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Toward a Generic Evaluation of Image Segmentation
Jaime S. Cardoso, Student Member, IEEE, and Luís Corte-Real, Member, IEEE

Abstract—Image segmentation plays a major role in a broad
range of applications. Evaluating the adequacy of a segmentation
algorithm for a given application is a requisite both to allow the
appropriate selection of segmentation algorithms as well as to
tune their parameters for optimal performance. However, objec-
tive segmentation quality evaluation is far from being a solved
problem. In this paper, a generic framework for segmentation
evaluation is introduced after a brief review of previous work.
A metric based on the distance between segmentation partitions
is proposed to overcome some of the limitations of existing ap-
proaches. Symmetric and asymmetric distance metric alternatives
are presented to meet the specificities of a wide class of applica-
tions. Experimental results confirm the potential of the proposed
measures.

Index Terms—Image segmentation, objective segmentation as-
sessment, segmentation quality evaluation.

I. INTRODUCTION

AUTHORS currently working in the field of low-level
image segmentation frequently point out the need for a

standard quality measure that would allow both the evaluation
and comparison of all segmentation procedures available. This
need arises from the ill posedness (in the sense of Hadamard,
[1]) of the image segmentation problem: For the same image,
the optimum segmentation can be different, depending on the
application.

Automatic segmentation is, therefore, a problem without a
general solution, at least at the current state-of-the-art. A stan-
dard quality measure, if available, could be applied to auto-
matically provide a ranking among different segmentation algo-
rithms or to optimally set the parameters of a given algorithm,
under a predefined framework.

Several methods have been proposed to evaluate the quality of
segmentation algorithms. Next, we will present the main ideas
underlying these methods.

A. Evaluation Methods for Image Segmentation

In the often-cited article by Zhang [2], evaluation methods
are broadly divided into two categories: analytical methods and
empirical methods. “The analytical methods directly examine
and assess the segmentation algorithms themselves by analyzing
their principles and properties. The empirical methods indirectly
judge the segmentation algorithm by applying them to test im-
ages and measuring the quality of segmentation results.”
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Although using analytical methods to evaluate segmentation
algorithms avoids the implementation of these algorithms (and
so they do not suffer from influences caused by the arrangement
of evaluation experiments as the empirical methods do), they
have not received much attention mainly because of the diffi-
culty to compare algorithms solely by analytical studies. The
analytical methods in the literature work only with some partic-
ular models or properties (see Liedtke [3] and Abdou [4]).

Empirical methods are further classified into two types: good-
ness methods and discrepancy methods.

In the empirical goodness methods some desirable properties
of segmented images, often established according to human
intuition, about what conditions should be satisfied by an “ideal
segmentation,” are measured by goodness parameters. The per-
formance of the segmentation algorithms under study is judged
by the values of goodness measures. These methods evaluate
and rate different algorithms by simply computing some chosen
goodness measure based on the segmented image, without
requiring the a priori knowledge of the reference segmentation.
Different types of goodness measures have been proposed.
Color uniformity [3], entropy [4], intraregion uniformity [5],
[6], inter-region contrast [7], [8], region shape [9], etc., are
some of the measures that have been proposed in the literature.

Empirical discrepancy methods are based on the availability
of a reference segmentation, also called gold standard or
ground truth. The disparity between an actually segmented
image and a correctly/ideally segmented image (the gold stan-
dard, which is the best expected result) can be used to assess
the algorithm’s performance. Both images (actually segmented
and reference) are obtained from the same input image. The
methods in this group take the difference (measured by various
discrepancy parameters) between the actually segmented image
and the reference one into account, i.e., these methods try to
determine how far the actually segmented image is from the
reference image. In Section II, we will cover the early proposed
methods in this group.

The distinction between empirical discrepancy methods and
empirical goodness methods is not so clear cut when we think
about the real meaning of selecting a goodness method with the
corresponding goodness parameter(s). There is (at least) one
segmentation partition that maximizes the adopted goodness
measure—call it implicit gold standard. By choosing an ap-
propriate discrepancy measure for all other possible segmen-
tations—a rather artificial measure—we can always mimic the
goodness method with the implicit discrepancy measure.

So, the difference is in how we model the reference segmenta-
tion and in what point of view seems most useful, rather than in
any intrinsic difference between the methods themselves. Prob-
ably, a more meaningful name for goodness methods is em-
pirical with implicit reference, contrasting with empirical with
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explicit reference that are the so called empirical discrepancy
methods.

Although conceptually similar to discrepancy methods, good-
ness methods have the advantage of being well suited to inte-
grate unsupervised tools—there is no need to feed the method
with any data. Also, our perception of a good segmentation
might be easier to convey using these methods.

However, goodness methods also have some drawbacks. By
first defining what is going to be measured—the goodness pa-
rameters—we can always construct an algorithm that will out-
perform all the others under the selected evaluation measure.
This algorithm would generate the implicit gold standard parti-
tion. This may invalidate any assessment at all, this being espe-
cially true when similar criteria are used to design the segmenta-
tion algorithms as well as to assess their performance—in fact,
goodness measures have been used to design segmentation al-
gorithms.

B. Paper Organization

The outline of this paper is as follows. Section II presents a
brief review of related work. Section III describes the details of
the proposed measure. Section IV addresses some implementa-
tion issues and provides experimental results. Finally, the con-
clusions are drawn in Section V.

II. ON THE DISCREPANCY METHODS—A REVIEW

Taking a quick snapshot of what have been proposed so far, it
is easy to conclude that current discrepancy evaluation methods
lack a general and consistent approach.

Yasnoff [10] proposed to take the number of misclassified
pixels and their positions into account for computing two
measures: The percentage of area misclassified and the pixel
distance error. However, this has only been applied to fore-
ground/background segmentation.

A similar approach appears in [11] with figure of merit
(FOM) for edge-detection evaluation. This method, applied to
image segmentation, looks at the segmentation process as an
edge map extractor, being only suitable for these binary edge
map images. It also does not give a good general response [12].

In [13] and [14], Zhang suggests the use of the so called “ul-
timate measurement accuracy”: “If the goal of image segmenta-
tion is to obtain measurements of object features, the accuracy
of these measurements obtained from the segmented images can
be used as a quantitative evaluation criteria.” Mattana [15] and
Huo [16] have followed a similar approach. Although this as-
sumption may be valid in the context of image analysis, more
and more applications make use of the regions created in the seg-
mentation process, of which the new object-based compressing
standards are just an example.

Chalana’s proposal [17] works only for “…a single object
from an image.”

Betanzos [18] defines an accuracy measure for images with
multiple types of objects. However, it only works when not all
types of objects are present in the image. It also has to be able
to count the correct and false results separately for each type of
object.

Hoover [19] uses a region-based method for assessment. Nev-
ertheless, he does not avoid unintuitive ad hoc measures that in-
volve user defined thresholds; [20] continues the work of [19]
using the same performance evaluation method; [21] proposes
an adapted version of the same measure.

Roldan [12] has introduced a hybrid measure of empirical dis-
crepancy and empirical goodness. This measure is only intended
for the evaluation of low error segmentation results using the bi-
nary edge map of a segmentation.

Belaroussi [22] proposes a set of localization measures that
can be used on a binary image under the knowledge of a binary
reference image to evaluate the quality of the segmented edges.
Although it was adapted to segmentation region maps in [23],
that was only done with background/foreground segmentations.

Everingham [24], more than defining a new measure, at-
tempts to aggregate fitness functions using the Pareto front.
Measures such as ours could be used as fitness functions in the
proposed methodology.

In [25], and more thoroughly in [26], Martin proposes a very
interesting set of measures. Most of these measures—GCE,
LCE, and BCE measures—compute the overall distance be-
tween two segmentations as the sum of the local inconsistency
at each pixel. A novel methodology for judging the quality
of a boundary map is also presented. The correspondence
procedure, tolerant to small localization errors, resorts to the
bipartite matching of “little pieces of boundary, or edgels.” All
measures are general enough to work with images with several
objects and they all achieve excellent results in the collection of
test images. However, their behavior is not always the expected,
as illustrated later—see Section III-B. This is probably due
to their local definition, making it also difficult to predict the
performance for complex segmentations.

III. ON THE DISCREPANCY METHODS—A GENERIC APPROACH

As Section II shows, only a few methods actually explore the
segments (clusters) obtained from the segmentation process.
Most measures are best suited to evaluate edge detection,
working directly on the binary image of the regions’ contours.
Although we can always treat a segmentation as a boundary
map, the problem lurks in the simplified use of the edge map, as
simply counting the misclassified pixels, on an edge/nonedge
basis. But pixels on different sides of an edge are different in
the sense that they belong to different regions—that is why
it may be more reasonable to use the segmentation partition
itself. Realizing this, some authors have introduced “artificial
corrections” to improve measures, notably counting the mis-
classified pixels and weighting the erred pixels according to
their distance to the reference.

Most of previously proposed methods, working directly on
the segments suffer from several limitations, ranging from the
number of objects in the image (foreground/background seg-
mentation; see [17] and [10] to simplifications introduced in
order to be able to tackle the problem [18]–[20]). A clear ex-
ception is the work of Martin in [25] and [26].

To our knowledge, none of the proposed methods tries to de-
fine a reasonable discrepancy measure from the definition of
image segmentation.
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Fig. 1. Right partition is a refinement of the left partition.

Image segmentation is traditionally viewed as a process
that partitions the entire image region into sub regions,

, as follows.

1) Every pixel belongs to a region—
.

2) Every region is spatially connected.
3) All regions are disjoint— .
4) All pixels in a region satisfy a specified similarity

predicate— true.
5) For any two adjacent regions, and ,

false, where is the mentioned similarity predicate.

Since an image segmentation is defined as a partition, when
comparing the gold standard with the segmentation under eval-
uation, we are, in fact, comparing two partitions. So, how do we
compare two partitions? At the core of the problem are distance
metrics, which define the notion of similarity between two par-
titions. In general terms, having a set of elements and two
different partitions defined on this set makes it possible to com-
pare the two partitions in many ways—no single metric is useful
in all circumstances. Nevertheless, one has already found appli-
cability in other areas and, as we propose, it can also be useful
in the context of evaluation of segmentation algorithms.

A. Partition Distance,

Before introducing the concept of partition distance, some
helpful notions need to be visited. Let be a set of elements.
A cluster is a nonempty subset of . A partition of is a set of
mutually exclusive clusters, whose union is . Two partitions
and of are identical if and only if every cluster in is a
cluster in . A partition is a refinement of a partition (or

is finer than ) if and only if each cluster in is contained
in some cluster of —see Fig. 1. Note that then, by definition,
any partition is a refinement of itself.

The intersection of two partitions and is a partition
so that every nonempty intersection of a cluster from and
a cluster from is an element of —see Fig. 2. Note that
is a refinement of and .

The null partition is the partition with only one cluster (the
cluster has elements). The infinite partition is the partition
with clusters (each cluster has one element).

We can now proceed to the idea of partition distance as it
was first presented in [27]. Several alternative (but equivalent)
definitions can be given (each more enlightening than the other
for some background conditions).

Definition 1: “Given two partitions and of , the parti-
tion distance is the minimum number of elements that must be
deleted from , so that the two induced partitions ( and re-
stricted to the remaining elements) are identical” [28].

Definition 2: “The partition distance is equal to the minimum
number of elements that must be moved between clusters in ,
so that the resulting partition equals (by definition, any set
that becomes empty is no longer a cluster)” [28].

Proof That Definition 1 is Equivalent to Definition 2: Let
be the set of elements given by definition 1 and be

the set of elements given by definition 2.

a) From definition 1, equals in . By moving the
elements of in to the same cluster as in , we can
set in . This implies .

b) From definition 2, equals in the set of unmoved ele-
ments . This implies .

From a) and b), we conclude the equivalence of both definitions.

From this definition, a useful set of properties can be deduced.

B. Properties of the Partition Distance,

Let , , be partitions defined in a set of elements.
Then

1) .
2) , if and only if .
3) .
4) .
5)

null partition maximal cluster size in

6)

infinite partition number of clusters in

7)

null partition infinite partition

maximal distance between any two partitions

8) The normalized distance ranges from 0 to
1.

9) Let and be two disjoint sets, and be parti-
tions of , and be partitions of , and

and be the resulting partitions defined
in . Then,

.
Any function with properties 1)–4) is called a metric.

Proof of Property 1: Follows directly from definition.
Proof of Property 2:

a) If , no points need to be removed from to make
the partitions equal. Then, .
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Fig. 2. Middle partition is the intersection of the left and right partitions.

b) If , the number of points that had to be
removed from to make the partitions equal was 0. That
is, the partitions are already equal in .

Proof of Property 3: Follows directly from definition 1 of
partition distance.

Proof of Property 4: Let be the set of ele-
ments to be removed in order to equal to and be the
set of elements to be removed in order to equal

to . Simultaneously, remove from the elements of
and (they may have common elements). Then, in the re-
duced set, we also have . So, removing

is enough to make and equal partitions. That
implies .

Proof of Property 5: Because two identical partitions have
the same number of clusters, we can only keep elements from
one cluster of in the reduced set. Then, it is easy to see that
removing the elements of all clusters of , with the exception
of those in the biggest cluster, gives the minimum number of
elements that need to be removed to equal to the null partition.

Proof of Property 6: Because two identical partitions have
the same number of clusters and the same number of elements in
each cluster, we can only keep one element from each cluster of

in the reduced set—otherwise, they would belong to different
clusters in the infinite partition. It is easy to see that keeping only
one element of each cluster of (anyone in fact) equals to
the infinite partition.

Proof of Property 7: Making null partition in 6 or
infinite partition in 5, we get the desired equality. Because

it is always possible to keep at least one element of (anyone,
if fact), ( ) is the maximal possible value that can
attain.

Proof of Property 8: By prop 1 and prop 7,
. Then, .

Proof of Property 9:

a) Remove from points to make
and from points to have .
Then, in the set restricted to the

remaining elements. So,
.

b) Remove from points to equal to . Be
the points removed from . Then, in

excluded of the points. Then, . In
the same way, being the number of points removed
from , . Then,

.

From a) and b), .

We propose to apply the distance defined above to measure
the discrepancy between the reference segmentation (nothing
more than a partition of an image) and the segmentation under
evaluation. This distance should be applied directly to the seg-
mentation partition (with a different color representing each
region) rather than to the edge map.

For instance, consider the two partitions of the same 8 8
image, represented in Fig. 3.

According to the distance defined above, these partitions are
ten pixels away from each other. The pixels that had to be re-
moved are highlighted in the middle image (unique solution in
this particular case). Later, it will be shown how to efficiently
compute this distance.

It is also interesting to compare the measure with
the proposals in [26]. In Fig. 4(b), the BCE and mea-
sures are presented for two trivial segmentations. Note the
nonmonotonous evolution of the BCE measure, where a mo-
notonous behavior (not necessarily linear) presents as the
most natural. In Fig. 4(c), the evolution of the measure based
on mutual information from [26] is displayed when the two
segmentations being compared correspond exactly. Contrast
the nonconstant value of this measure, opposed to the constant
value of the proposed partition distance.

C. Distance Applied to Binary Partitions

What do we get if we apply to the edge maps? These
are nothing more than binary partitions of an image in edge/non
edge pixels. It is easy to prove that the value given by
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Fig. 3. Two different partitions of the same imag—the middle image highlights the points to be removed.

equals the number of misclassified pixels—this is the measure
used in many of the earlier proposed methods.

Proof: Let us call and the cluster with
the nonedge pixels in the reference and under evaluation edge
map, respectively; and the cluster with the edge
pixels in the reference and under evaluation edge map, respec-
tively. To equal both partitions, we must either remove the points
belonging to and or the
points belonging to and ,
that is, see the equation shown at the bottom of the page.

Clearly, for real segmentations, the number of elements in
, both for the reference and the under evaluation edge maps,

is larger than 75% of the image’s total elements. Then, their
intersection must have at least 50% of the elements (

).
So, the minimum number of points to remove is

, that is, the misclassified pixels.
Some authors have introduced pixels distance to cope with

the position of misclassified pixels in the edge map. With the
proposed metric, when applied to the segmentation partition,
boundaries further away from their true location imply more
pixels contributing to the distance between partitions.

D. Asymmetric Discrepancy Measure

In many applications, under segmentation is considered as a
much more serious problem than over segmentation. This is so
because it is easier to recover true segments through a merging
process after over segmentation rather than trying to split a het-
erogeneous region. For those environments, it would be sensible
to define an asymmetric distance between two partitions in such
a way that the distance between a partition and any partition

finer than is zero. Proceeding from the theoretical founda-
tions already built, such a measure could be tentatively defined
as follows.

Asymmetric Partition Distance, : Given two par-
titions and defined in a set of elements, the asymmetric

partition distance is the minimum number of elements that must
be deleted from , so that the induced partition is finer than
the induced partition . Under this asymmetric distance, any
partition finer than the partition will be at zero distance from
it. Notice also that, in general, .

Recognizing that:

a) is finer than if and only if the intersection of and
is equal to ;

b) , if and only if is finer that .

A more ad hoc path could be followed to define an asymmetric
distance between two partitions. In fact,
should, then, convey a measure of the distance from to a finer
partition of . But, as it is easily verified, both definitions are
equivalent.

Proof That :

a) Remove from the elements needed to equal to
a finer partition than . Then, in the reduced set,

. That implies .
b) Remove from the elements needed to equal

to ( ) in the reduced set. Then, is a finer parti-
tion of in the reduced set. This implies

.

From a) and b), we conclude that
.

The maximum value this asymmetric distance can attain is
also ( ) (for instance, for null partition, infinite
partition); so, to get a normalized distance, we just divide by
( ). From the definition it also follows that

.
Working with the segmentation partitions already used to ex-

emplify the symmetric partition distance, asymmetric distance
attains the values (see Fig. 5)

left right intersection right

right left intersection left
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Fig. 4. Contrast in the evolution of BCE and mutual information measures from [26] and partition distance d .

E. Mutual Refinement Measure

In some applications, it is important to have measures tolerant
to mutual refinements [26]. A partition is said to be a mutual
refinement of a partition if the intersection of every cluster
from with every cluster from is either empty or equal
to or —see Fig. 6.

As can easily be seen, if partition is a mutual refinement
of partition , then is a mutual refinement of partition .
This concept is easily incorporated in the proposed method-
ology: Given two partitions and defined in a set of
elements, the mutual partition distance is the min-
imum number of elements that must be deleted from , so that

the induced partitions and are mutual refinements of each
other. As easily reckoned, this is a symmetric measure.

F. Proposed Discrepancy Measures

The path covered so far leads us to propose a set of different
measures to evaluate the quality of an image segmentation
when comparing it to a reference segmentation .

• Generic discrepancy measure given by the normalized
partition distance between the reference segmentation
and the segmentation under study: ,
where is the number of pixels in the image.
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Fig. 5. Middle partition highlights the points to be removed for the asymmetric measures.

Fig. 6. segmentations (a) and (b) are a mutual refinement of each other.

• Asymmetric measure for applications where over seg-
mentation is not an issue, , where
is the reference segmentation, is the segmentation to
assess and is the number of pixels in the image.

• Asymmetric measure for applications where under seg-
mentation is not an issue, , where
is the reference segmentation, is the segmentation to
assess, and is the number of pixels in the image.

• Mutual partition distance, , when mutual re-
finements can be tolerated.

It should not be difficult to further extend this framework ac-
cording to the specificities of each application.

IV. RESULTS

To be of any practical use, the proposed measures have to
be efficient to compute. It is shown in [28] that the partition
distance can be computed in polynomial time, formulating the
problem as an instance of the classical assignment problem. “An
instance of the classical assignment problem consists of a matrix
of numbers , and an assignment is a selection of cells of
such that no row or column contains more than one selected
cell. An optimal assignment is an assignment whose selected
cell values have the largest sum over all possible assignments.
An optimal assignment can be computed in polynomial time
as a function of the size of . To solve the partition-distance
problem, create an instance of the assignment problem

with one row for each cluster in and one column for
each cluster in . Associate cell ( ) with the subset (

) and write the number in cell ( ). Next, solve
the assignment problem on and let denote
the value of the assignment. Then, the partition distance equals

. Moreover, the elements to remove from are
all those elements not associated with any selected cells of the
optimal assignment” [28].

The asymmetric distance, although possible to com-
pute using the general algorithm described above and the
equivalence , can be ob-
tained much more efficiently, realizing that

, for all in and in fol-
lows directly from properties 5 and 9 of partition distance.
This is readily obtained from matrix , defined above as

.
The proposed metrics were applied to a selected set of seg-

mentation partitions outputted by segmentation algorithms and
results were compared in order to assess the metrics’ quality.
For that end, a software application1 was developed to imple-
ment the proposed metrics. The assignment problem was solved
based on the well-known Hungarian method by Kuhn [29]. For
HD images (1920 1080) with less than 256 regions, the com-
putation takes less than one second in a regular PC (1-GHz
AMD microprocessor, 256 MB RAM).

1The software, as well as all streams used in the tests, is available upon request
to the authors.
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Fig. 7. UE versus USF results.

Fig. 8. Segmentation partition S on left, segmentation partition S on right, original image on center.

TABLE I
TABLES SHOWING THE SYMMETRIC AND ASYMMETRIC RESULTS (PERCENTAGE VALUES)

In a first test to check the adequacy and performance of the
proposed solution to evaluate segmentation’s quality, the sym-
metric metric was applied to the output of two range segmenta-
tion algorithms (UE and USF) presented in [19], using the ABW
imagery, provided by the same author. The distance from the
ground truth segmentation and the segmentation produced by
each algorithm was calculated for each of the 30 test images on
the set.

The partition distance results, presented in Fig. 7, consistently
attribute better quality to UE, except for frame 15. This rating
was found consistent with the subjective evaluation that a human
observer would make by direct visualization of the segmentation
partitions. These results are also in accordance with the average
values in [19].

In a second test, the strength of the proposed asymmetric dis-
tances was also gauged. Toward this end, a segmentation algo-
rithm that can be parametrically configured was selected. Dif-

ferent segmentation partitions, , were produced for the same
image (see Fig. 8), where stands for the number of regions ob-
tained for the partition. For each pair of segmentation partitions,
we computed the and distances. Results are presented
in Table I.

From Table I, we see that increases as we move away
from the main diagonal. This is expected because as in-
creases and become more and more different. However,
for a given , decreases while increases until ,
attaining 0 when . It then stabilizes in very low values for

. This is so because segmentation algorithms tend to pro-
duce finer partitions as the segmentation resolution is increased.

Finally, the mutual partition distance was assessed with
the Berkeley Segmentation Dataset [30]. The dataset con-
sists of a collection of images where each image was seg-
mented by different humans in color, grayscale, and inverted
negated [26].
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Fig. 9. Comparison of d and d for pairs of human segmentations.

Fig. 10. Example pairs at various d and d values.

Humans may segment an image differently: The same scene
may be perceived differently; different subjects may attend to
different parts of the scene; subjects may segment an image at
different granularities. However, according to [26], segmenta-
tions of the same image tend to be consistent in the sense that
they are mutual refinement of each other.

Fig. 9 shows the distribution of and over the
dataset for pairs of segmentations of the same image and pairs
of segmentations of different images. As seen, although two
segmentations of the same image may differ appreciably, as
given by the measure, they are almost always identical,
in what concerns the measure. For segmentations of the
same image, the mutual partition distance exhibits a strong
peak near zero error, given evidence of the consistency of
human segmentations. It is also visible that the fraction of
overlap—Bayes risk—is smaller for the mutual partition dis-
tance. Some examples of segmentation pairs, at different values
of and , are shown in Fig. 10, each distance being
presented both as a numerical value and as black pixels of a
mask image.

These results are in accordance with the results achieved
in [26].

V. CONCLUSION

Image segmentation quality evaluation is a key element when
comparing segmentation algorithms. Segmentation quality eval-
uation allows the assessment of segmentation algorithms’ per-
formance for a given target application and the tuning of al-
gorithms for optimal performance. It is believed that objective
image segmentation quality evaluation is a very present-day
problem, for which a satisfying solution is not yet available in
the literature.

A generic framework for segmentation evaluation was pre-
sented in this paper. While some of the most recent segmenta-
tion quality evaluation methods only deal with two objects (fore-
ground and background), the proposed methodology copes with
multiple regions in the segmentation partition, using a clean,
comprehensive technique.

The aim of this work is not to propose an evaluation mea-
sure incorporating perceptual or contextual information. As a
low level measure, the proposed technique should rather pro-
duce valid results under all applications where a reference seg-
mentation is available. This technique could also be used as a
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building block in more complex and application specific evalu-
ation schemes.

In the conducted experiments, the proposed segmentation
quality evaluation metric showed the ability to estimate the
segmentation quality according to what a human observer
would do. Also, the asymmetric measure was shown to stand
out in applications insensitive to over segmentations.
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