thenYisuB;

Yissr ?B

(d) Bimodal extension principle

Xisbm &, P\ A
Y =f(X)
Yissr?B
(e) Bimodal, binary extension principle

Xisr R
YissS
Z=f(X.Y)
ZistT

In the instance, bimodality means that X and Y have different modalities, and
binary meansthat f isafunction of two variables. An interesting special case
isoneinwhichXisRand Yisp S.

The deduction rules which were briefly described in the foregoing are intended to
serve as examples. How can these rules be applied to reasoning under uncertainty? To
illustrate, it will be convenient to return to the examples given in section 1.

The Robert example
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p: Usually Robert returns from work at about 6:00 pm. What is the probability
that Robert ishome at 6:15 pm?

First, we find the protoforms of the data and the query.

Usually Robert returns from work at about 6:00 pm —
— Prob(Time(Return(Robert)) is *6:00 pm) is usually
which in annotated form reads
— Prob(X /Time(Return(Robert)) is A/*6:00pm) is B/usually
Likewise, for the query, we have
Prob(Time(Return(Robert)) is£ o *6:15pm) is? D
which in annotated form reads
— Prob(X/Time(Return(Robert)) isC/ £ o *6:15pm) is D/usualy

Searching the Deduction Database, we find that the basic probability rule matches
the protoforms of the data and the query

Prob (XisA) isB
Prob (XisC)isD

where
my(v)= Supg(ms(l?mA(U)g(U)dU))

subject to

v =0m: (u)g(u)du
U

og(u)du=1

U

Instantiating A, B, C and D, we obtain the answer to the query:

Probability that Robert is home at about 6:15pm isD,

where

nb(V) = Supg ( reralIy(L?m&OOpm(u )g( u )dU ))
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subject to

V= l?rnio*6:15pm(u )g( u )dU
and

og(u)du=1
U

Thetall Swedes problem

We start with the data

p: Most Swedes are tall.
Assumes that the queries are:
g1: How many Swedes are not tall
g2: How many are short
gs: What isthe average height of Swedes

In our earlier discussion of this example, we found that p trandlatesinto a
generalized constraint on the count density function, h.
Thus

p—> & h(u)my, (u)du ismost
Precisiations of i, ¢p and gz may be expressed as

Qi —» d; h(U)mqot.tau(U)dU
g2: — @ h(u)m,,,(u)du
gz ——» & nh(u)du.

Considering gz, we note that

M gean (U) =1- M, (U).

Consequently
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gr—>1- & h(u)m,, (u)du
which may be rewritten as
02 —» 1-most
where 1-most playsthe role of the antonym of most (Fig.23).

Considering gz, we have to compute
A: 8 h(U)M,,, (u)du

giventhat @ h(u)m,, (u)duismost

Applying the extension principle, we arrive at the desired answer to the query:
M, (V) = sup(M,,, (& h(u)m,, (u)du))

subject to

v=3ahu)m,,(u)du
and

& h(u)du =1
Likewise, for gz we have as the answer

M (V) = SUP, (M (& M)y, (u)du))

subject to

v=a uh(u)du
and

& h(u)du =1.

Asan illustration of application of protoformal deduction to an instance of this

example, consider

p: Most Swedes are tall
g: How many Swedes are short?

We start with the protoforms of p and g (see earlier example):

29



January 20, 2005

Most Swedesaretall — 1/n SCount(G[AisR]) isQ
7T Swedes are short —  1/n SCount(G[AisS]) isT
where

G[A]=Si Name/A;, =1, ...,n.
An applicable deduction rule in symbolic formiis:

1/n SCount(G[AisR]) isQ
1/n SCount(G[AisS]) isT

The computational part of the rule is expressed as

Un Sink (A) isQ
UnSing(A)isT

where

m.(v) = SUPA A "b(s.ma(px )
subject to
v=Siny(A)

What we seeis that computation of the answer to the query, q, reducesto the
solution of avariational problem, asit doesin the earlier discussion of this
example in which protoformal deduction was not employed.

Verd s age problem

Verahas ason who isin mid-twenties, and a daughter, who isin mid-thirties.
What isVera' s age?

In dealing with this problem, we will proceed to solution directly, bypassing
protoformal deduction.
Precisiations of the query and given information may be expressed as

g: What isVera s age2———»Age(Vera) is 7A
P1: Verahasason who isin mid-twenties —» Age(Son(Vera)) is*20.
P»: Verahas a daughter who isin mid-thirties — Age(Daughter(Vera)) is *30.
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Let X be Vera s age when her son was born, and let Y be Vera's age when her
daughter was born.

From World Knowledge Database, we draw the information

wk;: Child-bearing age ranges from * 16 to *42.
wka: Age of mother isthe sum of the age of child and the age of mother when the
child was born.

Combining the given information with that drawn from the World Knowledge
Database, we led to an estimate of Vera s age which may be expressed as

Age(Vera) is ((* 25+[* 16, * 42])U(* 35+[* 16, *42])

The point of this example is that it underscores that, in general, computation of an
estimate depends on the interpretation of “approximately a,” when a isareal
number. In particular, computation of Vera s ageis straightforward if *a is
interpreted as a possibility distribution. It isless straightforward when a is
interpreted as a probability distribution. And it is much less straightforward when
*25, for example, isinterpreted as a possibility distribution, and [* 16, *42] is
interpreted as a probability distribution or, more redlistically, as a bimodal
distribution.

The foregoing examples are merely elementary instances of reasoning through the
use of generalized constraint propagation. What should be noted is that the chains of
reasoning in these examples are very short. More generaly, what isimportant to
recognize is that shortness of chains of reasoning is an intrinsic characteristic of
reasoning processes which take place in an environment of substantive imprecision and
uncertainty. What thisimpliesisthat, in such environments, a conclusion arrived at the
end of along chain of reasoning is likely to be vacuous or of questionable validity.

Concluding Remark

Uncertainty is one of the basic facets of human cognition. Traditionally,
uncertainty is dealt with through the use of tools provided by probability theory. The
approach to uncertainty which is outlined in this paper suggests a much more genera
framework. The centerpiece of thisframework is the concept of a generalized constraint,
and its fundamental premiseis that information may be viewed as a generalized
constraint. In this perspective, probabilistic constraints are a special case—albeit an
important one—of generalized constraints, and statistical information is a specia case of
generalized information.

Generalized constraints are large in number and variety. Computations with
generalized constraints calls for awide variety of calculi. The generalized theory of
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uncertainty which is outlined in this paper is merely afirst step toward enhancing our
understanding of the foundations of information and uncertainty.

Aswe enter the realm of generalized-constraint-based information and
uncertainty, we find ourselves in uncharted territory. Exploration of this territory will
require extensive effort and intellectual prowess. A straw in thewind isthat awide-
ranging theory—the Dempster-Shafer theory of evidence—is, basically, atheory centered
asjust oneinstance of ageneralized constraint—the random set constraint.
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