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Abstract 
 

 It is a deep-seated tradition in science to view uncertainty as a province of 
probability theory. The Generalized Theory of Uncertainty (GTU) which is outlined in 
this paper breaks with this tradition and views uncertainty in a broader perspective.  
  

Uncertainty is an attribute of information. A fundamental premise of GTU is that 
information, whatever its form, may be represented as what is called a generalized 
constraint. The concept of a generalized constraint is the centerpiece of GTU. In GTU, a 
probabilistic constraint is viewed as a special—albeit important—instance of a 
generalized constraint. 
 
 A generalized constraint is a constraint of the form X isr R, where X is the 
constrained variable, R is a constraining relation, generally non-bivalent, and r is an 
indexing variable which identifies the modality of the constraint, that is, its semantics. 
The principal constraints are: possibilistic (r=blank); probabilistic (r=p); veristic (r=v); 
usuality (r=u); random set (r=rs); fuzzy graph (r=fg); bimodal (r=bm); and group (r=g). 
Generalized constraints may be qualified, combined and propagated. The set of all 
generalized constraints together with rules governing qualification, combination and 
propagation constitutes the Generalized Constraint Language (GCL). 
 
 The Generalized Constraint Language plays a key role in GTU by serving as a 
precisiation language for propositions, commands and questions expressed in a natural 
language. Thus, in GTU the meaning of a proposition drawn from a natural language is 
expressed as a generalized constraint. Furthermore, a proposition plays the role of a 
carrier of information. This is the basis for equating information to a generalized 
constraint  
 
 In GTU, reasoning under uncertainty is treated as propagation of generalized 
constraints, in the sense that rules of deduction are equated to rules which govern 
propagation of generalized constraints. A concept which plays a key role in deduction is 
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that of a protoform (abbreviation of prototypical form). Basically, a protoform is an 
abstracted summary—a summary which serves to identify the deep semantic structure of 
the object to which it applies. A deduction role has two parts: symbolic—expressed in 
terms of protoforms—and computational. 
 
 GTU represents a significant change both in perspective and direction in dealing 
with uncertainty and information. The concepts and techniques introduced in this paper 
are illustrated by a number of examples. 
 
 
 
1. Introduction 

 
Uncertainty is an attribute of information. The path-breaking work of Shannon 

has led to a universal acceptance of the thesis that information is statistical in nature. A 
logical consequence of this thesis is that uncertainty, whatever its form, should be dealt 
with through the use of probability theory. To quote an eminent Bayesian, Professor 
Dennis Lindley, “The only satisfactory description of uncertainty is probability. By this I 
mean that every uncertainty statement must be in the form of a probability; that several 
uncertainties must be combined using the rules of probability; and that the calculus of 
probabilities is adequate to handle all situations involving uncertainty…probability is the 
only sensible description of uncertainty and is adequate for all problems involving 
uncertainty. All other methods are inadequate…anything that can be done with fuzzy 
logic, belief functions, upper and lower probabilities, or any other alternative to 
probability can better be done with probability,” (Lindley, 1987). 

 
The Generalized Theory of Uncertainty (GTU) is a challenge to the thesis and its 

logical consequence. Basically, GTU puts aside the thesis and its logical consequence, 
and adopts a much more general conceptual structure in which statistical information is 
just one—albeit an important one—of many forms of information. More specifically, the 
principal premise of GTU is that, fundamentally, information is a generalized constraint 
on the values which a variable is allowed to take. The centerpiece of GTU is the concept 
of a generalized constraint—a concept drawn from fuzzy logic, as will be described in 
greater detail in the sequel. The distinguishing feature of fuzzy logic is that in fuzzy logic 
everything is—or is allowed to be—a matter of degree.  The principal tools which GTU 
draws from fuzzy logic include Precisiated Natural Language (PNL) and Protoform 
Theory (PFT), (Zadeh [56]). 

 
In GTU, uncertainty is linked to information through the concept of granular 

structure—a concept which plays a key role in human interaction with the real world, 
Zadeh [43, 52]. 

 
Informally, a granule of a variable X is a clump of values of X which are drawn 

together by indistinguishability, equivalence, similarity, proximity or functionality. For 
example, an interval is a granule. So is a fuzzy interval. And so is a probability 
distribution. 



January 20, 2005 

 3 

  
Granulation is pervasive in human cognition. For example, the granules of Age 

are fuzzy sets labeled young, middle-aged and old, Fig. 1. The granules of Height may be 
very short, short, medium, tall, and very tall. And the granules of Truth may be not true, 
quite true, not very true, very true, etc. The concept of granularity underlies the concept 
of a linguistic variable—a concept which was introduced in my 1973 paper “Outline of A 
New Approach to the Analysis of Complex Systems and Decision Processes,” Zadeh [41, 
42]. The concept of a linguistic variable plays a pivotal role in almost all applications of 
fuzzy logic [12], [15], [18], [29], [31], [38]. 

 
There are four basic rationales which underlie granulation of attributes and the 

concomitant use of linguistic variables. First, the bounded ability of sensory organs, and 
ultimately the brain, to resolve detail and store information. For example, looking at 
Monika, I see that she is young but cannot pinpoint her age as a single number. Second, 
when numerical information may not be available. For example, I may not know exactly 
how many Spanish restaurants there are in San Francisco, but my perception may be “not 
many.” Third, when an attribute is not quantifiable. For example, we describe degrees of 
Honesty as: low, not high, high, very high, etc because we do not have a numerical scale. 
And fourth, when there is a tolerance for imprecision which can be exploited through 
granulation to achieve tractability, robustness and economy of communication. For 
example, it may be sufficient to know that Monika is young; her exact age may be 
unimportant. What should be noted is that this is the principal rationale which underlies 
the extensive use of granulation, in the form of linguistic variables, in consumer products. 

 
There is a close connection between granularity and uncertainty. Assume that X is 

a variable and I am asked, “What is the value of X?” If my answer is “X is a,” where a is 
a singleton, then there is no uncertainty in the information which I am providing about X. 
In this instance, information is singular. But if the answer is “X is approximately a,” or 
“X is *a,” for short, then there is some uncertainty in my answer. In this instance, 
information and its uncertainty will be described as granular. Closely, but not exactly, 
granularity may be equated to non-singularity. In the instance of “X is *a,” information is 
non-singular. 

  
A basic question which arises is: How can the meaning of *a be precisiated? In 

the context of standard probability theory, call it PT, *a would normally be interpreted as 
a probability distribution centering on a. In GTU, information about X is viewed as a 
generalized constraint on X. More specifically, in the context of GTU, *a would be 
viewed as a granule which is characterized by a generalized constraint. As will be seen in 
the sequel, a probability distribution is a special case of a generalized constraint. In this 
sense, GTU is more general than PT. Actually, GTU is a generalized theory of 
uncertainty in the sense that most, and possibly all, existing approaches to representation 
of uncertain information fit within its conceptual structure. (Bloch et al [3], Bouchon-
Meunier, Yager and Zadeh (eds) [4], Bubnicki [5], Dubois and Prade [8], [9], Klir [20], 
Shafer [33], Singpurwalla and Booker [34], Smets [35], Yager [36]) 
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So what is the rationale for GTU? There is a demonstrable need for GTU because 
existing approaches to representation of uncertain information are inadequate for dealing 
with problems in which uncertain information is perception-based and is expressed in a 
natural language. (Zadeh [54]) Fig. 2. More specifically, the existing approaches do not 
address the problem of semantics of natural languages, Novak, Perfilieva and Mockor 
[25], and the need for a variety of calculi of generalized constraints to deal with it. The 
simple examples which follow are intended to serve as illustrations. 

 
The Robert example. Usually Robert returns from work at about 6:00 pm. What is 

the probability that Robert is home at about 6:15 pm? 
 
The balls-in-box example. A box contains about twenty black and white balls. 

Most are black. There are several times as many black balls as white balls. What is the 
number of white balls? What is the probability that a ball drawn at random is white? 

 
The tall Swedes problem. Most Swedes are tall. What is the average height of 

Swedes? How many Swedes are short? 
 
The partial existence problem. X is a real-valued variable; a and b are real 

numbers, with a< b. I am uncertain about the value of X. What I know about X is that (a) 
X is much larger than approximately a, *a; and (b) that X is much smaller than 
approximately b, *b. What is the value of X? 

 
Vera’s age problem. Vera has a son who is in mid-twenties, and a daughter, who 

is in mid-thirties. What is Vera’s age? 
 
A common thread which runs through these examples relates to the nature of 

given information. More specifically, the given information, e.g., “Most Swedes are tall,” 
is perception-based and imprecise, Fig. 2. One of the basic limitations of standard 
probability theory, PT, is rooted in the fact that its conceptual structure does not 
accommodate perception-based information which is imprecise (Zadeh [55]). 

 
To deal effectively with problems of this kind what is needed is the machinery of 

fuzzy logic. One of the principal tools in this machinery is granular computing, Zadeh 
[4], [52], [53], Bargiela and Pedrycz [1], and Lin [21]. A key concept in granular 
computing is that of a generalized constraint Zadeh [49]. This is why the concept of a 
generalized constraint is the centerpiece of GTU. A brief discussion of this concept 
follows. 
 
Note: GTU draws on many concepts and techniques which relate to fuzzy logic. To 
facilitate understanding of GTU by those who are not conversant with fuzzy logic, our 
exposition includes a larger than usual number of examples and figures. 
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2. The Concept of a Generalized Constraint 

 
Constraints are ubiquitous. A typical constraint is an expression of the form XεC, 

where X is the constrained variable, and C is the set of values which X is allowed to take. 
A typical constraint is hard (inelastic) in the sense that if u is a value of X then u satisfies 
the constraint if and only if u ε C. 

 
The problem with hard constraints is that most real-world constraints are not hard, 

that is, have some degree of elasticity. For example, the constraints “check-out time is 1 
pm,” and “speed limit is 100 km/hr,” have, in reality, some elasticity. How can such 
constraints be defined? The concept of a generalized constraint is motivated by questions 
of this kind.  

 
Real-world constraints may assume a variety of forms. They may be simple in 

appearance and yet have a complex structure. Reflecting this reality, a generalized 
constraint, GC, is defined as an expression of the form. (Zadeh [49]), 

 
  GC:    X isr R, 
 
where X is the constrained variable; R is a constraining relation which, in general, is non-
bivalent; and r is an indexing variable which identifies the modality of the constraint, that 
is, its semantics. 
 
 The constrained variable, X, may assume a variety of forms. In particular, 
 

• X is an n-ary variable, X=(X1, …, Xn) 
• X is a proposition, e.g., X=Leslie is tall 
• X is a function 
• X is a function of another variable, X=f(Y) 
• X is conditioned on another variable, X/Y 
• X has a structure, e.g., X=Location(Residence(Carol)) 
• X is a group variable. In this case, there is a group, G[A]; with each member of the 

group, Namei, i=1, …, n, associated with an attribute–value, Ai. Ai may be vector-
valued. Symbolically 

 
G[A]: Name1/A1+…+Namen/An. 
 

Basically, G[A] is a relation. 
 

• X is a generalized constraint,  X= Y isr R. 
 
A generalized constraint, GC, is associated with a test-score function, ts(u), (Zadeh 
[45]) which associates with each object, u, to which the constraint is applicable, the 
degree to which u satisfies the constraint. Usually, ts(u) is a point in the unit interval. 
However, if necessary, the test-score may be a vector, an element of a semi-ring 
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(Rossi [32]), an element of a lattice (Goguen [16]) or, more generally, an element of a 
partially ordered set, or a bimodal distribution—a constraint which will be described 
later in this section. The test-score function defines the semantics of the constraint 
with which it is associated. 
 
The constraining relation, R, is, or is allowed to be, non-bivalent (fuzzy). The 
principal modalities of generalized constraints are summarized in the following. 
 
2.1. Principal modalities of generalized constraints. 
 
(a) Possibilistic (r=blank) 
 

X is R 
 

with R playing the role of the possibility distribution of X. For example: 
 
  X is [a, b] 
 
means that [a, b] is the set of possible values of X. Another example: 
 
  X is small. 
 
In this case, the fuzzy set labeled small is the possibility distribution of X. If µsmall is the 
membership function of small, then the semantics of “X is small” is defined by 
 
  Poss{X=u} =  µsmall(u) 
 
where u is a generic value of X. 
 
(b) Probabilistic (r=p) 
 
  X isp R, 
 
with R playing the role of the probability distribution of X. For example. 
 
  X isp N(m, σ2) 
 
means that X is a normally distributed random variable with mean m and variance σ2.  
 
 If X is a random variable which takes values in a finite set {u1, …, un} with 
respective probabilities p1, …, pn, then X may be expressed symbolically as 
 
  X isp (p1\ u1+…+ pn\ un), 
 
with the semantics 
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  Prob(X=ui)=pi,  i=1, …, n. 
 

What is important to note is that in GTU a probabilistic constraint is viewed as an 
instance of a generalized constraint. 

 
When X is a generalized constraint, the expression 
 
 X isp R 
 

is interpreted as a probability qualification of X, with R being the probability of X, Zadeh 
[44]. For example. 
 
  (X is small) isp likely, 
 
where small is a fuzzy subset of the real line, means that the probability of the fuzzy 
event {X is small} is likely. More specifically, if X takes values in the internet [a, b] and 
g is the probability density function of X, then the probability of the fuzzy even “X is 
small” may be expressed as (Zadeh [40]) 
 
   Prob(X is small) = du)u(g)u(small

b
a µ∫  

 
Hence 
 
   )).u()u(g()g(ts small

a
blikely µ∫µ=  

 
This expression for the test-score function defines the semantics of probability 
qualification of a possibilistic constraint. 
 
Veristic  (r=v) 
 
  X isv R, 
 
where R plays the role of a verity (truth) distribution of X. In particular, if X takes values 
in a finite set {u1, …, un} with respective verity (truth) values t1, …, tn, then X may be 
expressed as 
 
  X isv  (t1|u1+ …+tn|un), 
 
meaning that Ver(X=ui)=ti, i=1, …, n. 
 
For example, if Robert is half German, quarter French and quarter Italian, then 
 
  Ethnicity(Robert)  isv  0.5|German+0.25|French+0.25|Italian. 
 
When X is a generalized constraint, the expression 
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  X isv R 
 
is interpreted as verity (truth) qualification of X. For example,  
 
  (X is small) isv very.true, 
 
should be interpreted as “It is very true that X is small.” The semantics of truth 
qualification is defined in (Zadeh [40]) 
 
  Ver(X is R) is t   X is )t(R

1−µ , 
 
where 1−µR  is inverse of the membership function of Ri and t is a fuzzy truth value which 
is a subset of [0, 1], Fig. 3. 
 
Note: There are two classes of fuzzy sets: (a) possibilistic, and (b) veristic. In the case of 
a possibilistic fuzzy set, the grade of membership is the degree of possibility. In the case 
of a veristic fuzzy set, the grade of membership is the degree of verity (truth). Unless 
stated to the contrary, a fuzzy set is assumed to be possibilistic. 
 
Usuality (r=u) 
 
  X isu R. 
 
The usuality constraint presupposes that X is a random variable, and that the probability 
of the event {X isu R} is usually, where usually plays the role of a fuzzy probability 
which is a fuzzy number (Kaufman and Gupta [19]. For example. 
 
  X isu small 
 
means that “usually X is small” or, equivalently, 
 
  Prob{X is small} is usually. 
 
In this expression, small may be interpreted as the usual value of X. The concept of a 
usual value has the potential of playing a significant role in decision analysis, since it is 
more informative than the concept of an expected value. 
 
 
Random-set constraint (r=vs) 
 
 In  

X isrs R, 
 

X is a fuzzy-set-valued random variable and R is a fuzzy random set 
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Fuzzy-graph constraint (r=fq) 
 
 In 
 
  X isfg R, 
 
X is a function, f, and R is a fuzzy graph (Zadeh [51]) which constrains f (Fig. 4). A fuzzy 
graph is a disjunction of Cartesian granules expressed as 
 
  R=A1×B1+…+An×Bn, 
 
where the Ai and B1, i=1, …, n, are fuzzy subsets of the real line, and × is the Cartesian 
product. A fuzzy graph is frequently described as a collection of fuzzy if-then rules 
(Zadeh[52], Pedrycz and Gomide [29], Bardossy and Duckstein [2]). 
 
  R: if X is A1 then Y is B1,  i=1, …, n 
 
The concept of a fuzzy-graph constraint plays an important role in applications of fuzzy 
logic [2], [15], [18]. 
 
 
Bimodal (r=bm) 
 
In the bimodal constraint, 
 
 X isbm R, 
 
R is a bimodal distribution of the form 
 
 R:    Σi   Pi\Ai , i=1, …, n. 
 
which means that Prob(X is Ai) is Pi. (Zadeh [55]) 
 
Example: 
 
 R: low\small+high\medium+low\large. 
 
 There are two types of bimodal distributions. In type 1, X is a real-valued random 
variable; the Ai are fuzzy subsets of the real line; and the Pi are granular probabilities of 
the Ai (Fig. 5). Thus 
 
 Prob(X is Ai) is Pi, i=1, …, n. 
 
In type 2, X is a fuzzy-set-valued random variable taking the values A1, …, An with 
respective granular probabilities P1, …, Pn. Unless stated to the contrary, a bimodal 
distribution is assumed to be of type 1. 
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 The importance of bimodal distributions derives from the fact that in many 
realistic settings a bimodal distribution is the best approximation to our state of 
knowledge. An example is assessment of degree of relevance, since relevance is 
generally not well defined. If I am asked to assess the degree of relevance of a book on 
knowledge representation to summarization, my state of knowledge about the book may 
not be sufficient to justify an answer such as 0.7. A better approximation to my state of 
knowledge may be “likely to be high.” Such an answer is an instance of a bimodal 
distribution. 
 
 What is the expected value of a bimodal distribution? This question is considered 
in Section 5. 
 
Group  (r=g) 
 In 

 X isg R, 
 
X is a group variable, G[A], and R is a group constraint on G[A]. More specifically, if X is 
a group variable of the form 
 
 G[A]:  Name1/Ai +…+ Namen/An 

or 
 G[A]: ΣiName1/Ai   , for short, i=1, …, n, 
 
then R is a constraint on the Ai. To illustrate, if we have a group of n Swedes, with Namei 
being the name of ith Swede, and Ai being the height of Namei, then the proposition 
“most Swedes are tall,” is a constraint on the Ai which may be expressed as (Zadeh [25]) 
 

 )Swedes.tall(Count
n

∑
1

 is most 

 
or, more explicitly, 
 

))A(...)A((
n ntalltall µ++µ 1
1

 is most, 

 
where most is a fuzzy quantifier which is interpreted as a fuzzy number 
 
 
2.2. Operations on generalized constraints 
 
There are many ways in which generalized constraints may be operated on.  
 
The basic operations—expressed in symbolic form—are the following. 
 
Conjunction 
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 X isr R 
 Y iss S 
 (X,Y) ist T 
 
Example (possibilistic constraints) (Fig. 6) 
 
 X is R 
 Y is S 
 (X,Y) is R×S 
 
where × is the Cartesian product. 
 
Example (probabilistic/possibilistic) 
 
  X isp R 
 (X,Y) is S 
 (X,Y) isrs T 
 
In this example, if S is a fuzzy relation then T is a fuzzy random set. What is involved in 
this example is a conjunction of a probabilistic constraint and a possibilistic constraint. 
This type of probabilistic/possibilistic constraint plays a key role in the Dempster-Shafer 
theory of evidence, and in its extension to fuzzy sets and fuzzy probabilities (Zadeh [43]).  
 
Example (possibilistic/probabilistic) 
 
  X is R 
 (X,Y) isp S 

 Y/X isp T 

 
This example, which is a dual of the proceeding example, is an instance of conditioning. 
 
Projection (possibilistic) (Fig. 7) 
 
 (X,Y) is R 

 X is S  , 

 
where X takes values in U={u}; Y takes values in V={v}; and the projection 
 
 S=Projx R,  
 
is defined as 
 
 ),v,u(max)v()v( rvRojPrS X

µ=µ=µ  
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where µR and µS are the membership functions of R and S, respectively. 
 
Projection  (probabilistic) 
 
 (X,Y) isp R 
 X isp S  , 
 
where X and Y are real-valued random variables, and R and S are the probability 
distributions of (X,Y) and X, respectively. The probability density function of S, pS, is 
related to that of R, pR, by the familiar equation 
 
 dv)v,u(p)u(p RS ∫=  
 
with the integral taken over the real line. 
 
Propagation 
 
 f(X) isr R 

 g(X) iss S , 

 
where f and g are functions or functionals. 
 
Example (possibilistic constraints) (Fig. 8) 
 
 f(X) is R 

 g(X) is S 
 
where R and S are fuzzy sets. In terms of the membership function of R, the membership 
function of S is given by the solution of the variational problem 
 
 ))u(f((sup)v( RuS µ=µ  
 
subject to 
  
 )u(gv = . 
 
Note: The constraint propagation rule described in this example is the well-known 
extension principle of fuzzy logic, Zadeh [39, 42]. Basically, this principle provides a 
way of computing the possibilistic constraint on g(X) given a possibilistic constraint on 
f(X). 
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2.3. Primary constraints, composite constraints and the Generalized Constraint 
Language (GCL) 
 
Among the principal generalized constraints there are three that play the role of primary 
generalized constraints. They are: 
  
 Possibilistic constraint:  X is R 

 Probabilistic constraint: X isp R 

and  

Veristic constraint:  X isv R 

 
A generalized constraint, GC, is composite if it can be generated from other 

generalized constraints through conjunction, and/or projection and/or constraint 
propagation and/or qualification and/or possibly other operations. For example, a 
random-set constraint may be viewed as a conjunction of a probabilistic constraint and 
either a possibilistic or veristic constraint. The Dempster-Shafer theory of evidence is, in 
effect, a theory of possibilistic random-set constraints. The derivation graph of a 
composite constraint defines how it can be derived from primary constraints. 
 

The three primary constraints—possibilistic, probabilistic and veristic—are 
closely related to a concept which has a position of centrality in human cognition—the 
concept of partiality. In the sense used here, partial means: a matter of degree or, more or 
less equivalently, fuzzy. In this sense, almost all human concepts are partial (fuzzy). 
Familiar examples of fuzzy concepts are: knowledge, understanding, friendship, love, 
beauty, intelligence, belief, causality, relevance, honesty, mountain and, most important, 
truth, likelihood and possibility. Is a specified concept, C, fuzzy? A simple test is: If C 
can be hedged, then it is fuzzy. For example, in the case of relevance, we can say: very 
relevant, quite relevant, slightly relevant, etc. Consequently, relevance is a fuzzy concept. 
 

The three primary constraints may be likened to the three primary colors: red, 
blue and green. In terms of this analogy, existing themes of uncertainty may be viewed as 
theories of different mixtures of primary constraints. For example, the Dempster-Shafer 
theory of evidence is a theory of a mixture of probabilistic and possibilistic constraints. 
The Generalized Theory of Uncertainty embraces all possible mixtures, and in this sense 
the conceptual structure of GTU accommodates most, and perhaps all, of the existing 
theories of uncertainty. 

 
2.4. The Generalized Constraint Language 

 
A concept which plays an important role in GTU is that of Generalized Constraint 

Language (GCL). Informally, GCL is the set of all generalized constraints together with 
the rules governing syntax, semantics and generation. Simple examples of elements of 
GCL are: 
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((X,Y) isp A) ∧ (X is B) 

(X isp A) ∧ ((X,Y) isv B) 

ProjY((X is A) ∧ (X,Y) isp B) 

where ∧ is conjunction. 
 
A very simple example of a semantic rule is: 
 
 (X is A) ∧ (Y is B)  Poss(X=u, Y=v) = µA(u) ∧ µB(v), 
 
where u and v are generic values of X, Y, and µA and µB are the membership functions of 
A and B, respectively.  
 
 In principle, GCL is an infinite set. However, in most applications only a small 
subset of GCL is likely to be needed. 
 
 
 
3. The Concept of Precisiation and PNL 

 
 How can precise meaning be assigned to a proposition, p, drawn from a natural 
language? 
  
 The problem is that natural languages are intrinsically imprecise. Imprecision of 
natural languages is a consequence of the fact that (a) a natural language is, basically, a 
system for describing perceptions; and (b) perceptions are intrinsically imprecise as a 
consequence of (a) the bounded ability of sensory organs, and ultimately the brain, to 
resolve detail and store information; and (b) incompleteness of information. 
 
 Given these facts, how can we precisiate the meaning p? 
 
 A key idea which underlies the concept of Precisiated Natural Language (PNL), 
Zadeh [55] is to represent the meaning of p as a generalized constraint, Fig. 9. In 
symbols. 
 
 p X isr R. 
 
This idea is consistent with the fundamental premise of GTU, namely, that information is 
representable as a generalized constraint. The basis for the consistency is that a 
proposition, viewed as an answer to a question, is a carrier of information. In this sense, 
the premise “Information is representable as a generalized constraint,” is equivalent to the 
premise “A proposition is representable as a generalized constraint.” A forerunner of 
PNL is PRUF (Zadeh[48]). 
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 Given that the Generalized Constraint Language, GCL, is the set of all 
generalized constraints, representing p as a generalized constraint is equivalent to 
translating p into an element, p*, of GCL. Thus, precisiation of a natural language, NL, 
may be viewed as translation of NL into GCL. Equivalently, translation of p into GCL 
may be viewed as explicitation of X, R and r, Fig. 10. 
 
 A proposition, p, is precisiable if it is translatable into GCL. Not every 
proposition in NL is precisiable. But since GCL includes every possible constraint, it is 
more expressive in relation to NL than any existing synthetic language, among them the 
languages associated with first order logic, modal logic, Prolog and LISP. 
 
 Translation of p into GCL is made more transparent though annotation. To 
illustrate,  
 

(a) p: Monika is young     X/Age(Monika) is R/young 
 
(b) p: It is likely that Monika is young   Prob(X/Age(Monika) is R/young) is                         
         S/likely 

 
Note: Example (b) is an instance of probability qualification.  
 
More concretely, let g(u) be the probability density function of the random variable, 
Age(Monika). Then, with reference to our earlier discussion of probability qualification, 
we have 
 
 Prob(Age(Monika) is young) is likely 
 
 du)u()u(g youngµ∫100

0   is    likely 
 
or, in annotated form, 
 
GC(g)= du)u()u(g/X youngµ∫100

0  is R/likely. 
 
The test-score of this constraint on g is given by 
 
 ts(g)= )du)u()u(g( younglikely µ∫µ 100

0 . 
 

(c) p: Most Swedes are tall. 
 

Following (b), let h(u) be the count density function of Swedes, meaning that  
 
h(u)du= fraction of Swedes whose height lies in the interval [u, u+du]. 

 
Assume that height of Swedes lies in the interval [a, b]. Then, 
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 fraction of tall Swedes: du)u()u(h tall
b
a µ∫     is    most. 

 
Interpreting this relation as a generalized constraint on h, the test-score may be expressed 
as 
 ts(h)= )du)u()u(h( tall

h
0most µ∫µ . 

 
In summary, precisiation of “Most Swedes are tall” may be expressed as the 

generalized constraint. 
 
Most Swedes are tall   )du)u()u(h()h(GC tall

b
alikely µ∫µ= .  

 
 An important application of the concept of precisiation relates to precisiation of 
propositions of the form “X is approximately a,” where a is a real number. How can 
“approximately a”, or *a for short, be precisiated? In other words, how can the 
uncertainty associated with the value of X which is described as *a, be defined precisely? 
 
 There is a hierarchy of ways in which this can be done. The simplest is to define 
*a as a. This mode of precisiation will be referred to as singular precisiation, or s-
precisiation, for short (Fig. 11) s-precisiation is employed very widely, especially in 
probabilistic computations, in which an imprecise probability, *a, is computed with as if 
it were an exact number, a. 
 
 The other ways (Fig. 12) will be referred to as granular precisiation, or g-
precisiation, for short. In g-precisiation, *a is treated as a granule. What we see is that 
various modes of precisiating *a are instances of the generalized constraint. 
  
 The concept of precisiation has an inverse—the concept of imprecisiation, which 
involves replacing a with *a, with the understanding that *a is not unique. 
 
 A basic problem which relates to imprecisiation is the following. Assume for 
simplicity that we have two linear equations involving real-valued coefficients and real-
valued variables: 
 
 a11X+a12Y=b1 
 a21X+a22Y=b2. 
 
Solutions of these equations read, 
 

 X= 
21122211

212122

aaaa
baba

−
−

 

 

 Y= 
21122211

121211

aaaa
baba

−
−

. 
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Now suppose that we imprecisiate the coefficients, replacing, aij with *aij, i, j= 1, 2, and 
replacing bi with *bi, i= 1,2. How can we solve these equations when imprecisiated 
coefficients are defined as generalized constraints? 
 
 There is no general answer to this question. Assuming that all coefficients are 
defined in the same way, the method of solution will depend on the modality of the 
constraint. For example, if the coefficients are interval-valued, the problem falls within 
the province of interval analysis (Moore [24]). If the coefficients are fuzzy-interval-
valued, the problem falls within the province of the theory of relational equations (Di 
Nola et al [6, 7], Mares [23]). And if the coefficients are real-valued random variables, 
we are dealing with the problem of solution of stochastic equations. In general, solution 
of a system of equation with imprecisiated coefficients may present complex problems. 
 
 One complication is the following. If (a) we solve the original equations, as we 
have done above; (b) imprecisiate the coefficients in the solution; and (c) employ the 
extension principle to complete X and Y, will we obtain solutions of imprecisiated 
equations? The answer, in general, is: No. 
 
 Nevertheless, when we are faced with a problem which we do not know how to 
solve correctly, we proceed as if the answer is: Yes. This common practice may be 
described as Precisiation/Imprecisiation Principle which is defined in the following. 
 
 
3.1. Precisiation/Imprecisiation Principle (P/I Principle) 
 
 Informally, let f be a function or a functional. Y=f(X), where X and Y are assumed 
to be imprecise, Pr(X) and Pr(Y) are precisiations of X and Y, and *Pr(X) and *Pr(Y) are 
imprecisiations of Pr(X) and Pr(Y), respectively. In symbolic form, the P/I Principle may 
be expressed as 
 
  f(X)*=*f(Pr(X)) 
 
where *= denotes “approximately equal,” and *f is imprecisiation of f. In words, to 
compute f(X) when X is imprecise, (a) precisiate X, (b) compute f(Pr(X)); and (c) 
imprecisiation f(Pr(X)). Then, usually, *f(Pr(X)) will be approximately equal to f(X). An 
underlying assumption is that approximation, are commensurate in the sense that the 
closer Pr(X) is to X, the closer f(Pr(X)) is to f(X). This assumption is related to the 
concept of gradual rules of Dubois and Prade [9]. 
 
 As an illustration, suppose that X is a real-valued function; f is the operation of 
differentiation, and *X is the fuzzy graph of X. Then, using the using the P/I Principle, 
*f(X) will have the form shown in Fig.13. It should be underscored that imprecisiation is 
an imprecise concept. 
  
 Use of the  P/I  Principle underlies many computations in science, engineering, 
economics and other fields. In particular, as was alluded to earlier, this applies to many 
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computation in probability theory which involve imprecise probabilities. It should be 
emphasized that the  P/I  Principle is neither normative (prescriptive) nor precise; it 
merely describes imprecisely what is common practice—without suggesting that 
common practice is correct. 
 

 
4. Precisiation of Propositions 

 
In the preceding section, we focused our attention on precisiation of propositions 

of the special form “X is *a.” In the following, we shall consider precisiation in a more 
general setting. In this setting, the concept of precisiation in PNL opens the door to a 
wide-ranging enlargement of the role of natural languages in scientific theories, 
especially in fields such as economics, law and decision analysis. Our discussion will be 
brief; details may be found in Zadeh [56]  

Precisiation of propositions—and the related issues of precisiation of questions, 
commands and concepts—fall within the province of PNL (Precisiated Natural 
Language). As was stated earlier, the point of departure in PNL is representation of the 
meaning of a proposition, p, as a generalized constraint. 

 
p  X isr R. 
 
To illustrate precisiation of propositions and questions, it will be convenient to 

consider the examples which were discussed earlier in Section 1. 
 
The Robert example 
 
p: Usually Robert returns from work at about 6 pm. 
q: What is the probability that Robert is home at about 6:15 pm? 
 
 Precisiation of p may be expressed as 
 
p: Prob(Time(Return(Robert)) is *6:00 pm) is usually  
 
where “usually” is a fuzzy probability 
 
 Assuming that Robert stays home after returning from work, precisiation of q may 
be expressed as 
 
q: Prob(Time(Return(Robert)) is ≤ ° 6:15 pm) is A? 
 
where ° is the operation of composition, and A is a fuzzy probability 
 
The balls-in-box problem 

 
p1: A box contains about 20 black and white balls 
p2: Most are black 
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p3: There are several times as many black balls as white balls 
q1: What is the number of white balls? 
q2: What is the probability that a ball drawn at random is white? 
 
Let X be the number of black balls and let Y be the number of white balls. Then, 

in precisiated form, the statement of the problem may be expressed as: 
 
 
p1: (X+Y) is *20 
p2: X is most × *20         
p3: X is several × Y 

q1: Y is ?A 

q2: 
20*
Y

 is ?B         

 
where Y/*20 is the granular probability that a ball drawn at random is white 
 
 Solution of these equations reduces to an application of fuzzy integer 
programming (Fig.14). 
 
The tall Swedes problem 
 
 p: Most Swedes are tall. 
 q: What is the average height of Swedes? 
 q: How many Swedes are short? 
 
As was shown earlier, 
 
 p: Most Swedes are tall du)u()u(h tall

b
a µ∫  is most 

 
where h is the count density function. 
 
 Precisiations of q1, and q2 may be expressed as 
 
  q1: du)u(uh∫  is ?A 
 
where A is a fuzzy number which represents the average height of Swedes, and  
 
  q2: du)u()u(h shortµ∫  is ?B 
 
where µshort is the membership function of short, and B is the fraction of short Swedes. 
 
The partial existence problem 
 

questions 

data 
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 X is a real number. I am uncertain about the value of X. What I know about X is: 
 
 p1: X is much larger than approximately a 
 p2: X is much smaller than approximately b 
 
where a and b are real numbers, with a< b. 
What is the value of X? 
 
 In this case, precisiations of data may be expressed as  
 
 p1: X is much.larger ° *a 
 p2: X is much smaller ° *b 
 
where ° is the operation of compostion. Precisiation of the question is: 
 
 q: X is ?A 
 
where A is a fuzzy number. The solution is immediate:  
 
 X is much.larger ° *a ∧ much.smaller ° *b 
 
when ∧ is min or a t-norm. In this instance, depending on a and b, X may exist to a 
degree. 
 
 These examples point to an important aspect of precisiation. Specifically, to 
precisiate p we have to precisiate or, equivalently, calibrate its lexical constituents. For 
example, in the case of “Most Swedes are tall,” we have to calibrate “most” and “tall.” 
(Fig. 7) Likewise, in the case of the Robert example, we have to calibrate “about 6:00 
pm,” “about 6:15 pm” and “usually.” In effect, we are composing the meaning of p from 
the meaning of its constituents. This process is in the spirit of Frege’s principle of 
compositionality, Zadeh [47], Montague grammar [28] and the semantics of 
programming languages. 
 
 An important aspect of precisiation which will not be discussed here relates to 
precisiation of concepts. It is a deep-seated tradition in science to base definition of 
concepts on bivalent logic. In probability theory, for example, independence of events is 
a bivalent concept. But, in reality, independence is a matter of degree, i.e., is a fuzzy 
concept. PNL, used as a definition language, makes it possible, more realistically, to 
define independence and other bivalent concepts in probability theory as fuzzy concepts. 
For this purpose, when PNL is used as a definition language, a concept is first defined in 
a natural language and then its definition is precisiated through the use of PNL. 
 
 
 
5. Reasoning Under Uncertainty 
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 Reasoning under uncertainty has many facets. The facet that is the primary focus 
of attention in GTU is reasoning with, or equivalently, deduction from, uncertain 
information expressed in a natural language. 
 
 Precisiation is a prelude to deduction. In this context, deduction in GTU involves, 
for the most part, computation with precisiations of propositions drawn from a natural 
language. A concept which plays a key role in deduction is that of a protoform—
abbreviation of “prototypical form” (Zadeh [56]). 
 
The concept of a protoform 
 
 Informally, a protoform of an object is its abstracted summary. More specifically, 
a protoform is a symbolic expression which defines the deep semantic structure of an 
object such as a proposition, question, command, concept, scenario, case or a system of 
such objects. In the following, our attention which will be focused on protoforms of 
propositions, with PF(p) denoting a protoform of p. (Fig.15). Abstraction has levels, just 
as summarization does. For this reason, an object may have a multiplicity of protoforms 
(Fig.16). Conversely, many objects may have the same protoform. Such objects are said 
to be protoform-equivalent, or PF-equivalent, for short. The set of protoforms of all 
precisiable propositions in NL, together with rules which govern propagation of 
generalized constraints, constitute what is called the Protoform Language (PFL). 
 
Examples: 
      instantiation 
 

• Monika is young     Age(Monika) is young    A(B) is C 
 
 

abstraction 
 

• Monika is much younger than Pat       (A(B), A(C)) is R 
 

   Age        Age Pat  much younger 
         Monika 

• distance between New York and Boston is about 200 mi       A(B, C) is R 
 
• usually Robert returns from work at about 6pm 

 
Prob{A is B} is C 

      usually 
     about 6 pm 
      Time(Robert.returns.from.work) 
 

• Carol lives in a small city near San Francisco 
 

A(B(C) is (D and E) 
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      small city 
     city near SF 
    Carol 
              Residence 

          Location 
• most Swedes are tall  1/n ΣCount(G[A] is R) is Q 
 
 
 

        Height 
 

Protoformal deduction 
 
 The rules of deduction in GTU are, basically, the rules which govern constraint 
propagation. In GTU, such rules reside in the Deduction Database (DDB), Fig.18. The 
Deduction Database comprises a collection of agent-controlled modules and submodules, 
each of which contains rules drawn from various fields and various modalities of 
generalized constraints. A typical rule has a symbolic part, which is expressed in terms of 
protoforms; and a computational part which defines the computation that has to be 
carried out to arrive at a conclusion. In what follows, we describe briefly some of the 
basic rules, and list a number of other rules without describing their computational parts. 
The motivation for doing so is to point to the necessity of developing a set of rules which 
is much more complete than the few rules which are used as examples in this section. 
 

(a) Computational rule of inference (Zadeh [18]) 
 

Symbolic part    Computational part 
 
 X is A 
 (X, Y) is B    ))v,u()u((max)v( BAuC µ∧µ=µ  
 Y is C 
 

A, B and C are fuzzy sets with respective membership functions CBA µµµ  ∧ is 
min or t-norm (Fig. 19).  

  
(b) Intersection / product syllogism (Zadeh [46]) 
 

Symbolic part    Computational part 
 
 Q1 A’s are B’s 

 Q2 (A&B)’s are C’s   Q3 = Q1 * Q2 

 Q3 A’s are (B&C)’s 

 
Q1 and Q2 are fuzzy quantifiers; A, B, C are fuzzy sets; * is product in fuzzy 
arithmetic. [14] 
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(c) Basic extension principle (Zadeh [39]) 
 

Symbolic part    Computational part 
 
 X is A     ))u((sup)v( AuB µ=µ  

f(X) is B    subject to 

     v = g(u) 

 

g is a given function or functional; A and B are fuzzy sets. (Fig.20) 

 

Extension principle (Zadeh [55]) 

 
 This is the principal rule governing possibilistic constraint propagation (Fig.8) 
 

Symbolic part    Computational part 
 
 f(X) is A    )))u(f((sup)v( BuB µ=µ  

g(X) is B    subject to 

     v = g(u) 

 
Note: The extension principle is a primary deduction rule in the sense that many other 

deduction rules are derivable from the extension principle. An example is the following 

rule. 

 
(d) Basic probability rule 

 
Symbolic part    Computational part 

 
 Prob(X is A) is B   ))du)u(g)u(((sup)v( A

U
BgD µ∫µ=µ  

Prob(X is C) is D   subject to     
            
      du)u(r)u(v C

U
µ∫=  

      1=∫ du)u(r
U

. 
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 X is a real-valued random variable; A, B, C and D are fuzzy sets: r is the 
probability density of X; and U={u}. To derive this rule, we note that 
 
 Prob(X is A) is B   du)u()u(r AU µ∫  is B 

 Prob(X is C) is D  du)u()u(r CU µ∫  is D 
 
which are generalized constraints of the form 
 
  f(r) is B 
  g(r) is D. 
 
Applying the extension principle to these expressions, we obtain the expression for D 
which appears in the basic probability rule 
 

(e) Bimodal interpolation rule 
 

The bimodal interpolation rule is a rule which resides in the Probability module of 
DDB. With reference to Fig. 21, the symbolic and computational parts of this rule 
are: 
 
Symbolic 
 
Prob(X is Ai) is Pi , i=1, …, n 

Prob(X is A) is Q 

 
Computational 
 

))du)u(r)u((...))du)u(r)u(((sup)v(
nn A

U
PA

U
PrQ µ∫µ∧∧µ∫µ=µ

11
 

subject to 

du)u(r)u(v A
U

µ∫=  

1=∫ du)u(r
U

 

 
In this rule, X is a real-valued random variable; r is the probability density of X; 
and U is the domain of X. 
 
Note: The probability rule is a special case of the bimodal interpolation rule. 

 
What is the expected value, E(X), of a bimodal distribution? The answer 

follows through application of the extension principle: 
 



January 20, 2005 

 25 

 ))du)u(r)u((...))du)u(r)u(((sup)v(
nn A

U
PA

U
Pr)X(E µ∫µ∧∧µ∫µ=µ

11
 

 subject to 
 
 du)u(urv

U
∫=  

 1=∫ du)u(r
U

 

 
Note: E(X) is a fuzzy subset of U. 

 
(f) Fuzzy-graph interpolation rule 
 

This rule is the most widely used rule in applications of fuzzy logic (Zadeh [51]). 
We have a function, Y = f(X), which is represented as a fuzzy graph (Fig.22). The 
question is: What is the value of Y when X is A? The Ai, Bi and A are fuzzy sets. 
 
Symbolic part     

 
 X is A 
 Y = f(X) 
 f(X) isfg iii BA ×∑      
 Y is C 
 
 Computational part 
 
 C = iii Bm ∧∑ , 
 

where mi is the degree to which A matches Ai 
  
 ))u()u((supm iAAui µ∧µ=  , i=1, …, n. 
  

When A is a singleton, this rule reduces to  
 
X = a 
Y = f(X) 
f(X) isfg iii BA ×∑   ,    i=1, …, n. 

Y = B)a(
iAi ∧µ∑ ; 

 
In this form, the fuzzy-graph interpolation rule coincides with the Mamdani 
rule—a rule which is widely used in control and related applications. (Mamdani 
and Assilian [22]) Fig. 23. 
 
In the foregoing, we have summarized some of the basic rules in DDB which 

govern generalized constraint propagation. Many more rules will have to be developed 
and added to DDB. A few examples of such rules are the following. 
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(a) Probabilistic extension principle 
 

f(X) isp A 

g(X) isr ?B 

 
(b) Usuality-qualified extension principle 

 
f(X) isu A 

g(X) isr ?B 

 
(c) Usuality-qualified fuzzy-graph interpolation rule 

 
X is A 
Y = f(X) 
f(X) isfg i∑  if X is Ai then Y isu Bi 

Y isr ? B 

 
(d) Bimodal extension principle 
 

X isbm iii A\P∑  
Y = f(X) 

Y isr ? B    

(e) Bimodal, binary extension principle 

 
X isr R 
Y iss S 
Z=f(X,Y) 

Z ist T 

 
In the instance, bimodality means that X and Y have different modalities, and 
binary means that f is a function of two variables. An interesting special case 
is one in which X is R and Y isp S. 

 
 The deduction rules which were briefly described in the foregoing are intended to 
serve as examples. How can these rules be applied to reasoning under uncertainty? To 
illustrate, it will be convenient to return to the examples given in section 1. 
 
 The Robert example 
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p: Usually Robert returns from work at about 6:00 pm. What is the probability 

that Robert is home at 6:15 pm? 

  
First, we find the protoforms of the data and the query. 

 
 Usually Robert returns from work at about 6:00 pm 

 Prob(Time(Return(Robert)) is *6:00 pm) is usually 

which in annotated form reads 

 Prob(X /Time(Return(Robert)) is A/*6:00pm) is B/usually 

 Likewise, for the query, we have 

 Prob(Time(Return(Robert)) is ≤ ° *6:15pm) is ? D 

which in annotated form reads 

 Prob(X/Time(Return(Robert)) is C/ ≤ ° *6:15pm) is D/usually 

  
Searching the Deduction Database, we find that the basic probability rule matches 

the protoforms of the data and the query 

 
  Prob (X is A) is B 

  Prob (X is C) is D 

 
 where 

  ))du)u(g)u(((sup)v( A
U

BgD µ∫µ=µ  

 subject to         
            
  du)u(g)u(v C

U
µ∫=  

  1=∫ du)u(g
U

 

 
 Instantiating A, B, C and D, we obtain the answer to the query: 

 
 Probability that Robert is home at about 6:15pm is D,  

 where 

  ))du)u(g)u(((sup)v( pm:*
U

usuallygD 006µ∫µ=µ  
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subject to         
           
 du)u(g)u(v pm:*

U
156o≤µ∫=  

and 
 

  1=∫ du)u(g
U

 

 
 The tall Swedes problem 

  

We start with the data 

 
  p: Most Swedes are tall. 

Assumes that the queries are: 

  q1: How many Swedes are not tall 

  q2: How many are short 

  q3: What is the average height of Swedes 

 
 In our earlier discussion of this example, we found that p translates into a 

generalized constraint on the count density function, h. 

 Thus 

  p du)u()u(h tall
b
a µ∫  is most 

 
 Precisiations of q1, q2 and q3 may be expressed as 

 
  q1:     du)u()u(h tall.not

b
a µ∫  

  q2:     du)u()u(h short
b
a µ∫  

  q3:     du)u(hb
a µ∫ . 

  
 Considering q1, we note that 

 
  )u()u( talltall.not µ−=µ 1 . 

 
 Consequently 
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 q1 du)u()u(h tall
b
a µ∫−1  

 
 which may be rewritten as 
 
  q2     1-most 
 
 where 1-most plays the role of the antonym of most (Fig.23). 
 
 Considering q2, we have to compute 
 
  A: du)u()u(h short

b
a µ∫  

 
 given that du)u()u(h tall

b
a µ∫ is most 

 
 Applying the extension principle, we arrive at the desired answer to the query: 
 
  ))du)u()u(h(sup()v( tall

b
amostA µ∫µ=µ  

 
 subject to 
 
  du)u()u(hv short

b
a µ∫=  

and 
 
 1=∫ du)u(hb

a  
 
 Likewise, for q3 we have as the answer 
 
  ))du)u()u(h((sup)v( tall

b
amostuA µ∫µ=µ  

 
 subject to 
 
  du)u(uhv b

a∫=  
 and 
  
  1=∫ du)u(hb

a . 
 
 As an illustration of application of protoformal deduction to an instance of this 
example, consider  
 
 p: Most Swedes are tall 
 q: How many Swedes are short? 
 
 We start with the protoforms of p and q (see earlier example): 
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 Most Swedes are tall  1/n ΣCount(G[A is R]) is Q 
 ?T Swedes are short  1/n ΣCount(G[A is S]) is T 
 where 
 
 G[A]=Σi Namei/Ai, i=1, …, n. 
 
 An applicable deduction rule in symbolic form is: 
 
 1/n ΣCount(G[A is R]) is Q 

 1/n ΣCount(G[A is S]) is T 

 
The computational part of the rule is expressed as  
 
1/n ΣiµR (Ai) is Q 

 1/n ΣiµS (Ai) is T 

 
where 

 ))A((sup)v( iRiQA,...,AT ni
µΣµ=µ  

 
subject to 

 
 v=ΣiµS(Ai) 

 
What we see is that computation of the answer to the query, q, reduces to the 
solution of a variational problem, as it does in the earlier discussion of this 
example in which protoformal deduction was not employed. 

 

 Vera’s age problem 
 

Vera has a son who is in mid-twenties, and a daughter, who is in mid-thirties. 
What is Vera’s age? 
 
In dealing with this problem, we will proceed to solution directly, bypassing 
protoformal deduction. 
Precisiations of the query and given information may be expressed as 
 
q: What is Vera’s age? Age(Vera) is ?A 
P1: Vera has a son who is in mid-twenties        Age(Son(Vera)) is *20. 
P2: Vera has a daughter who is in mid-thirties  Age(Daughter(Vera)) is *30. 
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Let X be Vera’s age when her son was born, and let Y be Vera’s age when her 
daughter was born. 
 
From World Knowledge Database, we draw the information 
 
wk1: Child-bearing age ranges from *16 to *42. 
wk2: Age of mother is the sum of the age of child and the age of mother when the 
child was born. 
 
Combining the given information with that drawn from the World Knowledge 
Database, we led to an estimate of Vera’s age which may be expressed as 
 
Age(Vera) is ((*25+[*16, *42])∧(*35+[*16, *42]) 
 
The point of this example is that it underscores that, in general, computation of an 
estimate depends on the interpretation of “approximately a,” when a is a real 
number. In particular, computation of Vera’s age is straightforward if *a is 
interpreted as a possibility distribution. It is less straightforward when a is 
interpreted as a probability distribution. And it is much less straightforward when 
*25, for example, is interpreted as a possibility distribution, and [*16, *42] is 
interpreted as a probability distribution or, more realistically, as a bimodal 
distribution. 
 

 
 The foregoing examples are merely elementary instances of reasoning through the 
use of generalized constraint propagation. What should be noted is that the chains of 
reasoning in these examples are very short. More generally, what is important to 
recognize is that shortness of chains of reasoning is an intrinsic characteristic of 
reasoning processes which take place in an environment of substantive imprecision and 
uncertainty. What this implies is that, in such environments, a conclusion arrived at the 
end of a long chain of reasoning is likely to be vacuous or of questionable validity. 

 
Concluding Remark 

 
 Uncertainty is one of the basic facets of human cognition. Traditionally, 

uncertainty is dealt with through the use of tools provided by probability theory. The 
approach to uncertainty which is outlined in this paper suggests a much more general 
framework. The centerpiece of this framework is the concept of a generalized constraint, 
and its fundamental premise is that information may be viewed as a generalized 
constraint. In this perspective, probabilistic constraints are a special case—albeit an 
important one—of generalized constraints, and statistical information is a special case of 
generalized information. 

 
Generalized constraints are large in number and variety. Computations with 

generalized constraints calls for a wide variety of calculi. The generalized theory of 
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uncertainty which is outlined in this paper is merely a first step toward enhancing our 
understanding of the foundations of information and uncertainty. 

 
As we enter the realm of generalized-constraint-based information and 

uncertainty, we find ourselves in uncharted territory. Exploration of this territory will 
require extensive effort and intellectual prowess. A straw in the wind is that a wide-
ranging theory—the Dempster-Shafer theory of evidence—is, basically, a theory centered 
as just one instance of a generalized constraint—the random set constraint. 
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• at a given level of abstraction and summarization, 
objects p and q are PF-equivalent if PF(p)=PF(q)
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Fig. 16.
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