
Toward a Hardware Accelerated Future

Citation
Lyons, Michael John. 2013. Toward a Hardware Accelerated Future. Doctoral dissertation,
Harvard University.

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:11182688

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available
under the terms and conditions applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available.
Please share how this access benefits you. Submit a story .

Accessibility

http://nrs.harvard.edu/urn-3:HUL.InstRepos:11182688
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Toward%20a%20Hardware%20Accelerated%20Future&community=1/1&collection=1/4927603&owningCollection1/4927603&harvardAuthors=6744ba756c9d707619694db247f8e520&departmentEngineering%20and%20Applied%20Sciences
https://dash.harvard.edu/pages/accessibility

Toward a Hardware Accelerated Future

A dissertation presented

by

Michael John Lyons

to

The School of Engineering and Applied Sciences

in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

in the subject of

Computer Science

Harvard University

Cambridge, Massachusetts

June, 2013

c� 2013 – Michael John Lyons

All rights reserved.

Dissertation advisors Author
David M. Brooks, Gu-Yeon Wei Michael John Lyons

Toward a Hardware Accelerated Future

Abstract

Hardware accelerators provide a rare opportunity to achieve orders-of-magnitude performance and

power improvements with customized circuit designs.

Many forms of hardware acceleration exist—attributes and trade-offs of each approach is

discussed. Single-algorithm accelerators, which maximize efficiency gains through maximum spe-

cialization, are one such approach. By combining many of these into a many-accelerator system,

high specialization is possible with fewer specialization limits.

The development of one such single-algorithm hardware accelerator for managing compressed

Bloom filters in wireless sensor networks is presented. Results from the development of the accelera-

tor highlight scalability deficiencies in the way accelerators are currently integrated into processors,

and that the majority of accelerator area is consumed by generic SRAM memory rather than

algorithm-specific logic.

These results motivate development of the accelerator store, a system architecture designed

for the needs of many-accelerator systems. In particular, the accelerator store improves inter-

accelerator communication and includes support for sharing accelerator SRAM memories. Using

a security application as an example, the accelerator store architecture is able to reduce total

processor area by 30% with less than 1% performance overhead.

Using the accelerator store as a base, the ShrinkFit framework allows accelerators to grow

and shrink, to achieve accelerated performance within small FPGA budgets and efficiently expand

for more performance when larger FPGA budgets are available. The ability to resize accelerators

is particularly useful for hybrid systems combining GP-CPUs and FPGA resources, in which ap-

plications may deploy accelerators to a shared FPGA fabric. ShrinkFit performance overheads for

small and large FPGA resources are found to be low using a robotic bee brain workload and FPGA

prototype.

Finally, future directions are briefly discussed along with details about the production of the

robotic bee helicopter brain prototype.

iii

Contents

Title i

Copyright ii

Abstract iii

Table of contents iv

List of figures ix

List of tables xii

Previous work xiii

Acknowledgments xiv

1 The potential for accelerated computing 1

1.1 Trends in computing . 2

1.1.1 The end of clock scaling . 2

1.1.2 The limits of multicore . 3

1.1.3 Hardware acceleration . 4

1.2 Accelerated architecture taxonomy . 5

1.2.1 DSP . 6

1.2.2 Graphics Processing Unit (GPU) . 8

1.2.3 Specialized homogeneous multicore (SHM) 10

1.2.4 Customized ISA (CISA) . 12

iv

1.2.5 Single-ISA heterogeneous multicore (SIHM) 14

1.2.6 Mobile SoC . 16

1.2.7 Reconfigurable computing . 19

1.3 Challenges . 21

1.3.1 Rapid accelerator development . 22

1.3.2 Identifying algorithms to accelerate . 23

1.3.3 Minimizing accelerator area overheads . 23

1.3.4 Scaling accelerator systems . 24

2 Accelerator composition 26

2.1 Accelerator design requirements . 26

2.2 Power and performance optimization strategies . 28

2.3 Bloom Filter Algorithms . 29

2.3.1 Bloom filters . 29

2.3.2 Multiply and Shift Hashing . 31

2.3.3 Golomb-Rice Coding . 31

2.4 Accelerator Architecture . 32

2.4.1 Bloom Filter Memory . 33

2.4.2 Memory Data Controller . 33

2.4.3 Memory Address Controller . 34

2.4.4 Decompressor . 34

2.4.5 Compressor . 35

2.5 Accelerator Evaluation . 35

2.5.1 Item Insertion and Querying . 37

2.5.2 Compressing Bloom Filters . 39

2.5.3 Merging Compressed Bloom Filters . 40

2.6 Application Evaluations . 41

2.6.1 Mote Status . 42

2.6.2 Object Tracking . 44

2.6.3 Duplicate Packet Removal . 45

v

2.7 Takeaways . 45

3 Accelerator store 46

3.1 Accelerator Characterization . 48

3.1.1 Accelerator composition characterization . 49

3.1.2 Memory access pattern characterization . 50

3.1.3 Shared memory selection methodology . 53

3.2 Accelerator store design . 55

3.2.1 Accelerator store features . 56

3.2.2 Architecture of the accelerator store . 58

3.2.3 Distributed accelerator store architecture . 60

3.2.4 Accelerator/accelerator store interface . 61

3.2.5 Accelerator store software interface . 62

3.3 Accelerator Store Evaluation . 64

3.3.1 Accelerator-based system model . 64

3.3.2 Embedded application . 65

3.3.3 Server application . 74

3.4 Related work . 78

4 ShrinkFit 80

4.1 Motivation . 82

4.2 Conceptual approach . 84

4.2.1 Decomposition . 84

4.2.2 Building ShrinkFit accelerators with VMs . 85

4.2.3 Module contexts . 86

4.2.4 Accelerator resource sharing . 86

4.2.5 Dynamic accelerator resizing . 87

4.3 Framework implementation . 87

4.3.1 Accelerator store . 88

4.3.2 Slicer module . 89

4.3.3 ShrinkFit wrapper . 91

vi

4.3.4 ShrinkFit framework area costs . 93

4.4 Software Development . 94

4.4.1 Decomposing accelerators . 95

4.4.2 Configure ShrinkFit hard logic blocks . 95

4.4.3 Shrinklib SDK . 95

4.5 ShrinkFit module evaluation . 96

4.5.1 ShrinkFit PM implementations . 97

4.5.2 Evaluation methodology . 99

4.5.3 PM performance scalability . 101

4.6 RoboBee application evaluation . 102

4.6.1 Application evaluation overview . 102

4.6.2 Bandwidth impact . 104

4.6.3 Buffering impact . 105

4.6.4 Hard logic block area overheads . 107

4.7 Related work . 108

5 Future directions 109

5.1 Accelerator store scalability . 109

5.1.1 Subset arbitration . 110

5.1.2 Multistage arbitration . 110

5.2 Unified system+AS memory . 111

5.3 Dynamic handle allocation . 111

5.4 ShrinkFit dynamic reprogramming . 112

A Helicopter brain prototype 113

A.1 Brain . 115

A.2 Helicopters . 116

A.3 Objectives . 117

A.4 System Architecture . 118

A.5 HBP Connectors . 119

A.5.1 Connection to mainboard . 119

vii

A.5.2 Connection to optical flow sensor ring . 120

A.5.3 JTAG . 122

A.5.4 I2C . 122

A.5.5 SPI . 122

A.5.6 GPIO . 123

A.6 Components . 123

A.6.1 FPGA . 124

A.6.2 Flash memory . 125

A.6.3 1.0V+3.3V Buck Converter . 126

A.6.4 4.7V Boost+Buck Converter . 127

A.6.5 ADC . 127

A.6.6 100 MHz Oscillator . 127

A.6.7 External IO pins . 127

A.6.8 PCB . 128

A.7 Helicopter brain prototype implementation . 129

Bibliography 141

viii

List of Figures

2.1 Bloom filter hardware accelerator hardware flow . 32

2.2 Decompressor information flow . 34

2.3 Placed-and-routed Bloom filter accelerator design . 36

2.4 Average power usage of Bloom filter hardware accelerator modules 37

2.5 Item insertion times of application-specific hardware design logic and general purpose

design logic . 38

2.6 Bloom filter reading and merging delay at a 1% false positive rate 40

2.7 Storage cost per item for a 16KB Bloom filter and 1% false positive rate 43

3.1 Comparison of architecture styles . 47

3.2 Total memory bandwidth utilization of several accelerators 51

3.3 Accelerator SRAM memories sorted by memory size per bandwidth 54

3.4 Accelerator store system architecture . 56

3.5 Embedded application accelerator activity . 66

3.6 Embedded application “top 20 to share” memory bandwidth 67

3.7 Embedded application contention performance overhead 68

3.8 Distributed AS architecture . 69

3.9 Embedded application access latency and contention performance overhead 70

3.10 Embedded app power breakdown . 72

3.11 Embedded app area reduction . 73

3.12 JPEG server application performance overhead . 75

3.13 Comparison of architecture styles . 76

ix

4.1 RoboBee Brain FPGA prototype . 83

4.2 RoboBee application accelerators . 83

4.3 ShrinkFit framework architecture . 88

4.4 ShrinkFit wrapper state machine . 91

4.5 ShrinkFit wrapper context handle structure . 92

4.6 ShrinkFit hard logic block die area overheads . 93

4.7 RoboBee application decomposed into VMs . 94

4.8 Single PM design resource-to-performance trade-off 98

4.9 RoboBee application resource-to-performance trade-off bandwidth impact 103

4.10 RoboBee application resource-to-performance trade-off buffering impact 106

A.1 Helicopter brain prototype attached to helicopter and optical flow camera 113

A.2 Helicopter brain prototype front . 114

A.3 Helicopter brain prototype back . 114

A.4 Optical flow software and hardware accelerator energy consumption 115

A.5 MCX2 Toy Helicopter . 116

A.6 Original CentEye system architecture . 118

A.7 HBP system architecture . 119

A.8 Interface to mainboard . 120

A.9 Interface to optical flow sensor ring . 121

A.10 I2C Interface . 122

A.11 SPI Interface . 123

A.12 HBP Architecture . 124

A.13 XC6-SLX150 FPGA power consumption . 125

A.14 Helicopter battery life with XC6-SLX150 . 126

A.15 Helicopter brain prototype bill of materials (BOM) 129

A.16 Helicopter brain prototype schematic: FPGA configuration and flash 130

A.17 Helicopter brain prototype schematic: FPGA clock, I2C and SPI interfaces 131

A.18 Helicopter brain prototype schematic: GPIOs and helicopter mainboard interface . . 132

A.19 Helicopter brain prototype schematic: FPGA voltage regulation 133

x

A.20 Helicopter brain prototype schematic: optical flow camera interface 134

A.21 Helicopter brain prototype schematic: FPGA power connections 135

A.22 Helicopter brain prototype layout: all layers . 136

A.23 Helicopter brain prototype layout: front (top) layer 137

A.24 Helicopter brain prototype layout: back (bottom) layer 138

A.25 Helicopter brain prototype components: front . 139

A.26 Helicopter brain prototype components: back . 140

xi

List of Tables

1.1 Summary of analyzed accelerated architectures . 6

2.1 Bloom filter configurations . 29

3.1 Accelerators studied . 48

3.2 Example handle table layout . 58

4.1 PM FPGA resource overheads . 99

4.2 PM compute logic block processing delays . 100

A.1 XC6-SLX150 resource utilization for RoboBee brain 124

xii

Previous work

Portions of this dissertation appeared in the following:

S. Chang, A. Kirsch, and M. Lyons. Energy and storage reduction in data intensive wireless
sensor network applications. Technical Report TR-15-07, Harvard University, 2007.

M. J. Lyons and D. Brooks. The design of a bloom filter hardware accelerator for ultra low
power systems. ISLPED, Aug. 2009.

M. J. Lyons, M. Hempstead, G.-Y. Wei, and D. Brooks. The accelerator store framework for
high-performance, low-power accelerator-based systems. IEEE CAL, 9(2): 5356, 2010.

M. J. Lyons, D. Brooks, and G.-Y. Wei. The accelerator store: A shared memory framework
for accelerator-based systems. ACM TACO, 8(4):122, 2012.

M. Lyons, G. Wei, and D. Brooks. Shrink-fit: A framework for flexible accelerator sizing.
IEEE CAL, PP(99), 2012.

M. Lyons, G. Wei, and D. Brooks. The ShrinkFit Acceleration Framework: Simplifying
Multi-Accelerator System Development. Under review.

xiii

Acknowledgements

The past seven years have hardly been spent alone. I’m thankful for the many people who have

been with me on this journey.

I would like to thank my family, who have shared my ups and downs many times over. To my

parents, thank you for your unwavering trust, advice, and love. To my brother and sister, thank

you for being there for me, with plenty of cake. And to the rest of my family, thanks for your

support and understanding throughout the many Thanksgivings where I “just had to code up one

more thing.” I couldn’t have gotten this far without your love and patience.

I must thank my friends in Boston, who have kept me grounded each day. Nathan and Hallie,

your friendship means more than words or ice cream can express. Sasha and Mike, thank you for

the tapir-positive company, over waffles and espressos, for the past ten years. Jud and Kevin, thank

you for hearing me out, hanging out, and goading me on day after day.

I certainly couldn’t do this without the support of the lab. David and Gu, thank you so much

for your years of guidance and advice. Mark, Ben, and Ankur, thank you for leading the way and

helping me find my feet when I was new to graduate school. Glenn, thanks for your patient help

at all hours! And thank you to my labmates, for their countless hours of discussion, opinion, and

tolerance. And good luck to those of you who are still working toward their degree and those who

are just starting. If you ever need anything, don’t hesitate to ask.

I’d also like to thank my friends at Dropbox, who helped me power through to the end. In

particular, I’d like to thank Tido, Alex, Sujay, and Arash, who gave me the energy for my last

push.

And finally, I’d like to mention two people who I met while in the midst of my PhD. Nora

and Ben, you fill me with hope, and I look forward to all that you will accomplish in the future.

xiv

This work is dedicated to Ben and Nora

xv

Chapter 1

The potential for accelerated

computing

For many years, the computing industry mined clock scaling for consistent performance improve-

ments. Eventually, rising power demands put an end to clock scaling, forcing the industry to switch

to multicore architectures. This pivot has not been a silver bullet: multicore performance improve-

ments have failed to keep pace with previous clock scaling gains. The computing industry needs

a third approach, not just to regain, but to exceed the performance improvements once taken for

granted. A growing body of research suggests that approach is hardware acceleration.

Hardware accelerators (circuits customized for a specific workload or class of workloads) offer

many advantages over multicore approaches. First, acceleration can boost performance up to 100x-

1000x [30, 33], far beyond multicore’s ideal linear increases. Second, acceleration is not dependent on

parallelized code and offers significant single-threaded speedups. Third, acceleration performance

is not threatened by hard power budgets and the “dark silicon” problem, which will force greater

portions of processors to be unused.

By specializing for a specific workload, accelerators can realize orders-of-magnitude perfor-

mance improvements. This specialization is a double edged sword, however, and results in logic

that can only perform its specialized task. The trade-off between performance and workload flexi-

bility, as well as scalability, design complexity, and production cost, distinguish the many types of

accelerated computer architectures. No single accelerated architecture is best for all needs—several

1

approaches exist each with unique trade-offs. This chapter surveys many of these accelerated

architecture families, and examines the benefits and trade-offs of each.

This chapter continues with Section 1.1, which discusses the computer industry’s previous

sources of performance improvements, and describes why acceleration is poised to be a significant

part in the future. Section 1.2 analyzes many popular approaches to acceleration in research and

in production. Section 1.3 discusses current and upcoming research challenges, critical to realizing

the accelerated computing vision.

1.1 Trends in computing

Decades of computing have produced countless innovations. The computing industry once depended

on process scaling to simultaneously improve performance through faster clock speeds and keep

power consumption manageable. When threshold voltage scaling slowed and increased clock speeds

incurred prohibitive amounts of power, the computing industry looked to multicore approaches for

an alternative source of performance increases. Although the performance of individual cores do

not improve much, the increasing core counts on chip offer additional performance improvements.

However, multicore performance improvements have not kept pace with performance improvements

once offered by clock scaling. A third approach, hardware acceleration, is necessary.

This section explains how the computing industry got here, why current multicore approaches

do not keep pace with necessary performance improvements, and how acceleration can meet or

exceed performance improvements once taken for granted.

1.1.1 The end of clock scaling

Moore’s Law, which states the size of a transistor shrinks in half every eighteen months, has been the

cornerstone of processor improvements for most of the industry’s existence. Performance improved

when process technologies shrunk, since each transistor became faster and more transistors could

fit on the same piece of silicon. Threshold voltages also shrank with successive process technologies,

keeping power budgets from exploding despite faster clock speeds and doubling transistor counts.

Unfortunately, performance improvements ran dry near the turn of the century. Although

process technologies continued to shrink, threshold voltage scaling slowed. Clock speeds could

2

continue scaling upward, but the power cost would exceed 100W, beyond which operation and

cooling costs become too great [11].

1.1.2 The limits of multicore

Although process technology scaling ceased to provide significant threshold voltage reductions,

process scaling continued to offer more transistors for the same piece of silicon. To make the most

of the increasing transistor counts, multicore architectures utilizing multiple copies of the same

cores gained favor. Ideally, processor performance increases linearly with each additional core.

However, several impediments dampen the performance increases once common with clock scaling:

Parallelism. Most software cannot take advantage of multicore architectures automatically, but

instead must be parallelized to use multiple cores at once. In many workloads, the additional

work required to parallelize software is difficult, or parallelization will not improve perfor-

mance due to multithreading overheads. Even for most parallelized software, there is a limit

to parallelism, after which performance suffers from diminished returns. For many workloads,

there is a point past which more cores will not substantially increase performance.

Energy. Despite curbing clock frequency increases, multicore architectures are beginning to hit

energy limits again. Due to the slowing of threshold voltage reductions and exponential

increase in transistors, some multicore processors will not be able to utilize all of their logic

simultaneously. Up to 91% of some processors may need to be turned off by the 11nm node,

resulting in large amounts of unused logic called “dark silicon” [56].

Slow clocks. Before multicore approaches, successive processor designs utilized both increased

transistor budgets and faster clock speeds. The additional transistors were used for more

complicated logic, such as deeper pipelines, more complex branch predictors, and so on.

Although multicore architectures make use of increasing transistor counts, multicore’s per-

formance gains from increased transistors (1.35x) cannot keep up with voltage scaling era

performance improvements from faster clock speeds and more transistors (1.58x) [35].

3

1.1.3 Hardware acceleration

Hardware acceleration (logic optimized for specific workloads) offers an alternative source of perfor-

mance improvements. Rather than depending on faster transistors or more transistors, hardware

acceleration uses transistors more efficiently for certain tasks. As a result, hardware acceleration

does not suffer from the multicore problems mentioned above. Accelerators can provide up to and

beyond 100x performance improvements [29, 33] without relying on faster clock rates or parallelized

software. In addition, performance improvements can be exchanged in part or in full for reduced

energy through voltage and clock scaling.

Hardware acceleration typically relies on three types of optimizations to improve performance,

energy, and power:

Private memories. Accelerators often contain private memories, which are only used by that

accelerator. This allows the accelerator to access memory without contention and to use

wider memories for additional memory bandwidth.

Custom operations. Support for custom operations allows accelerators to do complex calcula-

tions quickly, rather than relying on a general purpose (GP) processor to execute tens or

hundreds of instructions.

Fine-grained parallelism. Accelerator hardware can be explicitly designed to do multiple cal-

culations and access multiple private memories without the rigidity of SIMD or overheads of

multithreading.

Dark silicon remains when using accelerators, but is not problematic for many accelerated

systems. Each accelerator may only be used for a certain task and turned off at other times. For

example, many smartphones currently use hardware acceleration to decode audio files, but only

turn the accelerator on when playing music. Under this accelerated approach, only a small portion

of accelerators will be on at a time, so large portions of the chip silicon are already dark and will

not require shutting down active regions of the processor.

The biggest downside to hardware acceleration is the trade-off between customization and

workload flexibility. Greater acceleration is usually possible with more specialization, but this trade-

off means that the accelerator will be usable for fewer types of workloads or classes of workloads.

4

Unlike general purpose CPUs (GP-CPUs) which support any workload, hardware acceleration only

targets a smaller subset. Therefore, acceleration is well suited for common workloads that will

realize large performance, energy, or power benefits, but not occasional tasks.

Accelerators offer the potential to regain or even exceed past performance improvements, but

there is little agreement on how to build accelerated systems. Several accelerated architectures

are used commercially, and research efforts produce new approaches regularly. This paper sur-

veys proven and proposed architectures, and identifies several promising directions for accelerated

architecture research.

1.2 Accelerated architecture taxonomy

Accelerated architectures come in many forms. This section discusses several approaches for in-

tegrating acceleration into computing architectures. This discussion includes an overview of each

accelerated approach and discusses six evaluation attributes:

Execution improvement considers performance, power, and energy improvements. The three

improvements are closely related because performance speedups can be traded off for power

and energy reductions by reducing clock frequency and supply voltage.

Customization describes the design variation within the architecture. This attribute spans from

completely homogeneous designs supporting many workloads and consisting of several copies

of the same core, to completely heterogeneous architectures containing many unique cores,

each designed for a narrow set of workloads. Customization also reflects the portion of the

processor expected to be active at any given time. Distributing work across multiple cores

is much easier in homogeneous designs since each core can process each workload with equal

skill. Heterogeneous systems tend to utilize less of the processor at any given time because

only certain cores are capable of performing a particular workload. Due to growing power

density and the dark silicon problem, reduced utilization may not be problematic.

Scalability reflects the architecture’s ability to increase compute logic. The architecture’s inter-

connect, which connects different components within the system, is particularly crucial for

architecture scalability.

5

Table 1.1: Summary of analyzed accelerated architectures

Execution improvement is expressed in magnitudes. Reconfigurable computing design complexity is both low (FPGA fabric
design) and high (logic implemented in FPGA).

Execution Customization Scalability Design Production Target

improvement complexity cost audience

Digital signal processor 10x Low Medium Low Low Medium

Graphics processing unit 100x Low High Medium High Medium

Specialized homogeneous multicore 100x Medium High Medium Medium Medium

Customized ISA 10x Medium High Low Low Low

Single-ISA 1x Low Medium Low Low High

System-on-Chip 1000x High Low High Medium High

Reconfigurable computing 10x High High Low/high High Low

Design complexity describes the additional design complexities created by the accelerated ar-

chitecture. This includes accelerator and system hardware design complexities as well as

operating system and application software design complexities.

Production cost considers the additional monetary cost to fabricate a processor designed with

the accelerated architecture. This cost is highly correlated with silicon area.

Target audience indicates the audience size for a processor designed with the architecture. An

architecture that is more flexible to varying workloads can target a wider audience than an

architecture targeting a specific workload.

Table 1.1 summarizes these six attributes for each of the accelerator architectures discussed

in the remainder of this section.

1.2.1 DSP

Digital signal processors (DSPs) are microprocessors modified to efficiently analyze signals. These

modifications provide:

Parallelism through widened VLIW or SIMD instructions.

Tight looping to keep the pipeline full for repetitive tasks.

Customized ALU support for common DSP operations including fast multiplication.

6

Multiple memory accesses in the same cycle to enable common multiply operations at every

cycle [24].

When writing DSP software, designers first use the C programming language to quickly develop code

and remain close to the processor’s execution semantics (pointers, heaps, stacks). Python, Java,

and other higher level languages might result in faster software development, but would create too

much abstraction between the programmer and the DSP hardware. In contrast, assembly language

gives the programmer full access to the DSP’s hardware, but slows software development to a crawl.

DSP code optimizations are often too complex for C compilers. These optimizations require

absolute control over code design, and are performed in assembly language. DSP designers will

first profile their program to identify commonly run code, known as “hotspots.” These hotspots

are run the most often, and through optimization offer the biggest performance improvements.

DSP programmers implement these optimizations by replacing hotspot C code with hand-

tuned assembly code. To write optimized assembly code, DSP programmers must have a deep

knowledge of the DSP processor’s capabilities and timing. This knowledge usually only applies to

specific DSP processors, and limits software platform independence.

DSP processors are available from several vendors, including Analog Devices, Texas Instru-

ments (TI), and STMicro. DSP cores are also integrated into some mobile processors, such as TI’s

OMAP family [7].

Execution improvement

DSP processors are known to improve performance on the order of 10x when compared to GP-

CPUs [69]. Although DSPs do not typically implement any unique power saving features, DSP

performance improvements can be traded off for reduced power and energy consumption via fre-

quency and voltage scaling.

Customization

Although DSPs feature a fully functional ISA, they are optimized for algorithms making frequent

use of multiplication in tight loops. This makes DSPs an excellent choice for specific workloads,

such as audio and video media processing. DSPs are highly homogeneous, and share much with GP-

7

CPU design. As a result, most if not all of the DSP’s transistors are utilized when the processor is

active. The biggest distinguishing factor of DSPs is multiply optimization in ALUs and parallelized

(VLIW, SIMD) instructions.

Scalability

Although a single DSP could scale the number of ALUs upward, the complexity of such an approach

would quickly eliminate performance gains. Instead, DSP cores could be replicated, much like

general-purpose homogeneous multicore processors. This approach would closely resemble graphics

processing unit (GPU) architectures.

Design complexity

DSP architecture complexity is comparable to general purpose microcontrollers and microproces-

sors. The major differences include wider instructions, a greater emphasis on looping, multiple

memory ports, and additional ALUs optimized for multiplication.

Software development is more complicated, since it requires a detailed knowledge of the DSP

timing behavior and optimization in assembly language. Due to the need for applications to run

“close to hardware,” DSP operating systems typically resemble real time operating system (RTOS)

kernels [6] and are simple compared to common GP-CPU operating systems.

Production cost

DSPs are roughly the same size as corresponding GP-CPUs. The customizations do not add much

to the area cost.

Target market

DSPs are typically limited to signal processing applications. Popular signal processing applications

include audio, video, wireless, and speech analysis.

1.2.2 Graphics Processing Unit (GPU)

Graphics processing units typically contain more than 100 simple, identical cores. These cores

tend to be good at processing data in easily divided, parallelizable datasets. Each core has limited

8

memory bandwidth, and applications must take care to to limit the bandwidth requirements of

each core. Cores are designed to efficiently perform single precision floating point calculations,

which are common in graphics processing. Software is most efficient when identical copies of the

same code are run on each core, processing different data sets, via SIMD. GPU core architecture

is as simple as possible, and struggles with control flow-heavy workloads.

GPUs use multiple memory levels, similar to memory caching levels on GP-CPUs. At the

highest level, GPUs typically provide a shared cache, which is visible to all cores in the GPU. This

shared structure can quickly become a bottleneck if overused, so efficient GPU applications tend

to rely on local caches (visible to one core) for most memory needs. GPU programming requires

explicit control over data transfers to distribute work to these local caches, and to recover the

results of computation afterward.

GPUs are most commonly used for rendering graphics for video games, and are predomi-

nately manufactured by ATI and Nvidia. Software toolkits such as OpenCL and CUDA have been

instrumental for accelerating scientific domain workloads.

Execution improvement

Performance improvements of 50x are typical when porting GP-CPU workloads to GPUs, and

acceleration of 400x has been reported [68]. Of course, these improvements apply only to workloads

well suited to SIMD parallelization and with low per-core memory bandwidth needs.

GPUs are typically performance focused, and currently are less concerned with energy or

power savings. Power management approaches, such as multiple voltage domains or sub-second

dynamic voltage and frequency scaling (DVFS) are limited to research, but not yet available.

Customization

GPUs are homogeneous, consisting of hundreds of copies of the same simple core. For this reason,

all of the cores are utilized used when the GPU is active.

Scalability

GPUs have already demonstrated the ability to scale into the hundreds of cores. The least scalable

aspect of this architecture is the global shared memory interconnect. As the number of cores

9

continues scaling upward, the per-core bandwidth to the global memory will proportionally decrease,

and become a tighter bottleneck. In addition, data must be copied between private GPU core

memories and the computer’s DRAMs over the PCI bus. PCI and DRAM bandwidth limitations

may also limit GPU performance in the future.

Design complexity

Although each GPU contains hundreds of cores, each core is an identical copy, simplifying hardware

architecture design. Software design becomes more complicated however, since workloads must be

parallelized, memory bandwidth requirements minimized, and data transfers carefully scheduled

for hundreds of cores. Some of these complexities are lessened by toolkits, such as OpenCL and

CUDA.

Production cost

GPU silicon area can be large, and some designs consume 3 billion transistors [26]. Roughly half

of GPU area is used for cores, and the remaining half is used for graphics-specific logic.

Target market

GPUs are limited to easily parallelized workloads with low memory transfer needs. The largest

markets with these workload characteristics include video game graphics and domain science.

1.2.3 Specialized homogeneous multicore (SHM)

Specialized homogeneous multicore architectures have much in common with computers utilizing

a GP-CPU and GPU. In both approaches, one general purpose CPU controls a large number

of identical, simple cores. The SHM architecture replaces graphics rendering acceleration with

acceleration for other workloads:

Anton uses acceleration for molecular dynamics to accelerate drug discovery simulations by 100x [67].

Rigel use a hierarchically connected set of 1000 simple, GPU-like cores to accelerate multiple

algorithms with a 100x order of magnitude performance improvement[42].

10

SODA uses four DSP-like cores with software defined radio (SDR) customizations to improve

performance
power

by roughly 100x [47]. Additional SDR customizations in the Scotch architecture

update resulted in additional improvements [76].

Cell uses eight “SPE” floating-point, SIMD cores to accelerate media, gaming, and scientific work-

loads by roughly 200x [60].

Execution improvement

Typical performance
power

improvements using the SHM architecture are in the range of 100-200x, as the

examples above illustrate. Many architectures, specifically Rigel and SODA, trade off performance

improvements to lower power consumption.

Customization

Like GPUs, SHMs depend on limited memory transfer bandwidth and SIMD-friendly workloads.

Some SHM processors are limited to certain domains (Anton, SODA), and others widen workload

support by supporting more generic workloads (Rigel, Cell). Market demand for these processors

range from the very limited molecular dynamics audience targeted by Anton, to the wide consumer

market for the Cell processor. Although SHM processors contain two types of cores (the GP-CPU

controller and the highly replicated compute cores), almost all work is done by the replicated cores,

which are identical. In this sense, SHM processors are highly homogeneous, so work can be freely

distributed between compute cores and sustain high silicon utilization across the SHM processor

when active.

Scalability

SHM design scalability varies anywhere from four to over 1000 cores. Designs with few cores

use simple, flat interconnects. The shared bus and ring topologies utilized by SODA and Cell,

respectively, do not scale effectively in the hundred core regime. However, hierarchical interconnects

of clusters, like those used by Anton and Rigel, offer scalability into hundreds and thousands of

cores.

11

Design complexity

SHM architecture design complexity is on the same order of a GPU design. The bulk of the work

remains in the design of the compute cores, which can be quite complicated when using larger cores

such as Cell and SODA. SHMs utilizing greater numbers of simpler cores also require the additional

system design complexity of a scalable interconnect. The controller GP-CPU is unlikely to add

much hardware complexity, since most designs use off the shelf implementations including ARM or

PowerPC designs.

Software design complexity is also similar to GPUs. The programmer must support two

types of processors and must also partition workloads and processing techniques to execute well on

multiple, memory bandwidth limited cores. There may be additional complexities implementing

compiler tools for the computation cores, as they are custom designed.

Production cost

SHM production cost can be quite varied, depending on the size and number of computation cores.

The cell processor contains roughly 300M transistors, though many-core designs such as Anton and

Rigel may reflect similar area attributes due to the large number of cores on chip.

Target market

The size of the target market for SHM processors varies highly from design to design. On one

end of the spectrum, Anton is highly customized and useful only to the small molecular dynamics

audience. On the other end of the spectrum, the Cell processor is widely used for the Playstation

3 and scientific compute clusters.

1.2.4 Customized ISA (CISA)

The customized ISA approach integrates specialization into the GP-CPU, rather than creating

distinct accelerator cores. This approach results in new instructions that are limited to finer grained

acceleration at the instruction level. Of course, the quantity of additional instructions is limited by

the instruction bit width, especially for 32-bit ISAs. Due to the fine-grained nature of the custom

ISA approach, adding software support for customized instructions is mostly automatic, courtesy

12

of the compiler.

Tensilica’s Xtensa processor kit is widely used for the development of customized 32-bit RISC

processors and corresponding software toolchains [27]. Xtensa-based processors have been used in

well-known projects, including Hameed, et al. [30] and Anton. The Conservation Cores architecture

takes customization one step further by automatically analyzing source code, identifying kernels

ripe for acceleration, and synthesizing customizations for the core [72].

Execution improvement

Tensilica reports performance improvements of 4-72x. As with other architectures, performance

enhancements can be substituted for reduced energy and power consumption.

Customization

The customized ISA architecture approach is moderately flexible. Unlike the coarse-grain of accel-

erator blocks found in SoCs, CISA’s acceleration is smaller, on the instruction level. As a result,

any algorithm that can benefit from the single instruction’s acceleration can benefit from CISA per-

formance improvement. However, custom instructions may still only apply to a small percentage

of common computing tasks and are hardly “general purpose.”

Because acceleration is built into a GP-CPU, much of the customized core consists of general

purpose logic. From this perspective, the percentage of the processor spent on customization is

quite low, and often only consists of a few thousand additional gates. Also note that using a CISA

core to implement SHM cores, as Anton does, will result in a mostly homogeneous collection of the

same replicated CISA core.

Scalability

Scalability of customized ISA architectures can be considered both in terms of custom instructions

per core, and multicore scalability. Scaling custom instructions within the core is currently limited

by the instruction set size, although this problem will lessen with a transition to 64-bit ISAs. Al-

though a CISA core could contain hundreds of customizations, only one customized instruction can

be executed at a time. For this reason, there is little reason to scale the number of customizations

in a single core.

13

An alternative technique is to use multiple CISA core designs. Current approaches have syn-

thesized a homogeneous collection of the same CISA core on a single processor. This approach

has proven to scale into the thousands of cores using hierarchical interconnects. A heterogeneous

collection of CISA cores could also be used to increase the number of parallel accelerated instruc-

tions. However, the duplication of non-accelerated logic inherent when replicating GP-CPU cores

may be a downside to homogeneous or heterogeneous multicore CISA scaling. The general purpose

portion of the CISA core constitutes the majority of logic, and replicating CISA cores to increase

customization comes at a significant overhead.

Design complexity

Developing a CISA core is relatively simple, because only customizations for an already existing

GP-CPU core need implementing. Software development also tends to be low complexity, because

the GP-CPU’s compiler only needs to be modified for the new customizations. Application support

for customizations can be automatic via recompilation, assuming the modified compiler recognizes

opportunities to use the new instructions. Because CISA is integrated into the GP-CPU core, no

explicit memory transfers are necessary unless building a multicore CISA processor.

Production cost

Core customizations typically require only thousands of extra gates, and do not require a significant

increase in area or production costs.

Target market

CISA cores are typically customized for a specific workload, so each CISA core’s audience is signif-

icantly limited.

1.2.5 Single-ISA heterogeneous multicore (SIHM)

Single-ISA heterogeneous multicore processors combine multiple cores that implement the same

or similar ISAs. This approach allows for multiple implementations of a core that favor different

strengths and weaknesses. Kumar, et al. uses cores from successive Alpha families to build a SIHM

containing simple and lightweight cores to the latest, most complex cores [44]. By switching to

14

advanced cores only when the workload provides a benefit, the SIHM approach reduces unnecessary

active logic.

Execution improvement

The SIHM approach does not attempt to increase performance, but to maximize power efficiency.

The set of cores contained in a SIHM processor are usually obtained off the shelf, rather than

designed specifically for the SIHM processor. Since one core is used at a time, there is no opportunity

to improve performance using existing designs. Rather, SIHM allows simpler cores, without branch

prediction for example, to be used when workloads would not see performance gains for more

complex cores. This approach can reduce power and energy consumption by roughly 40%.

Customization

SIHM’s reliance on a single-ISA limits the customization possible. Any customizations unique to a

single core must not modify the ISA, which limits the amount of customization. Although an ISA

customization could be included in all cores, this would result in a large design effort and since

the customization would be common on all cores, would no longer offer any trade-off by switching

cores.

Relying on off-the-shelf GP-CPUs further halts customization. By their general-purpose na-

ture, all of the cores are designed not to optimize any particular workload.

Scalability

SIHM processors could scale to many cores, though it is unlikely that many cores supporting the

same ISA exist. Also note that the single active core prevents multicore parallelism, reducing the

incentives to add many cores. If this barrier is removed, SIHM processors could utilize homogeneous

multicore interconnect networks to scale cores upward.

Design complexity

By using existing GP-CPU designs, SIHM does not require much hardware design effort. If custom

cores were designed for the SIHM processor however, designing multiple unique cores for a single

ISA would become a highly complex challenge.

15

SIHM processors use a common ISA, so no porting work is needed to target the multiple cores.

The only additional software design challenges are to include OS support for picking and switching

to the best core for a given workload.

Production cost

If cores from successive processor families are used, the additional area overhead of SIHM is low.

Over time, technology scaling has given processor designers more transistors for the same silicon

area. As a result, older core designs use much fewer transistors than modern designs. When

fabricated at the same process technology, the area of older core designs is insignificant compared

to modern designs. Additionally, sharing the L2 cache SRAM between all cores reduces the area

overhead of adding additional cores.

Target market

Due to the support for a single general purpose ISA, SIHM’s can target large computing markets.

If the SIHM uses an already popular ISA, the SIHM can be used as a drop-in replacement to reduce

power and energy consumption in existing systems without porting. This approach could quickly

provide energy savings for mobile processors which have typically relied on several generations of

ARM cores, and whose workloads do not require state of the art performance at all times.

1.2.6 Mobile SoC

Mobile phones typically rely on System-on-Chip (SoC) processors to efficiently handle workloads

while maximizing battery life. These mobile SoCs contain a GP-CPU core (often designed by

ARM) and a handful of ASIC-like accelerator cores. The accelerators are large and coarse grained,

meaning that they implement large algorithm classes like 3D rendering, audio decoding, or radio

basebands. The accelerators typically communicate with the GP-CPU and system memory DRAMs

via a shared bus. SoCs with many accelerators and peripherals may bridge this bus to a secondary

bus connecting UARTs and other low-bandwidth peripherals.

SoCs rely on DMA controllers (DMACs) to copy data between the system memory DRAM

and accelerator SRAM I/O scratchpads, and many DMACs add dedicated channels to accelerators

16

to reduce shared bus contention. DMA is crucial for SoC performance by offloading time consuming

memory transfers away from the GP-CPU.

Mobile SoCs are popular in many mobile phones and portable media players. TI’s OMAP,

Qualcomm’s Snapdragon, and Samsung’s line of SoCs are frequently used for these devices today.

Research designs have suggested relying on accelerators for frequently executed workloads and

using a GP-CPU to perform less common operations when necessary. Under such an approach, the

GP-CPU and unused accelerators can be turned off to save power, thus ensuring only specialized

circuits are active in the common case. This approach is only feasible for domain-specific processors

where “common workloads” can be identified before fabricating the processor. For example, a ULP

processor utilized accelerators for wireless sensor networks to significantly reduce energy and power

consumption [33] by utilizing performance improvements of up to 1000x, and scaling down voltage

and frequency.

Execution improvement

As noted above, the dedicated accelerators used in mobile SoCs are known to improve performance

up to 1000x. Of course, this performance improvement applies to the limited number of operations

supported by the ASIC-like accelerators. These performance improvements can, and frequently

are, traded off for reduced power consumption. In addition, accelerators frequently use dedicated

voltage domains that can be independently turned off (VDD-gated) when not in use.

Customization

In contrast to the previously discussed accelerated architectures, mobile SoC accelerators are highly

specialized for a specific algorithm. Furthermore, SoCs contain several unique accelerators, resulting

in a much more heterogeneous architecture. The SoCs are unlikely to simultaneously compute all

of the accelerated algorithms at the same time, so silicon area utilization at any given time will be

much lower than homogeneous systems.

Mobile SoCs provide excellent power and performance improvements for the small subset of

workloads targeted by its accelerators. These accelerators are typically too workload-specific to

accelerate anything beyond this work set, and are inflexible to other domains.

17

Scalability

Mobile SoCs rely on a shared bus and a DMAC to transmit data, which are centralized and will

not scale to large numbers of accelerators. The shared bus will quickly become a bottleneck,

because every transfer from system DRAM memory to the accelerators or GP-CPU must go over

the shared bus. If the number of accelerators grow, the traffic over the shared bus will grow with it

and eventually saturate. The DMAC’s central control and buffering of accelerator traffic will also

become a choke point. DMACs often provide dedicated channels to high bandwidth accelerators, so

that each accelerator can transfer data to system DRAMs without delay from shared bus contention.

However, this centralized structure is clearly not scalable in its current implementation.

Design complexity

Unlike homogeneous multicore architectures, each accelerator core is unique. As a result, the

accelerators cannot be replicated from a single design but must be implemented individually. Due

to the typically small number of accelerator cores, the interconnect design complexity is low, making

system integration of accelerators comparatively simpler.

Software must also be updated to efficiently make use of the accelerators. The operating

system and shared libraries must be designed to manage memory transfers between accelerators,

system DRAM memory, and the GP-CPU. Accelerators typically process workloads in batches to

amortize data transfer costs. As a result, application software may need to adapt to a batched

processing model, rather than individually working with small pieces of data.

Production cost

Mobile SoCs contain several accelerators in addition to the GP-CPU. As a result, the area consumed

by the SoC increases with each accelerator. However, the most intensive work is performed effi-

ciently by accelerators, reducing the need for a complex GP-CPU. As a result, a simpler GP-CPU

can be used, reducing area increases brought on by the addition of accelerators.

18

Target market

The addition of coarse-grained accelerators limits mobile SoCs to the tasks which depend on pop-

ular, preset algorithms. These algorithms typically include support for audio, video, 3D rendering,

radio baseband, and signal processing. As a result, these SoCs are well suited for mobile phones

and media players, but few systems beyond portable media consoles.

1.2.7 Reconfigurable computing

Reconfigurable computing aims to map acceleration to all possible workloads. Rather than fab-

ricating accelerators for specific workloads, reconfigurable processors contain field programmable

gate array (FPGA) logic, which consists of many small look-up tables (LUTs) and D flip-flop (DFF)

register memories. By configuring these components at runtime, FPGAs appear to implement dif-

ferent logic. The reconfigurable approach ensures that if it is possible to make an accelerator for

an algorithm, an FPGA can implement it, no matter how obscure.

The downside to FPGA technologies is overheads: a 21x increase in area, 12x increase in

power, and 3-4x decrease in performance [45]. Unlike ASIC approaches, which synthesize transistors

and wires directly on silicon, FPGAs must map netlists into LUTs and DFFs. Although this

intermediate mapping enables FPGAs to be flexible through reconfiguration, the mapping is also

inefficient. This is not to say that FPGAs will always consume more area or use more power than

a synthesized GP-CPU, because FPGAs may implement accelerators that improve performance

and power by several magnitudes, more than compensating for FPGA overheads. However, custom

ASICs implementing the same accelerator using the same process technology will always have

smaller area and power costs, and better performance.

The FPGA business has long since matured, and many FPGA processors are commercially

available from Xilinx, Altera, and several other companies. Most FPGA processors now contain

a combination FPGA logic and ASIC-style non-reconfigurable cores, such as multipliers, small

SRAMs, and GP-CPUs. This approach aims to mitigate the area, performance, and power over-

heads for these commonly used components, while simultaneously providing FPGA circuitry for

rarer logic.

19

Execution improvement

FPGAs can provide the same ASIC-style accelerator performance improvements. Due to the per-

formance and power overheads of the inefficient LUT and DFF substrate, the performance and/or

power improvements is substantially degraded. Therefore, FPGAs are ideal for less common logic

which would be economically unfeasible to fabricate as an ASIC, but a poor implementation style

for commonly used logic such as GP-CPUs and commonly used accelerators.

Customization

FPGAs are uniquely homogeneous and highly customizable. From a fabrication perspective,

FPGAs mostly consist of a highly homogeneous LUT and DFF fabric. From a circuit designer’s

perspective, FPGAs have the potential for unprecedented customization, since FPGAs can imple-

ment any arcane netlist. Further, the same FPGA can then be reconfigured for a different netlist

later, as workloads change. As a result, FPGAs are uniquely flexible and highly customized. Also,

the FPGA may be fully utilized unlike other highly customized architectures, because the entire

FPGA fabric can be reconfigured to efficiently target changing workloads.

Scalability

Due to the regular nature of the FPGA fabric, FPGAs are highly scalable. However, building on-

chip networks using the LUT and DFF building blocks is inefficient. This may motivate optimized,

non-reconfigurable network implementations to improve large-FPGA efficiency.

Design complexity

Due to the separation of FPGA fabric design and the reconfigurable circuits implemented a layer

above, FPGA design complexity is both simple and complex.

The FPGA fabric’s design complexity is relatively low, consisting mainly of simple LUTs and

DFFs. Although fabrics often contain non-reconfigurable multipliers, SRAMs, and simple GP-

CPUs, designs for these components are relatively simple, and replicated throughout the FPGA

fabric.

Circuit designs implemented on the FPGA fabric are decidedly more complex. Because

20

FPGAs make implementing custom hardware for arcane algorithms economically feasible, design-

ing and integrating these custom accelerators introduces the complexities of mobile SoC processors

to smaller design efforts. Adding “on-the-fly” reconfigurability (reconfiguring without processor

downtime) adds a new level of complexity. Now, the processor must decide when and with which

fabric regions to reconfigure. This is a unique and complex challenge for reconfigurable computing,

since statically fabricated technologies cannot reconfigure.

Production cost

The production cost of FPGAs is comparatively cheap for low-volume designs, but high for high-

volume designs. For low-volume designs, the monetary costs for one-time costs such as fabrication

mask creation, time and cost overruns from design mistakes, and the long time to market makes

ASIC fabrication prohibitive. FPGAs, although imposing a 21x area overhead, do not suffer from

these overheads and make low-volume designs economically feasible.

However, the one-time overheads associated with ASIC fabrication are insignificant for high-

volume designs, whereas the significant area overheads required by FPGA implementations are

incurred for every chip. For this reason, the production cost of FPGAs is too large for high-volume

projects.

Target market

Due to high flexibility, FPGAs can target virtually any low-volume market, since one FPGA pro-

cessor design can be reconfigured for virtually any application domain. Due to production costs,

FPGAs cannot compete on price for high-volume markets, which can afford to give up some pro-

cessing flexibility given a large enough market for specific accelerated application domains.

1.3 Challenges

There are many accelerated architectures, each with a distinct approach to improve performance,

energy, power, or all three. Each design has trade-offs in terms of the magnitude of execution

improvements, future scalability, support for workload-specific customization, design complexity,

product cost, and market potential. There is no “correct” accelerated architecture, rather, archi-

21

tectures better suited for certain expectations. However, it may be possible to combine approaches

to maximize benefits.

Reconfigurable logic provides a unique combination of flexibility and specialization that can

accelerate a wide swath of workloads without high-volume demand. However, FPGAs are unable

to deliver the ultimate performance, power, and energy improvements found in the ASIC-style

accelerators of mobile SoCs. A “many-accelerator” architecture, where each of the many ASIC-

style accelerators targets a common workload, combines ASIC execution improvement and FPGA

wide workload coverage.

In the many-accelerator vision, many accelerators for common algorithms are available on-

chip. Applications will therefore benefit from ASIC-level acceleration for most of their workloads,

without incurring FPGA overheads. Of course, not all algorithms will be common or mature enough

to warrant fabricated accelerators. In these cases, a portion of the many-accelerator processor

may contain FPGA fabric. And for algorithms that do not benefit from hardware acceleration,

such as state machines and system supervision, the many-accelerator system will include a GP-

CPU. However, the majority of workloads will be processed by non-reconfigurable accelerators to

maximize performance, power, and energy characteristics, and will only use FPGA or GP-CPU

logic for the rare instances that the non-reconfigurable accelerators do not apply. As a result,

the many-accelerator approach will support ASIC execution improvement and FPGA flexibility to

changing workloads.

There are many opportunities for new innovations and accelerated architectures, all of which

are critical to realizing the many-accelerator vision. In this section, areas of accelerated architecture

design ripe for innovation are discussed.

1.3.1 Rapid accelerator development

Above all else, the many-accelerator architecture requires a large number of accelerators. Unlike

software libraries that utilize high-level languages (HLLs) such as C or Java, hardware accelerators

are typically developed in Verilog or VHDL RTL languages. As a result, accelerators are difficult to

develop. Algorithms with free software implementations commonly command tens of thousands of

dollars at a minimum as RTL designs. From a design perspective, implementing a many-accelerator

architecture would be prohibitively costly in terms of money or time via today’s approach.

22

However, support for HLLs is emerging in the accelerator world. Some approaches produce

RTL designs from existing languages, such as C/C++ [15]. Other HLL approaches use new lan-

guages created to represent the unique design constructs of hardware design, such as Bluespec [9].

With either approach, the time to design accelerators is greatly reduced. Although the HLL com-

piler may not produce the most efficient hardware designs, HLLs can enable larger design projects

and wider design space explorations that would not be tractable using RTL’s limited expressiveness.

Extensions on the HLL approach have automated compilation tools to automatically identify and

synthesize accelerators and co-design software machine code and accelerator hardware [72, 39].

HLL hardware compilers may one day make developing hardware accelerators as easy as

designing software. Further, designing hardware and software may cease to be different processes.

1.3.2 Identifying algorithms to accelerate

Before implementing an accelerated system, it is first necessary to identify which algorithms to

accelerate. First, identifying “common algorithms” is a subjective task and will require a significant

amount of workload profiling. Initially, profiling calls to system functions and shared libraries can

reveal which explicitly defined algorithms are the most popular and worth accelerating. As a long

term approach, similarity analysis of source code repositories would reveal other algorithms that

are frequently used in software, enabling additional common accelerators.

1.3.3 Minimizing accelerator area overheads

The additional area incurred by adding many accelerators must be kept to a minimum. To keep

accelerator area low, the granularity of accelerators must change. Coarse-grained ASIC-style accel-

erators found in mobile SoCs that target entire workloads, such as video and audio decoding, work

well when used independently. However, these accelerators introduce redundant logic when used

in the same system, since many workloads use the same common algorithms. For example, both

H.264 video and MP3 audio decoders utilize Huffman decoders and IDCTs. If these coarse-grained

accelerators were included in the same processor, at least two copies of the Huffman decoder and

IDCTs would be fabricated. Instead, medium-grained accelerators could reduce redundant logic,

while preserving the ASIC-style performance improvements not found in fine-grained instruction

level accelerators. In the medium-grain domain, accelerators would accelerate individual stages of

23

workload processing, such as the Huffman decoder or IDCT. These medium-grained accelerators

could then be chained together to implement the same algorithms as coarse-grained accelerators,

such as video or audio decoding. As a result, each medium-grained accelerator could be used

for multiple algorithms, thus making each medium-grained accelerator more workload-flexible com-

pared to coarse-grained accelerators. Also, duplicate logic area can be eliminated without incurring

the performance or energy costs of shoehorning acceleration into a restrictive ISA.

1.3.4 Scaling accelerator systems

To realize the many-accelerator vision, processors will include many more accelerators than current

mobile SoCs. This increased accelerator count is particularly inevitable if coarse-grained accelera-

tors are divided into several medium-grain accelerators. However, current mobile SoC interconnects

that utilize shared memory for inter-core communication, centralized arbiters such as DMA con-

trollers, and poorly scaling interconnects such as shared buses cannot support an order of magnitude

increase in accelerators.

Although tempting, existing scalable interconnect networks for homogeneous multicore ar-

chitectures will not effectively map to the world of heterogeneous accelerator systems since many

assumptions no longer hold. Because each accelerator core is unique, most cores will be idle or

turned off. As a result, a fraction of accelerators will utilize the on-chip network. This would

be highly unusual in a homogeneous multicore processor, where each core is typically active and

interacting with the on-chip network in a regular manner. Further, accelerators tend to send and

receive larger datasets than the messages passed over homogeneous multicore on-chip networks.

A network designed for larger batches of data would be more efficient than the packet-switched

networks favored in homogeneous multicore on-chip networks.

Networks designed for systems where a small percentage of cores are active and producing

bursty batch transfers would provide efficiency gains for the many-accelerator architecture. In

addition, a distributed memory and memory management architecture will be necessary to avoid

the bottlenecks of a single system DRAM memory and centralized DMA controller management.

The work presented in this thesis pursues the implementation of an efficient architecture for

many-accelerator systems. This architecture must efficiently satisfy the needs of single-algorithm

accelerators, and scale to support tens or hundred in the same system. To design such a system, un-

24

derstanding the unique behavior of accelerators, rather than general purpose CPUs, is paramount.

With this in mind, the following chapter discusses the development of an accelerator for maintaining

compressed Bloom filters in a wireless sensor network.

25

Chapter 2

Accelerator composition

To understand the attributes and behavior of single-algorithm accelerators, this chapter details the

development of one such accelerator. Although each accelerator derives much of its performance and

energy improvements by specializing for different algorithms, the process to develop accelerators

is not specific to any algorithm. By examining the development of a compressed Bloom filter

accelerator for wireless sensor networks, accelerator characteristics useful for designing a many-

accelerator architecture can be extrapolated. In particular, this chapter determines that much

of the accelerator’s silicon area is consumed by generic SRAM memory, not logic specific to the

algorithm. This results in two takeaways: that a many-accelerator architecture should further

investigate SRAM use in accelerators for optimization, and that the interconnect currently used to

interface accelerators as part of a larger system are lacking.

2.1 Accelerator design requirements

Battery-powered embedded systems carefully manage energy consumption to maximize system

lifetime. Wireless sensor networks (WSNs), made up of many “mote” devices, are often designed

to operate for months without intervention. Sensor networks are typically used to monitor an

environment and may be deployed in remote and hazardous locations. WSNs can consist of a

hundred motes or more, and cover wide areas. As a result, mote software and hardware must

consider energy consumption at every level.

Motes are simple, pocket-sized computers. Each mote contains a small battery that powers a

26

radio for wireless networking, a limited amount of memory, and a constrained processor. Aggrega-

tion, a widely researched field for reducing data transmissions by combining data on motes, reduces

energy use by spending additional energy on computation to save a greater amount of energy on

the power-hungry radio [51]. Increasing on-mote processing complexity will require additional com-

putational hardware, demanding more energy. As sensor networks grow and generate larger data

sets, these energy costs will continue rising.

Unlike PCs, embedded systems often execute a limited set of applications and have less need for

general purpose functionality. Simple bit manipulations poorly utilize a general purpose processor.

Complex operations, such as multiplication, require several cycles on a general purpose processor.

Many embedded applications require support for these simple and complex operations and most

existing systems must poorly utilize a general purpose microcontroller. In contrast, hardware

accelerators tailor hardware to the application.

The presented in this chapter accelerator implements several operations for compressed Bloom

filters, a data structure for efficiently storing set membership. These operations include support

for inserting items, compression and decompression, and querying. Significant performance, power,

and energy results over a general-purpose hardware solution for each custom operation is demon-

strated. In addition, the benefits of hardware acceleration are explored in the context of three

WSN applications: mote health monitoring, object tracking, and duplicate packet removal. For

these benchmarks, Bloom filters improve network reliability and reduce radio transmissions by up

to 70%. The hardware accelerator implementation provides significant gains in network latency

(59%), computational delay (85-88%), and computational energy (98%) compared to executing the

Bloom filter code on general purpose microcontrollers. Given these improvements, the benefits of

architecting processors for hardware accelerators is shown. The Bloom filter accelerator can be

VDD-gated when not in use so that it only uses energy when it will reduce total system energy

consumption by an even greater amount.

The remainder of this chapter is organized as follows. Section 2.2 discusses related approaches

to increase energy-efficiency and motivates the accelerator paradigm. Section 2.3 describes the algo-

rithms needed for the Bloom filter hardware accelerator, and Section 2.4 discusses the architectural

blocks needed to implement the approach. Power and performance advantages for the Bloom filter

accelerator are quantified for specific operations (Section 2.5) and larger applications (Section 2.6).

27

2.2 Power and performance optimization strategies

Parallel processing is well known for increasing energy efficiency in general purpose computing.

Designers distribute computation across several low-power cores rather than a single high-power

core [57]. The low-power cores operate at a lower frequency, reducing voltage and power require-

ments. Several cores can be combined in one processor to meet computational goals. Assuming

the lowest possible voltage is used, dynamic power is roughly proportional to nf3, where n is the

number of cores and f is the operating frequency; potential processing capacity is proportional to

nf .

Ideally, power demands are minimized when many low-frequency cores are used. However,

several factors limit the power reduction:

• Threshold voltage places a lower bound on voltage scaling. Subthreshold operation is possible

but adds significant design challenges [74].

• Leakage current increases the power consumption of each additional core.

• Interconnect logic for communication between cores and shared memory requires additional

power and may introduce bottlenecks.

• Software must be parallelized to run on all cores simultaneously

Hardware acceleration provides an alternative approach that may be more appropriate for

embedded systems due to the more specialized nature of the workloads. Motes do not require

the same amount of general purpose functionality as a conventional computing system and can

be customized for better performance and lower power. Furthermore, acceleration leverages the

same power-saving properties of parallelism by operating at low voltage-frequency combinations

with high performance, while also capturing the benefits of explicit hardware support for simple

operations such as bit-manipulations that are inefficient on general purpose cores. Additionally,

accelerated systems do not require core interconnect logic or the software challenges of parallelized

code.

28

Table 2.1: Bloom filter configurations

All configuration use a 16KB bit array and 32-bit elements. Bits per item applies to full Bloom
filters

Config. Item capacity Bits per item Hash functions (k) False positive rate

1 13500 9.71 7 < 1%
2 9000 14.56 10 < 0.1%
3 6500 20.16 14 < 0.01%

2.3 Bloom Filter Algorithms

Bloom filters provide a useful case study for an exploration of hardware acceleration. Using Bloom

filters, many WSN applications can easily aggregate information and reduce the size of large data

sets containing unique identifiers. These factors can reduce costly radio transmissions and lower

overall mote energy usage. However, some Bloom filter operations may require several seconds

of compute time on general purpose mote hardware, limiting the applicability of the approach

and incurring high energy usage. By implementing hardware support for Bloom filters, WSN

applications can achieve significant energy reductions without sluggish performance. The Bloom

filter hardware accelerator improves performance and energy use by optimizing several algorithms

in hardware. The accelerator natively supports Bloom filters, multiply and shift hashing, and

Golomb-Rice coding support for data aggregation, near-random hashing, and data compression,

respectively. The following sections describe these algorithms in detail.

2.3.1 Bloom filters

Bloom filters efficiently store set membership of large items by combining data in a large bit array.

Using a small number of hash functions, h1 . . . hk, Bloom filters reduce storage costs up to 70% [12].

Many applications, including spell checkers and distributed web caches currently use Bloom filters.

Other work has also suggested the use of Bloom filters in hardware [62, 59, 22]. However, these

works use Bloom filters for internal processor or network management and do not expose Bloom

filters to applications. Section 2.6 explores several Bloom filter applications for wireless sensor

networks.

The hardware accelerator implements a specific range of Bloom filter configurations: the bit

29

array is 16KB, up to 16 hash functions are available, and 32-bit items are supported. Initially,

the accelerator sets every bit in the array to 0, to create an empty Bloom filter. It inserts items

by hashing the item xi with every hash function h1 . . . hk. The results of these hash functions

h1(xi) . . . hk(xi) are addresses to bits in the array, which are set to 1. As the accelerator inserts

more items, the number of 1’s in the Bloom filter increases. When inserting items, some bits may

already be 1 due to previous item insertions writing to the same bit address.

Querying to check if an item xi is in the Bloom filter is similar to insertion. The acceler-

ator hashes the item with every hash function h1 . . . hk and checks each bit’s value at addresses

h1(xi) . . . hk(xi). If any hash function points to a 0 bit, the accelerator knows with certainty the

item is not in the Bloom filter. The item is in the Bloom filter with high probability if all hash

functions point to 1 bits, but cannot be known with certainty. These “false positive” errors, al-

though rare, occur when other inserted items hash to the same bits as the queried item. The false

positive rate can be pre-configured as required by the application, typically from 1% to 0.01% at

the cost of item capacity.

Items cannot be removed from a Bloom filter. Hypothetically, an item could be removed by

setting any of the item’s corresponding array bits to 0. However, many inserted items may hash to

the same bit, and removing one item may inadvertently remove several other items. All elements

can be cleared by setting all bits in the array to 0.

The false positive rate, item capacity, and energy requirements to insert or query an item are

determined by k, the number of hashes used by the Bloom filter. When k is larger, the false positive

rate decreases. However, smaller values of k result in Bloom filters with a larger item capacity and

lower energy cost per item insertion or query. This trade-off is illustrated in Table 2.1. A detailed

analysis of Bloom filter configuration is available in [12].

Bloom filters merge by bitwise ORing bit arrays, assuming both Bloom filters use the same

bit array lengths and hash functions. This property makes aggregating data in a WSN spanning

tree a trivial task: parents can merge Bloom filters from child motes quickly, insert their own items,

and transmit the aggregate Bloom filter to its own parent.

The Bloom filter is considered full when half of the array’s bits are 1. At this point, further

insertions will dramatically increase the false positive rate. Bloom filter storage is most efficient

when full, as the bit array is always a constant length. For example, configuration 1 in Table 2.1

30

can store 32-bit elements using less than 10 bits when full.

2.3.2 Multiply and Shift Hashing

Multiply and shift hashing, described by Dietzfelbinger et al. [23], is simple, yet effective. Each

hash function h1 . . . hk requires a hash key HashKey1 . . . HashKeyk. Hash keys are odd integers

randomly chosen before the Bloom filter is used. The accelerator represents hash keys as 32-bit

integers.

The hash hi of element xj is calculated using:

hi(xj) =
(HashKeyi ⇥ xj) mod 232

232−b
(2.1)

where b is the number of bits in the Bloom filter bit array address. For the 16KB bit array used

by the accelerator, b = 17. The modulo and divide are powers of two and can be efficiently

implemented with a bit mask and shift.

2.3.3 Golomb-Rice Coding

The accelerator implements Golomb-Rice coding, a popular compression and decompression method

used in Apple’s Lossless Audio Codec (ALAC) and Lossless JPEG (JPEG-LS) [54, 63]. As noted in

Section 2.3.1, a Bloom filter contains more 0s than 1s until filled. Therefore, sparsely filled Bloom

filters (under 70% full) can reduce Bloom filter size through Golomb-Rice coding. The algorithm,

a form of run length encoding, is simple to implement, and therefore power efficient.

The number of 1s in the bit array are first counted to determine the “remainder part” length

l. The relation between 1s in the bit array and l is precomputed; only a quick lookup is needed to

determine the remainder part length.

Second, the bit array is iterated from start to finish, scanning for run lengths of 0s between

1s. For each run length of n 0s, the remainder part r = b n
2l
c and quotient part q = n mod 2l must

be calculated.

After calculating r and q, the accelerator writes r 0s to the compressed bit stream, followed

by a 1. q is then written directly, using l bits. This process is used to write all run lengths in

31

Counter
Instruction

Decoder
Memory

Address

Controller

Bloom Filter

Memory

Bloom Filter

Memory

Bloom Filter

Memory

Bloom Filter

Memory

Memory

Data

Controller
Hash Key

Memory

Hash UnitData Builder

Decompressor

Compressor

Mux

Control Signals

Data Bus Out

Data Bus In

Figure 2.1: Bloom filter hardware accelerator hardware flow
Arrows indicate the direction of information, shaded blocks indicate modules controlled by the

Instruction Decoder.

the uncompressed bit stream until the end is reached. The second step’s implementation does not

require any expensive divisions or modulos; a counter is kept of the current 0 run length. If the next

bit is a 0, the counter is incremented. If the counter reaches 2l, a 0 is written to the compressed

stream and the counter is reset. If the next bit is a 1, a 1 is written to the compressed stream,

followed by the counter’s value using l bits. Therefore, Golomb-Rice compression can be reduced

to many simple bit operations.

2.4 Accelerator Architecture

The Bloom filter accelerator leverages the mote architecture described by Hempstead, et al. [34]

which provides a framework for custom hardware accelerators. The architecture proposes a lightweight

event processor for managing power and offloading tasks to hardware accelerators. High-level events

and tasks are decoded on the event processor and deployed to accelerators via memory mapped

operations. A simple processor executes any operations not explicitly handled by accelerators.

Hardware accelerators are synthesized with standard cells (e.g. ASIC flow) or through a shared

on-chip programmable FPGA substrate.

32

The Bloom filter accelerator supports a 16-bit data bus and consists of several modules,

illustrated in Figure 2.1. In the following sections, each major module in the Bloom filter accelerator

is examined, and design decisions for reducing energy and delay is discussed.

2.4.1 Bloom Filter Memory

The Bloom filter bit array is stored in four 2K x 16-bit SRAM memory modules. The bit array

is stored sequentially by address, so that bits are stored in the following order: Module1[0], Mod-

ule2[0], Module3[0], Module4[0], Module1[1], and so on. A four-module configuration was selected

to provide access to all four memory modules simultaneously, boosting performance by up to 4x.

Each SRAM can access one address per cycle, so increasing the number of SRAMs available at

a given cycle can greatly improve performance. Additionally, the accelerator uses four modules

with a 16-bit data bus rather than one module with a 64-bit data bus because some Bloom filter

operations only use one block per cycle. In this case, the unused three blocks can be disabled to

reduce dynamic power consumption. The design does not use a larger data bus because significant

additional logic would require more power and area, and wider bus lengths would rarely be fully

utilized and provide less corresponding performance improvements.

2.4.2 Memory Data Controller

The Memory Data Controller manages data stored in the Bloom filter memory. The accelerator

supports several Bloom filter operations, each writing to memory in a distinct style. Insertions and

queries only modify one bit at a time, while other operations may modify one block or four blocks

per cycle. The Memory Data Controller is responsible for ensuring each operation can write as

many or as few bits as is required.

The Memory Data Controller also counts the number of 1s inserted into the Bloom Filter at

every cycle. The accelerator uses this counter during compression operations to eliminate the need

for an additional full memory iteration as described in Section 2.3.3. As previously noted, memory

access can be a bottleneck, so this optimization is critical for performance.

33

Compressed

Bit 0

Compressed

Bit 1

Compressed

Bit 15

B
it D

eco
m

p
resso

r 0

B
it D

eco
m

p
resso

r 1

...

B
it D

eco
m

p
resso

r 6
3

0

1

63

...

0

1

63

...

0

1

63

...

...

Uncompressed Bit 0

Uncompressed Bit 1

Uncompressed Bit 63

Figure 2.2: Decompressor information flow

2.4.3 Memory Address Controller

The Memory Address Controller coordinates with other blocks to correctly set the addresses of each

of the four Bloom filter blocks. Although item insertion and query operations randomly jump from

bit to bit in memory, some operations may sequentially read one module at a time, and others read

sequentially from all blocks simultaneously. During sequential operations, the Memory Address

Controller remembers where processing ended in the last cycle so that the operation can be easily

resumed.

2.4.4 Decompressor

The Decompressor reads 16-bit Golomb-Rice encoded Bloom filter blocks from the data bus and

unpacks up to 64 bits of uncompressed Bloom filter. The Decompressor guarantees the entire

compressed block will be processed, or 64 bits of uncompressed Bloom filter will be unpacked.

These derive from the 16-bit data bus and the 64-bit width of Bloom filter memory. Although

these limits require significant additional logic, this higher performance design is supported to

avoid elevated computation delays when processing Bloom filters containing many elements.

The Decompressor is composed of 16 serially-connected bit decompressors, illustrated in Fig-

ure 2.2. This design allows each compressed bit to be decompressed serially. Although each bit

could be decompressed in parallel and reassembled, the serial design allows bit compressors to be

34

disabled when the uncompressed stream is full, thus reducing dynamic power. A dynamic style

would increase the speed of decompression, but is unnecessary due to the slow 100 KHz clock

frequency used by the Hempstead processor.

2.4.5 Compressor

The Compressor design is similar to the decompressor design and is composed of 64 serially con-

nected single-bit compressors. The Compressor reads 64 bits of uncompressed data from the Bloom

filter bit array, producing up to 16 bits of compressed data per cycle. These bit limitations are

due to memory access and data bus limitations respectively. As a result, compressed Bloom filters

can be produced 4x faster than uncompressed Bloom filters. Supporting these guarantees requires

additional logic, but gains in performance make this addition worthwhile.

2.5 Accelerator Evaluation

This section evaluates the design decisions discussed in Section 2.4 by comparing power, energy,

and performance of the hardware accelerated design against a general purpose hardware design

paradigm.

The Bloom filter hardware accelerator, with the exception of Bloom filter memory, was imple-

mented in Verilog and synthesized for a commercial 130nm process using Synopsis Design Compiler,

Encounter, and Cadence. The accelerator area is 792, 850µm2 and uses 1.217M transistors. Power

calculations are based on Design Compiler estimates, using the check power command on high

effort. Bloom filter memory was generated by the Faraday Memaker tool and power estimates

were profiled using Synopsis HSIM simulations. The accelerator implements two-phase clocking,

operates at 1.2V and supports a 100 KHz clock frequency.

As the placed and routed design shows in Figure 2.3, SRAMs (shown as black boxes) consume

79% of the accelerator’s area, and 21% is used by accelerator logic (below and to the left of SRAMs).

This result runs contrary to what many might assume. Although hardware acceleration depends

on customization to achieve power and performance improvements, generic SRAMs rather than

specialized logic consumes the majority of the hardware accelerator’s area.

Figure 2.4 shows the distribution of power between the larger elements of the accelerator.

35

Figure 2.3: Placed-and-routed Bloom filter accelerator design
SRAMs (79% of used area) are shown as black boxes, logic (21% of used area) is located in

bottom left corner.

When synthesized individually, each module requires roughly 10% more energy than shown, how-

ever, Design Compiler is able to reuse logic between modules to reduce total system energy. There-

fore, this analysis assumes shared logic savings is proportional to the total energy cost of each

module, and scales each module’s power equally to match Design Compiler’s system estimate.

Again, generic SRAM memory consumes a large portion (45%) of the accelerator’s power budget.

The general purpose design uses the Bloom filter software implementation for motes in Chang,

et al. [13]. This software implements Bloom filter operations exactly as described in Section 2.3.

The software was written in nesC for TinyOS 1.1.15 [36] and tested directly on the TMote Sky

mote. The TMote Sky features a relatively powerful 16-bit, 8 MHz TI MSP 430 processor with

10KB of memory. The analysis compares the hardware accelerator with the MSP 430 processor

due to its wide popularity in the sensor network community.

Due to memory limitations of the TMote Sky, only 8KB of memory is available for the Bloom

filter bit array in the general purpose implementation. Since the accelerated implementation uses a

16KB Bloom filter, the accelerator will use additional power supporting the additional memory, as

well as extra cycles to work on a Bloom filter twice as large. Yet, the accelerator logic demonstrates

36

Hash Key

Memory

8µW (1%)

Decompressor

263µW

(33%)

Bloom Filter

Memory

352µW

(45%)

Other Modules

25µW (3%)

Compressor

138µW

(18%)

Figure 2.4: Average power usage of Bloom filter hardware accelerator modules

significant performance and energy savings despite this handicap.

Timing figures for the accelerated implementation are generated by counting the number of

cycles used. Total system power for the accelerator design is 886µW, of which 786µW is expended

by the Bloom filter accelerator. The remaining 100µW is consumed by the Hempstead event

processor and other infrastructure logic.

Timing figures for the general purpose implementation are obtained through experimentation.

Operations are executed on the TMote Sky and timed using internal microsecond and millisecond

clocks for high accuracy. Using an average TMote power of 4.86mW, derived from the TMote Sky

datasheet [19]. Therefore, the general purpose implementation’s processor power requirements are

almost 450% higher than the accelerated implementation.

For both implementations, energy is calculated as Poweravg ⇥ T ime.

2.5.1 Item Insertion and Querying

Item insertion is highly efficient in accelerator logic due to native support for the complex multiply

and shift hashing operation. Accelerator logic requires significantly less time for insertions in all

cases, as illustrated in Figure 2.5. Furthermore, insertion uses 97% less energy per insertion than

37

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 7 8 9 10 11 12 13 14 15

D
el

ay
 (

s)

Hash functions (k)

Accelerated Hardware Design
General Purpose Hardware Design

Figure 2.5: Item insertion times of application-specific hardware design logic and
general purpose design logic

general purpose logic, regardless of the number of hash functions used.

Several factors contribute to the accelerator’s advantage. First, the accelerator logic can hash

during one cycle due to its native support for multiply and shift hashing. On the contrary, the

MSP 430 processor used in the general purpose implementation only supports 16-bit math and

must spend many cycles to complete the multiplication operation.

Further, the accelerated implementation does not require additional logic to perform the

required bit shift. Instead, the accelerator’s logic simply uses bits 31 through bits 15 (bit 0 is the

least significant bit). The MSP 430 does not natively support this bit selection and must spend

additional cycles on a 32-bit shift to obtain the corresponding bit address.

Memory operations limit the speed of as the accelerated implementation, as only one memory

read or write can be performed per cycle. Therefore, the accelerator’s insertion implementation

requires 2 cycles per hash (one to read the block, another to write the modified block back).

Parallelizing item insertion would require significant additional logic due to the seemingly random

bit addressing caused by the hash function. Although support for processing up to four hashes

could theoretically be possible due to the four Bloom filter memory modules, the block location

38

of each hash is unknown until calculated. Furthermore, all hashes could theoretically point to the

same block, making simultaneous bit insertions impossible.

Querying items contained in the Bloom filter is similar to item insertion: the item is hashed

k times and the bit at address hi(xj) is verified to be 1. This process takes roughly half the time of

insertion on accelerated logic because only one memory read is required for each hash. The general

purpose implementation is time-bound by the hash function, however, so performance is largely

equal to insertion.

2.5.2 Compressing Bloom Filters

The accelerator improves Bloom filter compression performance up to 1800%, as shown in Fig-

ure 2.6, and reduces energy consumption up to 99%. The key to these accelerator-based improve-

ments is custom support for Golomb-Rice coding. When implemented in software for general

purpose systems, each uncompressed bit must be examined to count run lengths of 0 bits. When a

1 is encountered, another lengthy set of bit operations must be performed to determine the correct

sequence of compressed bits. As more elements are inserted into the filter and the frequency of 1s

increases, the quantity of run lengths grow and additional work is required to compress. In general

purpose software, this additional work increases the compression delay. The accelerator requires

additional cycles as well, but provides a fast upper bound on compression delay. The accelerator’s

compressor guarantees a compressed 16-bit block will be produced or 64-bits of uncompressed data

will be processed every cycle. Therefore, compression can never exceed 81.92ms and is often faster.

As noted in Section 2.3.3, the number of 1s in the bit array must be counted to determine

l, before compressing run lengths. Memory access is slow in the accelerator implementation due

to the 100 KHz clock frequency, and iterating through the memory would require an additional

20.48ms. To avoid this penalty, the accelerated implementation counts the number of ones in

the filter as they are inserted. Therefore, the accelerator requires only one memory pass. The

bit tracking technique is not used in the general purpose implementation due to lack of hardware

support. Adding support in software would require several cycles per insertion or query, operations

frequently used in many applications. Adding bit tracking support for lengthy merge operations

would also require significantly larger delays. Performing two passes of memory, a fast process

in the 8 MHz general purpose implementation, requires less delay overall in the general purpose

39

 0

 0.5

 1

 1.5

 2

 0 0.2 0.4 0.6 0.8 1

R
ea

d
in

g
 (

C
o

m
p

re
ss

io
n

)
D

el
ay

 (
s)

M
erg

in
g

 (D
eco

m
p

ressio
n

) D
elay

 (s)

Fullness of Bloom filter

Accelerated Hardware Design
General Purpose Hardware Design

 0

 1

 2

 3

 4

 5

 6

Figure 2.6: Bloom filter reading and merging delay at a 1% false positive rate
The accelerated implementation uses a 16KB Bloom filter; the general purpose implementation
uses an 8KB Bloom filter. Uncompressed Bloom filters are used after reaching 70% fullness.

system.

At 70% of capacity, run lengths become too small to effectively compress, and Bloom filters

are delivered uncompressed. The general purpose implementation no longer compresses and simply

reads from memory. Although the accelerated implementation is only 19% faster when the Bloom

filter is approaching capacity, recall that the accelerator’s Bloom filter is twice the size of the

general purpose implementation. If both implementations used equivalently sized bit arrays, the

accelerated implementation would perform 59% faster. Further, the accelerator could reduce the

uncompressed Bloom filter read delay by 75% if a wider data bus is used in a future architecture.

2.5.3 Merging Compressed Bloom Filters

Bloom filter merging uses bitwise ORs to combine a foreign Bloom filter with the filter stored

in the bit array. The foreign Bloom filter, delivered over the data bus, is processed over several

segments. If compressed, each foreign Bloom filter segment must first be decompressed. Meanwhile,

the corresponding Bloom filter segment stored in memory is loaded. The two segments are bitwise

ORed and saved back into the bit array memory.

40

Bloom filter merging performance resembles Bloom filter compression performance, as shown

in Figure 2.6. The accelerator performs up to 2700% faster and can reduce the energy cost by more

than 99%. This performance boost is largely due to the accelerator’s decompressor design. The

decompressor guarantees the entire compressed Bloom filter segment will be decompressed, or four

blocks of uncompressed memory will be processed. The first guarantee provides an upper bound of

163.85ms per merge, but the second speeds up the process when the foreign Bloom filter is highly

compressed.

The large gains are only obtained when using compressed Bloom filters. Rice-Golomb coding

is relatively inefficient in general purpose hardware due to the large number of bitwise operations.

However, once uncompressed Bloom filters are used beyond 70% capacity, general purpose perfor-

mance noticeably improves. The general purpose implementation appears to operate faster beyond

70% capacity due to the memory size disparity between implementations. If both implementations

used the same bit array size, the accelerated implementation would require 34% less time and 88%

less energy.

When low or no compression is used, the data bus limits performance. Because each Bloom

filter segment requires two cycles (once to read from the bit array and once to write), 16,384 cycles

are required to perform a merge in the worst case. If a larger data bus were used in a future

architecture, merging delay could be reduced by an additional 75%.

2.6 Application Evaluations

In this section, several distinct Bloom filter-based wireless sensor network applications are examined

to demonstrate Bloom filter gains and to quantify accelerator performance and energy improve-

ments. Each application represents a different class of Bloom filter use. The mote status application

shares a Bloom filter across a sensor network, so that a central server can check if any motes in

a large network require attention. In the object tracking application, each mote in the network

individually records the unique identifiers of sensed objects in a private Bloom filter, periodically

transmitting the filter to a central server. The duplicate packet removal application uses a Bloom

filter to locally store identifiers of each packet received to quickly remove any packets duplicated

by routing errors.

41

Mote networks may contain thousands of motes in the future, and managing mote operation

will be critical in maintaining reliability. Mote networks are typically routed in a spanning tree

formation and support multi-hop routing. A central server will connect to the root mote to send,

analyze, and store information from the sensor network. If a mote is not close enough to directly

transmit data to a desired mote, data can hop across several intermediate motes to reach its

destination. For example, if a mote wishes to send data to the central server, the mote would send

a packet to its parent mote, which sends the packet to its own parent mote, eventually reaching

the server by way of the root mote. Extremely large mote networks can easily become saturated if

storage and transmissions are not properly managed.

The following examples assume the sensor network uses a two child per parent routing tree

structure. The example also assumes mote radios have a 40kbps effective data rate (does not include

transmission overhead) [14]. All calculations are estimations based on the accelerator analysis from

Section 2.5 and on-mote timing profiling of the general purpose implementation software.

2.6.1 Mote Status

Spanning tree topology can be problematic for the root mote and motes nearby. The root mote

must forward every packet sent from the sensor network to the central server; nearby motes must

also handle large amounts of network traffic. In many cases, the root mote will not be able to

forward data to the server quickly enough, resulting in dropped packets and poor quality of service.

Even if the radio can handle the network traffic, the radio will quickly exhaust the root mote’s

energy and cut off the sensor network from the server.

Bloom filters can greatly reduce the transmission load on these taxed motes by efficiently

aggregating mote status information, such as low battery warnings, within the network. In this

example, a sensor network of 128,000 motes demonstrates this application’s ability to monitor

extremely large sensor networks by using Bloom filters. Each mote uses a corresponding 4-byte

identifier and the example assumes 10% of the mote batteries are low at any given time. A mote can

send a low battery alert by periodically transmitting its unique identifier (UID) to the server via its

parent. Leaf motes on the boundaries should individually send these UIDs without Bloom filters.

As Figure 2.7 indicates, Bloom filters are only efficient when at least 15% full, or when about 2000

items are inserted with a 1% false positive rate. As these low battery alerts hop from parent to

42

 0

 10

 20

 30

 40

 50

 60

 70

 0 2000 4000 6000 8000 10000 12000

B
it

s
p
er

 i
te

m

Items inserted into Bloom filter

Bloom filter
Sequentially stored items

Figure 2.7: Storage cost per item for a 16KB Bloom filter and 1% false positive rate
Bloom filters are more efficient than sequentially storing 32-bit items when the bit per item cost is

under 32 bits.

parent, approaching the root mote, each parent mote will need to forward twice as many alerts as

each child. When a mote has received 2000 or more items, it should create an empty Bloom filter

and insert these elements. This Bloom filter will then be sent to the following parent mote, which

will merge any Bloom filters it receives, insert UIDs sent sequentially without Bloom filters, and

insert its own UID if its battery is low. This process of merging Bloom filters and inserting single

UID items will continue as Bloom filters approach the root mote. The root mote will finally deliver

a single Bloom filter, containing all low battery alerts, to the server. The server can then query the

Bloom filter for each UID in the network to discover which motes require attention. Additionally,

the server can track alerts over time to reduce errors from false positives: by identifying motes

which consistently report low batteries, the server can remove erroneous alerts that sporadically

appear. Meanwhile, all motes will clear their Bloom filters and restart the process as needed.

Both accelerated and general purpose approaches implement the same algorithms, so both are

capable of reducing transmissions near the root mote up to 70%, thus reducing use of the mote’s

most power-hungry component. The accelerated implementation significantly reduces Bloom filter

43

end-to-end delay: the maximum delay from a mote issuing a low battery alert to the server detecting

the alert is reduced from the general purpose implementation’s 46s to 19s, assuming no transmission

errors. Furthermore, the accelerated implementation reduces Bloom filter computation energy costs

by 98% to 2.73mJ for every network-wide mote status scan.

2.6.2 Object Tracking

Previous work has used mote networks for object tracking [70]. Motes can identify objects by

a unique ID using technologies such as RFID. This application uses Bloom filters with a sensor

network to find packages in a busy package delivery warehouse. The example assumes each package

has an RFID tag, so motes can detect package UIDs when nearby.

As packages move within the vicinity of a mote, the mote will wirelessly read the package’s

UID and store it in the mote’s Bloom filter. When the Bloom filter becomes full, the mote will

send the Bloom filter to the server. Note that the object tracking application does not merge

Bloom filters with other motes. Instead, its Bloom filter is forwarded by other motes to the server

for analysis. When a package is lost, the server looks at the most recently received Bloom filter

for each mote and queries each to see if any have seen the package. If a false positive causes the

package to appear in multiple places, previous Bloom filters can be examined to correctly identify

the package location.

This merge-free approach requires additional latency: Bloom filters only store data for one

mote, so more time is required to fill the Bloom filter. However, this technique also ensures Bloom

filters are sent when they are full and store items most efficiently. When latency is not critical,

individualizing Bloom filters can improve transmission energy costs at every hop, not just near the

root.

To build each Bloom filter, motes must clear the Bloom filter, insert enough UIDs to fill the

filter, and read the Bloom filter for transmission. With a false positive rate of 1%, the accelerator

is able to reduce Bloom filter computation to 2.13s. This 85% reduction in delay over the general

purpose software design corresponds to a 97% reduction in computation energy consumption.

44

2.6.3 Duplicate Packet Removal

Bloom filters are well equipped for removing duplicate packets [32]. Wireless sensor networks are

particularly susceptible to duplicate packets due to wireless transmission errors. By using Bloom

filters to track whether a packet was previously received, these transmission errors can be filtered

out. When a mote receives a packet, the mote creates a unique packet identifier from the source

packet’s UID and the packet’s sequence number. Motes query the Bloom filter using this packet

identifier. If the packet is found, the mote processes the packet and sends an acknowledgment

to the source mote to indicate that the packet was received. The mote also inserts the packet’s

identifier into the Bloom filter. If found, it likely received the packet and ignores it. However,

the mote sends an acknowledgment to the source mote indicating a duplicate packet because false

positives may cause the mote to mistakenly ignore an original packet. However, the source mote

will realize the mistake upon receiving the acknowledgment and resend the same packet with a new

sequence number. Dropped packets will be detected when no acknowledgment is received by the

sending mote. In this case, the packet will be resent with the same sequence number.

Although this application does not transmit Bloom filters, the accelerator improves storage

ability and reduces search time. The Bloom filter accelerator stores more than 200% additional

packet UIDs and provides extremely fast search times. Individually stored packet identifiers would

require significantly more physical memory and additional searching algorithms.

When working with frequent radio transmissions, delays must be minimized. In the worst case,

each delivered packet requires one item query and one item insertion to eliminate duplicate packets.

For a 1% false positive rate, this process requires 240µs with the accelerator. This performance

boost corresponds to an 88% delay reduction and 98% computation energy reduction over the

general purpose implementation.

2.7 Takeaways

During the development of the Bloom filter, two major observations were made: SRAMs consume

the majority of accelerator area, and the interconnect used to interface accelerators limits the

number and granularity of accelerators. With these concerns in mind, the following chapter develops

an architecture to address these issues.

45

Chapter 3

Accelerator store

As Chapter 1 discussed, the end of threshold voltage scaling has led architects to turn off cores to

stay within power budgets. These dark silicon transistors are unused and therefore wasted. There

is no reason to create more copies of the same core design than can be powered, but including

a heterogeneous mix of core designs allows the processor to turn on the most efficient cores for

current workloads, and only the least efficient cores will be dark at any given time.

Hardware accelerator cores, including the previously discussed Bloom filter accelerator, rep-

resent the frontier of customization-fueled performance: for maximum efficiency, each accelerator

implements a single algorithm. By building processors containing many accelerators, not just iden-

tical copies of the same general purpose core, architects can again achieve frequency-clock scaling

performance gains. The key is taking advantage of, rather than falling victim to, dark silicon using

hardware accelerators.

In order for many-accelerator systems to be a viable performance-enhancing solution, it is

important to first understand characteristics of several accelerators and develop a flexible frame-

work that ties them together. This chapter presents the accelerator store (AS), a shared-memory

framework, which allows for efficient allocation and utilization of resources in many-accelerator

architectures.

To successfully design the AS and efficiently support many-accelerator systems, a deep under-

standing of the accelerators is necessary. Section 3.1 surveys eleven commercial and open source

accelerators, revealing that generic SRAM memories consume 40 to 90% of the area in each accel-

erator, showing lessons learned from development of the Bloom filter accelerator were not unusual.

46

Core Core Core

Core Core Core

Core Core Core

(a) Traditional multi-core



































(b) Traditional SoC

Accel

Core

Accel

Core

Accel

Core

Accel

Core

Accel

Store

Accel

Core

Accel

Core

Accel

Core

Accel

Core

Accel

Store

Accel

Core

Accel

Core

Accel

Core

Accel

Core

Accel

Store

Accel

Core

Accel

Core

Accel

Core

Accel

Core

Accel

Store

GPCPU

Core

System control bus

AS OCN

(c) Many-accelerator

Figure 3.1: Comparison of architecture styles

This study then categorizes these private accelerator memories into four categories based on ca-

pacity, bandwidth requirements, and latency sensitivity. The analysis finds that in many cases

large private SRAM memories embedded within accelerators also tend to have modest bandwidth

and latency requirements. Sharing these SRAM memories between accelerators would reduce the

amount of on-chip memory through amortization, thereby shrinking total processor area. This area

reduction can be used for cost savings or to place additional accelerators for even greater diversity

and performance improvements. A well-architected accelerator store along with careful selection of

shared SRAM memories leads to very little overhead compared to private-memory based systems.

To efficiently share memory between accelerators and optimize many-accelerator systems,

Section 3.2 presents the accelerator store’s design. The accelerator store supports ways to combine

multi-core and customized logic as illustrated in Figure 3.13:

• Support for shared SRAM memories: The AS allocates memory to accelerators on an as-

needed basis.

• Centralized model/decentralized scalability: The AS presents a centralized view of shared ac-

celerator memories to keep interactions with software and accelerators simple, but is physically

distributed. A many-accelerator system can use multiple ASes, with a group of accelerators

clustering around each AS as shown in Figure 3.1(c). The multi-AS design can scale to

hundreds of accelerators.

• Fine-grained accelerator support: The AS’s decentralized implementation supports accelera-

47

Table 3.1: Accelerators studied

Accelerator Function Area used by SRAM memory

AES Data encryption 40.3%
JPEG Image compression 53.3%
FFT Signal processing 48.6%

Viterbi Convolutional coding 55.6%
Ethernet Networking 90.7%
USB (v2) Peripheral bus 79.2%

TFT Controller Graphics 65.9%
Reed Solomon Decoder Block coding 84.3%
UMTS 3GPP Decoder Turbo convolutional coding 89.2%

CAN Automotive bus 70.0%
DVB FEC Encoder Video broadcast error correction 81.7%

Average 69.0%

tors in greater numbers than the handful found in today’s SoCs. Many-accelerator systems

may not just add new accelerators, but also decompose accelerators into multiple fine-grained

accelerators. These finer-grained accelerators implement more commonly used algorithms

and are less application specific.

• Flexible abstraction: The accelerator store’s refined accelerator and software interfaces mini-

mize overheads and open many research avenues.

Section 3.3 evaluates an RTL implementation of the accelerator store in multiple systems,

demonstrating that area reduces by 30% while maintaining customized logic’s superior perfor-

mance and energy, and that performance and energy overheads due to added memory latency and

contention are minor. Section 3.4 presents related work.

3.1 Accelerator Characterization

To design an efficient many-accelerator architecture, accelerators that comprise many-accelerator

systems must first be analyzed. The analysis begins with several commercial and open source

accelerators, and finds that generic SRAM memories consume between 40% to 90% of each acceler-

ator’s area. SRAMs are the biggest consumer of accelerator area, but amortizing memory through

sharing will greatly reduce this cost. Some accelerator memories are better shared than others,

48

so memory access patterns in four accelerators are characterized based on capacity, bandwidth,

and sensitivity to memory latency. This analysis results in a simple methodology to select which

accelerator memories to share and which memories should remain private.

3.1.1 Accelerator composition characterization

The analysis begins with the composition of several open source and commercially developed ac-

celerators when synthesized for ASIC fabrication. These accelerators implement algorithms from

several widely used domains, including security, media, networking, and graphics. It is impossible

to directly obtain composition data with a standard ASIC toolchain because many accelerators

utilized FPGA-specific logic blocks. Instead, each accelerator was synthesized using the Xilinx ISE

10.1 FPGA synthesis toolchain to obtain FPGA memory and logic statistics. Previously measured

scaling factors [45] were then applied to obtain ASIC composition figures. The analysis shown

in Table 3.1 demonstrates that SRAM memories consume an overwhelming amount of area in all

accelerators, up to 90%.

Memory is therefore the best target for area optimization. Leveraging the large numbers of

accelerators in the many-accelerator system creates more opportunities for area reductions by shar-

ing memories between accelerators. At any given time, some accelerators will be actively processing

and turned on, while most accelerators will be dormant and VDD-gated off. These off accelerators

continue consuming ASIC chip area without providing any function to the system. Unlike private

accelerator memories that must be provisioned at circuit design time, shared accelerator memory

can be dynamically assigned to accelerators at runtime. Via sharing, memory can be effectively

provisioned to accelerators when needed, without the power, performance, and cost overheads of

reconfigurable logic. This approach reduces the area cost of accelerator memory from the sum of

each accelerator’s memories to the much lower sum of memories used by accelerators at any point

in time.

Shared memory also creates new memory reductions by eliminating over-provisioning and by

merging redundant memories. Accelerator designers do not always know how their accelerators will

be used, and over-provision memory to add flexibility. For example, a 1024 point FFT may also

support 256 and 512 point FFTs. Although the core computation between any of these FFTs is

the same butterfly operation, the 1024 point memory requires 4x of the memory used by the 256

49

point FFT. In another light, using the over-provisioned 1024 point FFT to perform a 256 point

FFT wastes 75% of the FFT’s memory. Although a smaller FFT would be more efficient in this

case, the processor may be used for other applications requiring a larger FFT or the application

may switch between FFT configurations. Memory sharing eliminates over-provisioning by assigning

memory as required by the accelerator at runtime.

Merging memories with memory sharing reduces area costs and redundant transfers. Most

accelerators contain memories for storing input and output data. Outputs from one accelerator

often become inputs for another accelerator, and output memory and input memory store the same

data. Sharing can merge these two memories into one shared memory, reducing memory area

in half. Memory merging also reduces data transfers because copies between the two unshared

memories are no longer required.

During early experiments, all private accelerator memories were initially shared. This in-

discriminate approach saved a large amount of chip area but incurred significant performance

overheads. A small portion of accelerator SRAM memories were not amenable to sharing due to

extremely high bandwidth requirements or sensitivity to memory latency. To identify memories

that can be shared effectively and memories that should remain private, this analysis character-

izes SRAM memories from four accelerators, resulting in significant area reductions and minimal

performance overheads.

3.1.2 Memory access pattern characterization

The access patterns of each memory was profiled using RTL for the first four accelerators (Viterbi,

AES, FFT, and JPEG) and results shown in Table 3.1 to determine which attributes result in poorly

performing shared memories. The function and design of these four accelerators vary significantly,

ensuring the AS will provide high performance shared memory for accelerators in all domains.

Each accelerator’s RTL is first instrumented to record every memory access, then executes

test workloads for each accelerator. This determines the average bandwidth, maximum bandwidth,

and bandwidth variation for every memory over full workloads. Bandwidth use for each memory

is shown in Figure 3.2.

Each memory’s degree of dependency, a measure of latency sensitivity, is also analyzed. Shar-

ing memories adds more logic and latency into each memory access. It is therefore important to

50

0 153 306 459 612 765 918 1071 1224 1377
0

258.067

1.06667

256

1

Entire accelerator

Viterbi Input FIFO

Viterbi RAM

Viterbi Output FIFO

Cycles

A
v
e
ra

g
e
 b

a
n
d
w

id
th

 (
b
it
s
/c

y
c
le

)

(a) Viterbi decoder

0 12 23 35 47 59 70 82 94 105
0

72

8

8

16

16

16

16

Entire accelerator

AES Enc Data In FIFO

AES Enc Data Out FIFO

AES Enc Key RAM 1

AES Enc Key RAM 2

AES Enc RAM 1

AES Enc RAM 2

Cycles

A
v
e
ra

g
e
 b

a
n
d
w

id
th

 (
b
it
s
/c

y
c
le

)

(b) AES-128 encrypter

0 344 687 1031 1374 1717 2061 2404 2748 3091
0

352

16

16

16

32

64

Entire accelerator

FFT Data In (Real) FIFO

FFT Data Out (Imaginary) FIFO

FFT Data Out (Real) FIFO

Data RAM (x3)

Constants RAM (x4)

Cycles

A
v
e
ra

g
e
 b

a
n
d
w

id
th

 (
b
it
s
/c

y
c
le

)

(c) 1024 point, 16-bit FFT

2 2457 4911 7365 9820 12274 14728 17183 19637 22091
0

641.654

13.8272

10.5679

0.658436

8

Entire accelerator

JPEG MDCT ROM 1 0 Even (and 51 other ROMs/RAMs/FIFOs)

JPEG Input FIFO

JPEG Huffman FIFOs (2x) and RLE FIFOs (2x)

JPEG Output FIFO and JFIF RAM

Cycles

A
v
e

ra
g

e
 b

a
n

d
w

id
th

 (
b

it
s
/c

y
c
le

)

(d) JPEG encoder, one horizontal line

Figure 3.2: Total memory bandwidth utilization of several accelerators
Plots indicate one round of computation. Labels on the Y-axis indicate maximum binned

bandwidth for each memory

ensure shared memories are latency insensitive. A memory is latency sensitive and highly depen-

dent if the results of previous memory accesses contain information necessary to perform the next

access. Highly dependent memories with long access latencies exhibit poor performance because

logic must stall while waiting for memory accesses to complete. A memory used for linked list

traversal exhibits high dependency because the first node must be completely read from memory

to determine the memory address of the next node to read. Conversely, memory accesses from

non-dependent memories do not depend on previous accesses to complete and can be planned in

advance. Therefore, non-dependent memories are insensitive to increased memory latency and

amenable to memory sharing. FIFOs are inherently non-dependent because access order is fixed

51

by design (first in, first out). Many random access memories are non-dependent or can be designed

non-dependent by pipelining memory accesses.

Using capacity as well as the above dependency and bandwidth characteristics, each acceler-

ator memory is placed into one of four categories: inter-accelerator FIFO, intra-accelerator FIFO,

large internal RAM, and small lookup table.

Inter-accelerator FIFOs are used to load data into the accelerator for processing, or load

data out after processing. Accelerators typically communicate with the system over shared buses,

which are subject to arbitration delays for every transfer. Larger transmissions are more efficient:

reducing the number of transmissions by increasing transmission size results in fewer arbitration

delays. These large transmissions are buffered in the inter-accelerator memories, so these memories

must be large enough to store the large transmissions. Inter-accelerator memories are typically sized

in the kilobytes, and are assumed to be 2 KB for accelerators that do not define inter-accelerator

memory size.

Inter-accelerator FIFOs exhibit bursty bandwidths, using their full bandwidth at the beginning

or end of an operation when data is streamed in or out. These memories spend many cycles

completely dormant after transfers until the next batch of data is ready. This behavior is shown

for every accelerator’s input and output FIFOs in Figure 3.2.

Inter-accelerator FIFOs do not introduce additional memory dependencies and can be easily

pipelined. These FIFOs do not need to follow a strict schedule, provided input FIFOs are filled

before the next operation begins and output FIFOs are unloaded before the next operation ends.

This timing can be relaxed further if the FIFOs are sized to handle data sets for multiple oper-

ations. Inter-accelerator FIFOs make ideal candidates for memory sharing. They consume large

amounts of accelerator area, so sharing these memories results in significant area savings. Inter-

accelerator FIFOs have relatively light bandwidth requirements. These memories are insensitive to

the increases in access latency that memory sharing would introduce because they do not require

strict schedules. Sharing inter-accelerator FIFOs also adds the unique advantage of merging input

and output FIFOs between accelerators. Intra-accelerator FIFOs feature attributes similar to inter-

accelerator FIFOs, though not to the same magnitude. Some accelerators consist of several stages,

each resembling a small accelerator. Intra-accelerator FIFOs are used to connect these stages and

build up larger accelerators consisting of several steps. For example, the JPEG accelerator uses FI-

52

FOs to connect Huffman encoding, run-length encoding, and other stages. Accelerators use FIFOs

rather than direct connections so stages can be designed independently and to ease timing com-

plexities between stages. Intra-accelerator FIFOs are therefore resilient to memory access latencies

and non-dependent. Unlike inter-accelerator FIFOs, intra-accelerator FIFOs are not all large and

only some will be worth sharing. As shown in Figure 3.2, bandwidth variations are much smaller in

intra-accelerator FIFOs and result in fewer idle periods. Some accelerators require large amounts

of bandwidth, and others need only a small trickle (Huffman encoder, RLE). The low bandwidth

memories are also the largest, resulting in the greatest area savings and lowest performance impact.

Deciding to share intra-accelerator FIFOs is a more subjective choice than for inter-accelerator

FIFOs. Both FIFO types are non-dependent, but intra-accelerator FIFOs may be too small or

require too much bandwidth to make sharing worthwhile. Therefore, a bandwidth and capacity

based analysis is necessary before considering intra-accelerator FIFOs for sharing.

The third memory type identified is large internal RAMs. These memories are typically sized

in the kilobytes and are often used for values that rarely change. For example, the FFT stores

constant coefficients for its butterfly operation in four 2 KB SRAMs as seen in Figure 3.2(c). Other

memories are used as internal buffers for values that must be written out of order (JPEG JFIF

RAM, FFT data RAM). In most cases these memories are non-dependent because access addresses

are predictable, and requests to these memories are easy to pipeline. Bandwidth requirements for

these memories also tend to be low and bursty. Internal RAMs are large, usually exhibit low or

no dependence, and require little bandwidth. Therefore, large internal RAMs are well suited for

memory sharing.

The final memory considered is small RAM and ROM lookup tables (LUTs). These are the

smallest memories, usually about 100 bytes. These memories typically require high bandwidths,

and are often used to determine control flow, making pipelining difficult. Sharing small RAM/ROM

LUTs provides little benefit due to their small size and performance overheads.

3.1.3 Shared memory selection methodology

Ultimately, the selection of which memories to share should maximize shared area and minimize

performance overheads. Large, low bandwidth, and non-dependent memories are ideal for sharing.

At first glance, inter-accelerator FIFOs, large internal RAMs, and some intra-accelerator FIFOs

53

0.1

1

10

100
Memory size

K
B

y
te

Bandwidth

A
c
c
e
s
s
e
s
/c

y
c
le

10
3

10
2

10
1

10
0

10
4

10
5

10
6

10
7

B
it
s
/(

a
c
c
e
s
s
e
s
/c

y
c
le

) Memory size per unit average bandwidth

Sorted accelerator memories

Figure 3.3: Accelerator SRAM memories sorted by memory size per bandwidth

are the best candidates for sharing. To formally decide which accelerator memories to share, the

following methodology is suggested:

1. Calculate the average bandwidth of each memory for all accelerators, assuming the accelerator

is always processing (no idle periods).

2. Calculate and sort each memory by memory size / bandwidth. This figure provides a bal-

ance between maximizing memory sharing and minimizing performance overheads due to

contention.

3. Pick memories with the largest memory size / bandwidth and weed out highly dependent

memories. These memories strike a balance between area savings and low performance over-

heads.

54

This methodology balances area savings and performance overheads effectively. It is also

application independent, since each accelerator is assumed to always be active and processing at

maximum ability. Optimizing for each accelerator’s worst case bandwidth requirements prevents the

system from incurring prohibitive performance overheads regardless of the applications running on

the processor. This methodology’s success for multiple applications is demonstrated in Section 3.3.

When the above methodology is applied to the memories contained by the four characterized

accelerators, results reveal inter-accelerator FIFOs, large internal RAMs, and the larger intra-

accelerator FIFOs are the most shareable. As Figure 3.3 shows, larger memories also tend to use

less bandwidth. The figure is sorted from most sharable (large size, low bandwidth) on the left

to least sharable (small size, high bandwidth) on the right. Although the correspondence is not

absolute, the memories providing the biggest sharing benefits also tend to result in the lowest

bandwidth demands. This factor and the previous analysis showing the largest memories are the

least dependent means that near-maximum memory sharing with minor performance overheads is

possible.

Memory sharing provides a significant opportunity to slash on-chip area in many-accelerator

systems. Using the proposed methodology for selecting shared memories, near-maximum area

savings and minor performance overheads is possible. The following section describes the AS

architectural framework for sharing memories based on these findings.

3.2 Accelerator store design

This section describes the accelerator store (AS), an architectural framework to support memory

sharing in many-accelerator systems. The accelerator store contains SRAMs for accelerators to store

internal state or to communicate with other accelerators. It manages how this shared memory is

allocated and provides accelerators with access to shared memory. This section describes AS

features, the AS’s architecture, using multiple ASes for scalability, the accelerator/AS interface,

and the software/AS interface.

55

GPCPU

Core

Accel 2

Accel 3

Accel 1
S

y
s
te

m
 b

u
s

P
ri

o
ri
ty

 T
a
b

le

H
a
n

d
le

T
a

b
le

SRAMs

Channels

Accelerator Store

A
S
 P

or
ts

To OCN

Management

Interface

Figure 3.4: Accelerator store system architecture

3.2.1 Accelerator store features

Handles are integral to the accelerator store’s ability to share memory with accelerators. A handle

represents a shared memory stored in the accelerator store, similar to the way a file handle represents

a file in the C programming language or a virtual address space represents a region of memory used

by an application. Each accelerator store can contain several shared memories and uses handles to

keep track of these memories. To create a shared memory in the accelerator store, the system adds

a handle (with a corresponding handle ID) with the shared memory’s configuration. The system

passes this handle ID (HID) to an accelerator, giving the accelerator access to the shared memory.

Accelerators can use multiple handles if more than one shared memory is needed by retaining HIDs

for each handle. The system can pass the HID to multiple accelerators, so the accelerators can

exchange data through shared memory. Accelerators include the HID when sending access requests

to the accelerator store to access shared memory. When shared memory is no longer needed, the

system can remove it by deleting its corresponding handle from the accelerator store and informing

accelerators that the matching HID is invalid. Specifics about how the accelerator store manages

handles are given in Section 3.2.2, and details about how system software can configure handles

56

are discussed in Section 3.2.5.

Support for handles also allows the accelerator store to emulate multiple types of memories:

• Random access (RA): memories allow accelerators to read or write data at any location in

the shared memory. RA memories are useful for representing shared internal RAMs.

• FIFOs: can only put data in or get data out, in first in/first out order. FIFOs are useful for

representing shared inter- or intra-accelerator queues. Support for FIFOs provides a simpler

alternative to DMA controllers for exchanging data between accelerators.

• Hybrid: memories combine RA and FIFO types, and support reads, writes, puts, and gets.

Hybrid addressing maps address 0 to the head value (next value out) and addresses increase

moving toward the tail value. Unlike puts or gets, hybrid reads and writes do not add or

remove values. Hybrid memories are useful for operations that stream in blocks of data that

are used out of order.

The accelerator store keeps leakage power low by VDD-gating unused SRAMs. Initially, all

physical memory in the accelerator store is turned off, keeping leakage to a minimum. SRAM

memory must be kept on to retain data, so a memory is turned on once it holds any value. Un-

fortunately, current SRAMs must be completely on or off, and VDD-gating part of an SRAM is

problematic. To keep leakage power low, each accelerator store contains several 2KB and 4KB

SRAMs rather than one large SRAM. This design allows the accelerator store to save power by

turning off SRAMs that do not contain valid data at a finer granularity. If the accelerator store

used only one large SRAM, the entire memory would be forced to turn on, even if the SRAM only

stored one word.

Once a word is written, shared random access memories must remain on until the memory’s

handle is removed from the accelerator store. The accelerator store VDD-gates shared FIFO and

hybrid memory more aggressively because it can automatically identify memory that does not

contain valid data. Once an accelerator gets a value from a shared FIFO, the accelerator store

knows that value is no longer stored in the FIFO. Large FIFOs may span multiple SRAMs in the

accelerator store, and the accelerator store will turn off any SRAMs allocated to a FIFO if the

SRAMs do not contain valid FIFO data.

57

Table 3.2: Example handle table layout

HID Alloc (y/n) Type Start Addr Mask (Size) Head Offset Tail Offset Full (y/n) Trigger

0 Y RAND 0x0600 0xFF00 (256) X X X X
1 Y FIFO 0x0000 0xFC00 (1024) 0x0081 0x0081 Y 224
2 Y FIFO 0x0400 0xFE00 (512) 0x0010 0x0004 N 0 (off)
3 N X X X X X X X
...

To prevent accelerators from accidentally destroying handles mapped to other accelerators,

only the general purpose CPU (GP-CPU) can add or remove handles. In most cases, this scheme

limits accelerators to modifying handles they are mapped to. Of course, if GP-CPU software

incorrectly maps handles to accelerators, or accelerators cannot be trusted to access the handles

they are mapped to, accelerators can make unauthorized handle accesses. If more security is

necessary, a list of allowed accelerators can be added to each handle in the handle table, blocking

accelerators from making unauthorized handle accesses.

3.2.2 Architecture of the accelerator store

The accelerator store depends on several elements as shown in Figure 3.4. A GP-CPU first con-

figures the accelerator store and accelerators over the system bus and AS management interface.

Accelerators can then use their ASPorts to send access requests to the AS’s priority table. The

priority table selects as many requests as there are channels to send them. The channels send

these requests to the handle table which translates the request into a physical address for the AS’s

SRAMs. The channels transmit the physical address requests to the SRAMs and perform the

memory access. The channels finally relay the access result back to the accelerator via the channel,

priority table, and finally the ASPort.

The accelerator store relies on many small SRAMs to increase VDD-gating opportunities

as previously described. Measurements of SRAMs fabricated in a commercial 130nm process re-

vealed that 2KB and 4KB SRAMs provided the best balance between VDD-gating granularity and

arbitration overheads.

Handle Table The handle table maintains each shared memory in the AS by storing the

handles for each active shared memory (Table 3.2). The handle table stores sixteen handles by

default, although this number can be changed if the accelerator store is expected to simultaneously

share more than sixteen memories. Each handle includes several pieces of information, including

58

the shared memory’s size, which SRAMs store the shared memory, as well as FIFO-specific settings.

After the system configures handles for each shared memory, the handle table’s primary function

is to translate access requests from accelerators to the AS’s SRAMs. For RA shared memory

requests that contain a handle ID and offset address, the handle table obtains the SRAM physical

address by looking up the handle’s starting address and adding it to the request’s offset address.

This operation is similar to the virtual to physical address mapping performed by MMUs. The

translation for FIFO and hybrid shared memories is similar, but uses the head offset for gets and

the tail offset for puts.

The handle table also enables the already discussed SRAM VDD-gating. An SRAM can

be VDD-gated off if: no handles are mapped to the SRAM, the SRAM contains an untouched

RA memory, or maps the SRAM to a FIFO but does not contain valid data. The handle table

continually monitors changes to each handle, waiting for one of the above conditions to be true

for each SRAM. If so, the handle table signals the relevant SRAMs to turn off and keeps SRAM

leakage power to a minimum.

The handle table’s trigger allows workloads to be batched, to maximize VDD-gating energy

savings and to reduce AS contention. Each FIFO handle maintains a trigger value; when the

number of elements in the FIFO reaches this value, the AS raises an interrupt in the GP-CPU. The

GP-CPU can then turn on an accelerator to consume the FIFO’s data. Setting the trigger value

close to the size of a handle’s SRAM can reduce leakage power and contention. Rather than turning

all accelerators on, which results in under-utilized SRAMs and high competition for AS resources,

the trigger allows accelerators to only turn on when a batch of workloads is available, and without

turning on additional SRAMs. In addition, fewer accelerators are on at any given time, resulting

in fewer simultaneous AS requests, lowering contention and increasing performance.

Channels All shared memory requests from accelerators are transmitted over channels. Each

channel can carry one shared memory access per cycle, so ASes servicing accelerators with higher

bandwidth needs should provision additional channels. However, additional channels require extra

arbitration in the accelerator store and this extra logic will require additional area and power. In

addition, additional channels will add more wires and increase dynamic power. If many channels

are required for many-accelerator systems, the multiple distributed accelerator stores should be

used as described in Section 3.2.3. In the distributed AS model, each accelerator store offers a

59

few channels to provide a good balance between performance and overheads, which is analyzed in

Section 3.3.

Priority Table The priority table controls which shared memory accesses are completed if

too many accelerators contend for channels. Each accelerator has at least one ASPort for com-

municating with the accelerator store, and may have multiple ASPorts for increased bandwidth.

Each of these ASPorts is identified by an ASPort ID. The system configures the priority table by

assigning a priority to each ASPort ID, so that some ASPorts have priority over others. Assuming

the accelerator store has n channels, the priority table will select up to n memory requests from

the ASPorts with the highest priorities. This approach can be used to insure that time-sensitive

operations take precedence over operations with flexible timing requirements. The priority table

can be modified at runtime, so round-robin and other arbitration schemes can be implemented in

software.

Management Interface The accelerator store also features a management interface accessible

over the system bus, allowing the system to configure the handle table and priority table dynamically

at runtime. The management interface is memory mapped, so software can use memory load and

store instructions to add or remove shared memories in the handle table, or modify arbitration

settings in the priority table.

3.2.3 Distributed accelerator store architecture

As the number of accelerators in many-accelerator systems reaches the tens or hundreds, the ac-

celerator store will grow accordingly. The number of channels and ASPorts required to support

hundreds of accelerators will not scale within a single accelerator store; instead, systems should

include multiple accelerator stores, as shown in Figure 3.1(c). Each accelerator’s ASPort will be

directly connected to a single AS and it will primarily use this AS to keep access latencies low. As a

result, the system topology will consist of several clusters of accelerators, each cluster surrounding

a single AS.

An accelerator may need to communicate with ASes outside of its cluster in some cases. This

may happen if the accelerator’s primary AS is fully allocated, or if the accelerator must communicate

with an accelerator tied to a different primary AS. In these cases, the accelerator will utilize an

on-chip network (OCN), allowing accelerator stores to communicate directly. OCNs have been well

60

studied in the network on-chip (NoC) community [10, 61] and are not duplicated here. Several

OCN topologies can be used to connect the distributed accelerator stores, and a grid topology will

most likely result in the best scalability.

Although OCNs will introduce additional latency, they will not result in significant perfor-

mance overheads. Only latency insensitive memories are shared, as discussed in Section 3.1, so the

additional OCN latency will not cause stalls or noticeably affect performance. Further, accelerators

will use their primary AS most of the time, and will occasionally use other ASes when communicat-

ing with accelerators in other clusters. Today’s SoCs use high-latency DMA transfers to exchange

data between accelerators, so the OCN will not introduce any new high-latency accesses.

Communicating with distributed ASes is simple from the accelerator’s viewpoint. To each

accelerator, the system contains one AS. This abstraction is achieved by pre-assigning handle IDs

to each AS at circuit design time. For example, the first AS would contain HIDs 0 through 15, the

second AS would contain HIDs 16 through 31, and so on. To access a shared memory in the first

AS, an accelerator would simply use a HID from 0 to 15, regardless of the accelerator’s primary

AS. Each accelerator store maps HIDs to ASes and will forward access requests over the OCN if

the request does not match the primary AS’s HIDs. Therefore, the software compiler or dynamic

allocation libraries are responsible for assigning AS handles to accelerators in the same cluster

whenever possible.

3.2.4 Accelerator/accelerator store interface

Each accelerator communicates with the accelerator store over ASPorts, as previously mentioned.

Accelerators may contain one ASPort, or add additional ASPorts to increase bandwidth.

Each ASPort carries three types of messages. First, the accelerator store sends access requests

to the accelerator store. An access request contains the type of request (read, write, get, put) and

a HID. If the access is a read or a write, the request will also contain an address offset. The

accelerator store may not be able to satisfy a request in certain cases and will send the accelerator

an access reply. For example, an accelerator may have tried to do a FIFO get on an empty FIFO.

If such an error occurs, the AS will send an access reply with an error code describing the problem.

Finally, the AS sends an access response back to the accelerator when the access completes. If the

access was a read or a get, the access response will contain the accessed data. If the access is a

61

write or a put, the access response simply indicates the access completed.

The accelerator store is designed to efficiently support memory sharing in a many-accelerator

system. The AS is the result of many design choices necessary to keep overheads low and minimize

complexity for accelerator designers. However, some changes within accelerators are necessary to

use AS memories. Accelerator designers will need to decide which memories are worth sharing, as

shown in Section 3.1. Sharing FIFOs should be a simple process, since FIFOs are already designed

to be latency insensitive. Sharing large RAMs will require memory access logic to be pipelined,

which introduces small design complexities in most cases. Pipelining these memory requests is much

simpler than pipelining in CPU data paths, since these accesses cannot cause branch mispredictions

or pipeline flushes.

3.2.5 Accelerator store software interface

Software is a critical element in any computer system, and the many-accelerator architecture is

no different. The accelerator store fully exposes the handle table and priority table so that more

complex shared memory allocation and scheduling schemes can be built up without complex hard-

ware additions. Moreover, a bridge accelerator allows software to modify the contents of shared

memory in the accelerator store. The accelerator store’s approach to software creates new research

opportunities in system software, described below.

The handle table allows an open approach toward shared memory allocation by completely

exposing the table to software. Currently, the application software developer manually allocates

shared memory to accelerators, creating handles and mapping their HIDs to accelerators whenever

needed. In the future, the number of accelerators in many-accelerator systems will scale upward,

and manual allocation will become too complex. Instead, software compilers and dynamic memory

allocation software libraries could solve this problem.

Compilers can improve memory allocation using an automated static allocation system. Meta-

data can be written into software so that the compiler knows each accelerator’s shared memory

requirements. For example, the AES encrypter requires two 2KB FIFOs to operate. Instead of

forcing the software designer to allocate these two FIFOs in the AS’s handle table, the compiler

could do this automatically through macros or programming language primitives.

Ultimately, dynamic memory allocation will provide the most robust approach to allocate

62

shared memories. Similar to malloc(), software libraries can keep track of the contents of each

accelerator store and allocate shared memory on demand at runtime. This approach uses shared

memory more efficiently, because the system will have a better understanding of what memory is

available at runtime.

The priority table’s full software accessibility can enable more complex scheduling schemes

as well. By default, the priority table arbitrates by always picking certain ASPorts over others.

To implement a round-robin scheme, the priority table is rotated periodically, moving the lowest

priority ASPort to the highest priority slot and moving the other ASPorts down one slot. This

gives each accelerator equal time as the top priority slot and eliminates any contention-related

starvation. A real-time scheduler could also be implemented by coordinating the priority table

with software. If a certain accelerator needs guaranteed access to the accelerator store for a fixed

period of time, software could place that accelerator’s ASPort at the highest priority for that period

of time. Although the priority table’s initial configuration is simple, software can add more complex

and robust schedulers.

The many-accelerator system contains one or more GP-CPUs, which may wish to access shared

memories in the AS. To enable this, a bridge accelerator can be used to bridge the GP-CPU’s system

bus with the AS. The bridge accelerator is memory mapped on the system bus, enabling the GP-

CPU to access shared memory in the accelerator store by writing commands over the bus. The

bridge accelerator will replay these access requests to the AS. From the AS’s viewpoint, the bridge

accelerator is no different from any other accelerator and can be prioritized in the priority table.

When the access completes, the accelerator store will return the access response, and the bridge

will relay the result back to the GP-CPU.

The bridge scheme separates AS memory from the GP-CPU’s system memory. Future systems

could integrate these SRAM memories in the same address space, but doing so is beyond the scope

of this paper. Such a change would require managing simultaneous accesses to the same SRAM from

both accelerators and the GP-CPU, as well as complications to SRAM VDD-gating and caching.

The accelerator store is carefully designed to make sharing memory as simple as possible and

keep performance and energy overheads minimal. In the following section the accelerator store’s

ability to satisfy these goals is evaluated.

63

3.3 Accelerator Store Evaluation

This section evaluates the accelerator store’s ability to reduce area while keeping performance and

power overheads low for two applications. The first application is representative of embedded sys-

tems and utilizes several accelerators processing a highly serial dataflow. An alternative application

representing a server workload utilizes several JPEG encoders operating in parallel. The implemen-

tation of the accelerator-based model is presented first before evaluating the benefits and overheads

of sharing accelerator memories.

3.3.1 Accelerator-based system model

Six accelerators in the application are modelled: AES, JPEG, FFT, a digital camera, an ADC, and

a flash memory interface. The first three accelerators are derived from real accelerators obtained

from OpenCores and Xilinx in Table 3.1. Each SRAM memory in the accelerator is instrumented

to record every read, write, put, or get at every cycle. The resulting traces allow are used to

simulate the accelerator access patterns with contention and latency by playing back the memory

access traces in order, and maintaining the accelerator’s timing between accesses. The analysis

optimistically assumes that the accelerator store can satisfy accesses in a single cycle.

After optimizing the accelerator store configuration to minimize contention, the evaluation

demonstrates the system’s access latency tolerance by increasing the accelerator store’s access

latency up to 50 cycles. Although the analysis assumes that each memory inside the accelerator

is non-dependent as described in Section 3.1, accesses between accelerators are still treated as

dependent. As an example, consider the case where accelerator A wishes to send data to accelerator

B. Accelerator A must first completely write its data to shared memory before accelerator B can

attempt to read it. To ensure this dependency, accelerator B stalls until the write completes.

RTL implementations for the remaining three accelerators were not available, so memory

access traces were manually generated via known device characteristics. The camera is modeled

after a synthetic camera found in the JPEG testbench, the ADC will write one 16-bit word at 44.1

KHz, and the flash accelerator writes data in 2 KB pages at 6 Mbps, typical settings for an SD

flash card [64].

The accelerator store is implemented in Verilog RTL, and the number of channels is parame-

64

terized. The design was synthesized with Design Compiler and placed-and-routed in Encounter for

a commercial 130nm process. The AS requires an area overhead of 80,000 µm2, equivalent to 1%

of the area used by the six accelerators from the embedded application.

The simulation model consists of three stages. Scheduling is done first to decide when each

accelerator will begin and complete an operation. This step is done without considering contention,

as if the accelerators do not share memory. Memory access overlay is performed second, to copy the

memory access traces obtained from real accelerators into the schedule. This step is also completed

as if no memory sharing is possible. Stalling replay, the final step, considers contention due to

shared memory. The access logs are replayed for each accelerator and accelerators may stall if

more requests are made than accelerator store channels are available. Each accelerator tracks its

own time in addition to the system time; accelerators may only increment their cycle count if all

pending accelerator store requests have been satisfied. Accelerators are also able to fast forward

past cycles in which the accelerator would be turned off. This feature models the situation where

an accelerator stalled for a few cycles, but finished its operation and can catch up to the rest of the

system.

Unfortunately, it is not possible to evaluate systems with multiple accelerator stores due to

the difficulty of obtaining a large number of distinct accelerators. Instead, the evaluation demon-

strates one accelerator store/accelerator cluster, and artificially increases memory access latency to

simulate the additional latency the on-chip network would add.

3.3.2 Embedded application

The first application is designed to demonstrate a typical workload for a mobile, embedded de-

vice. This application combines the six accelerators previously described to implement a security

monitoring system. The ADC samples a microphone at 44.1 KHz, enough to accurately capture

frequencies audible to the human ear. These audio samples are processed by the FFT (1024 point,

16-bit, radix-4) every 1024 samples. The resulting frequency response is checked by the GP-CPU

to look for a specific frequency, such as a car horn or glass breaking. If such an event is detected,

a camera will take a picture once per second. The resulting image is compressed via the JPEG

accelerator, then encrypted by the AES accelerator. The encrypted JPEG photos are finally stored

in the flash accelerator.

65

0

100
ADC (Mic)

0

100
FFT

0

100
Camera

0

100

%
 C

y
c
le

s
 A

c
ti
v
e

JPEG Encoder

0

100
AES

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0

100

Cycles (millions)

Flash

Figure 3.5: Embedded application accelerator activity

Embedded application performance

To model the most contentious workload possible, the frequency is reduced so all accelerators can

perform their tasks while meeting the timing guarantees described above. The JPEG accelerator

is the limiting accelerator, so the clock frequency is set just fast enough to compress one 640x480

photograph per second (1.53 MHz). Although this clock frequency may seem slow, accelerators can

compute far more per cycle than a corresponding GP-CPU. Each accelerator is checked for activity

at every cycle and put into one of 100 bins. Figure 3.5 demonstrates how often each accelerator is

actively performing work during each of the cycle bins. The JPEG, AES, and camera accelerators

are active all or most of the time, and the FFT and flash memory are moderately active. The ADC

samples rarely by comparison.

Contention can be kept low despite utilizing six accelerators simultaneously (many at a high

duty cycle). Figure 3.6 shows the twenty most shareable accelerator memories (large memory,

low bandwidth, non-dependent) as sorted in Figure 3.3. The most shareable memories are drawn

bottom to top, and results are grouped into 100 bins and averaged. This figure demonstrates that

most of the memories selected by the memory size/bandwidth metric require low bandwidth and

66

0 1 2 3 4

x 10
6

0

0.5

1

1.5

2

2.5

Time (cycles)

M
e

m
o

ry
 A

c
c
e

s
s
e

s
/C

y
c
le

 JPEG JFIF RAM

JPEG Input FIFO

Camera Output FIFO

JPEG Output FIFO

AES Enc Data In FIFO

AES Enc Data Out FIFO

Flash Output FIFO

FFT Data Out (Imag) FIFO

FFT Data Out (Real) FIFO

FFT Data In (Real) FIFO

JPEG Huff FIFO 1

JPEG Huff FIFO 2

FFT RAM 1

FFT RAM 2

FFT RAM 3

JPEG RLE FIFO 1

JPEG RLE FIFO 2

ADC Output FIFO

JPEG Quantizer ROM

FFT RAM 5

Figure 3.6: Embedded application “top 20 to share” memory bandwidth

the remaining few are quite large (JPEG input FIFO, camera output FIFO). Including at least

the top 15 memories would result in low bandwidth contention (only two channels are necessary)

and a large percentage of accelerator memory sharing (76%). Up to roughly 25 memories can

be shared before performance becomes unacceptable for any number of channels, validating the

memory selection methodology from Section 3.1.3.

Although it would not be feasible to fabricate a chip specifically for this embedded applica-

tion due to design costs, it is important to gauge how effective the sorting and memory selection

algorithm would be if performed for the application rather than the application-blind approach.

Even if memories are sorted based on their application bandwidth needs and chose these memories

based on application contention plots, the result is a negligible reduction in contention and only

2% improvement in memory savings.

The number of accelerator store channels (number of simultaneous accesses) to provision is

highly dependent on the processor’s design goals. As Figure 3.7 shows, additional channels can sig-

nificantly alleviate performance overheads. Most applications will add additional channels because

the area overhead of additional channels is low. Each additional channel requires approximately

67

0 10 20 30 40 50 60 70 80 90 100
0%

0.0001 %

0.001%

0.01%

0.1%

1%

10%

100%

Percentage of accelerator memories shared (%)

A
p
p
lic

a
ti
o
n
 p

e
rf

o
rm

a
n
c
e
 o

v
e
rh

e
a
d
 (

%
)

1 channel

2 channels

3 channels

4 channels

5 channels

Figure 3.7: Embedded application contention performance overhead

1% of the total system area. If fewer channels are used, the processor will need to operate at an

increased frequency (and voltage), resulting in a cubic increase in power. For most systems, this

power increase would be unacceptable, though some embedded sensing applications with low duty

cycles may not have these performance concerns. For this reason, it is necessary to provision at

least three channels for all but the simplest processors.

Distributed Embedded Application Performance

To test the system’s latency sensitivity introduced by the distributed AS OCN, the latency of each

AS access is increased up through 50 cycles. Because far fewer distinct accelerators were available

than one would expect to find in a many-accelerator system, a 50 cycle latency is used to reflect

unusually high delays to model such a many-accelerator system. The 50 cycle latency incorporates

68

AS

Cluster

AS

Cluster

AS

Cluster

AS

Cluster

AS

Cluster

AS

Cluster

AS

Cluster

AS

Cluster

AS

Cluster

AS

Cluster

AS

Cluster

AS

Cluster

AS

Cluster

AS

Cluster

AS

Cluster

AS

Cluster

AS

Cluster

AS

Cluster

AS

Cluster

AS

Cluster

AS

Cluster

AS

Cluster

AS

Cluster

AS

Cluster

AS

Cluster

Figure 3.8: Distributed AS architecture
Each AS cluster in the example system contains an AS and several accelerators.

delays due to inter-cluster network routing and contention, delays turning on VDD-gated SRAMs,

and delays from AS arbitration.

To demonstrate why 50 cycles represents a unusually high delays in a many accelerator system,

a system consisting of 25 AS clusters, shown in Figure 3.8, is considered. The clusters are connected

in a 5x5 network-on-chip (NoC) grid. Assuming each cluster resembles the previously modelled

single cluster system for the embedded application, each will contain roughly six active accelerators

and several others turned off. Therefore, this example system contains 150 active accelerators and

many more turned off.

A 50 cycle AS access latency is an unusually high delay in this example system. Assuming

69

0 10 20 30 40 50
0.0%

0.5%

1.0%

1.5%

2.0%

Memory Access Latency (cycles)

P
e

rf
o

rm
a

n
c
e

 o
v
e

rh
e

a
d

 (
%

)

Figure 3.9: Embedded application access latency and contention performance overhead

each hop between clusters requires a cycle, a delay found in commercially available processors [28],

the worst case round trip path requires 16 cycles. Using HSIM simulations of 2KB and 4KB SRAM

HSPICE models, worst-case SRAM power-on times of 20.5 ns was measured, or 21 cycles when

operating at a 1 GHz clock frequency. Of the 50 cycle latency, the remaining 13 cycles are budgeted

for AS arbitration (up to 2 cycles) and contention within the NoC. Note that most AS accesses are

expected to require fewer cycles since most accesses will not travel the maximum path or require

SRAMs to power on. Rather, the 50 cycle latency demonstrates the distributed accelerator store

design performs well, adding up to a 2% performance overhead under unusual cases.

These low performance overheads are possible because of careful selection of shared memories,

described in Section 3.1.3. If all accelerator SRAM memories were shared in the AS, performance

overhead would likely exceed 100% due to data dependency delays. Instead, memories are selected

with preset access patterns to share in the AS, such as I/O buffers and FIFOs. These memories are

the majority of accelerator SRAM area, and their access patterns are known in advance and can

be pipelined. As a result, the performance overhead for accessing these memories remains below

2%, even for many-accelerator systems.

70

Embedded Application Power

The accelerator store takes several steps to achieve a low power overhead. To measure accelerator

power as well as accelerator store overheads and benefits, several factors are modeled:

• Accelerator and AS power (active and leakage): leakage power is estimated using area to

power ratios derived from previously synthesized logic at a commercial 130nm process.

• Wire activity: All wires used to connect accelerators to the accelerator store are conservatively

assumed to be the system’s length (2.354 mm). Using known characteristics [37], wire power

is estimated as 0.49 pJ/bit/mm at 1.2 V operating voltage.

• Automatic AS SRAM VDD-gating: VDD-gated memories are assumed to consume negligible

power.

• Accelerator VDD-gating: Sharing memory via the AS can make accelerators easier to VDD-

gate as well.

The accelerator store was configured with three ASPorts and 15 shared memories as suggested

in Section 3.1. The embedded application is executed at a maximum workload for roughly three

million cycles.

The accelerator store is designed to keep power costs low. As shown in Figure 3.10, the

overheads of the accelerator store add an additional 8% to the total system power cost. The

majority of this overhead (5.24%) is incurred by the accelerator store arbitration logic. Additional

wire power (2.38%) and accelerator stalling (0.14%) use measurably less power.

The accelerator store is also able to reduce power consumption through aggressive VDD-

gating. Although each accelerator could implement VDD-gating individually, accelerators that

VDD-gate their memory or logic are rare in practice.

The accelerator store makes VDD-gating SRAMs guaranteed and automatic. Shared memory

automatic VDD-gating reduces power by 8.44% by VDD-gating the 24.78KB of SRAMs that are

temporarily unused on average. This may make VDD-gating accelerator logic easier as well, since

76% of accelerator memory is shared in the accelerator store and no longer private. An additional

8.81% of power can be trimmed by gating accelerator logic and leaving the remaining private

71

-10

-5

0

5

10

15

20

25

30

35

-3.84

-1.92

0

1.92

3.84

5.76

7.68

9.60

11.52

13.44

N
e

t
p

o
w

e
r

re
d

u
c
ti
o

n
 (

m
W

)

N
e

t
p

o
w

e
r

re
d

u
c
ti
o

n
 (

%
)

O
ve

rh
e
a
d
s

o
n
ly

O
ve

rh
e
a
d
s

+

V
D

D
g
a
te

d
 s

h
a
re

d
 m

e
m

O
ve

rh
e
a
d
s

+

V
D

D
g
a
te

d
 s

h
a
re

d
 m

e
m

a
n
d
 a

cc
e
ls

O
ve

rh
e
a
d
s

+

V
D

D
g
a
te

d
 s

h
a
re

d
 m

e
m

,

a
cc

e
ls

,
a
n
d
 p

ri
va

te
 m

e
m

Figure 3.10: Embedded app power breakdown

memories on, or 11.76% of system power can be saved by VDD-gating accelerator logic and private

memories.

Leakage power is a growing concern as fabrication technologies continue to shrink. ARM

has noted that low leakage technologies that SoC designers relied on will no longer be the magic

bullet when entering 45nm and smaller technologies, stating, “Whatever transistor is used, leakage

management is a significant challenge that must be addressed,” and noting 20% increases in per-

formance will result in 1000% increases in leakage [58]. Low-leakage processes also require more

active power, and judicious use of VDD-gating may be a better alternative to low-leakage flavors

by keeping leakage and active power low. Therefore, the accelerator store’s support for automatic

VDD-gating will become more critical in the future.

Embedded application area

By following the guidelines proposed in this paper, the processor can share 76% of its accelerator

memory and keep power low, all with a minor 2% impact on performance. Until now, only accel-

erators in use have been considered. As Figure 3.11 demonstrates, memory sharing translates into

significant memory savings. The figure starts with six accelerators and a three channel accelerator

store, corresponding to the case where all accelerators and all memories are in use, including private

72

6 7 8 9 10 11 12 13 14
5

0

5

10

15

20

25

30

35

40

Accelerators in system

S
y
s
te

m
 a

re
a

 r
e

d
u

c
ti
o

n
 (

%
)

50% Memory sharing

60% Memory sharing

70% Memory sharing

80% Memory sharing

90% Memory sharing

Figure 3.11: Embedded app area reduction

and shared memories. In this case, there is no memory savings from unused memory amortization,

and a small area overhead of 3% resulting from the accelerator store area overheads. If a system

with more dark accelerators is considered, area savings grow large quickly. The analysis continues

by adding unused accelerators to the system as arranged in Table 3.1. If assuming 70% of accel-

erator memory can be shared on average, total system area is reduced by 30% (this area includes

SRAM memory, accelerator logic, and accelerator store logic overhead). Area savings will grow

further if larger regions of dark accelerators are included.

Embedded application software implementation

The embedded application is easy to implement in software using the accelerator store. The first

step is to allocate memory for the accelerators as needed. This is done by modifying the handle

table through memory mapped I/O. For example, a 4 KB FIFO should be allocated for the ADC to

put audio samples and for the FFT to get samples for frequency analysis. Although each frequency

analysis requires 2 KB of data, creating a 4 KB FIFO allows the ADC to record samples even

when the FFT has not finished computation. Note that this single allocation is much easier than

73

existing buffer designs which would require statically sized buffers in the ADC and on the FFT,

and routine DMA operations to transfer data between the two. Using the accelerator store, the

system could later do a 512 point FFT and reduce memory buffer size to 2 KB. This software-

based memory resizing would not be possible under current designs, since private buffers must be

statically allocated at circuit design time.

Second, the priority table must be configured through memory mapped I/O. Memory for

recording audio samples and photographs receives a high priority to ensure sampling is performed

at strict time intervals. Compression and encryption are less time sensitive, so memories used for

these tasks receive lower priorities.

Third, software needs to initialize interrupts and implement interrupt handles for events oc-

curring during accelerator operation. For example, the handle table should be configured to trigger

an interrupt when the number of samples stored in the ADC FIFO reaches 1024, enough to perform

an FFT. A short interrupt handler would turn the FFT on, pass the ADC FIFO’s handle to the

FFT (so it knows where to read samples from), and activate the frequency analysis operation.

Software design for accelerator-based tasks in the many-accelerator framework is simple. Most

of the computation is performed by accelerators, so software takes on an accelerator management

role.

3.3.3 Server application

The sample application representing a server workload is highly parallelized, unlike the serial work-

flow found in the embedded application. This server application features multiple JPEG encoders

compressing separate images in parallel. This application could be used by Facebook, Flickr, or

other photo web sites, which must compress many pictures in parallel.

The level of parallelism is swept from one JPEG encoder (no parallelism) to four JPEG en-

coders (4x parallelism) to examine the accelerator store’s performance in a server-class application.

Each JPEG’s workload is staggered, started slightly after each other to prevent simultaneous band-

width surges. As Figure 3.2(d) shows, the JPEG accelerator’s bandwidth requirements are highly

variable.

The server application will require more channels than the embedded application due to the

increased use of the JPEG encoder. The JPEG encoder is quite demanding and requires the most

74

75 80 85 90

0.1%

1%

10%

100%

Percentage of accelerator memories shared (%)

A
p

p
lic

a
ti
o

n
 p

e
rf

o
rm

a
n

c
e

 o
v
e

rh
e

a
d

 (
%

)

1 Parallel JPEG, 1 Channel

2 Parallel JPEGs, 2 Channels

3 Parallel JPEGs, 3 Channels

4 Parallel JPEGs, 4 Channels

Figure 3.12: JPEG server application performance overhead

bandwidth of the investigated accelerators. Therefore, one channel is provisioned for every JPEG

encoder operating in parallel. Processors designed for server workloads are expected to provision

more channels than processors for embedded applications.

Including more copies of the accelerator in parallel results in better performance, as shown

in Figure 3.12. If considering a JPEG encoder with one ASPort, the performance overhead would

be 10% for any significant amount of memory sharing due to the JPEG’s bandwidth demands. By

staggering each JPEG’s execution, each JPEG accelerator rarely demands maximum bandwidth at

the same time and the increased bandwidth is amortized between the JPEGs. As a result, the 4x

JPEG configuration is able to share more than 85% of its memory with less than 1% performance

overhead. This result shows that it is best to include many accelerators under the accelerator store

to amortize channels and improve performance.

75

A
E
S
1

In
pu

t F
IF

O

A
E
S
1

O
ut

pu
t F

IF
O

A
E
S
2

In
pu

t F
IF

O

A
E
S
2

O
ut

pu
t F

IF
O

Tot
al
 F

IF
O
 B

an
dw

id
th

(a) Parallel AES scheduling

0 10 20 30 40 50 60
0

5000

10000

15000

20000

25000

30000

Horizontal image line (from top to bottom)

H
o
ri
z
o
n
ta

l
lin

e
 c

o
m

p
re

s
s
io

n
 d

e
la

y
 (

c
y
c
le

s
)

Maximum delay

(b) JPEG encoder line processing delays

25% provisioned memory reduction

JPEG1

Memory

Usage

JPEG2

Memory

Usage

Total

Memory

Usage

(c) Parallel JPEG encoder scheduling

2 4 6 8 10 12 14
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Parallel accelerators in use

M
e

m
o

ry
 r

e
d

u
c
ti
o

n
 (

%
)

AES Server

JPEG Server

(d) Memory savings for parallel accelerators

Figure 3.13: Comparison of architecture styles

Parallel workload scheduling optimizations

Well-scheduled workloads can greatly improve performance and reduce memory provisioning in

parallelized shared memory systems. In the server application, the channels are amortized by

staggering JPEG execution to smooth performance requirements for the multiple accelerators.

This technique can be taken further to support multiple accelerators with less provisioned memory

and little or no performance impact.

The gains of a staggered AES server are considered first. The AES accelerator consists of

four RAMs (two data, two constants) and two I/O FIFOs. The previous memory selection analysis

showed that the two I/O FIFOs are shared but the remaining four RAMs should remain private

due to their high bandwidth requirements. Each of these FIFOs is only in use for 8 out of the 117

76

cycles (7%) required to encrypt a single 128-bit block. The bandwidth needs required by a server

utilizing multiple AES accelerators in parallel would increase linearly if each accelerator is started

at the same time. By staggering the accelerator workloads and ensuring only one FIFO is active

at a time, seven AES accelerators can run in parallel using one channel without any contention or

performance overheads. Figure 3.13(a) demonstrates how the schedule is formed to implement this

approach.

The well-scheduled AES server can also reduce the required amount of provisioned shared

memory. Accelerators relying purely on private memories must include two I/O FIFOs for each

AES accelerator. Accelerators relying purely on private memories must include two I/O FIFOs for

each AES accelerator. Shared accelerator systems can relax this restriction and share the same

I/O FIFOs. The staggered schedule approach ensures one AES accelerator will read in a 128-bit

cycle block, the next block will be read by the next accelerator, and so on. As a result, there is

no need to provision I/O FIFOs for each accelerator and the 7x AES server can reduce its memory

provisioning requirements by a factor of seven as well. If the system has access to a second channel,

up to fourteen AES accelerators can stagger their inputs while guaranteeing accelerators will not

try to access the I/O FIFOs at the same time. Therefore, this staggered approach can reduce

memory provisioning requirements by 14x (26 KB), significantly reducing system area.

The evaluation now considers the more complex staggered JPEG server. As previously ob-

served, staggering can improve performance by 10x for the JPEG server. A 2x memory area

reduction of the extremely large JPEG input FIFO is also possible in return for a small perfor-

mance overhead of 9%. The JPEG server is more difficult to schedule because the delay to perform

a single round of processing (an 8-pixel horizontal line of an image) is not constant, unlike the AES

accelerator. Figure 3.13(b) shows the distribution of processing delays over the compression of an

image. To maintain a consistent schedule the time to compute each line must be constant, so each

line requires the maximum time indicated by the distribution of processing times. As a result, lines

which require less than the maximum time must be stalled, causing the 9% performance overhead.

The JPEG input FIFO’s memory usage profile must be understood to minimize memory

provisioning requirements. The JPEG algorithm processes the images in 8x8 pixel squares. This

presents a problem as uncompressed images are typically rasterized, drawing a horizontal line one

pixel thick at a time. The accelerator store can alleviate this problem through support for hybrid

77

memories (random access and FIFO). The accelerator providing the uncompressed image (camera,

for example) can use random access to rearrange the image so the pixels are arranged in order of the

8x8 pixel squares required by the JPEG accelerator. The JPEG accelerator can use the same handle

as a FIFO to read out the pixels in processing order. Now that a FIFO is used, the accelerator

store can turn off memories as the contents of the FIFO shrinks. This reorganization technique

will not result in any memory provisioning savings since the maximum required memory for the

input FIFO will remain enough to store at the 8-pixel wide line. However, the maximum memory

requirements can be reduced when several JPEG accelerators use a staggered parallel schedule.

As a result of the FIFO reorganizations made possible by the accelerator store, the input FIFO

will immediately use the space required by the 8-pixel tall line and linearly reduce the memory

consumption until the line is processed. Through effective staggering, the sawtooth pattern in

Figure 3.13(c) can be exploited to reduce the maximum memory utilization of the JPEG encoders

when considered in sum. For example, when two JPEGs are operating in parallel, the second JPEG

accelerator will be scheduled to begin processing a line when the first accelerator has compressed

50% of its line. Under this case, the first accelerator’s input FIFO will require enough memory to

store half a line while the second JPEG encoder needs enough memory to store a full line, resulting

in a 25% reduction in memory provisioning requirements. If a three JPEG encoder is used, the

staggering schedule will result in the input FIFOs requiring memory to store 33%, 67%, and 100%

of a 8-pixel wide line, corresponding to a 33% reduction in area. As Figure 3.13(d) demonstrates,

memory provisioning reductions approach 50% (168 KB) as more JPEG encoders are used, resulting

in significant system area reductions.

3.4 Related work

As mobile computing has become pervasive, SoCs have been developed to provide general purpose

and application specific processing on one platform. In one example system, separate scratch pad

memories are included within a security accelerator that must be managed by the application pro-

grammer or software library [8]. Brick and mortar assembly techniques could provide a low cost

approach to piece together accelerator-based architectures without requiring a new lithographic

mask for each collection of accelerators [43]. This work does not address the need for dynamic

78

allocation of memory for each accelerator, nor does it specify an interface to communicate between

accelerators without copying data between accelerators. Programming environments for hetero-

geneous systems have been proposed which could be applied to the accelerator store [48]. These

library based frameworks are used to map general purpose code down to graphics accelerators.

Supporting advanced memory management in hardware for accelerator based architectures

has been explored by a few groups, but without the full features provided by the accelerator

store. An SoC dynamic memory management unit (SoCDMMU) has been proposed for multicore

SoCs that provides support for malloc() in hardware [65]. This system does not support advanced

structures (FIFOs, hybrids), automatic VDD-gating, or handles. Smart memories features a general

purpose microcontroller in multiple tiles that interact with memory [52]. Unlike smart memories,

the accelerator store targets heterogeneous accelerated systems and includes support for automatic

memory VDD-gating.

Sharing memory within functional units in general purpose processors has been investi-

gated [55]. This work optimizes shared memory between GP-CPU blocks (L1, BTB, etc.) using

two tiered caching. Disaggregated Memory shares memory between server blades [46]. In contrast,

the AS introduces novel features designed for accelerators including FIFO support, improved inter-

accelerator communication by eliminating redundant copies, automatic VDD-gating, configurable

priorities, and highly configurable memory management.

79

Chapter 4

ShrinkFit

Reconfigurable FPGA logic has grown into a multi-billion dollar industry by enabling accelerator-

based system designs without the high initial costs and long production times of ASICs. Despite

the potential for performance boosts, the difficulty of creating accelerators in Verilog or VHDL

RTL has been a lingering challenge. Advances in high level language (HLL) synthesis tools show

new promise in simplifying this design process. More accessible languages, such as C, can now be

used to create and test hardware accelerators in less time. By reducing barriers to entry, these HLL

tools can bring hardware accelerator design to a wider audience of developers.

Commercial hybrid processors, combining FPGAs and general purpose cores [5, 2], have the

potential to broaden the audience for acceleration as well. Using hybrid systems, programmers can

package accelerator designs with applications, and improve application performance by deploying

accelerators to FPGA fabric. This enables systems to run multiple applications, each deploying

and using one or more accelerators.

One such system is a prototype of the electronic “brain” of a flying robotic bee, called RoboBee.

This hybrid processor prototype combines a general purpose Cortex-M0 core with accelerators on a

Spartan-6 FPGA, and runs a bee application. During the development of this prototype processor,

HLL tools were invaluable in easing the process of implementing accelerators. However, as much of

the FPGA community has found [38, 25, 41], combining accelerators into a single system is difficult.

Current approaches for designing systems containing multiple accelerators often use HLL tools

to create multiple variants in order to find the optimal hardware design. This compute intensive

approach explores many combinations of architectural parameters, such as pipeline depth, creating

80

variants for different resource budgets [16]. Unfortunately, building systems with multiple accelera-

tors designed in this way leads to several issues. First, selecting between the many variants of each

accelerator is computationally intensive. Second, this process does not easily permit accelerators

to share common resources, which may duplicate underutilized logic. Third, there is no way for

accelerators to dynamically grow or shrink if resource budgets change. An alternative is to design

all accelerators into the system as one combined accelerator, but this approach can further extend

design time and is inflexible.

ShrinkFit, an extensible framework that facilitates the design of multi-accelerator systems,

is an answer to these challenges. This framework not only applies to the RoboBee application,

but to hybrid systems in general. By relying on virtualization [49], ShrinkFit allows systems to

grow or shrink accelerators to flexibly fit within shared FPGA resource budgets. It reduces the

computational complexity of allocating resources to each accelerator, allows accelerators to share

resources, and could be combined with dynamic reprogramming to support dynamic resizing. The

implementation is based on an accelerator store [50], a memory resource for accelerators to save and

exchange data. To support ShrinkFit, three new elements have been added: new features to the

accelerator store, a “slicer” component for managing data transfers between ShrinkFit accelerators,

and a wrapper interface that simplifies adding ShrinkFit capabilities to existing accelerators. These

capabilities rely on hard logic blocks, dedicated to ShrinkFit and assumed to be built into the

FPGA, in the same way FPGAs currently contain dedicated RAM, DSP, and general purpose hard

cores. This chapter also introduces a software interface for building applications with ShrinkFit

accelerators, including a software development kit (SDK) developed for the Python programming

language which can be easily ported to other languages.

As the name suggests, ShrinkFit enables accelerators to fit within small FPGA budgets when

necessary, and expand to increased resources for additional performance. This capability is demon-

strated with four ShrinkFit accelerators developed for the bee brain prototype. Experimental

results show that ShrinkFit enables performance of individual accelerators and the bee application

to scale linearly with available FPGA resources. Overheads are low as well: ShrinkFit hard logic

block overheads require less than 2% of overall FPGA die area, FPGA resource overheads range

from 0%-8%, and application performance overheads are under 10% on average.

81

4.1 Motivation

The RoboBees project, a large collaboration between many research groups, seeks to build a swarm

of bee-sized, flying robots. Each RoboBee, due to its small size and limits of wing-flapping lift,

must be as light and low-power as possible. Yet, each RoboBee must perform complex visual and

control algorithms, which require significant processing capability. To minimize power consumption

while maximizing performance, the RoboBee’s brain uses hardware accelerators as well as a general

purpose Cortex-M0 processor. Unfortunately, to know which accelerators are needed and the

performance requirements for each, it was necessary to first test designs on a small flying vehicle

in order to explore the design space.

To evaluate accelerator needs, a custom designed helicopter brain prototype (HBP) circuit

board was created that snaps onto a small helicopter (Figure 4.1). The HBP contains a low power

Spartan-6 SLX150-1L FPGA, which offers the maximum resources within the helicopter’s battery

power and weight budgets. Including the FPGA chip, circuit board, and supporting components,

the board weighs 4.2g, sufficiently below the 4.5g maximum for stable flight. The HBP also contains

connectors to control the helicopter and to receive images from a low-resolution, high-frame rate

camera optimized for autonomous flight [1]. The HBP therefore allows the RoboBees team to try

new combinations of accelerators and see which can support autonomous flight.

To date, four accelerators have been identified for the project: image sharpening, edge de-

tection, optical flow, and discrete cosine transform (DCT). The HBP uses all four accelerators

simultaneously to process images from the on-board camera, and each image is processed by three

tracks (Figure 4.2). The edge detection accelerator generates outlines for object recognition. At

the same time, the image sharpening accelerator counteracts camera blur, and its outputs feed into

the optical flow accelerator to estimate movement. The result, a two dimensional vector, allows

the bee to avoid collisions and estimate distance flown. Finally, the DCT accelerator processes

the image as part of a custom image compression algorithm based on the JPEG format, which

compresses each image by 40% to 70%. The compressed image is then saved to flash memory for

offline debugging.

Logic for each of the accelerators is implemented using the Vivado C-to-RTL high level lan-

guage (HLL) compiler [4] to design each accelerator quickly. The alternative, manually implement-

82

Figure 4.1: RoboBee Brain FPGA prototype
The helicopter brain prototype (black circuit board) is attached to a small helicopter and camera.

Camera DCT

accelerator

Image

compress

Object

recognition

Edge detect

accelerator

Image

sharpen

accelerator

Optical flow

accelerator

Flight

navigation

Figure 4.2: RoboBee application accelerators
The RoboBee application utilizes four accelerators. The brain prototype will use the results to
compress images for offline analysis, recognize important objects, and avoid obstacles during

flight.

ing each accelerator in Verilog RTL, typically takes more time. More accelerators will be added to

the RoboBee brain as other project teams identify additional algorithms to accelerate, and will be

83

quickly ported to hardware using HLL compilers.

In order to determine FPGA resource requirements, it was necessary to first build the HBP to

test different accelerator configurations. This situation motivated the development of the ShrinkFit

framework, which allows the team to take full advantage of the FPGA’s resources whether using a

few accelerators early in development, or after adding more over the course of the project. Through

this real-world design example, ShrinkFit was designed to generally address any FPGA system

containing multiple accelerators, including hybrid processors. Throughout the remainder of this

chapter, RoboBee accelerators and the RoboBee application are used to explain how ShrinkFit

works and evaluate how it performs.

4.2 Conceptual approach

To support ShrinkFit, designers decompose accelerators into smaller, reusable “modules” of logic.

Once decomposed, these modules can be combined to implement resizable accelerators via virtual-

ization, and can be shared between accelerators.

4.2.1 Decomposition

ShrinkFit facilitates accelerator designs that are composed of smaller, reusable logic modules. To

add ShrinkFit support to an accelerator, it must be decomposed into these reusable logic mod-

ules. Depending on the accelerator, different approaches may work best: some accelerators can

be decomposed by pipeline stage, others by portions of each entry in a dataset (such as an image

or matrix), or perhaps by subsequent entries in a dataset. For example, the image sharpening

accelerator, used by the RoboBee brain, could be made up of multiple identical modules that each

sharpens one region of an image. Assuming each image has sixteen regions, the accelerator requires

sixteen sets of computations. One option would be to program all sixteen modules into the FPGA,

each computing in parallel. In contrast, ShrinkFit enables the designer to resize the accelerator

at any time by programming anywhere from one to sixteen modules into the FPGA, depending

on performance and/or resource constraints. This resizability can shrink the image sharpen ac-

celerator by 94% when only one module is used, but with at least a 16⇥ increase in computation

time. Ideally, this relationship between performance and resource utilization should be linear, i.e.,

84

doubling resources leads to double the performance.

The key concept behind ShrinkFit is that work performed by each module can be done without

programming each module into the FPGA. Rather, the modules programmed into the FPGA need

to be capable of doing the work of each module from the original design. To formalize the process

of decomposing accelerators and designing resizable accelerators, ShrinkFit defines four terms:

• Virtual modules (VMs) are the modules from an accelerator’s original design. In the case

of image sharpen, which has sixteen regions, the accelerator always contains sixteen virtual

modules. VMs represent the work to be done, rather than the logic doing it.

• Physical modules (PMs) are the actual logic blocks programmed into the FPGA. As few

as one physical module can be programmed into the FPGA. More PMs can be added, but the

number of PMs can never exceed the number of VMs. Programming fewer reduces FPGA

resource utilization. Programming more PMs increases performance.

• Module designs refer to the algorithm a PM or VM implements. PMs of the same module,

such as DCT, use the same RTL and are identical, whereas PMs of different module designs

are not interchangeable. A convolution PM cannot do the work of a DCT PM.

• Module contexts contain the information a PM needs to act as a VM. Section 4.2.3 describes

contexts in detail.

4.2.2 Building ShrinkFit accelerators with VMs

ShrinkFit accelerators consist of VMs of one or more module designs.

Image sharpening requires convolution, so the image sharpen accelerator uses sixteen VMs

of a convolution module design. Each VM sharpens one of sixteen regions of the image, and when

all VMs complete, the entire image is sharpened.

The DCT accelerator also uses sixteen VMs, but each is of a DCT module design, distinct

from convolution VMs. Each DCT VM calculates frequency responses for one region of the image.

The edge detect accelerator contains sixteen convolution VMs, reusing the module design

developed for the image sharpen accelerator. Edge detect adds sixteen magnitude VMs as well.

85

When using convolution VMs for edge detect, they produce two images, one for edges in the x-

dimension, and another for the y-dimension. The magnitude VMs each process one of sixteen

regions from both images, to create a third image that incorporates edges from both dimensions.

The optical flow (OF) accelerator uses two new module designs, OF region and OF merge.

Sixteen OF region VMs estimate camera movement between the same region in two images. Then,

the OF accelerator uses one OF merge VM to combine the data generated by each OF region VM

into a single (x, y) vector.

4.2.3 Module contexts

In all ShrinkFit accelerators, including the four described above, VMs are an abstraction repre-

senting the work to be done. It is the PM, logic programmed into the FPGA fabric, that performs

the computations. To bridge the gap between work and logic, PMs use “contexts,” which are blobs

of data that instruct a PM how to act as a VM. Each VM has a corresponding context, and by

loading it, a PM can act as its corresponding VM. For example, a convolution context contains

the image region its VM corresponds to. When a convolution PM loads a context, it immediately

knows which region of each image to process.

Because there may be fewer PMs programmed into the FPGA than VMs in the accelerator

design, these PMs must routinely switch to perform the computation of different VMs within the

accelerator. This process is known as “context switching,” because a PM will do the work of

one VM for a short period of time, then switch contexts to do the work of another VM. This

approach ensures that the work of all VMs will be completed regularly no matter how many PMs

are programmed into the FPGA.

4.2.4 Accelerator resource sharing

Because PMs do not necessarily belong to one accelerator or another, they can be shared between

accelerators. For example, image sharpen and edge detect accelerators both use sixteen convolution

VMs. If a system used both accelerators simultaneously, each convolution VM would have a

corresponding context, resulting in a total of 32 convolution contexts. And because the system

contains 32 convolution VMs, one to 32 convolution PMs could be programmed into the FPGA.

However, if fewer PMs exist in order to reduce FPGA resource utilization, they would all take

86

turns context switching into all 32 contexts, and do the work of all 32 convolution VMs in both

accelerators. Rather than allocating different PMs to each accelerator, the accelerators share all

PMs.

In rare cases, a system designer may wish to dedicate certain PMs to a single accelerator,

rather than sharing PMs between accelerators. This is easily accomplished by creating two sets of

contexts for the module design, and mapping some PMs to one set, and the remaining PMs to the

other set.

4.2.5 Dynamic accelerator resizing

ShrinkFit could be combined with dynamic reprogramming techniques [71, 40, 53] to add support

for dynamic accelerator resizing. PMs can be turned on or off individually, so turning one off would

not disturb other PMs. With this in mind, accelerators could be resized while running and without

interrupting computation by using dynamic reconfiguration techniques to add or remove individual

PMs. Using dynamic accelerator resizing, ShrinkFit could continuously tailor FPGA resources to

support workloads with fluctuating computational requirements and maximize performance.

4.3 Framework implementation

There are many ways to implement the conceptual approach described in the previous section

as long as the implementation supports many PMs, enables PMs to context switch rapidly, and

delivers PM input and output datasets quickly. With these requirements in mind, this section

presents one implementation of the ShrinkFit concept.

Systems utilizing the ShrinkFit architecture include a general purpose core, several PMs, and

ShrinkFit’s hard logic blocks. Figure 4.3 provides a detailed illustration of how to use ShrinkFit for

the RoboBees application. After PMs are first programmed into the FPGA fabric, the general pur-

pose core configures PMs and various ShrinkFit hard logic blocks using the system bus to perform

reads and writes as if the general purpose core was reading and writing to memory. These ShrinkFit

hard logic blocks include: the accelerator store for maintaining VM contexts and data I/O, a slicer

for tracking data transfers between VMs, and ShrinkFit wrappers to simplify the process of adding

ShrinkFit features to existing accelerators. Since these logic blocks enable ShrinkFit features for

87

Slicer module

Convolution

physical

module

DCT

physical

module

Magnitude

physical

module
...

ShrinkFit

Wrapper

ShrinkFit

Wrapper

ShrinkFit

Wrapper

...

General

purpose

CPU

ASPorts
Arbiter

Bulk

manager

Handle

table

BRAM

memories

C
h

a
n

n
e

ls

Accelerator store

System bus

DCT

physical

module

ShrinkFit

Wrapper

Figure 4.3: ShrinkFit framework architecture
The ShrinkFit framework consists of the accelerator store, slicer, and ShrinkFit wrappers. These
components, darkened above, are permanently fabricated in the FPGA as hard logic blocks to

obtain low die area overheads. All physical modules are programmed into the FPGA fabric as soft
logic blocks. One or more general purpose cores may be implemented as hard or soft logic blocks.

any accelerator, and are not limited to specific accelerators, they can be hard coded into the FPGA

chip to minimize resource overheads.

4.3.1 Accelerator store

To facilitate data storage and movement between PMs, the system employs the accelerator store [50],

presented in Chapter 3. With some modifications, the accelerator store can be used to manage

contexts and relay data between PMs. For maximum performance, accelerators often require fast

access to input and output datasets. With this in mind, the accelerator store maintains direct con-

nections with every PM programmed on the FPGA via ASPorts (Figure 4.3) to ensure low-latency

communication.

88

Handles

To support ShrinkFit, two extensions were added to RA handles: multi-word transfers and a swap

operation.

Multi-word transfers reduce arbitration delays when loading or storing large blocks of data.

With a single ASPort request, VMs can load entire image regions. Multi-word transfers can access

continuous blocks of data by incrementing the address after each word, or the VM can specify a

custom access pattern by specifying a different address at each cycle.

Atomic swap operations ensure each context is held by no more than one PM, preventing data

corruption. The swap operation, which simultaneously reads from and writes to an address, also

prevents other ASPorts from accessing the same location. Using swap, a PM can ensure that no

other PMs are using the same context.

Bandwidth and arbitration

The accelerator store supports systems containing many PMs and each may make requests simul-

taneously. The AS has an arbiter to satisfy as many PM requests as possible, and reject any

remaining requests. The arbiter now uses a round-robin scheme to prevent starvation. Each PM’s

direct connection to the AS, called an ASPort, contains a signal that indicates whether the request

was accepted or rejected. Each ASPort has an associated priority which determines the order that

requests are accepted or subsequently rejected. If the request is rejected, the PM can try the request

again on the next or later cycle. Rotating the priorities ensures that each ASPort can regularly

access the AS.

AS bandwidth is represented in terms of “channels,” which indicates the number of requests

it can satisfy per cycle. Although the channel count is parameterized for any value, in practice,

provisioning more than three channels had negligible performance benefits.

4.3.2 Slicer module

The ShrinkFit framework includes a slicer module that interacts with the AS and PMs and ensures

all VMs can properly access input data or store output data in RA handles. For example, the edge

detect accelerator contains sixteen convolution VMs, which output images to sixteen magnitude

89

VMs. To function correctly, all sixteen convolution VMs must each produce their regions of the

output images before the magnitude VMs can consume them. In addition, the magnitude VMs

must all consume these images before the convolution VMs can overwrite them with new output

images. Because there are multiple VMs producing data and a different set of VMs consuming

data, a FIFO handle would not suffice: as soon as one VM performed a get, the data would be lost

to the other VMs. Instead, the slicer assists the VMs in ensuring that all VMs can reliably produce

and consume data from RA handles.

To improve performance, the slicer supports varying amounts of buffering. Buffering is quan-

tified in “buffer slots,” which measure the number of entries that can be stored in the RA handle.

For example, a handle with room for four images is sized to four buffer slots. By increasing the size

of a handle to buffer more slots, a PM can batch more computation and improve performance.

Each buffer slot is in one of two states: produce or consume. When producing, one or more

VMs write portions of the buffer slot. When all VMs finish producing, the buffer slot switches

to the consume state. During the consuming phase, VMs read from the buffer slot. When all

VMs finish consuming the buffer slot, it switches back to the produce state, and the slicer notifies

VMs to produce the next buffer slot. In the edge detect accelerator, the buffer slot starts in the

produce state as convolution VMs produce the x-direction and y-direction images. Once all sixteen

VMs have finished producing, the slicer switches the buffer slot into consume mode, notifying

the magnitude accelerator to begin consuming the images. And once all sixteen magnitude VMs

have completed consuming, the slicer switches the buffer slot back to produce mode so that the

convolution modules can store their next output images.

If the handles are sized for multiple buffer slots, VMs can produce and consume simultaneously

from the handle (but not the same buffer slot). For the edge detect accelerator, if the convolution

and magnitude VMs are connected by handles with two buffer slots, one buffer slot may be in a

produce state and the other in a consume state. This allows magnitude VMs to consume an image

generated by the convolution VMs, while the convolution modules simultaneously produce the next

image into the other buffer slot.

90

Idle

Return

context

Pick

context

Load

context
Check

I/O

handles

Load

input

Release

input

frames

Compute

Store

output

Save

context
Release

output

frames

Figure 4.4: ShrinkFit wrapper state machine
Each ShrinkFit wrapper implements this state machine to context switch, load inputs, trigger
computation, and store resulting outputs. Wrappers initially enter the idle state on startup.

4.3.3 ShrinkFit wrapper

The ShrinkFit wrapper is a small hard logic block that connects a PM to the accelerator store’s

ASPort. The wrapper implements common ShrinkFit tasks, including context switching, loading

inputs, storing outputs, and interacting with the slicer (Figure 4.4). This logic was initially imple-

mented within each PM, but resulted in duplicate logic in all PMs. Hence, the common logic was

refactored into a generalized hard logic block.

ShrinkFit wrapper contexts

The wrapper defines a common context handle structure (Figure 4.5). Each module design has

its own RA context handle, with a context for each of its VMs. The first words in the context

handle each correspond to a different VM, forming a context directory. Each of these directory

entries contain the location of the VM’s context data and the length of the data. This approach

was chosen to support variable-length contexts, rather than hard coding context data lengths to a

set size.

This context directory approach allows wrappers to quickly check if a context is claimed by

another VM. A slicer tries to claim a handle by swapping the context’s directory entry with an

invalid entry. If the wrapper receives an invalid entry back, it knows another PM has already

91

Region 1

Context

Region 0

Context

16

Context Directory

Addr

...

Addr:

16

Size:

3

0

Addr:

19

Size:

3

1

Addr:

61

Size:

3

15

Context 0

...

17 18 19

Context 1

20 21

Figure 4.5: ShrinkFit wrapper context handle structure
ShrinkFit wrapper context handles contain a context for each VM. A context directory at the

start of the handle identifies the locations of each context.

claimed this context, and tries to claim the next directory entry. If the PM receives any other value

back, it knows it has successfully claimed the context. The wrapper then uses information in the

directory entry to load the context. When the PM is done using the context, it saves any changes

back to the context data, then writes the original directory entry back to the context directory.

ShrinkFit wrapper input/output

After loading the context, the ShrinkFit wrapper first checks if input handles have enough data to

consume, and if output handles have enough space to produce the results into. If checks fail, the

context is returned and a new one is chosen. Otherwise, the wrapper begins loading from input

handles.

When loading input data, the wrapper’s connection contains a RAM interface (enable, write,

data in, address) to write the data to the PM. This allows the PM to store input data automatically,

without programming additional control logic into the FPGA. The PM can also elect to manually

load input data if it has special requirements.

After input loading completes, the wrapper prompts the VM to begin computation. When

the VM indicates computation completes, the wrapper uses a process similar to loading inputs in

order to store the computation outputs.

92

Figure 4.6: ShrinkFit hard logic block die area overheads
ShrinkFit hard logic block die area overheads are low for systems with many accelerators and
well-provisioned bandwidth. Hard logic blocks are synthesized for a commercial 40nm process

technology, and area is expressed in mm2 as well as normalized to the area of a Spartan-6 FPGA
slice.

4.3.4 ShrinkFit framework area costs

Because the ShrinkFit framework is generalized, rather than designed for a specific set of accel-

erators, it makes sense to hard code it into the die, rather than programming it into the FPGA.

ShrinkFit also provides several opportunities for PMs to override automatic features if they desire

a custom solution.

By utilizing hard logic blocks, the ShrinkFit framework has low area overhead. All three hard

logic blocks—AS, slicer modules, and ShrinkFit wrapper—are synthesized using Design Compiler

93

Treadmill

(camera)

DCT Treadmill

(compress)

Treadmill

(recogni on)

Treadmill

(naviga on)

16 VMs

DCT accelerator

Convolu on

(edge detect)

16 VMs

Magnitude

16 VMs

Convolu on

(sharpen)

16 VMs

Regional

op cal ow

16 VMs

Op cal ow

merge

1 VM

Edge detect accelerator

Op cal ow acceleratorImage sharpen accelerator

Producers: 16

Consumers: 1

Handle ID: 14

Producers: 16

Consumers: 16

Handle ID: 1

Producers: 16

Consumers: 16

Handle ID: 0

Producers: 16

Consumers: 1

Handle ID: 12

Slicer index: 1

Producers: 16

Consumers: 1

Handle ID: 6

AS FIFO

Handle ID: 11

Producers: 1

Consumers: 48

Handle ID: 8

Figure 4.7: RoboBee application decomposed into VMs
Prior to implementing software, each ShrinkFit accelerator in the RoboBee application is

decomposed into VMs and handles

D-2010.03 for a commercial 40nm process. Assuming a three-channel AS with ASPorts for 64 PMs,

which is more than sufficient to maximize RoboBee application performance (only 36 are needed),

Figure 4.6 plots the die area overhead versus the number of ShrinkFit wrappers. For comparison

to reconfigurable resources, a commercial 40nm memory compiler was used to find the area of an

SRAM equivalent to the 32x512, dual-port BRAMs found in the Spartan-6 (0.0276mm2). This

value is used to express the hard logic block area in terms of slices, the basic building block of

FPGAs (this calculation is described in more detail in Section 4.5.1). Using the equivalent slice

area in Figure 4.6, Section 4.6.4 later shows that the ShrinkFit hard logic block die will consume

less than 2% of the FPGA’s die area in both small and large FPGAs.

4.4 Software Development

Developing applications requires the system designer to perform two tasks: decomposing accel-

erators and configuring the ShrinkFit hard logic blocks. To simplify the latter step, a software

development kit (SDK) called shrinklib was created for the Python programming language.

94

4.4.1 Decomposing accelerators

Before any software can be implemented, the accelerators in the application design (Figure 4.2) must

be decomposed into their corresponding VMs (Figure 4.7). For example, the edge detect accelerator

decomposes into sixteen convolution VMs and sixteen magnitude VMs. This decomposition will

also include handles to represent data connections, such as the images produced by convolution

VMs and consumed by the magnitude VMs.

The application designer must decide how many buffer slots to allocate to each handle and

calculate how many VMs produce and consume from each handle. Contexts for each module design

are stored in RA handles, so handles must be allocated to store contexts as well.

4.4.2 Configure ShrinkFit hard logic blocks

Once the application designer decides on the configuration of VMs and handles, it is time to

implement software. The software program uses system bus reads and writes to configure the

ShrinkFit hard logic blocks, just as it would to read from or write to memory. The program must

configure a few things:

1. Create handles (to connect VMs and store contexts)

2. Configure the slicer with the number of VMs that produce and consume each handle

3. Store contexts for each VM in context handles

4. Configure each PM’s ShrinkFit wrapper

5. Start each PM’s ShrinkFit wrapper

All of these routines consist of multiple reads and writes to the system bus.

4.4.3 Shrinklib SDK

The shrinklib SDK includes routines to automate the application development steps after decompo-

sition. Although shrinklib is currently implemented in the Python programming language, it simply

performs system bus reads and writes, and is easily ported to other languages. The RoboBee ap-

plication demonstrates how shrinklib is used below:

95

Using shrinklib, the application first initializes the ShrinkFit framework and creates handles

(step 1). Ellipses are substituted in place of repetitive code:

brain.SetUpBrain()

camera_image_handle = shrinklib.AsHandle(

spi, hid=8, start_addr=0x00018000, word_count=4096)

...

dct_ctxt_handle = shrinklib.AsHandle(

spi, hid=13, start_addr=0x0001F800, word_count=512)

dct_coefs_handle = shrinklib.AsHandle(

spi, hid=14, start_addr=0x00000000, word_count=8192)

handle_table = shrinklib.AsHandleTable([

camera_image_handle, ..., dct_ctxt_handle, dct_coefs_handle])

handle_table.CommitToAs()

The RoboBee application uses a similar set of calls to map producer and consumer counts to each

handle (step 2). Afterwords, the application builds each module design’s context handle, configures

each ShrinkFit wrapper, and starts the PMs (steps 3-5). For example, this code performs steps

3-5 for all DCT PMs:

virt_dct2_set = shrinklib.VirtDct2Set(

spi=spi, slicer=slicer, physical_module_count=dct_pm_count,

context_handle=dct_ctxt_handle)

virt_dct2_set.AddContexts(

in_handle=camera_image_handle, out_handle=dct_coefs_handle)

virt_dct2_set.CommitInit()

virt_dct2_set.StartPhysicalModules()

The code used to initialize the other four PM designs is almost identical.

If new PM designs are created, adding support for them to shrinklib is straightforward. The

module designer only needs to write two methods for the new design. The first routine uses the

system bus to configure each of the ShrinkFit wrappers for the module design, the second builds

the context handle for each module design.

4.5 ShrinkFit module evaluation

PMs are the building blocks of all ShrinkFit accelerators, and by extension, the applications that

use them. Before evaluating the RoboBee application and the four ShrinkFit accelerators it uses,

the five PMs they are built from—convolution, magnitude, DCT, OF region, and OF merge—are

96

considered. Specifically, two aspects of the PMs are evaluated. First, performance scales up linearly

with FPGA resources as more PMs are added. Second, regardless of whether a few or many PMs

are programmed into the FPGA, performance overheads and resource overheads remain low.

4.5.1 ShrinkFit PM implementations

For each of the five RoboBee PM implementations, compute logic and ShrinkFit functionality is

partitioned into separate blocks. Compute logic, designed using the Vivado C-to-RTL compiler [4],

only contains the logic required to perform the PM’s computation and BRAM memories to hold

input and output data. In other words, the compute logic blocks do not contain any optimizations

for ShrinkFit interfacing or functionality. To add ShrinkFit support, each PM has additional “glue

logic” to connect the compute logic block to a ShrinkFit wrapper. Since the wrapper performs most

of the tasks related to ShrinkFit, the glue logic simply connects the wrapper to the corresponding

PM and takes care of any special cases. For example, the convolution module may produce outputs

to one handle if performing image sharpening, or two handles if performing edge detect. Convolution

glue logic guides the wrapper to accommodate this choice properly.

In all five RoboBee PM designs, glue logic resource requirements are small compared to

their corresponding compute logic blocks, between 0.0% and 7.8% (Table 4.1). These low resource

overheads are largely thanks to the ShrinkFit wrapper, which implements the majority of ShrinkFit

functionality as a hard logic block. In order to compare the glue logic and compute logic resource

costs, each PM is synthesized using Xilinx ISE 14.4 for the Spartan-6 FPGA used in the HBP,

with and without glue logic. Like most FPGAs, the Spartan-6 contains four basic primitives:

registers and lookup tables (LUTs), DSP blocks optimized for addition and multiplication, and

BRAM blocks for efficiently storing large datasets. Registers and LUTs are contained within slices,

of which hundreds if not thousands exist in the FPGA.

In addition to counting these primitives (register, LUT, DSP, and BRAM) in each design,

a “slice area” resource cost is calculated combining primitives into a single metric. This metric

packs registers and LUTs into slices (16 registers and 8 LUTs per slice) to obtain a slice count,

and determines the die area of DSPs and BRAMs relative to the area of a slice (DSPs and BRAMs

consume the area of 4.95 slices, according to PlanAhead floor plans). Total slice area is the sum of

slices used by registers and LUTs, combined with the relative slice area of DSPs and BRAMs.

97

Com
pu

te
on

ly

PMs (
Com

pu
te+

Sh
rin

kF
it)

(a) Convolution PMs

Com
pu

te
on

ly

PMs (
Com

pu
te+

Sh
rin

kF
it)

(b) Magnitude PMs

Com
pu

te
on

ly

PMs (
Com

pu
te+

Sh
rin

kF
it)

(c) DCT PMs

Co
m
pu

te
 o
nl
y

PM
s (

Com
pu

te+
Sh

rin
kF

it)

(d) OF region PMs

Figure 4.8: Single PM design resource-to-performance trade-off
All four systems contain one to sixteen PMs of the same module design, demonstrating that
ShrinkFit scales performance with FPGA resources, as well as low resource and performance
overheads. Each configuration processes 100 images using a 3-channel AS. “Compute only”
considers only the compute logic without ShrinkFit overheads. PM performance considers

ShrinkFit glue logic resource and performance overheads, in addition to compute logic costs. Slice
area considers the area consumed by registers, LUTs, DSPs, and BRAMs, relative to the area of a
Spartan-6 slice. Secondary plots compare PerfPM/PerfCompute, the ratio between the two series.

98

Table 4.1: PM FPGA resource overheads

FPGA resource overheads (∆) for all five module designs are low, ranging from none to +7.8%.
“Slice area” equals the sum area of FPGA primitives (registers, LUTs, DSPs, and BRAMs)
relative to the area of a Spartan-6 FPGA slice. Each slice contains 16 registers and 8 LUTs.

DSPs and BRAMs are each approximately 4.95x the area of a slice.

Convolution Magnitude DCT OF region OF merge
Slice Area

Compute 195 81 138 120 261
PM 201 81 149 126 261
∆ +3.0% +0.0% +7.8% +5.0% +0.0%

Registers
Compute 463 92 409 178 772
PM 495 101 436 208 772
∆ +6.5% +8.9% +6.1% +14.4% +0.0%

LUTs
Compute 680 221 391 337 863
PM 702 221 436 361 864
∆ +3.1% +0.0% +10.3% +6.6% +0.0%

DSPs
Compute 2 2 4 5 4
PM 2 2 4 5 4
∆ +0.0% +0.0% +0.0% +0.0% +0.0%

BRAMs
Compute 3 3 4 2 5
PM 3 3 4 2 5
∆ +0.0% +0.0% +0.0% +0.0% +0.0%

In the case of magnitude and OF merge modules, glue logic adds no overheads. This is due

to underutilized slices in compute logic blocks, containing too few registers or LUTs to completely

pack slices. The wrapper logic is able to utilize the unused primitives without adding additional

slices, thus resulting in no additional overheads.

4.5.2 Evaluation methodology

To analyze scalable PM performance and overheads, four system design scenarios are analyzed,

each limited to only use one out of the four module designs: DCT, convolution, magnitude, and

99

Table 4.2: PM compute logic block processing delays

Each compute logic block exhibits differing processing delay requirements, sometimes dependent
on input data. Although these variable schedules could threaten FPGA resource/performance

scaling, the ShrinkFit framework is not noticeably affected.

Cycles per image region
Average Minimum Maximum Max-Min ∆

Convolution (sharpen) 13,520 12,665 14,403 12.1%
Convolution (edge detect) 12,079 11,315 12,867 12.1%
Magnitude 3151 2600 3250 20.0%
DCT 33,061 33,061 33,061 0.0%
OF region 1251 1173 1331 11.9%
OF merge 530 530 530 0.0%

OF region. OF merge, the fifth module design, is not analyzed because only one can be used per

optical flow accelerator. For each system, different PM counts are considered, ranging from the

minimum (1) to the maximum (16). These systems also contain an accelerator store with three

channels of bandwidth and four buffer slots per handle.

The performance analysis relies on ModelSim 10.1, which performs cycle-accurate simulation

of all runs using synthesizable RTL for all hard logic blocks and PMs. Each system utilizes a

“treadmill” testing module, ensuring repeatable and error-free tests. The treadmill module injects

pre-recorded camera images into the system in the same order and verifies PM outputs using

corresponding checksums. Performance is determined by measuring the number of cycles required

to process 100 images. To evaluate ShrinkFit performance overheads, each PM’s performance

is compared with the compute logic block’s performance. The subset of cycles spent utilizing

the compute logic block is also recorded. This measurement reveals the theoretical maximum

performance of the PM without any ShrinkFit overheads (Table ??). Dividing actual ShrinkFit

system performance by this theoretical maximum (PerfPM/PerfCompute) reveals the performance

overhead of the ShrinkFit system.

Implementations of the ShrinkFit framework RTL and PM RTL have been verified to cor-

rectly synthesize and work in the HBP hardware. However, the HBP platform could not be used

for thorough performance analysis. Because the off-the-shelf Spartan-6 FPGA does not include

100

ShrinkFit hard logic blocks, all ShrinkFit features were programmed in as soft logic blocks, con-

suming much more of the FPGA’s resources. This limited the number of PMs that could be added

and introduced additional overheads that would not occur with ShrinkFit hard logic blocks.

4.5.3 PM performance scalability

Since all ShrinkFit accelerators are built with PMs, it is important to ensure they work well individu-

ally within the framework before combining them to compose accelerators for different applications.

Hence, the performance scalability of individual PM implementations is evaluated first. Figure 4.8

plots the performance versus resource utilization (slice area) for the four resizable types of PM

designs. For each of the PMs, the plots show how performance scales for “Compute only” and

“PMs.” “Compute only” data points correspond to compute logic without any other resource or

performance overheads. This is a highly optimistic upper bound which does not consider the costs

of context switching, loading input data to process, or storing the resulting output data. However,

many of these overheads would be present whether or not ShrinkFit is used. For example, inputs

and outputs will always need to be loaded. The “PMs” data points include these performance and

soft logic resource overheads in order to evaluate how PMs perform in an actual ShrinkFit system.

Each data point in Figure 4.8 represents a system with a different number of PMs. The points at

the far left represent a system with a single PM. Proceeding to the right, each consecutive point

uses more FPGA resources to add an additional PM. This continues until reaching the rightmost

point, representing a system utilizing a maximum 16 PMs. The corresponding PerfPM/PerfCompute

plots show how overheads scale again with respect to resource utilization for all four PMs.

The results demonstrate that all of the PMs successfully achieve a linear performance-to-

resource relation, with some minor exceptions. For each PM added to the system, performance

roughly increases by a nearly constant factor. As the number of PMs increase, the slightly lower

slope can be attributed to contention in the accelerator store. The PerfPM/PerfCompute plots better

illustrate this trend. While a slight downward slope can be seen for all PMs, these plots verify that

ShrinkFit overheads are consistently low even as more PMs are added. The larger overheads for

OF region are due to large inputs (regions of an image) and short execution times (Table ??). OF

region spends a considerable portion of its time loading inputs, a delay that would occur even if

system architectures other than ShrinkFit were to be used. For this reason, and considering that

101

the average PerfPM/PerfCompute is still high at 78.96%, the PM implementation of OF region, and

all other module designs, is sufficient for the goals of ShrinkFit.

4.6 RoboBee application evaluation

Given that PMs can scale performance with FPGA resources, and do so with low area and per-

formance overheads, the case where PMs are combined to form four accelerators and implement

the RoboBee application shown in Figure 4.7 is now considered. The system should continue to

scale performance with FPGA resources while adding more PMs into the system. The following

evaluation not only demonstrates this is achievable, but that overheads also remain low. Further,

results demonstrate that less channel bandwidth is necessary to support the RoboBee application

than some PMs require when considered individually. Finally, the role of buffering in regards to

performance is investigated.

All runs of the RoboBee application follow the same testing approach as with single module

evaluations. The treadmill module is used to inject test images and verify output checksums. For

each test, performance is measured as the number of cycles required to completely process 100

camera images. All test results are obtained from cycle accurate RTL simulations. In addition, a

system using one PM of each of the module designs is implemented and deployed to the RoboBee

brain prototype FPGA. The application was successfully run on the FPGA prototype without error

(on-FPGA and simulation results matched).

4.6.1 Application evaluation overview

ShrinkFit systems processing the RoboBee application are considered first. Like the previous figure,

Figure 4.9 plots performance versus slice area for “Compute only” and three “PM” implementations

with different AS bandwidth assumptions (1, 2, and 3 channels). Again, “Compute only” data

points only include compute logic resource and performance costs and do not include ShrinkFit

overheads due to context switching, loading input data, or storing output data. Each point in the

plot represents a different set of PMs. Points on the left side represent the minimum set of PMs,

one each of the five module designs (convolution, magnitude, DCT, OF region, and OF merge)

required by the application. This configuration requires the fewest FPGA resources possible. Each

102

Figure 4.9: RoboBee application resource-to-performance trade-off bandwidth impact
When running full applications, AS bandwidth needs are low: two channels of AS bandwidth is
sufficient for the RoboBee application, and one channel performance is only slightly less. Systems
with varying PM counts and one, two, or three channels of AS bandwidth are considered. FPGA

resources for Spartan-6 FPGA models are noted at the top.

point to the right adds an additional PM to the system. Unlike the previous evaluations that

considered a single module design, the system designer must decide which of the four PMs to add

to the system (because only one OF merge VM is used for the optical flow accelerator, there is

no benefit from adding additional OF merge PMs). To decide which of the four PMs to add,

103

each PM’s compute-only average performance (Table ??) is used as an approximation for the PM’s

performance and use these approximations to exhaustively calculate the expected performance

of each possible system configuration. This estimation is close enough to make good decisions,

due to the previous section’s findings that PM performance overheads are low. From the roughly

130,000 possible PM permutations, the highest performing configurations were progressively chosen

for each subsequent point with increasing slice area up to the number of PMs that maximize the

overall performance of the application. This exhaustive search required less than one second on a

typical desktop computer. More efficient search strategies are certainly possible, but the exhaustive

approach performed well in practice for the workload.

The plot clearly shows that ShrinkFit again enables performance to scale up with increasing

FPGA resource utilization. The somewhat jagged data points in the plot is an artifact of the

different resource and performance characteristics of the PMs. Each module design’s PM imple-

mentation consumes different FPGA resources and requires different amounts of time to complete

their operation. In other words, the performance gained and resources consumed by adding a PM

varies between module designs. In addition, applications may chain VMs in series, and adding an

additional PM will only improve performance until it alleviates the critical path, shifting it to a

different PM design. Although the point-to-point relation is jagged, the application’s overall trend

continues to be roughly linear.

These results verify that performance overheads are low when processing the application

across the full range of slice area, as seen by the PerfPM/PerfCompute plot. Although there is

slightly more variance in this ratio than with single module evaluations, it is still relatively flat.

In addition, the ratio is always high, on average at 90.34% for systems with a three channel AS,

indicating performance overheads are low.

4.6.2 Bandwidth impact

Experimental results in Figure 4.9 additionally reveal that bandwidth has less of an effect on perfor-

mance than for single module systems. Some of the module designs in the single module evaluation

required an AS with three channels to achieve high performance. However, when considering the

full application, three channels only improve performance over two channels by 0.20% on average,

an insignificant difference. Even one channel performance is only 1.72% less on average than with

104

three channels.

Bandwidth needs for the application are lower than for single modules because needs are

determined by the slowest modules, not the fastest. OF region PMs require up to three channels

when large numbers of PMs are present since computation is so fast that loading input images

(utilizing bandwidth) requires a significant portion of the PM’s cycles. But because the OF region

PMs are so fast, they are rarely on the critical path when slower PMs, such as DCT, are present. As

a result, the application never needs to program enough OF region PMs to require three channels.

These results also demonstrate the efficacy of PM sharing between ShrinkFit accelerators.

Both edge detect and image sharpen accelerators make use of convolution PMs. These PMs are not

partitioned to one accelerator or the other, rather, all PMs rapidly switch between both accelerators.

Further, the lowest resource configurations use a single convolution PM, shared by both accelerators.

Despite switching between both accelerators, the system achieves high performance.

ShrinkFit quickly identifies when the system achieves maximum performance and adding

additional PMs would waste resources. PM configurations that consume 16x more resources than

the minimum sized configuration are not considered, because maximum performance is achieved

well before this point. Like bandwidth, performance is dictated by the slowest module limiting the

critical path. Therefore, when the slowest module programs its maximum number of PMs into the

FPGA logic (sixteen DCT PMs in the RoboBees application) the critical path cannot be reduced

by adding PMs from other module designs. Once the maximum number of PMs for a module design

have been programmed into the FPGA, it is quickly apparent that there is no need to consume

more FPGA resources with other PMs. In the case of the RoboBees application, this occurs with

the following PM counts: 16 DCT PMs, 13 convolution PMs, 2 magnitude PMs, 1 OF region PM,

and 1 OF merge PM. By quickly identifying this maximum performing configuration, ShrinkFit

prevents programming additional, unnecessary logic.

4.6.3 Buffering impact

In contrast to bandwidth insensitivity, Figure 4.10 shows buffering has a significant effect on per-

formance as PM count grows. For this experiment, systems with the same PM selections as in the

bandwidth evaluation were used. However, instead of varying bandwidth, each handle is sized to

hold either one, two, or four buffer slots. In systems with low PM counts, PerfPM/PerfCompute re-

105

buffer slots

buffer slots

buffer slot

buffer slots

buffer slots

buffer slot

Figure 4.10: RoboBee application resource-to-performance trade-off buffering impact
Buffering is essential for high performance with many PMs: four buffer slots per handle is

necessary to scale performance with upper PM counts. Systems with varying PM counts and one,
two, or four buffer slots per handle are considered. FPGA resources for Spartan-6 FPGA models

are noted at the top.

mains high regardless of buffer size, indicating low performance overheads. However, as PM counts

rise, buffering less than four buffer slots constrains performance and lowers PerfPM/PerfCompute.

Buffer size has significant impact on performance due to pipelining effects between modules

connected in series. For example, if a handle is sized for a single buffer slot, that buffer slot can only

106

be used to produce or consume at any given time. Therefore, for modules on the critical path, only

half may be actively processing at any time. This effect is lessened for handles sized for two buffer

slots, which allows connected VMs to produce and consume simultaneously. Still, it is unlikely that

both VMs will complete producing and consuming at exactly the same time, and therefore one will

stall while the other completes. Using handles with room for four buffer slots decouples modules

in series, and improves pipelining performance accordingly. Because these limitations would apply

to any accelerator based system, the experimental results show that buffering is important for any

accelerator based architecture and does not apply solely to the ShrinkFit framework.

To obtain a direct comparison between “Compute only” and actual PM performance while

investigating buffering, the resource overhead of using different levels of buffering is not considered

in Figure 4.10. “Compute only” assumes an unlimited amount of buffering, and because any accel-

erator based system would require amounts of buffering at least equivalent to ShrinkFit, omitting

the resource cost results in the fairest comparison. Using four buffer slots rather than one requires

an additional area equivalent to 159 Spartan-6 slices, and is only necessary to increase buffering

when larger PM counts are used (and more resources are available on the FPGA). In practice, the

cost of adding additional buffering consumes a few percentage points of resources, and would apply

equally whether or not ShrinkFit was used.

4.6.4 Hard logic block area overheads

It is not surprising that FPGAs with larger resources can fit more PMs: both Figure 4.9 and

Figure 4.10 indicate the total slice area of reconfigurable logic that each Spartan-6 FPGA contains.

Smaller FPGAs, such as the SLX9 can only fit systems with a few PMs, whereas the larger SLX75

can fit enough to obtain the maximum achievable performance [3]. As such, the SLX9’s ShrinkFit

framework would need to provision support for fewer PMs, which would reduce the percentage of

FPGA die area consumed by ShrinkFit hard logic blocks. If Spartan-6 processors were to include

ShrinkFit hard logic blocks, provisioning 16 PMs for the SLX9, 32 PMs for the SLX16 and SLX25,

and 64 PMs for larger Spartan-6 FPGAs should be sufficient if not over-provisioned. For flexibility,

more ShrinkFit wrappers are provided than used for the RoboBee application. For the SLX75 and

up, almost half of the 64 wrappers are unused and available for future expansion. Using data from

Figure 4.6, the equivalent slice area of ShrinkFit hard logic blocks is small by comparison. With

107

this provisioning scheme, ShrinkFit hard logic blocks require less than 2% of reconfigurable die area

for small and large Spartan-6 FPGAs.

4.7 Related work

Several works target multiple resource budgets by creating variants of the same accelerator. Cong,

et al., use the Vivado C-to-RTL compiler to survey architectural parameters to create accelerator

variants for different resource budgets [17]. As discussed in this chapter, this approach leads to

challenges when building multi-accelerator systems. Elastic computing manually designs multiple

variants of the same accelerator using different algorithms [75]. This approach is difficult to scale

as it depends on significant manual design and the existence of multiple implementations of the

same algorithm.

Other works have investigated approaches to manage multiple accelerators in a single sys-

tem. Dales, et al., introduced an approach for a hybrid FPGA+GP processor to switch between

accelerators and software execution [21]. This work does not use accelerator variants or resize ac-

celerators. FPMR adds hardware support for MapReduce algorithms to resize an accelerator [66].

This work is limited to the use of a single accelerator and algorithms which fit within MapReduce

semantics. CHARM and DRP use generic hard compute logic blocks instead of FPGA slices to

create reconfigurable accelerators [18, 31].

Previous works have used virtualization concepts to support hardware acceleration. Kalte, et

al., use contexts to store accelerator state, but for the purpose of pausing or relocating accelerators in

FPGA fabric rather than resizing them [40]. C-Cores introduced an approach for ASIC designs that

automates software-hardware codesign using virtualization-like state management and is limited to

single accelerators [73].

108

Chapter 5

Future directions

The accelerator store is developed to be an extensible, open platform, rather than a self-contained

work. The ShrinkFit framework, built on top of the accelerator store, was also designed to be a

part of the evolving needs of accelerator-based systems rather than a isolated work. As such, many

opportunities exist to build on top of both works, and many avenues for research are possible. In

this chapter, several research directions are highlighted.

5.1 Accelerator store scalability

The accelerator store was originally designed, for the purposes of Chapter 3, to interact with up to

16 accelerators. Beyond this point, the arbiter’s latency becomes long because the computational

complexity of arbitration is linear with regards to accelerator count. For many-accelerator systems,

a distributed accelerator store (DAS) approach was proposed, using multiple accelerator stores

connected by a grid OCN. ShrinkFit was able to increase the number of supported accelerators

to 64 (and perhaps beyond) by taking advantage of the relative performance differences between

hard logic blocks (ASIC) and FPGA logic. However, using the accelerator store with more than

16 accelerators per accelerator on an ASIC platform (rather than FPGAs) would require an imple-

mentation of the DAS design or a lower-latency arbiter (or both). The DAS approach is described

in Section 3.2.3. To reduce the arbiter’s latency, at least two options exist: subset arbitration and

multistage arbitration.

109

5.1.1 Subset arbitration

Subset arbitration only considers a subset of accelerators at each cycle. For example, if an acceler-

ator store serviced 64 accelerators, it might only consider a window of 16 accelerators at each cycle,

and automatically reject the other 48 potential requests outside that window. Although this would

increase the worst-case time for an AS request to be accepted by the AS, the subset approach is

unlikely to increase delay by much in practice. First, bulk requests will not be affected once ac-

cepted, so multi-word requests will only have to pay the additional arbitration cost once per request

rather than once per word. Second, AS contention already prevents accelerators from making AS

requests on the first attempt in many cases. Accelerator requests outside the sliding window could

be viewed as low-priority requests that would be unlikely to be accepted even if considered.

The window could be moved using existing priority rotation logic. To ensure that requests

from all accelerators are considered regularly and prevent starvation, the window could be rotated

by sizewindow � 1. Rotating by the window size, rather than by the current single increment,

ensures that all accelerators are considered as regularly as possible. The �1 term is necessary to

prevent starvation, otherwise the same accelerators would always be the lowest priority and could

be starved.

To further reduce delays, each channel could also consider a different sliding window. For

example, if a four channel AS was used in the previous example, each channel could consider one of

the four sets of sixteen accelerators. In this fashion, each accelerator could be considered at every

cycle.

5.1.2 Multistage arbitration

A related approach to reducing arbitration delay is to make arbitration a multi-cycle process, rather

than the current single-cycle approach. The advantage to implementing multistage support is that

available channels are never wasted. In the subset approach, if the accelerators in the sliding window

did not fully utilize available AS channels, AS bandwidth that could be used by accelerators outside

the window would be wasted. However, the multistage approach does add considerable complexity

to both the AS implementation, as well as the accelerators. Multistage arbitration could be viewed

as the subset approach, but with copies of the arbitration logic for each stage, and would increase

110

the area and power overheads for arbitration. In addition, accelerators would no longer know in

the same cycle if requests were accepted or rejected, and therefore would require additional logic

to handle this variable notification latency.

5.2 Unified system+AS memory

Currently, data stored in the AS is not directly accessible to the GP-CPUs. Rather, GP-CPUs must

use a bridge accelerator to access data word-by-word or DMA data between the AS and system

memory. To improve interaction between the GP-CPUs and accelerators, it would be preferable for

AS memory to be accessible over the system bus directly, so that it does not appear any different

than data stored in system memory.

Cota, et al. [20] presents a related approach that allows a memory to be used by a single

accelerator or within the system cache. Although this approach allows memory to be used both as

system memory and as accelerator memory, it comes with limitations. First, the memory can only

be mapped to one accelerator at design time, and cannot be reassigned to other accelerators as is

possible with the AS. Second, the memory can only be used by the accelerator or by the system at

a time—it cannot be used to expose AS data over the system bus.

Unifying AS and system memory presents a more complex challenge, requiring that accelera-

tors and GP-CPUs do not interfere with each other. Current GP-CPU instruction sets (ISAs) may

make this impossible: there is not clear way to perform handle operations with system memory

using current ISA semantics. Therefore, unifying system and AS memory will probably require a

combination of architectural and ISA modifications.

5.3 Dynamic handle allocation

Current uses of the accelerator store have statically assigned handles to accelerators. However, in

systems with changing workloads and different accelerators, the handle table configuration will need

to change at runtime. A software dynamic handle allocator, similar to software dynamic memory

allocators used in virtually all programming languages, would be the best approach for modifying

the handle table configuration at runtime. This would allow handles to be automatically unmapped

and remapped without exposing the software developers to complexity of runtime allocation.

111

5.4 ShrinkFit dynamic reprogramming

As previously noted, ShrinkFit is well suited for use in combination with FPGA dynamic repro-

gramming techniques. Using dynamic reprogramming, accelerators could be dynamically shrunk

or expanded as application needs change. Dynamic reprogramming is a challenging problem, and

works differently across different FPGA manufacturers and families. For example, entire regions

of the FPGA may need to be reprogrammed at once, and multiple accelerators may occupy the

same region. Therefore, properly allocating accelerator combinations to each region at runtime is

a complicated problem which has limited the use of dynamic reprogramming in the past. However,

as dynamic reprogramming techniques improve, the combination of dynamic reprogramming and

ShrinkFit could broaden the appeal of FPGA hardware acceleration in mainstream computing.

112

Appendix A

Helicopter brain prototype

Figure A.1: Helicopter brain prototype attached to helicopter and optical flow camera

113

Figure A.2: Helicopter brain prototype front

Figure A.3: Helicopter brain prototype back

114

0.1!

1!

10!

100!

64 (8x8)! 256 (16x16)! 1K (32x32)! 4K (64x64)! 16K
(128x128)!

E
n

e
rg

y
 p

e
r

fr
a

m
e

 (
μ

J
)"

Image resolution (pixels)"

Software ! Hardware accelerator!

18.5x !
Improvement!

29.2x !
Improvement!

Figure A.4: Optical flow software and hardware accelerator energy consumption

A.1 Brain

Energy is critical due to battery size limits imposed by the helicopter’s limited lift. The brain

must perform all computation with minimal energy consumption. Computation primarily consists

of regularly occurring and computationally intense operations such as optical flow (visual change

over time). To maximize energy efficiency, these tasks are implemented as hardware accelera-

tors. Compared to software running on a general purpose processor, 18.5-29.2x energy efficiency

improvements are achieved by using hardware accelerators for optical flow (Figure A.4).

The RoboBee brain also includes a general purpose ARM Cortex-M0 microcontroller for in-

frequent or simple calculations. The Cortex-M0 is extremely low power when active (roughly

85 µW/MHz in ASIC). Although the Cortex-M0 performance is limited, any computations re-

quiring more performance should be realized as accelerators rather than as general purpose core

115

Figure A.5: MCX2 Toy Helicopter

software.

A.2 Helicopters

The RoboBees team is creating flying bee-sized robots for pollination, search and rescue, and other

tasks. The project consists of the body, brain, and colony groups working in parallel. RoboBee body

design is in progress, so researchers in the colony and brain teams use toy helicopters (Figure A.5)

as a RoboBee approximation. Researchers use the helicopters to try new sensors and develop

collaborative strategies. Although the helicopters are larger than the final bee size, they mimic the

instability of small vehicle flight and can work together in similar situations.

The helicopters are currently used in two configurations. The first is a stock configuration

where small white dots are placed on the helicopter for motion capture. Vicon cameras in the room

116

use the white dots to locate the helicopters in 3-D space. A stationary computer uses this location

data to control each helicopter’s motor and steering by radio control.

The second configuration removes the circuit board controlling the helicopter motor and steer-

ing and replaces it with two circuit boards and an optical flow sensor ring. The “mainboard”

controls the helicopter motors and steering, and includes an AVR32 processor for computation.

It also connects to the “optical flow (OF) daughterboard,” which measures the amount of visual

change seen over time. For example, if two RoboBees were traveling over the same route, but one

was flying at twice the speed, it would also see twice the optical flow. The OF daughterboard

mainly consists of two AVR32 processors, each with connection pins to an optical flow sensor or

sensor ring. Currently, only one of the sensor connections is in use and only one AVR32 processor

is processing optical flow calculations. Optical flow sensor rings consist of eight low-resolution,

high-speed cameras (optical flow sensors) surrounding the helicopter like a halo.

The HBP merges brain hardware development with software development on the helicopter.

The HBP implements an upgradeable copy of the RoboBee brain SoC, and will allow researchers to

develop on the RoboBee platform while using helicopters. The HBP will be an in-place replacement

for the optical flow daughterboard and communicate with the mainboard and optical flow ring. The

HBP will subsume computations from the mainboard as development progresses.

A.3 Objectives

The HBP targets the following objectives:

1. Brain-Colony collaboration: The HBP provides a bridge between the brain and colony groups.

The brain team developed an early version of the Brain SoC containing the Cortex-M0 GP-

CPU and an optical flow accelerator. Meanwhile, the colony group and other researchers in

the brain group use helicopters, using GP-CPUs with performance beyond RoboBee GP-CPU

capabilities. The HBP allows helicopter teams to design software for the RoboBee brain and

use it on helicopters.

2. Brain SDK: The HBP helps the brain team evaluate the RoboBee brain as a software de-

velopment platform. Monitoring the experience of software developers early in the RoboBees

117

Figure A.6: Original CentEye system architecture

project can reduce programming challenges before design changes cause major regressions.

3. Sensor evaluation: The HBP includes several accessible serial ports for interfacing with

sensors. This will allow design teams to try out new sensors in the field, without PCB

redesign delays.

4. Accelerator identification: The brain team developed tools to measure the energy cost of

running software on the Cortex-M0 and comparing energy costs to corresponding accelerators.

By using the HBP platform rather than the current helicopter configuration, the brain team

can identify software to accelerate and compare energy costs for implementing algorithms in

software and hardware.

5. Demos: The HBP provides fully autonomous flight and demonstrates collaboration between

the brain and colony teams.

A.4 System Architecture

The current CentEye configuration connects the mainboard, daughterboard, and optical flow in

series (Figure A.6). The battery is connected to the mainboard, and battery power is relayed

through the daughterboard and to the optical flow ring.

The HBP replaces the CentEye daughterboard with an FPGA-based board (Figure A.7).

The initial HBP bitstream will emulate the daughterboard’s optical flow functionality. Additional

118

Figure A.7: HBP system architecture
The CentEye mainboard and optical flow ring remain and use the same connectors.

features will be implemented in FPGA logic after.

A.5 HBP Connectors

The HBP maintains the connectors to the mainboard (I2C based) and to the optical flow sensor ring

(custom IO protocol). The HBP will also supply two I2C and two SPI connectors for future sensor

expansion. In addition, a JTAG connection will be available for FPGA bitstream programming

and debugging. Finally, GPIOs will be exposed for any other connectivity needed later.

A.5.1 Connection to mainboard

Figure A.8 shows the connector pinout to the mainboard.

XTRA (1,2): Unconnected

SDA (3): I2C data

SCK (4): I2C clock (driven by mainboard)

SPIxxxx (5-8,11): SPI, unconnected

119

Figure A.8: Interface to mainboard

GND (9)

VBAT (10): unregulated 3.7V-4.0V from helicopter battery

Unused (11-20): Unconnected

A.5.2 Connection to optical flow sensor ring

Figure A.9 shows the connector pinout to the optical flow sensor ring.

AOUT (1): Analog pixel (8-bit grayscale) reading. The HBP’s ADC is used to determine the

pixel value.

Unused (2): Unconnected

CS7 LED1 (3): Powers an optional LED flash (light) on the sensor ring. Unconnected.

VBAT (4): Unregulated 3.7V-4.0V from helicopter battery.

CS1-5 (5-9): Selects one of the eight sensors on the sensor ring. Three CS signals are always

120

Figure A.9: Interface to optical flow sensor ring

high. Although this signal is 4.7V, the 3.3V provided by the FPGA is sufficient (validated

by CentEye).

WNR (10): ”Write/NotRead” - used to indicate direction of IO signals.

GND (11)

IO0-7 (12, 14-20): HBP to OFSR 4.7V signals used to send commands to sensors. The HBP can

only signal at 3.3V, which is sufficient for the OFSR to detect as high. Because the OFSR

never communicates back on these lines, no level converter is needed.

4.7V (13): Regulated 4.7V necessary to power optical flow sensors. This must be regulated on

the HBP board.

121

FPGA

(Master)

Sensor

(Slave)

Sensor

(Slave)

SDA
SCL

VDD

Figure A.10: I2C Interface

A.5.3 JTAG

A Xilinx JTAG connection will be provided for the reconfiguring the FPGA’s bitstream (in flash

and directly on the FPGA) as well as for debugging. The HBP will not be using the standard

14-pin interface to reduce weight and PCB area. An alternate 6-pin cable will be needed to carry

TMS, TCK, TDI, TDO, as well as 3.3V and GND. All four Txx signals are 3.3V.

A.5.4 I2C

The board will offer two I2C serial ports for sensor connectivity. This includes SCL (clock), which

is produced by the FPGA. This also includes SDA, which is a shared bidirectional signal. SDA

and SCL have pullup resistors (Figure A.10), so devices can only pull SDA to ground when given

control of the signal. The HBP connector also supplies 3.3V and GND.

I2C allows multiple sensors over a single port, but multiple ports are provided to improve

throughput and simplify connectivity.

A.5.5 SPI

The board will offer two SPI ports for high-throughput sensors. SPI consists of four one-way signals

(Figure A.11: SCLK clock generated by the FPGA, MOSI (master out, slave in), MISO (master

in, slave out), and SS (slave select). Although SPI can support multiple slaves per master, each

slave needs a separate SS line. To reduce design complexity and maximize throughput, two SPI

ports are provisioned. 3.3V and GND are also supplied (so a 6-pin connector is necessary).

122

SCLK
MOSI
MISO

FPGA

(Master)

Sensor

(Slave)

Sensor

(Slave)

/S
S
2

/S
S
1

Figure A.11: SPI Interface

A.5.6 GPIO

The board offers eight GPIOs (IO xxx pins on the FPGA) for input & output. For example, one

of the I2C sensors (Gyro + Accelerometer) also has two interrupt pins. These GPIOs are useful

for interfacing with any non-I2C/-SPI sensors that may come about (commercially available or

through academic projects).

A.6 Components

The HBP will be an in-place replacement of the helicopter’s daughterboard. The daughterboard

currently implements an optical flow algorithm on an AVR32, so the HBP must also implement

the optical flow algorithm. In addition, the HBP must communicate with the mainboard and

optical flow sensor ring over separate I2C serial ports. The mainboard connection also provides an

unregulated 3.7V battery line.

By stripping the helicopter’s body (it’s purely cosmetic), replacing the toy’s PCB with the

CentEye mainboard, and including the optical flow sensor ring, 4.5-6.5g is left for the HBP. The

helicopter can fly comfortably up to 4.5g, and struggles up to 6.5g, and will not fly with additional

weight. This HBP weight budget includes components (FPGA, flash memory, etc.), solder, and the

PCB. Fully assembled, the HBP weighs 4.16g, well below the preferred weight of 4.5g.

Figure A.12 shows how these components connect up in the HBP.

123

Figure A.12: HBP Architecture

Table A.1: XC6-SLX150 resource utilization for RoboBee brain

System consists of Cortex-M0 GP-CPU and optical flow accelerator

Resource Utilization %

LUTs (logic) 6%
Registers 1%

DSPs (multiply-accumulate) 17%

A.6.1 FPGA

The FPGA implements the brain’s circuitry and can be upgraded in minutes for future versions of

the RoboBee brain.

The Xilinx XC6-SLX150 FPGA was selected for its high resource count (Table A.1), and its

low energy consumption (Figure A.13 and Figure A.14) and weight. This FPGA gives the brain

team room to add new accelerators and provides acceptable flight times. The CSG484 package is

the lightest version of the FPGA, weighs 1.3302 g, and measures 19 x 19 mm. The modest IO pin

needs are sufficiently handled by the CSG484 package.

124

500#

750#

135# 147#

975#

0#

200#

400#

600#

800#

1000#

1200#
P
o
w
e
r&
(m

W
)&

Figure A.13: XC6-SLX150 FPGA power consumption
FPGA power consumption is largely a factor of the resources used. Configurations with just the
Cortex-M0 GP-CPU, Cortex-M0 and optical flow accelerator, and full FPGA utilization are

shown. The motor currently consumes the most helicopter power and is shown for comparison.

A.6.2 Flash memory

Flash memory is used to configure the FPGA’s volatile memory on system startup. The XC6-

SLX150 requires slightly more than 4MB to store the configuration, so the minimum flash size is

8MB. The Winbond W25Q64-WSON-ZE was chosen, which contains 8MB of memory and runs

entirely on 3.3 V (other flash parts required a higher voltage for writes). The flash weighs 0.11 g

and measures 8 x 6 mm.

125

7.5$

5.9$ 5.8$

2.5$

5$

4.2$ 4.2$

2.2$

0$

1$

2$

3$

4$

5$

6$

7$

8$

No$FPGA$ Cortex8M0$ Cortex8M0+OF$ Full$U?liza?on$

B
a
#
e
ry
'fl
ig
h
t'
-
m
e
'(
m
in
)'

FPGA'Configura-on'

Motor:$Hover$ Motor:$Full8ThroIle$

Figure A.14: Helicopter battery life with XC6-SLX150
Estimated battery life for different FPGA configurations is shown. Lifetimes are expected to be
between hover and full-throttle times, depending on final weight of HBP and RoboBee task.

A.6.3 1.0V+3.3V Buck Converter

The FPGA requires 3.3 V (provided by the mainboard) for IO and 1.0 V for internal voltage. A

buck converter is used to step down from the 3.7V battery to 3.3 V and 1.0 V. The LTC3615

dual voltage regulator was selected for this purpose. This particular model was chosen because it

features a devkit with published schematics supporting 1.0V and 3.3V outputs. Also, the Atlys

Spartan6 devkit uses similar dual voltage regulators to power the FPGA. Different models are used

than in the Atlys because the devkit also generates 1.8V and 2.5V. The LTC3615 can support 3A

on both outputs, which matches the regulators used in the Spartan6 devkits.

126

A.6.4 4.7V Boost+Buck Converter

The original optical flow daughterboard provided a regulated 4.7V for the optical flow sensor ring

by using a boost converter (MIC2290) and regulating down to 4.7V (LP3985IM5-4.7/NOPB). The

same regulator circuit is used by the HBP.

A.6.5 ADC

An ADC is necessary to determine the intensity of the current pixel read out from the OFSR, since

this value is provided in analog. The SPI-controlled AD7276BUJZ ADC was selected for its high

bandwidth and precision. The ADC is controlled by the HBP over SPI.

A.6.6 100 MHz Oscillator

The FXO-HC33 HCMOS 100MHz oscillator was selected, which is the replacement part for the

oscillator used in the Atlys Spartan6 devkit. It was chosen primarily because it was already proven

for the FPGA. In addition, it is relatively small and only requires one external capacitor.

A.6.7 External IO pins

Connections for the following are required:

Mainboard interface: The daughterboard used a Hirose DF30 20 pin female connector to inter-

face with the mainboard, so it is also used by the HBP.

Optical flow sensor ring interface: The daughterboard used a Hirose DF30 20 pin male con-

nector to interface with the OFSR and is reused by the HBP.

I2C: A four pin Hirose interface.

SPI: A six pin Hirose interface.

JTAG: A six pin Hirose interface

GPIO: Eight GPIO pins exposed over two four-pin Hirose interfaces.

127

A.6.8 PCB

A lightweight PCB of minimum thickness (four layers) is used. Area (weight) must be minimized

to fit within budget.

128

A.7 Helicopter brain prototype implementation

F
ig
u
re

A
.1
5
:
H
e
li
co

p
te
r
b
ra

in
p
ro

to
ty
p
e
b
il
l
o
f
m
a
te
r
ia
ls

(B
O
M

)

129

11

22

33

44

D
D

C
C

B
B

A
A

1

a a a a a
6

F
P
G
A
 C
o
n
fi
g
u
ra
ti
o
n

a
 F
la
sh

6
/3
0
/2
0
1
1

2
:0
2
:1
4
 P
M

C
:\
w
o
rk
sp
ac
e\
ro
b
o
b
ee
s\
sr
c\
b
ra
in
\h
b
p
\h
ar
d
w
ar
e\
S
ch
em

at
ic
s\
h
b
p
-c
o
n
fi
g
-f
la
sh
.S
ch
D
o
c

T
it
le

S
iz
e:

N
u
m
b
er
:

D
at
e:

F
il
e:

R
ev
is
io
n
:

S
h
ee
t

o
f

T
im
e:

A

IO
_
L
1
P
_
H
S
W
A
P
E
N
_
0

B
3

IO
_
L
1
2
N
_
D
2
_
M
IS
O
3
_
2

W
1
3

IO
_
L
1
2
P
_
D
1
_
M
IS
O
2
_
2

V
1
3

IO
_
L
3
P
_
D
0
_
D
IN
_
M
IS
O
_
M
IS
O
1
_
2

Y
1
7

IO
_
L
3
N
_
M
O
S
I_
C
S
I_
B
_
M
IS
O
0
_
2

A
B
1
7

IO
_
L
1
P
_
C
C
L
K
_
2

W
1
7

IO
_
L
6
5
N
_
C
S
O
_
B
_
2

A
B
5

IO
_
L
1
3
P
M
1
_
2

U
1
5

IO
_
L
1
N
_
M
0
_
C
M
P
M
IS
O
_
2

Y
1
8

C
M
P
C
S
_
B
_
2

T
1
5

S
U
S
P
E
N
D

W
1
8

D
O
N
E
_
2

U
1
6

P
R
O
G
R
A
M
_
B
_
2

A
A
1

IO
_
L
6
5
P
_
IN
IT
_
B
_
2

Y
5

IO
_
L
7
4
N
_
D
O
U
T
_
B
U
S
Y
_
1

T
2
0

T
M
S

E
1
6

T
C
K

D
1
4

T
D
I

E
1
8

T
D
O

E
1
4

C
o
n
fi
g
 /
 F
la
sh

U
1
A

S
6
L
X
1
5
0
-C
S
G
4
8
4

G
N
D

3
V
3

C
1

0
.1
 u
F

G
N
D

R
1

1
0
0

R
2

1
0
0

R
3

1
0
0

R
4

1
0
0

R
5

1
.8
K

R
6

1
.8
K

R
7

1
0
0

R
8

1
0
0

R
9

4
.7
K

R
1
0

1
K

R
1
1

4
.7
K

R
1
2

1
K

R
1
3

1
K

R
1
4

2
7
0

R
1
6

4
.7
K
R
1
7

4
.7
K

R
1
8

2
0
0

R
1
9

2
0
0

R
2
0

2
0
0

1 2 3 4 5 6

P
1

H
ir
o
se
 F
H
1
9
C
(S
)
6
-p
in

C
S

a
1

D
O
/I
O
1

2

W
P

a/I
O
2

3

G
N
D

4

D
I/
IO
0

5

C
L
K

6

H
O
L
D

a/I
O
3

7

V
C
C

8

U
2

W
2
5
Q
6
4
B
V
-W

S
O
N

R
1
5

4
.7
K

D
1

S
ch
o
tt
k
y
D
io
d
e4
x

G
N
D

T
4

P
G
O
O
D

T
6

T
7

T
2 T
3

P
G
o
o
d

N
E
T
P
G
O
O
D

M
at
ch
A
1

M
at
ch
A
2

M
at
ch
A
3

M
at
ch
A
4

M
at
ch
B
1

M
at
ch
B
2

M
at
ch
B
3

M
at
ch
B
4

M
at
ch
C

PIC101PIC102
CO
C1

PID10InPID10Out1
PID10Out2

PID10Out3
PID10Out4 CO

D1

PIGND
01

CO
GN
D

P
I
P
1
0
1

P
I
P
1
0
2

P
I
P
1
0
3

P
I
P
1
0
4

P
I
P
1
0
5

P
I
P
1
0
6

COP
1

PIPGOO
D01 C
O
P
G
O
O
D

P
I
R
1
0
1

P
I
R
1
0
2

CO
R1

PI
R2
01

PI
R2
02

CO
R2

P
I
R
3
0
1

P
I
R
3
0
2

CO
R3

PI
R4
01

PI
R4
02

CO
R4

PIR501PIR502
CO
R5

PIR601PIR602
CO
R6

PIR701PIR702
CO
R7

PIR801PIR802
CO
R8

PIR901PIR902
CO
R9

PI
R1
00
1

PI
R1
00
2CO
R1
0

PI
R1
10
1

PI
R1
10
2CO
R1
1

PI
R1
20
1

PI
R1
20
2CO
R1
2

PI
R1
30
1

PI
R1
30
2CO
R1
3

PI
R1
40
1

PI
R1
40
2CO
R1
4

PIR1501 PIR1502

CO
R1
5

PI
R1
60
1

PI
R1
60
2CO
R1
6

PI
R1
70
1

PI
R1
70
2CO
R1
7

PI
R1
80
1

PI
R1
80
2CO
R1
8

PI
R1
90
1

PI
R1
90
2CO
R1
9

PI
R2
00
1

PI
R2
00
2CO
R2
0

PIT2
01 CO
T2

PIT3
01 C

OT
3

PIT4
01 C

OT
4

PIT6
01
CO
T6

PIT7
01 C

OT
7

P
I
U
1
0
A
A
1

P
I
U
1
0
A
B
5

PI
U1
0A
B1
7

P
I
U
1
0
B
3

P
I
U
1
0
D
1
4

P
I
U
1
0
E
1
4

P
I
U
1
0
E
1
6

P
I
U
1
0
E
1
8

P
I
U
1
0
T
1
5

P
I
U
1
0
T
2
0

P
I
U
1
0
U
1
5

P
I
U
1
0
U
1
6

P
I
U
1
0
V
1
3

P
I
U
1
0
W
1
3

P
I
U
1
0
W
1
7

P
I
U
1
0
W
1
8

P
I
U
1
0
Y
5

P
I
U
1
0
Y
1
7

P
I
U
1
0
Y
1
8

CO
U1
A

P
I
U
2
0
1

P
I
U
2
0
2

P
I
U
2
0
3

P
I
U
2
0
4

P
I
U
2
0
5

P
I
U
2
0
6

P
I
U
2
0
7

P
I
U
2
0
8

CO
U2

P
O
P
G
O
O
D

F
ig
u
re

A
.1
6
:
H
e
li
co

p
te
r
b
ra

in
p
ro

to
ty
p
e
sc

h
e
m
a
ti
c
:
F
P
G
A

co
n
fi
g
u
ra

ti
o
n

a
n
d

fl
a
sh

130

11

22

33

44

D
D

C
C

B
B

A
A

2

a a a a a
6

F
P
G
A
 C
lo
c
k

a
 I
2
C

a
 S
P
I

*
*

6
/3
0
/2
0
1
1

2
:0
2
:1
4
 P
M

C
:\
w
o
rk
sp
ac
e\
ro
b
o
b
ee
s\
sr
c\
b
ra
in
\h
b
p
\h
ar
d
w
ar
e\
S
ch
em

at
ic
s\
h
b
p
-c
lo
ck
-i
2
c-
sp
i.
S
ch
D
o
c

T
it
le

S
iz
e:

N
u
m
b
er
:

D
at
e:

F
il
e:

R
ev
is
io
n
:

S
h
ee
t

o
f

T
im
e:

A

IO
_
L
4
1
N
_
G
C
L
K
8
_
M
1
C
A
S
N
_
1

M
1
9

C
lo
ck

U
1
B

S
6
L
X
1
5
0
-C
S
G
4
8
4

IO
_
L
4
7
P
_
F
W
E
_
B
_
M
1
D
Q
0
_
1

N
2
0

IO
_
L
4
6
P
_
F
C
S
_
B
_
M
1
D
Q
2
_
1

N
1
9

I2
C
 (
1
)

U
1
C

S
6
L
X
1
5
0
-C
S
G
4
8
4

IO
_
L
2
8
P
_
1

L
1
5

IO
_
L
2
8
N
_
V
R
E
F
_
1

K
1
6

I2
C
 (
2
)

U
1
D

S
6
L
X
1
5
0
-C
S
G
4
8
4

IO
_
L
3
9
P
_
M
1
A
3
_
1

J2
1

IO
_
L
3
0
P
_
A
2
1
_
M
1
R
E
S
E
T
_
1

H
1
9

IO
_
L
1
7
N
_
1

H
1
8

IO
_
L
1
5
N
_
1

F
1
8

S
P
I
(1
)

U
1
E

S
6
L
X
1
5
0
-C
S
G
4
8
4 IO
_
L
6
6
N
_
1

P
1
8

IO
_
L
6
6
P
_
1

P
1
7

IO
_
L
6
4
P
_
1

P
1
9

IO
_
L
4
8
P
_
H
D
C
_
M
1
D
Q
8
_
1

P
2
1

S
P
I
(2
)

U
1
F

S
6
L
X
1
5
0
-C
S
G
4
8
4

G
N
D

3
V
3

C
2

0
.1
 u
F

R
2
1

1
0
K

R
2
2

1
0
K

3
V
3

1 2 3 4

P
2

H
ir
o
se
 F
H
1
9
C
(S
)
4
-p
in

G
N
D

R
2
3

1
0
K

R
2
4

1
0
K

3
V
3

G
N
D

1 2 3 4

P
3

H
ir
o
se
 F
H
1
9
C
(S
)
4
-p
in

1 2 3 4 5 6

P
4

H
ir
o
se
 F
H
1
9
C
(S
)
6
-p
in

3
V
3

G
N
D

1 2 3 4 5 6

P
5

H
ir
o
se
 F
H
1
9
C
(S
)
6
-p
in

3
V
3

G
N
D

T
8

V
D
D

4

G
N
D

2

O
E

1

O
U
T

3

U
3

F
X
O
-H
C
3
3
-1
0
0
M
H
z

R
3
4

0

PIC201PIC202
CO
C2

P
I
P
2
0
1

P
I
P
2
0
2

P
I
P
2
0
3

P
I
P
2
0
4

COP
2

P
I
P
3
0
1

P
I
P
3
0
2

P
I
P
3
0
3

P
I
P
3
0
4

COP
3

P
I
P
4
0
1

P
I
P
4
0
2

P
I
P
4
0
3

P
I
P
4
0
4

P
I
P
4
0
5

P
I
P
4
0
6

COP
4

P
I
P
5
0
1

P
I
P
5
0
2

P
I
P
5
0
3

P
I
P
5
0
4

P
I
P
5
0
5

P
I
P
5
0
6

COP
5

PIR2101PIR2102
CO
R2
1

PIR2201PIR2202
CO
R2
2

PIR2301PIR2302
CO
R2
3

PIR2401PIR2402
CO
R2
4

PI
R3
40
1

PI
R3
40
2CO
R3
4

PIT8
01 CO
T8

P
I
U
1
0
M
1
9

CO
U1
B

P
I
U
1
0
N
1
9

P
I
U
1
0
N
2
0

CO
U1
C

P
I
U
1
0
K
1
6

P
I
U
1
0
L
1
5

CO
U1
D

P
I
U
1
0
F
1
8

P
I
U
1
0
H
1
8

P
I
U
1
0
H
1
9

P
I
U
1
0
J
2
1

CO
U1
E

P
I
U
1
0
P
1
7

P
I
U
1
0
P
1
8

P
I
U
1
0
P
1
9

P
I
U
1
0
P
2
1

CO
U1
F

P
I
U
3
0
1

P
I
U
3
0
2

P
I
U
3
0
3

P
I
U
3
0
4

CO
U3

F
ig
u
re

A
.1
7
:
H
e
li
co

p
te
r
b
ra

in
p
ro

to
ty
p
e
sc

h
e
m
a
ti
c
:
F
P
G
A

c
lo
c
k
,
I2

C
a
n
d

S
P
I
in

te
r
fa
ce

s

131

11

22

33

44

D
D

C
C

B
B

A
A

3

a a a a a
6

G
P
IO

sa
 M

a
in
b
o
a
rd
 I
n
te
rf
a
ce

*
*

6
/3
0
/2
0
1
1

2
:0
2
:1
4
 P
M

C
:\
w
o
rk
sp
ac
e\
ro
b
o
b
ee
s\
sr
c\
b
ra
in
\h
b
p
\h
ar
d
w
ar
e\
S
ch
em

at
ic
s\
h
b
p
-g
p
io
-m

ai
n
b
o
ar
d
.S
ch
D
o
c

T
it
le

S
iz
e:

N
u
m
b
er
:

D
at
e:

F
il
e:

R
ev
is
io
n
:

S
h
ee
t

o
f

T
im
e:

A

G
P
IO

IO
_
L
4
9
N
_
M
1
D
Q
1
1
_
1

R
2
2

IO
_
L
5
0
N
_
M
1
U
D
Q
S
N
_
1

T
2
2

IO
_
L
5
0
P
_
M
1
U
D
Q
S
_
1

T
2
1

IO
_
L
5
1
N
_
M
1
D
Q
1
3
_
1

U
2
2

IO
_
L
5
2
N
_
M
1
D
Q
1
5
_
1

V
2
2

IO
_
L
5
3
N
_
V
R
E
F
_
1

W
2
2

IO
_
L
5
9
N
_
1

Y
2
2

IO
_
L
6
3
N
_
1

A
A
2
2

U
1
G

S
6
L
X
1
5
0
-C
S
G
4
8
4

IO
_
L
4
5
N
_
A
0
_
M
1
L
D
Q
S
N
_
1

M
2
2

IO
_
L
4
3
N
_
G
C
L
K
4
_
M
1
D
Q
5
_
1

L
2
2

M
ai
n
b
o
ar
d
 I
2
C

U
1
H

S
6
L
X
1
5
0
-C
S
G
4
8
4

G
N
D

V
B
A
T

1

2
2

3
3

4
4

5
5

6
6

7
7

8
8

9
9

1
0

1
0

1
1

1
1

1
2

1
2

1
3

1
3

1
4

1
4

1
5

1
5

1
6

1
6

1
7

1
7

1
8

1
8

1
9

1
9

2
0

2
0

P
6

D
F
3
0
_
2
0
P
IN

G
P
IO
_
0

G
P
IO
_
1

G
P
IO
_
2

G
P
IO
_
3

G
P
IO
_
4

G
P
IO
_
5

G
P
IO
_
6

G
P
IO
_
7

T
9

T
1
0

T
1
1

T
1
2

T
1
3

T
1
4

T
1
5

T
1
6

P
I
P
6
0
1

P
I
P
6
0
2

P
I
P
6
0
3

P
I
P
6
0
4

P
I
P
6
0
5

P
I
P
6
0
6

P
I
P
6
0
7

P
I
P
6
0
8

P
I
P
6
0
9

P
I
P
6
0
1
0

P
I
P
6
0
1
1

P
I
P
6
0
1
2

P
I
P
6
0
1
3

P
I
P
6
0
1
4

P
I
P
6
0
1
5

P
I
P
6
0
1
6

P
I
P
6
0
1
7

P
I
P
6
0
1
8

P
I
P
6
0
1
9

P
I
P
6
0
2
0

CO
P6

PIT90
1 CO

T9

PIT100
1 C

OT
10

PIT110
1 C

OT
11

PIT12
01
CO
T1
2

PIT130
1 C

OT
13

PIT140
1 C

OT
14

PIT150
1 C

OT
15

PIT160
1 C

OT
16

PI
U1
0A
A2
2

P
I
U
1
0
R
2
2

P
I
U
1
0
T
2
1

P
I
U
1
0
T
2
2

P
I
U
1
0
U
2
2

P
I
U
1
0
V
2
2

P
I
U
1
0
W
2
2

P
I
U
1
0
Y
2
2

CO
U1
G

P
I
U
1
0
L
2
2

P
I
U
1
0
M
2
2

CO
U1
H

F
ig
u
re

A
.1
8
:
H
e
li
co

p
te
r
b
ra

in
p
ro

to
ty
p
e
sc

h
e
m
a
ti
c
:
G
P
IO

s
a
n
d

h
e
li
co

p
te
r
m
a
in

bo
a
rd

in
te
r
fa
ce

132

11

22

33

44

D
D

C
C

B
B

A
A

4

a a a a a
6

1
V
2

a
 3
V
3
 V
o
lt
a
g
e
R
eg
u
la
ti
o
n

*
*

6
/3
0
/2
0
1
1

2
:0
2
:1
5
 P
M

C
:\
w
o
rk
sp
ac
e\
ro
b
o
b
ee
s\
sr
c\
b
ra
in
\h
b
p
\h
ar
d
w
ar
e\
S
ch
em

at
ic
s\
h
b
p
-1
v
2
-3
v
3
-r
eg
u
la
to
r.
S
ch
D
o
c

T
it
le

S
iz
e:

N
u
m
b
er
:

D
at
e:

F
il
e:

R
ev
is
io
n
:

S
h
ee
t

o
f

T
im
e:

A

G
N
D

V
B
A
T

T
ra
ck
/S
S

2
4

R
u
n
1

1
4

P
G
o
o
d
1

1
8

P
V
in
1

2
1

P
V
in
1

2
2

S
V
in

2
3

P
V
in
2

9

P
V
in
2

1
0

P
G
o
o
d
2

1
6

R
u
n
2

1
3

T
ra
ck
/S
S
2

7

R
T
/S
y
n
c

1
5

Phase
4

Mode
3

SRLim
17

SGND
8

PGND
25

S
W
1

2
0

S
W
1

1
9

It
h
1

1

It
h
2

6

F
B
1

2

S
W
2

1
1

S
W
2

1
2

F
B
2

5

U
4

L
T
C
3
6
1
5
 R
eg
u
la
to
r

C
1
4

4
.7
u
F

C
1
3

6
.8
u
F

C
1
2

1
0
u
F

C
1
1

1
0
0
u
F

G
N
D

V
B
A
T

V
B
A
T

R
2
6

1
8
7
K

R
2
8

5
2
3
K

C
9

1
0
p
F

R
2
5

8
4
5
K

C
3

4
7
u
F

C
5

1
0
u
F

C
7

1
0
0
u
F

L
1

0
.4
7
u
H

R
2
9

0
.0
1

3
V
3

C
1
0

1
0
p
F

R
2
7

3
4
8
K

C
4

4
7
u
F

C
6

1
0
u
F

C
8

1
0
0
u
F

L
2

0
.4
7
u
H

R
3
0

0
.0
1

1
V
0

G
N
D

P
G
o
o
d

V
B
A
T

G
N
D

3
V
3
P

3
V
3
N

1
V
0
P

1
V
0
N

PI1V0
N01 CO
1V
0N

PI1V0
P01 CO
1V
0P

PI3V3
N01

CO
3V
3N

PI3V3
P01

CO
3V
3P

PIC301PIC302
CO
C3

PIC401PIC402
CO
C4

PIC501PIC502
CO
C5

PIC601PIC602
CO
C6

PIC701PIC702
CO
C7

PIC801PIC802
CO
C8

PI
C9
01

PI
C9
02

CO
C9

PI
C1
00
1

PI
C1
00
2

CO
C1
0

PIC1101PIC1102
CO
C1
1

PIC1201PIC1202
CO
C1
2

PIC1301PIC1302
CO
C1
3

PIC1401PIC1402
CO
C1
4

PI
L1
01

PI
L1
02

CO
L1

P
I
L
2
0
1

P
I
L
2
0
2

CO
L2

PI
R2
50
1

PI
R2
50
2CO
R2
5

PIR2601PIR2602
CO
R2
6

PI
R2
70
1

PI
R2
70
2CO
R2
7

PIR2801PIR2802
CO
R2
8

PI
R2
90
1

PI
R2
90
2CO
R2
9

PI
R3
00
1

PI
R3
00
2CO
R3
0

P
I
U
4
0
1

P
I
U
4
0
2

PIU403PIU404

P
I
U
4
0
5

P
I
U
4
0
6

P
I
U
4
0
7

PIU408

P
I
U
4
0
9

P
I
U
4
0
1
0

P
I
U
4
0
1
1

P
I
U
4
0
1
2

P
I
U
4
0
1
3

P
I
U
4
0
1
4

P
I
U
4
0
1
5

P
I
U
4
0
1
6

PIU4017

P
I
U
4
0
1
8

P
I
U
4
0
1
9

P
I
U
4
0
2
0

P
I
U
4
0
2
1

P
I
U
4
0
2
2

P
I
U
4
0
2
3

P
I
U
4
0
2
4

PIU4025

CO
U4

PIVBAT0
1

CO
VB
AT

P
O
P
G
O
O
D

F
ig
u
re

A
.1
9
:
H
e
li
co

p
te
r
b
ra

in
p
ro

to
ty
p
e
sc

h
e
m
a
ti
c
:
F
P
G
A

v
o
lt
a
g
e
re
g
u
la
ti
o
n

133

11

22

33

44

D
D

C
C

B
B

A
A

5

a a a a a
6

4
.7
V
 R
e
g

a
 O
F
S
R
 I
n
te
rf
a
ce

*
*

6
/3
0
/2
0
1
1

2
:0
2
:1
5
 P
M

C
:\
w
o
rk
sp
ac
e\
ro
b
o
b
ee
s\
sr
c\
b
ra
in
\h
b
p
\h
ar
d
w
ar
e\
S
ch
em

at
ic
s\
h
b
p
-o
fs
r.
S
ch
D
o
c

T
it
le

S
iz
e:

N
u
m
b
er
:

D
at
e:

F
il
e:

R
ev
is
io
n
:

S
h
ee
t

o
f

T
im
e:

A

O
F
 I
n
te
rf
ac
e

IO
_
L
3
7
N
_
A
6
_
M
1
A
1
_
1

B
2
2

IO
_
L
3
5
N
_
A
1
0
_
M
1
A
2
_
1

C
2
2

IO
_
L
3
3
N
_
A
1
4
_
M
1
A
4
_
1

D
2
2

IO
_
L
3
1
N
_
A
1
8
_
M
1
A
1
2
_
1

E
2
2

IO
_
L
2
9
P
_
A
2
3
_
M
1
A
1
3
_
1

F
2
1

IO
_
L
2
9
N
_
A
2
2
_
M
1
A
1
4
_
1

F
2
2

IO
_
L
3
2
N
_
A
1
6
_
M
1
A
9
_
1

G
2
2

IO
_
L
3
4
N
_
A
1
2
_
M
1
B
A
2
_
1

H
2
2

IO
_
L
4
7
N
_
L
D
C
_
M
1
D
Q
1
_
1

N
2
2

IO
_
L
4
5
P
_
A
1
_
M
1
L
D
Q
S
_
1

M
2
1

IO
_
L
4
4
N
_
A
2
_
M
1
D
Q
7
_
1

K
2
2

IO
_
L
4
4
P
_
A
3
_
M
1
D
Q
6
_
1

K
2
1

IO
_
L
3
9
N
_
M
1
O
D
T
_
1

J2
2

IO
_
L
4
8
N
_
M
1
D
Q
9
_
1

P
2
2

U
1
I

S
6
L
X
1
5
0
-C
S
G
4
8
4

V
IN

2

E
N

3

S
W

7

O
U
T

1

N
/C

5

F
B

6

AGND
4

PAD
M

PGND
8

U
5

M
IC
2
2
9
0
 B
o
o
st
 R
eg

V
IN

1

V
E
N

3

G
N
D

2

V
O
U
T

5

B
Y
P
A
S
S

4

U
6

4
V
7
_
L
D
O

V
B
A
T

L
3

1
0
m
H

C
2
0

1
u
F

G
N
D

R
3
2

1
6
.9
K

R
3
3

4
.9
9
K

C
1
5

1
0
u
F

C
1
6

1
u
F

C
1
7

1
0
u
F

C
1
8

1
0
u
F

C
1
9

1
0
n
F

R
3
1

0
.0
1

4
V
7

A
1

2
0

A
2

1

A
3

2

A
4

3

A
5

4

A
6

5

A
7

6

A
8

7

GND
9

EN
8

VCC_Y
18

VCC_A
19

Y
8

1
0

Y
7

1
1

Y
6

1
2

Y
5

1
3

Y
4

1
4

Y
3

1
5

Y
2

1
6

Y
1

1
7

U
7

A
D
G
3
3
0
8
-L
F
C
S
P

3
V
3

C
2
1

1
0
0
n
F

G
N
D

4
V
7

C
2
2

1
0
0
n
F

G
N
D

5
V
2

W
N
R

C
S
1

C
S
2

C
S
3

C
S
4

C
S
5

C
S
[1
..
5
]

4
V
7
_
IO
[0
..
7
]

4
V
7

1

2
2

3
3

4
4

5
5

6
6

7
7

8
8

9
9

1
0

1
0

1
1

1
1

1
2

1
2

1
3

1
3

1
4

1
4

1
5

1
5

1
6

1
6

1
7

1
7

1
8

1
8

1
9

1
9

2
0

2
0

P
7

D
F
3
0
_
2
0
P
IN

G
N
D

4
V
7
_
IO
0

4
V
7
_
IO
1

4
V
7
_
IO
2

4
V
7
_
IO
3

4
V
7
_
IO
4

4
V
7
_
IO
5

4
V
7
_
IO
7

4
V
7
_
IO
6

4
V
7
_
IO
0

4
V
7
_
IO
1

4
V
7
_
IO
2

4
V
7
_
IO
3

4
V
7
_
IO
4

4
V
7
_
IO
5

4
V
7
_
IO
6

4
V
7
_
IO
7

G
N
D

C
S
5

C
S
4

C
S
3

C
S
2

C
S
1

3
V
3
_
IO
0

3
V
3
_
IO
1

3
V
3
_
IO
2

3
V
3
_
IO
3

3
V
3
_
IO
4

3
V
3
_
IO
5

3
V
3
_
IO
6

3
V
3
_
IO
7

5
V
2

4
V
7
P

4
V
7
N

T
2
5

T
2
6

T
2
7

T
2
8

T
2
9

T
3
0

T
3
1

T
3
2

V
B
A
T

PI4V7
N01 CO
4V
7N

PI4V7
P01 CO
4V
7P

PI5V2
01

CO
5V
2

PIC1501PIC1502
CO
C1
5

PIC1601PIC1602
CO
C1
6

PIC1701PIC1702
CO
C1
7

PIC1801PIC1802
CO
C1
8

PIC1901PIC1902
CO
C1
9

PIC2001PIC2002
CO
C2
0

PIC2101PIC2102
CO
C2
1

PIC2201PIC2202
CO
C2
2

PI
L3
01

PI
L3
02

CO
L3

P
I
P
7
0
1

P
I
P
7
0
2

P
I
P
7
0
3

P
I
P
7
0
4

P
I
P
7
0
5

P
I
P
7
0
6

P
I
P
7
0
7

P
I
P
7
0
8

P
I
P
7
0
9

P
I
P
7
0
1
0

P
I
P
7
0
1
1

P
I
P
7
0
1
2

P
I
P
7
0
1
3

P
I
P
7
0
1
4

P
I
P
7
0
1
5

P
I
P
7
0
1
6

P
I
P
7
0
1
7

P
I
P
7
0
1
8

P
I
P
7
0
1
9

P
I
P
7
0
2
0

CO
P7

PI
R3
10
1

PI
R3
10
2

CO
R3
1

PIR3201PIR3202
CO
R3
2

PIR3301PIR3302
CO
R3
3

PIT25
01

CO
T2
5

PIT26
01

CO
T2
6

PIT27
01

CO
T2
7

PIT28
01

CO
T2
8

PIT29
01

CO
T2
9

PIT30
01

CO
T3
0

PIT3
101 CO
T3
1

PIT32
01

CO
T3
2

P
I
U
1
0
B
2
2

P
I
U
1
0
C
2
2

P
I
U
1
0
D
2
2

P
I
U
1
0
E
2
2

P
I
U
1
0
F
2
1

P
I
U
1
0
F
2
2

P
I
U
1
0
G
2
2

P
I
U
1
0
H
2
2

P
I
U
1
0
J
2
2

P
I
U
1
0
K
2
1

P
I
U
1
0
K
2
2

P
I
U
1
0
M
2
1

P
I
U
1
0
N
2
2

P
I
U
1
0
P
2
2

CO
U1
I

P
I
U
5
0
1

P
I
U
5
0
2

P
I
U
5
0
3

PIU504
P
I
U
5
0
5

P
I
U
5
0
6

P
I
U
5
0
7

PIU508
PIU50M

CO
U5

P
I
U
6
0
1

P
I
U
6
0
2

P
I
U
6
0
3

P
I
U
6
0
4

P
I
U
6
0
5

CO
U6

P
I
U
7
0
1

P
I
U
7
0
2

P
I
U
7
0
3

P
I
U
7
0
4

P
I
U
7
0
5

P
I
U
7
0
6

P
I
U
7
0
7

PIU708 PIU709
P
I
U
7
0
1
0

P
I
U
7
0
1
1

P
I
U
7
0
1
2

P
I
U
7
0
1
3

P
I
U
7
0
1
4

P
I
U
7
0
1
5

P
I
U
7
0
1
6

P
I
U
7
0
1
7

PIU7018
PIU7019

P
I
U
7
0
2
0

CO
U7

F
ig
u
re

A
.2
0
:
H
e
li
co

p
te
r
b
ra

in
p
ro

to
ty
p
e
sc

h
e
m
a
ti
c
:
o
p
ti
ca

l
fl
o
w

ca
m
e
ra

in
te
r
fa
ce

134

11

22

33

44

D
D

C
C

B
B

A
A

6

a a a a a
6

F
P
G
A
 P
o
w
e
r

*
*

6
/3
0
/2
0
1
1

2
:0
2
:1
5
 P
M

C
:\
w
o
rk
sp
ac
e\
ro
b
o
b
ee
s\
sr
c\
b
ra
in
\h
b
p
\h
ar
d
w
ar
e\
S
ch
em

at
ic
s\
h
b
p
-f
p
g
a-
p
o
w
er
.S
ch
D
o
c

T
it
le

S
iz
e:

N
u
m
b
er
:

D
at
e:

F
il
e:

R
ev
is
io
n
:

S
h
ee
t

o
f

T
im
e:

A

G
N
D

G
N
D

A
1

G
N
D

A
2
2

G
N
D

B
5

G
N
D

B
9

G
N
D

B
1
3

G
N
D

B
1
7

G
N
D

D
4

G
N
D

D
1
8

G
N
D

E
2

G
N
D

E
7

G
N
D

E
1
1

G
N
D

E
1
5

G
N
D

E
2
1

G
N
D

G
5

G
N
D

G
1
8

G
N
D

H
7

G
N
D

J2

G
N
D

J9

G
N
D

J1
1

G
N
D

J1
3

G
N
D

J1
5

G
N
D

J2
0

G
N
D

K
1
0

G
N
D

K
1
2

G
N
D

K
1
4

G
N
D

L
5

G
N
D

L
9

G
N
D

L
1
1

G
N
D

L
1
3

G
N
D

L
1
8

G
N
D

M
1
0

G
N
D

M
1
2

G
N
D

M
1
4

G
N
D

N
2

G
N
D

N
9

G
N
D

N
1
1

G
N
D

N
1
3

G
N
D

N
1
7

G
N
D

N
2
1

G
N
D

P
1
0

G
N
D

P
1
2

G
N
D

P
1
4

G
N
D

R
5

G
N
D

R
1
8

G
N
D

U
2

G
N
D

U
7

G
N
D

U
2
1

G
N
D

V
4

G
N
D

V
1
0

G
N
D

V
1
4

G
N
D

W
7

G
N
D

W
1
6

G
N
D

W
1
9

G
N
D

A
A
5

G
N
D

A
A
9

G
N
D

A
A
1
3

G
N
D

A
A
1
7

G
N
D

A
B
1

G
N
D

A
B
2
2

U
1
J

S
6
L
X
1
5
0
-C
S
G
4
8
4

V
C
C
A
U
X

V
C
C
A
U
X

D
1
6

V
C
C
A
U
X

F
1
1

V
C
C
A
U
X

G
1
2

V
C
C
A
U
X

H
9

V
C
C
A
U
X

H
1
5

V
C
C
A
U
X

K
1
5

V
C
C
A
U
X

L
8

V
C
C
A
U
X

M
1
5

V
C
C
A
U
X

N
8

V
C
C
A
U
X

R
6

V
C
C
A
U
X

R
1
0

V
C
C
A
U
X

R
1
2

V
C
C
A
U
X

U
1
1

V
C
C
A
U
X

V
6

U
1
K

S
6
L
X
1
5
0
-C
S
G
4
8
4

V
C
C
IN
T

V
C
C
IN
T

J8

V
C
C
IN
T

J1
0

V
C
C
IN
T

J1
2

V
C
C
IN
T

J1
4

V
C
C
IN
T

K
9

V
C
C
IN
T

K
1
1

V
C
C
IN
T

K
1
3

V
C
C
IN
T

L
1
0

V
C
C
IN
T

L
1
2

V
C
C
IN
T

L
1
4

V
C
C
IN
T

M
9

V
C
C
IN
T

M
1
1

V
C
C
IN
T

M
1
3

V
C
C
IN
T

N
1
0

V
C
C
IN
T

N
1
2

V
C
C
IN
T

N
1
4

V
C
C
IN
T

P
9

V
C
C
IN
T

P
1
1

V
C
C
IN
T

P
1
3

V
C
C
IN
T

R
1
4

U
1
L

S
6
L
X
1
5
0
-C
S
G
4
8
4

V
C
C
O
_
0

V
C
C
O
_
0

B
4

V
C
C
O
_
0

B
7

V
C
C
O
_
0

B
1
1

V
C
C
O
_
0

B
1
5

V
C
C
O
_
0

E
9

V
C
C
O
_
0

E
1
3

V
C
C
O
_
0

E
1
7

V
C
C
O
_
0

G
1
0

U
1
M

S
6
L
X
1
5
0
-C
S
G
4
8
4

V
C
C
O
_
1

V
C
C
O
_
1

B
1
9

V
C
C
O
_
1

C
2
1

V
C
C
O
_
1

E
1
9

V
C
C
O
_
1

G
1
4

V
C
C
O
_
1

G
2
1

V
C
C
O
_
1

J1
8

V
C
C
O
_
1

L
1
6

V
C
C
O
_
1

L
2
1

V
C
C
O
_
1

N
1
8

V
C
C
O
_
1

R
2
1

V
C
C
O
_
1

U
1
8

V
C
C
O
_
1

W
2
1

V
C
C
O
_
1

A
A
1
9

U
1
N

S
6
L
X
1
5
0
-C
S
G
4
8
4

V
C
C
O
_
2

V
C
C
O
_
2

T
9

V
C
C
O
_
2

T
1
3

V
C
C
O
_
2

V
8

V
C
C
O
_
2

V
1
2

V
C
C
O
_
2

V
1
6

V
C
C
O
_
2

A
A
7

V
C
C
O
_
2

A
A
1
1

V
C
C
O
_
2

A
A
1
5

U
1
O

S
6
L
X
1
5
0
-C
S
G
4
8
4

V
C
C
O
_
3

V
C
C
O
_
3

C
2

V
C
C
O
_
3

F
4

V
C
C
O
_
3

F
6

V
C
C
O
_
3

G
2

V
C
C
O
_
3

J5

V
C
C
O
_
3

L
2

V
C
C
O
_
3

L
7

V
C
C
O
_
3

N
5

V
C
C
O
_
3

R
2

V
C
C
O
_
3

U
5

V
C
C
O
_
3

W
2

V
C
C
O
_
3

W
5

V
C
C
O
_
3

A
A
3

U
1
P

S
6
L
X
1
5
0
-C
S
G
4
8
4

G
N
D

C
2
3

1
0
u
F

C
2
5

4
.7
u
F

C
2
7

1
u
F

C
2
9

0
.2
2
u
F

C
3
1

4
7
n
F

C
3
3

1
0
n
F

3
V
3

G
N
D

C
2
4

1
0
u
F

C
2
6

4
.7
u
F

C
2
8

1
u
F

C
3
0

0
.2
2
u
F

C
3
2

4
7
n
F

C
3
4

1
0
n
F

1
V
0

G
N
D

C
3
5

0
.2
2
u
F

C
3
7

4
7
n
F

C
3
9

1
0
n
F

C
3
6

0
.2
2
u
F

C
3
8

4
7
n
F

C
4
0

1
0
n
F

PIC2301PIC2302
CO
C2
3

PIC2401PIC2402
CO
C2
4

PIC2501PIC2502
CO
C2
5

PIC2601PIC2602
CO
C2
6

PIC2701PIC2702
CO
C2
7

PIC2801PIC2802
CO
C2
8

PIC2901PIC2902
CO
C2
9

PIC3001PIC3002
CO
C3
0

PIC3101PIC3102
CO
C3
1

PIC3201PIC3202
CO
C3
2

PIC3301PIC3302
CO
C3
3

PIC3401PIC3402
CO
C3
4

PIC3501PIC3502
CO
C3
5

PIC3601PIC3602
CO
C3
6

PIC3701PIC3702
CO
C3
7

PIC3801PIC3802
CO
C3
8

PIC3901PIC3902
CO
C3
9

PIC4001PIC4002
CO
C4
0

P
I
U
1
0
A
1

P
I
U
1
0
A
2
2

P
I
U
1
0
A
A
5

P
I
U
1
0
A
A
9

P
I
U
1
0
A
A
1
3

P
I
U
1
0
A
A
1
7

P
I
U
1
0
A
B
1

PI
U1
0A
B2
2

P
I
U
1
0
B
5

P
I
U
1
0
B
9

P
I
U
1
0
B
1
3

P
I
U
1
0
B
1
7

P
I
U
1
0
D
4

P
I
U
1
0
D
1
8

P
I
U
1
0
E
2

P
I
U
1
0
E
7

P
I
U
1
0
E
1
1

P
I
U
1
0
E
1
5

P
I
U
1
0
E
2
1

P
I
U
1
0
G
5

P
I
U
1
0
G
1
8

P
I
U
1
0
H
7

P
I
U
1
0
J
2

P
I
U
1
0
J
9

P
I
U
1
0
J
1
1

P
I
U
1
0
J
1
3

P
I
U
1
0
J
1
5

P
I
U
1
0
J
2
0

P
I
U
1
0
K
1
0

P
I
U
1
0
K
1
2

P
I
U
1
0
K
1
4

P
I
U
1
0
L
5

P
I
U
1
0
L
9

P
I
U
1
0
L
1
1

P
I
U
1
0
L
1
3

P
I
U
1
0
L
1
8

P
I
U
1
0
M
1
0

P
I
U
1
0
M
1
2

P
I
U
1
0
M
1
4

P
I
U
1
0
N
2

P
I
U
1
0
N
9

P
I
U
1
0
N
1
1

P
I
U
1
0
N
1
3

P
I
U
1
0
N
1
7

P
I
U
1
0
N
2
1

P
I
U
1
0
P
1
0

P
I
U
1
0
P
1
2

P
I
U
1
0
P
1
4

P
I
U
1
0
R
5

P
I
U
1
0
R
1
8

P
I
U
1
0
U
2

P
I
U
1
0
U
7

P
I
U
1
0
U
2
1

P
I
U
1
0
V
4

P
I
U
1
0
V
1
0

P
I
U
1
0
V
1
4

P
I
U
1
0
W
7

P
I
U
1
0
W
1
6

P
I
U
1
0
W
1
9

CO
U1
J

P
I
U
1
0
D
1
6

P
I
U
1
0
F
1
1

P
I
U
1
0
G
1
2

P
I
U
1
0
H
9

P
I
U
1
0
H
1
5

P
I
U
1
0
K
1
5

P
I
U
1
0
L
8

P
I
U
1
0
M
1
5

P
I
U
1
0
N
8

P
I
U
1
0
R
6

P
I
U
1
0
R
1
0

P
I
U
1
0
R
1
2

P
I
U
1
0
U
1
1

P
I
U
1
0
V
6

CO
U1
K

P
I
U
1
0
J
8

P
I
U
1
0
J
1
0

P
I
U
1
0
J
1
2

P
I
U
1
0
J
1
4

P
I
U
1
0
K
9

P
I
U
1
0
K
1
1

P
I
U
1
0
K
1
3

P
I
U
1
0
L
1
0

P
I
U
1
0
L
1
2

P
I
U
1
0
L
1
4

P
I
U
1
0
M
9

P
I
U
1
0
M
1
1

P
I
U
1
0
M
1
3

P
I
U
1
0
N
1
0

P
I
U
1
0
N
1
2

P
I
U
1
0
N
1
4

P
I
U
1
0
P
9

P
I
U
1
0
P
1
1

P
I
U
1
0
P
1
3

P
I
U
1
0
R
1
4

CO
U1
L

P
I
U
1
0
B
4

P
I
U
1
0
B
7

P
I
U
1
0
B
1
1

P
I
U
1
0
B
1
5

P
I
U
1
0
E
9

P
I
U
1
0
E
1
3

P
I
U
1
0
E
1
7

P
I
U
1
0
G
1
0

CO
U1
M

PI
U1
0A
A1
9

P
I
U
1
0
B
1
9

P
I
U
1
0
C
2
1

P
I
U
1
0
E
1
9

P
I
U
1
0
G
1
4

P
I
U
1
0
G
2
1

P
I
U
1
0
J
1
8

P
I
U
1
0
L
1
6

P
I
U
1
0
L
2
1

P
I
U
1
0
N
1
8

P
I
U
1
0
R
2
1

P
I
U
1
0
U
1
8

P
I
U
1
0
W
2
1

CO
U1
N

P
I
U
1
0
A
A
7

P
I
U
1
0
A
A
1
1

PI
U1
0A
A1
5

P
I
U
1
0
T
9

P
I
U
1
0
T
1
3

P
I
U
1
0
V
8

P
I
U
1
0
V
1
2

P
I
U
1
0
V
1
6

CO
U1
O

P
I
U
1
0
A
A
3

P
I
U
1
0
C
2

P
I
U
1
0
F
4

P
I
U
1
0
F
6

P
I
U
1
0
G
2

P
I
U
1
0
J
5

P
I
U
1
0
L
2

P
I
U
1
0
L
7

P
I
U
1
0
N
5

P
I
U
1
0
R
2

P
I
U
1
0
U
5

P
I
U
1
0
W
2

P
I
U
1
0
W
5

CO
U1
P

F
ig
u
re

A
.2
1
:
H
e
li
co

p
te
r
b
ra

in
p
ro

to
ty
p
e
sc

h
e
m
a
ti
c
:
F
P
G
A

p
o
w
e
r
co

n
n
ec

ti
o
n
s

135

PA1V
0N01

CO
1V
0N

PA1V
0P01

CO
1V
0P

PA3V
3N01

C
O
3
V
3
N

PA3V
3P01

CO
3V
3P

PA4V
7N01

CO
4V
7N

PA4V
7P01 C

O
4
V
7
P

PA5V
201CO

5V
2

PAC
102 PAC1
01

COC
1

PAC
202PAC2
01

COC
2

PAC
302

PAC
301

CO
C3

PAC
402

PAC
401

CO
C4

PAC
502

PAC
501

CO
C5

PAC
602

PAC
601

CO
C6

PA
C7
02

PA
C7
01

CO
C7

PA
C8
02

PA
C8
01

CO
C8

PAC9
02

PAC9
01CO

C9

PAC1
002

PAC1
001

CO
C1
0

PAC11
02

PAC11
01

CO
C1
1

PAC
120

2

PAC
120

1

COC12

PAC1
301

PAC1
302 CO

C1
3

PAC1
402

PAC1
401 COC14

PAC1
502

PAC1
501

CO
C1
5

PAC
160

2
PAC

160
1

CO
C1
6

PAC1
702

PAC1
701

CO
C1
7

PAC1
802

PAC1
801

CO
C1
8

PAC
190

2
PAC

190
1

CO
C1
9

PAC
200

2
PAC

200
1

CO
C2
0

PAC
210

2
PAC

210
1 COC2

1

PAC
220

2
PAC

220
1

CO
C2
2

PAC2
302

PAC2
301

C
O
C
2
3

PAC2
402

PAC24
01CO

C2
4

PAC25
02

PAC2
501

COC25

PAC2
602

PAC2
601 COC26

PAC2
702

PAC2
701

COC27

PAC2
802

PAC2
801

CO
C2
8

PAC2
902

PAC2
901

COC29

PAC3
002 PAC30
01 COC30

PAC3
102

PAC3
101

COC31

PAC32
02

PAC3
201COC32

PAC33
02

PAC3
301

COC33

PAC3
402

PAC3
401 COC34

PAC3
501

PAC3
502

COC35

PAC36
01

PAC3
602 COC36

PAC3
701

PAC3
702

COC37

PAC3
801

PAC3
802COC38

PAC3
901

PAC3
902

COC39

PAC4
001 PAC40
02COC40

PAD1
0Out

1

PAD
10I

n

PAD1
0Out

2
PAD1

0Out
3

PAD1
0Out

4

CO
D1

PAGN
D01COGND

PAL1
01

PAL1
02

COL
1 PAL2

01
PAL2

02
COL

2

PAL
301

PAL
302

COL
3

PAP106
PAP105

PAP10
0

PAP104
PAP103

PAP102
PAP101

CO
P1

P
A
P
2
0
1

P
A
P
2
0
2

PA
P2
03

PA
P2
04

PA
P2
00

COP
2

PA
P3
00

P
A
P
3
0
4

P
A
P
3
0
3

PA
P3
02

PA
P3
01COP
3

P
A
P
4
0
1

P
A
P
4
0
2

P
A
P
4
0
3

PA
P4
04

PA
P4
00

PA
P4
05

P
A
P
4
0
6 COP
4

P
A
P
5
0
6

P
A
P
5
0
5

PA
P5
00

P
A
P
5
0
4

PA
P5
03

PA
P5
02

P
A
P
5
0
1COP
5

PAP601
PAP602P

AP603
PAP604

PAP605
PAP606

PAP607
PAP608

PAP609
PAP6010

PAP6020
PAP6011

PAP6012
PAP6013

PAP6014
PAP6015

PAP6016
PAP6017

PAP6018PAP6019

CO
P6

PAP701
PAP702P

AP703
PAP704

PAP705
PAP706

PAP707
PAP708

PAP709
PAP7010

PAP7020
PAP7011

PAP7012
PAP7013

PAP7014
PAP7015

PAP7016
PAP7017

PAP7018PAP7019

CO
P7

PAPG
OOD0

1
C
O
P
G
O
O
D

PAR
102

PAR
101

CO
R1PAR

202
PAR

201
CO
R2

PAR
302

PAR
301

CO
R3

PAR
402

PAR
401

CO
R4

PAR
502

PAR
501
CO
R5

PAR6
02

PAR
601COR
6

PAR
702

PAR
701
CO
R7

PAR
802

PAR
801

CO
R8

PAR9
01

PAR9
02COR
9

PAR1
002PAR10
01

COR10

PAR1
102

PAR1
101COR1
1 PAR12

02

PAR1
201COR1
2

PAR1
302

PAR1
301COR13

PAR1
402

PAR1
401COR14

PAR
150

2
PAR

150
1

CO
R1
5PAR1

602

PAR1
601

COR16
PAR1

702PAR17
01

COR17

PAR
180

2
PAR

180
1

CO
R1
8

PAR
190

2
PAR

190
1

CO
R1
9

PAR
200

2
PAR

200
1

CO
R2
0

PAR
210

2
PAR

210
1

CO
R2
1

PAR
220

2
PAR

220
1 C
OR
22

PAR
230

2
PAR

230
1

CO
R2
3

PAR
240

2
PAR

240
1

CO
R2
4

PAR
250

1
PAR

250
2

CO
R2
5

PAR
260

1
PAR

260
2

CO
R2
6

PAR
270

1
PAR

270
2

CO
R2
7

PAR
280

1
PAR

280
2

CO
R2
8

PAR2
902

PAR29
01

C
O
R
2
9

PAR3
002

PAR3
001

CO
R3
0

PAR
310

2

PAR
310

1COR31

PAR
320

2
PAR

320
1

CO
R3
2

PAR
330

2
PAR

330
1 C
OR
33

PAR
340

2
PAR

340
1

C
O
R
3
4

PAT
201COT
2

PAT
301COT
3

PAT
401COT
4

PAT
601COT
6

PAT
701COT
7

PAT
801

CO
T8

PAT
901

COT
9

PAT
100

1 COT1
0

PAT
110

1COT
11

PAT
120

1 COT1
2PAT1

301
COT13

PAT1
401 CO

T14

PAT1
501COT

15

PAT1
601 COT

16

PAT2
501

CO
T2
5

PAT2
601

CO
T2
6

PAT2
701

CO
T2
7

PAT2
801
CO
T2
8

PAT2
901

CO
T2
9

PAT3
001

CO
T3
0

PAT3
101

CO
T3
1

PAT3
201

CO
T3
2

PAU1
0AB2

2
PAU1

0AA2
2

PAU1
0Y22

PAU1
0W22

PAU1
0V22

PAU1
0U22

PAU1
0T22

PAU1
0R22

PAU1
0P22

PAU1
0N22

PAU1
0M22

PAU1
0L22

PAU1
0K22

PAU1
0J22

PAU1
0H22

PAU1
0G22

PAU1
0F22

PAU1
0E22

PAU1
0D22

PAU1
0C22

PAU1
0B22

PAU1
0A22

PAU1
0AB2

1
PAU1

0AA2
1

PAU1
0Y21

PAU1
0W21

PAU1
0V21

PAU1
0U21

PAU1
0T21

PAU1
0R21

PAU1
0P21

PAU1
0N21

PAU1
0M21

PAU1
0L21

PAU1
0K21

PAU1
0J21

PAU1
0H21

PAU1
0G21

PAU1
0F21

PAU1
0E21

PAU1
0D21

PAU1
0C21

PAU1
0B21

PAU1
0A21

PAU1
0AB2

0
PAU1

0AA2
0

PAU1
0Y20

PAU1
0W20

PAU1
0V20

PAU1
0U20

PAU1
0T20

PAU1
0R20

PAU1
0P20

PAU1
0N20

PAU1
0M20

PAU1
0L20

PAU1
0K20

PAU1
0J20

PAU1
0H20

PAU1
0G20

PAU1
0F20

PAU1
0E20

PAU1
0D20

PAU1
0C20

PAU1
0B20

PAU1
0A20

PAU1
0AB1

9
PAU10

AA19
PAU1

0Y19
PAU1

0W19
PAU1

0V19
PAU1

0U19
PAU1

0T19
PAU1

0R19
PAU1

0P19
PAU1

0N19
PAU1

0M19
PAU1

0L19
PAU1

0K19
PAU1

0J19
PAU1

0H19
PAU1

0G19
PAU1

0F19
PAU1

0E19
PAU1

0D19
PAU1

0C19
PAU1

0B19
PAU1

0A19

PAU1
0AB1

8
PAU1

0AA1
8

PAU1
0Y18

PAU1
0W18

PAU1
0V18

PAU1
0U18

PAU1
0T18

PAU1
0R18

PAU1
0P18

PAU1
0N18

PAU1
0M18

PAU1
0L18

PAU1
0K18

PAU1
0J18

PAU1
0H18

PAU1
0G18

PAU1
0F18

PAU1
0E18

PAU1
0D18

PAU1
0C18

PAU1
0B18

PAU1
0A18

PAU1
0AB1

7
PAU10

AA17
PAU1

0Y17
PAU1

0W17
PAU1

0V17
PAU1

0U17
PAU1

0T17
PAU1

0R17
PAU1

0P17
PAU1

0N17
PAU1

0M17
PAU1

0L17
PAU1

0K17
PAU1

0J17
PAU1

0H17
PAU1

0G17
PAU1

0F17
PAU1

0E17
PAU1

0D17
PAU1

0C17
PAU1

0B17
PAU1

0A17

PAU1
0AB1

6
PAU1

0AA1
6

PAU1
0Y16

PAU1
0W16

PAU1
0V16

PAU1
0U16

PAU1
0T16

PAU1
0R16

PAU1
0P16

PAU1
0N16

PAU1
0M16

PAU1
0L16

PAU1
0K16

PAU1
0J16

PAU1
0H16

PAU1
0G16

PAU1
0F16

PAU1
0E16

PAU1
0D16

PAU1
0C16

PAU1
0B16

PAU1
0A16

PAU1
0AB1

5
PAU10

AA15
PAU1

0Y15
PAU1

0W15
PAU1

0V15
PAU1

0U15
PAU1

0T15
PAU1

0R15
PAU1

0P15
PAU1

0N15
PAU1

0M15
PAU1

0L15
PAU1

0K15
PAU1

0J15
PAU1

0H15
PAU1

0G15
PAU1

0F15
PAU1

0E15
PAU1

0D15
PAU1

0C15
PAU1

0B15
PAU1

0A15

PAU1
0AB1

4
PAU1

0AA1
4

PAU1
0Y14

PAU1
0W14

PAU1
0V14

PAU1
0U14

PAU1
0T14

PAU1
0R14

PAU1
0P14

PAU1
0N14

PAU1
0M14

PAU1
0L14

PAU1
0K14

PAU1
0J14

PAU1
0H14

PAU1
0G14

PAU1
0F14

PAU1
0E14

PAU1
0D14

PAU1
0C14

PAU1
0B14

PAU1
0A14

PAU1
0AB1

3
PAU1

0AA1
3

PAU1
0Y13

PAU1
0W13

PAU1
0V13

PAU1
0U13

PAU1
0T13

PAU1
0R13

PAU1
0P13

PAU1
0N13

PAU1
0M13

PAU1
0L13

PAU1
0K13

PAU1
0J13

PAU1
0H13

PAU1
0G13

PAU1
0F13

PAU1
0E13

PAU1
0D13

PAU1
0C13

PAU1
0B13

PAU1
0A13

PAU1
0AB1

2
PAU1

0AA1
2

PAU1
0Y12

PAU1
0W12

PAU1
0V12

PAU1
0U12

PAU1
0T12

PAU1
0R12

PAU1
0P12

PAU1
0N12

PAU1
0M12

PAU1
0L12

PAU1
0K12

PAU1
0J12

PAU1
0H12

PAU1
0G12

PAU1
0F12

PAU1
0E12

PAU1
0D12

PAU1
0C12

PAU1
0B12

PAU1
0A12

PAU1
0AB1

1
PAU1

0AA1
1

PAU1
0Y11

PAU1
0W11

PAU1
0V11

PAU1
0U11

PAU1
0T11

PAU1
0R11

PAU1
0P11

PAU1
0N11

PAU1
0M11

PAU1
0L11

PAU1
0K11

PAU1
0J11

PAU1
0H11

PAU1
0G11

PAU1
0F11

PAU1
0E11

PAU1
0D11

PAU1
0C11

PAU1
0B11

PAU1
0A11

PAU1
0AB1

0
PAU1

0AA1
0

PAU1
0Y10

PAU1
0W10

PAU1
0V10

PAU1
0U10

PAU1
0T10

PAU1
0R10

PAU1
0P10

PAU1
0N10

PAU1
0M10

PAU1
0L10

PAU1
0K10

PAU1
0J10

PAU1
0H10

PAU1
0G10

PAU1
0F10

PAU1
0E10

PAU1
0D10

PAU1
0C10

PAU1
0B10

PAU1
0A10

PAU1
0AB9

PAU1
0AA9

PAU
10Y

9
PAU1

0W9
PAU1

0V9
PAU1

0U9
PAU1

0T9
PAU1

0R9
PAU1

0P9
PAU1

0N9
PAU1

0M9
PAU1

0L9
PAU1

0K9
PAU1

0J9
PAU

10H
9

PAU1
0G9

PAU1
0F9

PAU1
0E9

PAU1
0D9

PAU1
0C9

PAU1
0B9

PAU
10A

9

PAU1
0AB8

PAU1
0AA8

PAU
10Y

8
PAU1

0W8
PAU1

0V8
PAU1

0U8
PAU1

0T8
PAU1

0R8
PAU1

0P8
PAU1

0N8
PAU1

0M8
PAU1

0L8
PAU1

0K8
PAU1

0J8
PAU

10H
8

PAU1
0G8

PAU1
0F8

PAU1
0E8

PAU1
0D8

PAU1
0C8

PAU1
0B8

PAU
10A

8

PAU1
0AB7

PAU1
0AA7

PAU
10Y

7
PAU1

0W7
PAU1

0V7
PAU1

0U7
PAU1

0T7
PAU1

0R7
PAU1

0P7
PAU1

0N7
PAU1

0M7
PAU1

0L7
PAU1

0K7
PAU1

0J7
PAU

10H
7

PAU1
0G7

PAU1
0F7

PAU1
0E7

PAU1
0D7

PAU1
0C7

PAU1
0B7

PAU
10A

7

PAU1
0AB6

PAU1
0AA6

PAU
10Y

6
PAU1

0W6
PAU1

0V6
PAU1

0U6
PAU1

0T6
PAU1

0R6
PAU1

0P6
PAU1

0N6
PAU1

0M6
PAU1

0L6
PAU1

0K6
PAU1

0J6
PAU

10H
6

PAU1
0G6

PAU1
0F6

PAU1
0E6

PAU1
0D6

PAU1
0C6

PAU1
0B6

PAU
10A

6

PAU1
0AB5

PAU1
0AA5

PAU1
0Y5

PAU1
0W5

PAU1
0V5

PAU1
0U5

PAU1
0T5

PAU1
0R5

PAU1
0P5

PAU1
0N5

PAU1
0M5

PAU1
0L5

PAU1
0K5

PAU1
0J5

PAU1
0H5

PAU1
0G5

PAU1
0F5

PAU1
0E5

PAU1
0D5

PAU1
0C5

PAU1
0B5

PAU1
0A5

PAU1
0AB4

PAU1
0AA4

PAU
10Y

4
PAU1

0W4
PAU1

0V4
PAU1

0U4
PAU1

0T4
PAU1

0R4
PAU1

0P4
PAU1

0N4
PAU1

0M4
PAU1

0L4
PAU1

0K4
PAU1

0J4
PAU

10H
4

PAU1
0G4

PAU1
0F4

PAU1
0E4

PAU1
0D4

PAU1
0C4

PAU1
0B4

PAU
10A

4

PAU1
0AB3

PAU1
0AA3

PAU1
0Y3

PAU1
0W3

PAU1
0V3

PAU1
0U3

PAU1
0T3

PAU1
0R3

PAU1
0P3

PAU1
0N3

PAU1
0M3

PAU1
0L3

PAU1
0K3

PAU1
0J3

PAU1
0H3

PAU1
0G3

PAU1
0F3

PAU1
0E3

PAU1
0D3

PAU1
0C3

PAU1
0B3

PAU1
0A3

PAU1
0AB2

PAU1
0AA2

PAU
10Y

2
PAU1

0W2
PAU1

0V2
PAU1

0U2
PAU1

0T2
PAU1

0R2
PAU1

0P2
PAU1

0N2
PAU1

0M2
PAU1

0L2
PAU1

0K2
PAU1

0J2
PAU

10H
2

PAU1
0G2

PAU1
0F2

PAU1
0E2

PAU1
0D2

PAU1
0C2

PAU1
0B2

PAU
10A

2

PAU1
0AB1

PAU1
0AA1

PAU1
0Y1

PAU1
0W1

PAU1
0V1

PAU1
0U1

PAU1
0T1

PAU1
0R1

PAU1
0P1

PAU1
0N1

PAU1
0M1

PAU1
0L1

PAU1
0K1

PAU1
0J1

PAU1
0H1

PAU1
0G1

PAU1
0F1

PAU1
0E1

PAU1
0D1

PAU1
0C1

PAU1
0B1

PAU1
0A1

COU
1

PAU
209

PAU205
PAU206

PAU207
PAU208

PAU204
PAU203

PAU202
PAU201

CO
U2

PAU3
01

PAU3
02

PAU
303

PAU
304

CO
U3

PAU4019
PAU4020

PAU4021
PAU4022

PAU4023
PAU4024

PA
U4
01
3

PA
U4
01
4

PA
U4
01
5

PA
U4
01
6

PA
U4
01
7

PA
U4
01
8

PAU407
PAU408

PAU409
PAU4010

PAU4011
PAU4012

PA
U4
06

PA
U4
05

P
A
U
4
0
4

PA
U4
03

PA
U4
02

PA
U4
01

PAU4
025

CO
U4

PAU50
M

PA
U5
05

PA
U5
06

PA
U5
07

PA
U5
08

PA
U5
04

PA
U5
03

PA
U5
02

PA
U5
01

CO
U5

PAU6
05

PAU6
04

PAU6
03P

AU60
2 PA

U601

COU
6

PAU701
PAU702

PAU703
PAU704

PAU705
P
A
U
7
0
6

PA
U7
07

P
A
U
7
0
8

P
A
U
7
0
9

PA
U7
01
0

PAU7011
PAU7012

PAU7013
PAU7014

PAU7015
PA
U7
01
6

PA
U7
01
7

PA
U7
01
8

PA
U7
01
9

PA
U7
02
0

PAU7
021

CO
U7

PAVB
AT01

C
O
V
B
A
T

F
ig
u
re

A
.2
2
:
H
e
li
co

p
te
r
b
ra

in
p
ro

to
ty
p
e
la
y
o
u
t:

a
ll

la
y
e
r
s

136

PA1V
0N01

CO
1V
0N

PA1V
0P01

CO
1V
0P

PA3V
3N01

CO
3V
3N

PA3V
3P01

C
O
3
V
3
P

PA4V
7N01

C
O
4
V
7
N

PA4V
7P01 C

O
4
V
7
P

PA5V
201CO

5V
2

PAC1
02

PAC1
01

CO
C1

PAC2
02

PAC2
01COC
2

PAC
302

PAC
301

CO
C3

PAC
402

PAC
401

CO
C4

PAC
502

PAC
501

CO
C5

PAC
602

PAC
601

CO
C6

PA
C7
02

PA
C7
01

CO
C7

PA
C8
02

PA
C8
01

CO
C8

PAC9
02

PAC9
01CO

C9

PAC1
002

PAC1
001

CO
C1
0

PAC11
02

PAC11
01

CO
C1
1

PAC
120

2

PAC
120

1

COC12

PAC13
01

PAC13
02 CO

C1
3

PAC14
02

PAC14
01 COC14

PAC1
502

PAC1
501

CO
C1
5

PAC1
602

PAC1
601

CO
C1
6

PAC1
702

PAC1
701

CO
C1
7

PAC1
802

PAC1
801

CO
C1
8

PAC
190

2
PAC

190
1

CO
C1
9

PAC
200

2
PAC

200
1

CO
C2
0

PAC
210

2
PAC

210
1 COC

21

PAC
220

2
PAC

220
1

CO
C2
2

PAC2
302

PAC2
301

CO
C2
3

PAC2
402

PAC2
401CO

C2
4

PAC2
502

PAC2
501

COC25

PAC2
602

PAC2
601 COC26

PAC2
702

PAC2
701

COC27

PAC28
02

PAC2
801

CO
C2
8

PAC2
902

PAC2
901

COC29

PAC3
002

PAC3
001 COC30

PAC3
102

PAC3
101

COC31

PAC3
202

PAC3
201COC32

PAC3
302

PAC3
301

COC33

PAC3
402

PAC3
401 COC34

PAC3
501

PAC3
502

COC35

PAC3
601

PAC3
602 COC36

PAC3
701

PAC3
702

COC37

PAC3
801

PAC3
802COC38

PAC3
901

PAC3
902

COC39

PAC4
001 PAC40
02COC40

PAD1
0Out

1

PAD
10I

n

PAD1
0Out

2
PAD1

0Out
3

PAD1
0Out

4

CO
D1

PAGN
D01COGND

PAL1
01

PAL1
02

CO
L1

PAL2
01

PAL2
02

COL
2

PAL
301

PAL
302
COL

3

PAP106
PAP105

PAP10
0

PAP104
PAP103

PAP102
PAP101

CO
P1

P
A
P
2
0
1

PA
P2
02

PA
P2
03

PA
P2
04

PA
P2
00

COP
2

PA
P3
00

P
A
P
3
0
4

PA
P3
03

PA
P3
02

PA
P3
01COP

3

P
A
P
4
0
1

PA
P4
02

P
A
P
4
0
3

PA
P4
04

PA
P4
00

P
A
P
4
0
5

PA
P4
06 COP

4

P
A
P
5
0
6

PA
P5
05

PA
P5
00

P
A
P
5
0
4

PA
P5
03

P
A
P
5
0
2

PA
P5
01COP

5

PAP601P
AP602

PAP603P
AP604

PAP605P
AP606

PAP607
PAP608P

AP609PA
P6010

PAP6020
PAP6011PAP6012PAP6013

PAP6014
PAP6015PAP6016

PAP6017PAP6018
PAP6019

CO
P6

PAP701P
AP702

PAP703P
AP704

PAP705P
AP706

PAP707
PAP708P

AP709PA
P7010

PAP7020
PAP7011PAP7012PAP7013

PAP7014
PAP7015PAP7016

PAP7017PAP7018
PAP7019

CO
P7

PAPG
OOD0

1
C
O
P
G
O
O
D

PAR
102

PAR
101

CO
R1PAR

202
PAR

201
CO
R2

PAR
302

PAR
301

CO
R3

PAR
402

PAR
401

CO
R4

PAR
502

PAR
501
CO
R5

PAR
602

PAR
601COR
6

PAR
702

PAR
701
CO
R7

PA
R8
02

PAR
801

CO
R8

PAR
901

PAR
902COR
9

PAR1
002

PAR1
001

COR1
0

PAR1
102

PAR1
101COR11

PAR1
202

PAR1
201COR12

PAR1
302

PAR1
301COR13

PAR1
402 PAR14
01COR14

PAR
150

2
PAR

150
1

CO
R1
5PAR1

602

PAR1
601

COR16
PAR1

702PAR17
01

COR17

PAR1
802

PAR1
801CO
R1
8

PAR1
902

PAR1
901CO
R1
9

PAR
200

2
PAR

200
1

CO
R2
0

PAR
210

2
PAR

210
1

CO
R2
1

PAR
220

2
PAR

220
1 C
OR
22

PAR
230

2
PAR

230
1

CO
R2
3

PAR
240

2
PAR

240
1

CO
R2
4

PAR2
501

PAR2
502

CO
R2
5

PAR2
601

PAR2
602

CO
R2
6

PAR
270

1
PAR

270
2

CO
R2
7

PAR
280

1
PAR

280
2

CO
R2
8

PAR2
902

PAR2
901

CO
R2
9

PAR3
002

PAR3
001

CO
R3
0

PAR3
102

PAR
310

1COR31

PAR
320

2
PAR

320
1

CO
R3
2

PAR
330

2
PAR

330
1 C
OR
33

PAR
340

2
PAR

340
1

CO
R3
4

PAT
201COT
2

PAT
301COT
3

PAT
401COT
4

PAT
601COT
6

PAT
701COT
7

PAT
801

CO
T8

PAT
901

COT
9

PAT1
001 CO

T10

PAT1
101CO

T11

PAT1
201 CO

T12PAT
130

1 COT
13

PAT1
401 CO

T14

PAT1
501COT

15

PAT1
601 COT

16

PAT2
501

CO
T2
5

PAT2
601

CO
T2
6

PAT2
701

CO
T2
7

PAT2
801
CO
T2
8

PAT2
901

CO
T2
9

PAT3
001

CO
T3
0

PAT3
101

CO
T3
1

PAT3
201

CO
T3
2

PAU1
0AB2

2
PAU1

0AA2
2

PAU
10Y

22
PAU1

0W22
PAU1

0V22
PAU1

0U22
PAU1

0T22
PAU1

0R22
PAU1

0P22
PAU1

0N22
PAU

10M
22

PAU
10L

22
PAU1

0K22
PAU1

0J22
PAU1

0H22
PAU1

0G22
PAU1

0F22
PAU1

0E22
PAU1

0D22
PAU1

0C22
PAU

10B
22

PAU
10A

22

PAU1
0AB2

1
PAU1

0AA2
1

PAU
10Y

21
PAU1

0W21
PAU1

0V21
PAU1

0U21
PAU1

0T21
PAU1

0R21
PAU1

0P21
PAU1

0N21
PAU

10M
21

PAU
10L

21
PAU1

0K21
PAU1

0J21
PAU1

0H21
PAU1

0G21
PAU1

0F21
PAU1

0E21
PAU1

0D21
PAU1

0C21
PAU

10B
21

PAU
10A

21

PAU1
0AB2

0
PAU1

0AA2
0

PAU
10Y

20
PAU1

0W20
PAU1

0V20
PAU1

0U20
PAU1

0T20
PAU1

0R20
PAU1

0P20
PAU1

0N20
PAU

10M
20

PAU
10L

20
PAU1

0K20
PAU1

0J20
PAU1

0H20
PAU1

0G20
PAU1

0F20
PAU1

0E20
PAU1

0D20
PAU1

0C20
PAU

10B
20

PAU
10A

20

PAU1
0AB1

9
PAU1

0AA1
9

PAU
10Y

19
PAU1

0W19
PAU1

0V19
PAU1

0U19
PAU1

0T19
PAU1

0R19
PAU1

0P19
PAU1

0N19
PAU

10M
19

PAU
10L

19
PAU1

0K19
PAU1

0J19
PAU1

0H19
PAU1

0G19
PAU1

0F19
PAU1

0E19
PAU1

0D19
PAU1

0C19
PAU

10B
19

PAU
10A

19

PAU1
0AB1

8
PAU1

0AA1
8

PAU
10Y

18
PAU1

0W18
PAU1

0V18
PAU1

0U18
PAU1

0T18
PAU1

0R18
PAU1

0P18
PAU1

0N18
PAU

10M
18

PAU
10L

18
PAU1

0K18
PAU1

0J18
PAU1

0H18
PAU1

0G18
PAU1

0F18
PAU1

0E18
PAU1

0D18
PAU1

0C18
PAU

10B
18

PAU
10A

18

PAU1
0AB1

7
PAU1

0AA1
7

PAU1
0Y17

PAU10
W17

PAU10
V17

PAU10
U17

PAU10
T17

PAU10
R17

PAU10
P17

PAU10
N17

PAU1
0M17

PAU1
0L17

PAU10
K17

PAU10
J17

PAU10
H17

PAU10
G17

PAU10
F17

PAU10
E17

PAU10
D17

PAU10
C17

PAU1
0B17

PAU1
0A17

PAU1
0AB1

6
PAU1

0AA1
6

PAU1
0Y16

PAU10
W16

PAU10
V16

PAU10
U16

PAU10
T16

PAU10
R16

PAU10
P16

PAU10
N16

PAU1
0M16

PAU1
0L16

PAU10
K16

PAU10
J16

PAU10
H16

PAU10
G16

PAU10
F16

PAU10
E16

PAU10
D16

PAU10
C16

PAU1
0B16

PAU1
0A16

PAU1
0AB1

5
PAU1

0AA1
5

PAU
10Y

15
PAU1

0W15
PAU1

0V15
PAU1

0U15
PAU1

0T15
PAU1

0R15
PAU1

0P15
PAU1

0N15
PAU

10M
15

PAU
10L

15
PAU1

0K15
PAU1

0J15
PAU1

0H15
PAU1

0G15
PAU1

0F15
PAU1

0E15
PAU1

0D15
PAU1

0C15
PAU

10B
15

PAU
10A

15

PAU1
0AB1

4
PAU1

0AA1
4

PAU
10Y

14
PAU1

0W14
PAU1

0V14
PAU1

0U14
PAU1

0T14
PAU1

0R14
PAU1

0P14
PAU1

0N14
PAU

10M
14

PAU
10L

14
PAU1

0K14
PAU1

0J14
PAU1

0H14
PAU1

0G14
PAU1

0F14
PAU1

0E14
PAU1

0D14
PAU1

0C14
PAU

10B
14

PAU
10A

14

PAU1
0AB1

3
PAU1

0AA1
3

PAU
10Y

13
PAU1

0W13
PAU1

0V13
PAU1

0U13
PAU1

0T13
PAU1

0R13
PAU1

0P13
PAU1

0N13
PAU

10M
13

PAU
10L

13
PAU1

0K13
PAU1

0J13
PAU1

0H13
PAU1

0G13
PAU1

0F13
PAU1

0E13
PAU1

0D13
PAU1

0C13
PAU

10B
13

PAU
10A

13

PAU1
0AB1

2
PAU1

0AA1
2

PAU
10Y

12
PAU1

0W12
PAU1

0V12
PAU1

0U12
PAU1

0T12
PAU1

0R12
PAU1

0P12
PAU1

0N12
PAU

10M
12

PAU
10L

12
PAU1

0K12
PAU1

0J12
PAU1

0H12
PAU1

0G12
PAU1

0F12
PAU1

0E12
PAU1

0D12
PAU1

0C12
PAU

10B
12

PAU
10A

12

PAU1
0AB1

1
PAU1

0AA1
1

PAU
10Y

11
PAU1

0W11
PAU1

0V11
PAU1

0U11
PAU1

0T11
PAU1

0R11
PAU1

0P11
PAU1

0N11
PAU

10M
11

PAU
10L

11
PAU1

0K11
PAU1

0J11
PAU1

0H11
PAU1

0G11
PAU1

0F11
PAU1

0E11
PAU1

0D11
PAU1

0C11
PAU

10B
11

PAU
10A

11

PAU1
0AB1

0
PAU1

0AA1
0

PAU
10Y

10
PAU1

0W10
PAU1

0V10
PAU1

0U10
PAU1

0T10
PAU1

0R10
PAU1

0P10
PAU1

0N10
PAU

10M
10

PAU
10L

10
PAU1

0K10
PAU1

0J10
PAU1

0H10
PAU1

0G10
PAU1

0F10
PAU1

0E10
PAU1

0D10
PAU1

0C10
PAU

10B
10

PAU
10A

10

PAU
10A

B9
PAU

10A
A9

PAU
10Y

9
PAU1

0W9
PAU1

0V9
PAU1

0U9
PAU1

0T9
PAU1

0R9
PAU1

0P9
PAU1

0N9
PAU

10M
9

PAU
10L

9
PAU1

0K9
PAU1

0J9
PAU1

0H9
PAU1

0G9
PAU1

0F9
PAU1

0E9
PAU1

0D9
PAU1

0C9
PAU

10B
9

PAU
10A

9

PAU
10A

B8
PAU

10A
A8

PAU
10Y

8
PAU1

0W8
PAU1

0V8
PAU1

0U8
PAU1

0T8
PAU1

0R8
PAU1

0P8
PAU1

0N8
PAU

10M
8

PAU
10L

8
PAU1

0K8
PAU1

0J8
PAU1

0H8
PAU1

0G8
PAU1

0F8
PAU1

0E8
PAU1

0D8
PAU1

0C8
PAU

10B
8

PAU
10A

8

PAU1
0AB7

PAU1
0AA7

PAU1
0Y7

PAU1
0W7

PAU1
0V7

PAU1
0U7

PAU1
0T7

PAU1
0R7

PAU1
0P7

PAU1
0N7

PAU1
0M7

PAU1
0L7

PAU1
0K7

PAU1
0J7

PAU1
0H7

PAU1
0G7

PAU1
0F7

PAU1
0E7

PAU1
0D7

PAU1
0C7

PAU1
0B7

PAU1
0A7

PAU
10A

B6
PAU

10A
A6

PAU
10Y

6
PAU1

0W6
PAU1

0V6
PAU1

0U6
PAU1

0T6
PAU1

0R6
PAU1

0P6
PAU1

0N6
PAU

10M
6

PAU
10L

6
PAU1

0K6
PAU1

0J6
PAU1

0H6
PAU1

0G6
PAU1

0F6
PAU1

0E6
PAU1

0D6
PAU1

0C6
PAU

10B
6

PAU
10A

6

PAU
10A

B5
PAU

10A
A5

PAU
10Y

5
PAU1

0W5
PAU1

0V5
PAU1

0U5
PAU1

0T5
PAU1

0R5
PAU1

0P5
PAU1

0N5
PAU

10M
5

PAU
10L

5
PAU1

0K5
PAU1

0J5
PAU1

0H5
PAU1

0G5
PAU1

0F5
PAU1

0E5
PAU1

0D5
PAU1

0C5
PAU

10B
5

PAU
10A

5

PAU
10A

B4
PAU

10A
A4

PAU
10Y

4
PAU1

0W4
PAU1

0V4
PAU1

0U4
PAU1

0T4
PAU1

0R4
PAU1

0P4
PAU1

0N4
PAU

10M
4

PAU
10L

4
PAU1

0K4
PAU1

0J4
PAU1

0H4
PAU1

0G4
PAU1

0F4
PAU1

0E4
PAU1

0D4
PAU1

0C4
PAU

10B
4

PAU
10A

4

PAU
10A

B3
PAU

10A
A3

PAU
10Y

3
PAU1

0W3
PAU1

0V3
PAU1

0U3
PAU1

0T3
PAU1

0R3
PAU1

0P3
PAU1

0N3
PAU

10M
3

PAU
10L

3
PAU1

0K3
PAU1

0J3
PAU1

0H3
PAU1

0G3
PAU1

0F3
PAU1

0E3
PAU1

0D3
PAU1

0C3
PAU

10B
3

PAU
10A

3

PAU
10A

B2
PAU

10A
A2

PAU
10Y

2
PAU1

0W2
PAU1

0V2
PAU1

0U2
PAU1

0T2
PAU1

0R2
PAU1

0P2
PAU1

0N2
PAU

10M
2

PAU
10L

2
PAU1

0K2
PAU1

0J2
PAU1

0H2
PAU1

0G2
PAU1

0F2
PAU1

0E2
PAU1

0D2
PAU1

0C2
PAU

10B
2

PAU
10A

2

PAU
10A

B1
PAU

10A
A1

PAU
10Y

1
PAU1

0W1
PAU1

0V1
PAU1

0U1
PAU1

0T1
PAU1

0R1
PAU1

0P1
PAU1

0N1
PAU

10M
1

PAU
10L

1
PAU1

0K1
PAU1

0J1
PAU1

0H1
PAU1

0G1
PAU1

0F1
PAU1

0E1
PAU1

0D1
PAU1

0C1
PAU

10B
1

PAU
10A

1

COU
1

PAU
209

PAU205
PAU206

PAU207
PAU208

PAU204
PAU203

PAU202
PAU201

CO
U2

PAU3
01

PAU3
02

PAU3
03

PAU
304

CO
U3

PAU4019
PAU4020

PAU4021
PAU4022

PAU402
3

PAU4024

PA
U4
01
3

PA
U4
01
4

PA
U4
01
5

PA
U4
01
6

PA
U4
01
7

PA
U4
01
8

PAU407
PAU40

8PAU
409PA

U4010
PAU4011

PAU4012
P
A
U
4
0
6

P
A
U
4
0
5

P
A
U
4
0
4

P
A
U
4
0
3

P
A
U
4
0
2

P
A
U
4
0
1

PAU4
025

CO
U4

PAU50
M

PA
U5
05

PA
U5
06

PA
U5
07

PA
U5
08

PA
U5
04

PA
U5
03

PA
U5
02

PA
U5
01

CO
U5

PAU6
05

PAU6
04

PAU6
03P

AU60
2PA

U601

COU
6

PAU701P
AU702PA

U703PA
U704PAU

705P
A
U
7
0
6

P
A
U
7
0
7

P
A
U
7
0
8

P
A
U
7
0
9

P
A
U
7
0
1
0

PAU7011
PAU7012

PAU7013
PAU7014

PAU7015
PA
U7
01
6

PA
U7
01
7

PA
U7
01
8

PA
U7
01
9

PA
U7
02
0

PAU7
021

CO
U7

PAVB
AT01

C
O
V
B
A
T

F
ig
u
re

A
.2
3
:
H
e
li
co

p
te
r
b
ra

in
p
ro

to
ty
p
e
la
y
o
u
t:

fr
o
n
t
(t
o
p
)
la
y
e
r

137

PA1V
0N01

CO
1V
0N

PA1V
0P01

CO
1V
0P

PA3V
3N01

CO
3V
3N

PA3V
3P01

C
O
3
V
3
P

PA4V
7N01

C
O
4
V
7
N

PA4V
7P01 C

O
4
V
7
P

PA5V
201CO

5V
2

PAC1
02

PAC1
01

CO
C1

PAC2
02

PAC2
01COC
2

PAC
302

PAC
301

CO
C3

PAC
402

PAC
401

CO
C4

PAC
502

PAC
501

CO
C5

PAC
602

PAC
601

CO
C6

PA
C7
02

PA
C7
01

CO
C7

PA
C8
02

PA
C8
01

CO
C8

PAC9
02

PAC9
01CO

C9

PAC1
002

PAC1
001

CO
C1
0

PAC11
02

PAC11
01

CO
C1
1

PAC
120

2

PAC
120

1

COC12

PAC13
01

PAC13
02 CO

C1
3

PAC14
02

PAC14
01 COC14

PAC1
502

PAC1
501

CO
C1
5

PAC1
602

PAC1
601

CO
C1
6

PAC1
702

PAC1
701

CO
C1
7

PAC1
802

PAC1
801

CO
C1
8

PAC
190

2
PAC

190
1

CO
C1
9

PAC
200

2
PAC

200
1

CO
C2
0

PAC
210

2
PAC

210
1 COC

21

PAC
220

2
PAC

220
1

CO
C2
2

PAC2
302

PAC2
301

CO
C2
3

PAC2
402

PAC2
401CO

C2
4

PAC2
502

PAC2
501

COC25

PAC2
602

PAC2
601 COC26

PAC2
702

PAC2
701

COC27

PAC28
02

PAC2
801

CO
C2
8

PAC2
902

PAC2
901

COC29

PAC3
002

PAC3
001 COC30

PAC3
102

PAC3
101

COC31

PAC3
202

PAC3
201COC32

PAC3
302

PAC3
301

COC33

PAC3
402

PAC3
401 COC34

PAC3
501

PAC3
502

COC35

PAC3
601

PAC3
602 COC36

PAC3
701

PAC3
702

COC37

PAC3
801

PAC3
802COC38

PAC3
901

PAC3
902

COC39

PAC4
001 PAC40
02COC40

PAD1
0Out

1

PAD
10I

n

PAD1
0Out

2
PAD1

0Out
3

PAD1
0Out

4

CO
D1

PAGN
D01COGND

PAL1
01

PAL1
02

CO
L1

PAL2
01

PAL2
02

COL
2

PAL
301

PAL
302
COL

3

PAP106
PAP105

PAP10
0

PAP104
PAP103

PAP102
PAP101

CO
P1

P
A
P
2
0
1

PA
P2
02

PA
P2
03

PA
P2
04

PA
P2
00

COP
2

PA
P3
00

P
A
P
3
0
4

PA
P3
03

PA
P3
02

PA
P3
01COP

3

P
A
P
4
0
1

PA
P4
02

P
A
P
4
0
3

PA
P4
04

PA
P4
00

P
A
P
4
0
5

PA
P4
06 COP

4

P
A
P
5
0
6

PA
P5
05

PA
P5
00

P
A
P
5
0
4

PA
P5
03

P
A
P
5
0
2

PA
P5
01COP

5

PAP601P
AP602

PAP603P
AP604

PAP605P
AP606

PAP607
PAP608P

AP609PA
P6010

PAP6020
PAP6011PAP6012PAP6013

PAP6014
PAP6015PAP6016

PAP6017PAP6018
PAP6019

CO
P6

PAP701P
AP702

PAP703P
AP704

PAP705P
AP706

PAP707
PAP708P

AP709PA
P7010

PAP7020
PAP7011PAP7012PAP7013

PAP7014
PAP7015PAP7016

PAP7017PAP7018
PAP7019

CO
P7

PAPG
OOD0

1
C
O
P
G
O
O
D

PAR
102

PAR
101

CO
R1PAR

202
PAR

201
CO
R2

PAR
302

PAR
301

CO
R3

PAR
402

PAR
401

CO
R4

PAR
502

PAR
501
CO
R5

PAR
602

PAR
601COR
6

PAR
702

PAR
701
CO
R7

PA
R8
02

PAR
801

CO
R8

PAR
901

PAR
902COR
9

PAR1
002

PAR1
001

COR1
0

PAR1
102

PAR1
101COR11

PAR1
202

PAR1
201COR12

PAR1
302

PAR1
301COR13

PAR1
402 PAR14
01COR14

PAR
150

2
PAR

150
1

CO
R1
5PAR1

602

PAR1
601

COR16
PAR1

702PAR17
01

COR17

PAR1
802

PAR1
801CO
R1
8

PAR1
902

PAR1
901CO
R1
9

PAR
200

2
PAR

200
1

CO
R2
0

PAR
210

2
PAR

210
1

CO
R2
1

PAR
220

2
PAR

220
1 C
OR
22

PAR
230

2
PAR

230
1

CO
R2
3

PAR
240

2
PAR

240
1

CO
R2
4

PAR2
501

PAR2
502

CO
R2
5

PAR2
601

PAR2
602

CO
R2
6

PAR
270

1
PAR

270
2

CO
R2
7

PAR
280

1
PAR

280
2

CO
R2
8

PAR2
902

PAR2
901

CO
R2
9

PAR3
002

PAR3
001

CO
R3
0

PAR3
102

PAR
310

1COR31

PAR
320

2
PAR

320
1

CO
R3
2

PAR
330

2
PAR

330
1 C
OR
33

PAR
340

2
PAR

340
1

CO
R3
4

PAT
201COT
2

PAT
301COT
3

PAT
401COT
4

PAT
601COT
6

PAT
701COT
7

PAT
801

CO
T8

PAT
901

COT
9

PAT1
001 CO

T10

PAT1
101CO

T11

PAT1
201 CO

T12PAT
130

1 COT
13

PAT1
401 CO

T14

PAT1
501COT

15

PAT1
601 COT

16

PAT2
501

CO
T2
5

PAT2
601

CO
T2
6

PAT2
701

CO
T2
7

PAT2
801
CO
T2
8

PAT2
901

CO
T2
9

PAT3
001

CO
T3
0

PAT3
101

CO
T3
1

PAT3
201

CO
T3
2

PAU1
0AB2

2
PAU1

0AA2
2

PAU
10Y

22
PAU1

0W22
PAU1

0V22
PAU1

0U22
PAU1

0T22
PAU1

0R22
PAU1

0P22
PAU1

0N22
PAU

10M
22

PAU
10L

22
PAU1

0K22
PAU1

0J22
PAU1

0H22
PAU1

0G22
PAU1

0F22
PAU1

0E22
PAU1

0D22
PAU1

0C22
PAU

10B
22

PAU
10A

22

PAU1
0AB2

1
PAU1

0AA2
1

PAU
10Y

21
PAU1

0W21
PAU1

0V21
PAU1

0U21
PAU1

0T21
PAU1

0R21
PAU1

0P21
PAU1

0N21
PAU

10M
21

PAU
10L

21
PAU1

0K21
PAU1

0J21
PAU1

0H21
PAU1

0G21
PAU1

0F21
PAU1

0E21
PAU1

0D21
PAU1

0C21
PAU

10B
21

PAU
10A

21

PAU1
0AB2

0
PAU1

0AA2
0

PAU
10Y

20
PAU1

0W20
PAU1

0V20
PAU1

0U20
PAU1

0T20
PAU1

0R20
PAU1

0P20
PAU1

0N20
PAU

10M
20

PAU
10L

20
PAU1

0K20
PAU1

0J20
PAU1

0H20
PAU1

0G20
PAU1

0F20
PAU1

0E20
PAU1

0D20
PAU1

0C20
PAU

10B
20

PAU
10A

20

PAU1
0AB1

9
PAU1

0AA1
9

PAU
10Y

19
PAU1

0W19
PAU1

0V19
PAU1

0U19
PAU1

0T19
PAU1

0R19
PAU1

0P19
PAU1

0N19
PAU

10M
19

PAU
10L

19
PAU1

0K19
PAU1

0J19
PAU1

0H19
PAU1

0G19
PAU1

0F19
PAU1

0E19
PAU1

0D19
PAU1

0C19
PAU

10B
19

PAU
10A

19

PAU1
0AB1

8
PAU1

0AA1
8

PAU
10Y

18
PAU1

0W18
PAU1

0V18
PAU1

0U18
PAU1

0T18
PAU1

0R18
PAU1

0P18
PAU1

0N18
PAU

10M
18

PAU
10L

18
PAU1

0K18
PAU1

0J18
PAU1

0H18
PAU1

0G18
PAU1

0F18
PAU1

0E18
PAU1

0D18
PAU1

0C18
PAU

10B
18

PAU
10A

18

PAU1
0AB1

7
PAU1

0AA1
7

PAU1
0Y17

PAU10
W17

PAU10
V17

PAU10
U17

PAU10
T17

PAU10
R17

PAU10
P17

PAU10
N17

PAU1
0M17

PAU1
0L17

PAU10
K17

PAU10
J17

PAU10
H17

PAU10
G17

PAU10
F17

PAU10
E17

PAU10
D17

PAU10
C17

PAU1
0B17

PAU1
0A17

PAU1
0AB1

6
PAU1

0AA1
6

PAU1
0Y16

PAU10
W16

PAU10
V16

PAU10
U16

PAU10
T16

PAU10
R16

PAU10
P16

PAU10
N16

PAU1
0M16

PAU1
0L16

PAU10
K16

PAU10
J16

PAU10
H16

PAU10
G16

PAU10
F16

PAU10
E16

PAU10
D16

PAU10
C16

PAU1
0B16

PAU1
0A16

PAU1
0AB1

5
PAU1

0AA1
5

PAU
10Y

15
PAU1

0W15
PAU1

0V15
PAU1

0U15
PAU1

0T15
PAU1

0R15
PAU1

0P15
PAU1

0N15
PAU

10M
15

PAU
10L

15
PAU1

0K15
PAU1

0J15
PAU1

0H15
PAU1

0G15
PAU1

0F15
PAU1

0E15
PAU1

0D15
PAU1

0C15
PAU

10B
15

PAU
10A

15

PAU1
0AB1

4
PAU1

0AA1
4

PAU
10Y

14
PAU1

0W14
PAU1

0V14
PAU1

0U14
PAU1

0T14
PAU1

0R14
PAU1

0P14
PAU1

0N14
PAU

10M
14

PAU
10L

14
PAU1

0K14
PAU1

0J14
PAU1

0H14
PAU1

0G14
PAU1

0F14
PAU1

0E14
PAU1

0D14
PAU1

0C14
PAU

10B
14

PAU
10A

14

PAU1
0AB1

3
PAU1

0AA1
3

PAU
10Y

13
PAU1

0W13
PAU1

0V13
PAU1

0U13
PAU1

0T13
PAU1

0R13
PAU1

0P13
PAU1

0N13
PAU

10M
13

PAU
10L

13
PAU1

0K13
PAU1

0J13
PAU1

0H13
PAU1

0G13
PAU1

0F13
PAU1

0E13
PAU1

0D13
PAU1

0C13
PAU

10B
13

PAU
10A

13

PAU1
0AB1

2
PAU1

0AA1
2

PAU
10Y

12
PAU1

0W12
PAU1

0V12
PAU1

0U12
PAU1

0T12
PAU1

0R12
PAU1

0P12
PAU1

0N12
PAU

10M
12

PAU
10L

12
PAU1

0K12
PAU1

0J12
PAU1

0H12
PAU1

0G12
PAU1

0F12
PAU1

0E12
PAU1

0D12
PAU1

0C12
PAU

10B
12

PAU
10A

12

PAU1
0AB1

1
PAU1

0AA1
1

PAU
10Y

11
PAU1

0W11
PAU1

0V11
PAU1

0U11
PAU1

0T11
PAU1

0R11
PAU1

0P11
PAU1

0N11
PAU

10M
11

PAU
10L

11
PAU1

0K11
PAU1

0J11
PAU1

0H11
PAU1

0G11
PAU1

0F11
PAU1

0E11
PAU1

0D11
PAU1

0C11
PAU

10B
11

PAU
10A

11

PAU1
0AB1

0
PAU1

0AA1
0

PAU
10Y

10
PAU1

0W10
PAU1

0V10
PAU1

0U10
PAU1

0T10
PAU1

0R10
PAU1

0P10
PAU1

0N10
PAU

10M
10

PAU
10L

10
PAU1

0K10
PAU1

0J10
PAU1

0H10
PAU1

0G10
PAU1

0F10
PAU1

0E10
PAU1

0D10
PAU1

0C10
PAU

10B
10

PAU
10A

10

PAU
10A

B9
PAU

10A
A9

PAU
10Y

9
PAU1

0W9
PAU1

0V9
PAU1

0U9
PAU1

0T9
PAU1

0R9
PAU1

0P9
PAU1

0N9
PAU

10M
9

PAU
10L

9
PAU1

0K9
PAU1

0J9
PAU1

0H9
PAU1

0G9
PAU1

0F9
PAU1

0E9
PAU1

0D9
PAU1

0C9
PAU

10B
9

PAU
10A

9

PAU
10A

B8
PAU

10A
A8

PAU
10Y

8
PAU1

0W8
PAU1

0V8
PAU1

0U8
PAU1

0T8
PAU1

0R8
PAU1

0P8
PAU1

0N8
PAU

10M
8

PAU
10L

8
PAU1

0K8
PAU1

0J8
PAU1

0H8
PAU1

0G8
PAU1

0F8
PAU1

0E8
PAU1

0D8
PAU1

0C8
PAU

10B
8

PAU
10A

8

PAU1
0AB7

PAU1
0AA7

PAU1
0Y7

PAU1
0W7

PAU1
0V7

PAU1
0U7

PAU1
0T7

PAU1
0R7

PAU1
0P7

PAU1
0N7

PAU1
0M7

PAU1
0L7

PAU1
0K7

PAU1
0J7

PAU1
0H7

PAU1
0G7

PAU1
0F7

PAU1
0E7

PAU1
0D7

PAU1
0C7

PAU1
0B7

PAU1
0A7

PAU
10A

B6
PAU

10A
A6

PAU
10Y

6
PAU1

0W6
PAU1

0V6
PAU1

0U6
PAU1

0T6
PAU1

0R6
PAU1

0P6
PAU1

0N6
PAU

10M
6

PAU
10L

6
PAU1

0K6
PAU1

0J6
PAU1

0H6
PAU1

0G6
PAU1

0F6
PAU1

0E6
PAU1

0D6
PAU1

0C6
PAU

10B
6

PAU
10A

6

PAU
10A

B5
PAU

10A
A5

PAU
10Y

5
PAU1

0W5
PAU1

0V5
PAU1

0U5
PAU1

0T5
PAU1

0R5
PAU1

0P5
PAU1

0N5
PAU

10M
5

PAU
10L

5
PAU1

0K5
PAU1

0J5
PAU1

0H5
PAU1

0G5
PAU1

0F5
PAU1

0E5
PAU1

0D5
PAU1

0C5
PAU

10B
5

PAU
10A

5

PAU
10A

B4
PAU

10A
A4

PAU
10Y

4
PAU1

0W4
PAU1

0V4
PAU1

0U4
PAU1

0T4
PAU1

0R4
PAU1

0P4
PAU1

0N4
PAU

10M
4

PAU
10L

4
PAU1

0K4
PAU1

0J4
PAU1

0H4
PAU1

0G4
PAU1

0F4
PAU1

0E4
PAU1

0D4
PAU1

0C4
PAU

10B
4

PAU
10A

4

PAU
10A

B3
PAU

10A
A3

PAU
10Y

3
PAU1

0W3
PAU1

0V3
PAU1

0U3
PAU1

0T3
PAU1

0R3
PAU1

0P3
PAU1

0N3
PAU

10M
3

PAU
10L

3
PAU1

0K3
PAU1

0J3
PAU1

0H3
PAU1

0G3
PAU1

0F3
PAU1

0E3
PAU1

0D3
PAU1

0C3
PAU

10B
3

PAU
10A

3

PAU
10A

B2
PAU

10A
A2

PAU
10Y

2
PAU1

0W2
PAU1

0V2
PAU1

0U2
PAU1

0T2
PAU1

0R2
PAU1

0P2
PAU1

0N2
PAU

10M
2

PAU
10L

2
PAU1

0K2
PAU1

0J2
PAU1

0H2
PAU1

0G2
PAU1

0F2
PAU1

0E2
PAU1

0D2
PAU1

0C2
PAU

10B
2

PAU
10A

2

PAU
10A

B1
PAU

10A
A1

PAU
10Y

1
PAU1

0W1
PAU1

0V1
PAU1

0U1
PAU1

0T1
PAU1

0R1
PAU1

0P1
PAU1

0N1
PAU

10M
1

PAU
10L

1
PAU1

0K1
PAU1

0J1
PAU1

0H1
PAU1

0G1
PAU1

0F1
PAU1

0E1
PAU1

0D1
PAU1

0C1
PAU

10B
1

PAU
10A

1

COU
1

PAU
209

PAU205
PAU206

PAU207
PAU208

PAU204
PAU203

PAU202
PAU201

CO
U2

PAU3
01

PAU3
02

PAU3
03

PAU
304

CO
U3

PAU4019
PAU4020

PAU4021
PAU4022

PAU402
3

PAU4024

PA
U4
01
3

PA
U4
01
4

PA
U4
01
5

PA
U4
01
6

PA
U4
01
7

PA
U4
01
8

PAU407
PAU40

8PAU
409PA

U4010
PAU4011

PAU4012
P
A
U
4
0
6

P
A
U
4
0
5

P
A
U
4
0
4

P
A
U
4
0
3

P
A
U
4
0
2

P
A
U
4
0
1

PAU4
025

CO
U4

PAU50
M

PA
U5
05

PA
U5
06

PA
U5
07

PA
U5
08

PA
U5
04

PA
U5
03

PA
U5
02

PA
U5
01

CO
U5

PAU6
05

PAU6
04

PAU6
03P

AU60
2PA

U601

COU
6

PAU701P
AU702PA

U703PA
U704PAU

705P
A
U
7
0
6

P
A
U
7
0
7

P
A
U
7
0
8

P
A
U
7
0
9

P
A
U
7
0
1
0

PAU7011
PAU7012

PAU7013
PAU7014

PAU7015
PA
U7
01
6

PA
U7
01
7

PA
U7
01
8

PA
U7
01
9

PA
U7
02
0

PAU7
021

CO
U7

PAVB
AT01

C
O
V
B
A
T

F
ig
u
re

A
.2
4
:
H
e
li
co

p
te
r
b
ra

in
p
ro

to
ty
p
e
la
y
o
u
t:

ba
c
k
(b
o
tt
o
m
)
la
y
e
r

138

PA1V
0N01

CO
1V
0N

PA1V
0P01

CO
1V
0P

PA3V
3N01

CO
3V
3N

PA3V
3P01

C
O
3
V
3
P

PA4V
7N01

C
O
4
V
7
N

PA4V
7P01 C

O
4
V
7
P

PA5V
201CO

5V
2

PAC1
02

PAC1
01

CO
C1

PAC2
02

PAC2
01COC
2

PAC
302

PAC
301

CO
C3

PAC
402

PAC
401

CO
C4

PAC
502

PAC
501

CO
C5

PAC
602

PAC
601

CO
C6

PA
C7
02

PA
C7
01

CO
C7

PA
C8
02

PA
C8
01

CO
C8

PAC9
02

PAC9
01CO

C9

PAC1
002

PAC1
001

CO
C1
0

PAC11
02

PAC11
01

CO
C1
1

PAC
120

2

PAC
120

1

COC12

PAC13
01

PAC13
02 CO

C1
3

PAC14
02

PAC14
01 COC14

PAC1
502

PAC1
501

CO
C1
5

PAC1
602

PAC1
601

CO
C1
6

PAC1
702

PAC1
701

CO
C1
7

PAC1
802

PAC1
801

CO
C1
8

PAC
190

2
PAC

190
1

CO
C1
9

PAC
200

2
PAC

200
1

CO
C2
0

PAC
210

2
PAC

210
1 COC

21

PAC
220

2
PAC

220
1

CO
C2
2

PAC2
302

PAC2
301

CO
C2
3

PAC2
402

PAC2
401CO

C2
4

PAC2
502

PAC2
501

COC25

PAC2
602

PAC2
601 COC26

PAC2
702

PAC2
701

COC27

PAC28
02

PAC2
801

CO
C2
8

PAC2
902

PAC2
901

COC29

PAC3
002

PAC3
001 COC30

PAC3
102

PAC3
101

COC31

PAC3
202

PAC3
201COC32

PAC3
302

PAC3
301

COC33

PAC3
402

PAC3
401 COC34

PAC3
501

PAC3
502

COC35

PAC3
601

PAC3
602 COC36

PAC3
701

PAC3
702

COC37

PAC3
801

PAC3
802COC38

PAC3
901

PAC3
902

COC39

PAC4
001 PAC40
02COC40

PAD1
0Out

1

PAD
10I

n

PAD1
0Out

2
PAD1

0Out
3

PAD1
0Out

4

CO
D1

PAGN
D01COGND

PAL1
01

PAL1
02

CO
L1

PAL2
01

PAL2
02

COL
2

PAL
301

PAL
302
COL

3

PAP106
PAP105

PAP10
0

PAP104
PAP103

PAP102
PAP101

CO
P1

P
A
P
2
0
1

PA
P2
02

PA
P2
03

PA
P2
04

PA
P2
00

COP
2

PA
P3
00

P
A
P
3
0
4

PA
P3
03

PA
P3
02

PA
P3
01COP

3

P
A
P
4
0
1

PA
P4
02

P
A
P
4
0
3

PA
P4
04

PA
P4
00

P
A
P
4
0
5

PA
P4
06 COP

4

P
A
P
5
0
6

PA
P5
05

PA
P5
00

P
A
P
5
0
4

PA
P5
03

P
A
P
5
0
2

PA
P5
01COP

5

PAP601P
AP602

PAP603P
AP604

PAP605P
AP606

PAP607
PAP608P

AP609PA
P6010

PAP6020
PAP6011PAP6012PAP6013

PAP6014
PAP6015PAP6016

PAP6017PAP6018
PAP6019

CO
P6

PAP701P
AP702

PAP703P
AP704

PAP705P
AP706

PAP707
PAP708P

AP709PA
P7010

PAP7020
PAP7011PAP7012PAP7013

PAP7014
PAP7015PAP7016

PAP7017PAP7018
PAP7019

CO
P7

PAPG
OOD0

1
C
O
P
G
O
O
D

PAR
102

PAR
101

CO
R1PAR

202
PAR

201
CO
R2

PAR
302

PAR
301

CO
R3

PAR
402

PAR
401

CO
R4

PAR
502

PAR
501
CO
R5

PAR
602

PAR
601COR
6

PAR
702

PAR
701
CO
R7

PA
R8
02

PAR
801

CO
R8

PAR
901

PAR
902COR
9

PAR1
002

PAR1
001

COR1
0

PAR1
102

PAR1
101COR11

PAR1
202

PAR1
201COR12

PAR1
302

PAR1
301COR13

PAR1
402 PAR14
01COR14

PAR
150

2
PAR

150
1

CO
R1
5PAR1

602

PAR1
601

COR16
PAR1

702PAR17
01

COR17

PAR1
802

PAR1
801CO
R1
8

PAR1
902

PAR1
901CO
R1
9

PAR
200

2
PAR

200
1

CO
R2
0

PAR
210

2
PAR

210
1

CO
R2
1

PAR
220

2
PAR

220
1 C
OR
22

PAR
230

2
PAR

230
1

CO
R2
3

PAR
240

2
PAR

240
1

CO
R2
4

PAR2
501

PAR2
502

CO
R2
5

PAR2
601

PAR2
602

CO
R2
6

PAR
270

1
PAR

270
2

CO
R2
7

PAR
280

1
PAR

280
2

CO
R2
8

PAR2
902

PAR2
901

CO
R2
9

PAR3
002

PAR3
001

CO
R3
0

PAR3
102

PAR
310

1COR31

PAR
320

2
PAR

320
1

CO
R3
2

PAR
330

2
PAR

330
1 C
OR
33

PAR
340

2
PAR

340
1

CO
R3
4

PAT
201COT
2

PAT
301COT
3

PAT
401COT
4

PAT
601COT
6

PAT
701COT
7

PAT
801

CO
T8

PAT
901

COT
9

PAT1
001 CO

T10

PAT1
101CO

T11

PAT1
201 CO

T12PAT
130

1 COT
13

PAT1
401 CO

T14

PAT1
501COT

15

PAT1
601 COT

16

PAT2
501

CO
T2
5

PAT2
601

CO
T2
6

PAT2
701

CO
T2
7

PAT2
801
CO
T2
8

PAT2
901

CO
T2
9

PAT3
001

CO
T3
0

PAT3
101

CO
T3
1

PAT3
201

CO
T3
2

PAU1
0AB2

2
PAU1

0AA2
2

PAU
10Y

22
PAU1

0W22
PAU1

0V22
PAU1

0U22
PAU1

0T22
PAU1

0R22
PAU1

0P22
PAU1

0N22
PAU

10M
22

PAU
10L

22
PAU1

0K22
PAU1

0J22
PAU1

0H22
PAU1

0G22
PAU1

0F22
PAU1

0E22
PAU1

0D22
PAU1

0C22
PAU

10B
22

PAU
10A

22

PAU1
0AB2

1
PAU1

0AA2
1

PAU
10Y

21
PAU1

0W21
PAU1

0V21
PAU1

0U21
PAU1

0T21
PAU1

0R21
PAU1

0P21
PAU1

0N21
PAU

10M
21

PAU
10L

21
PAU1

0K21
PAU1

0J21
PAU1

0H21
PAU1

0G21
PAU1

0F21
PAU1

0E21
PAU1

0D21
PAU1

0C21
PAU

10B
21

PAU
10A

21

PAU1
0AB2

0
PAU1

0AA2
0

PAU
10Y

20
PAU1

0W20
PAU1

0V20
PAU1

0U20
PAU1

0T20
PAU1

0R20
PAU1

0P20
PAU1

0N20
PAU

10M
20

PAU
10L

20
PAU1

0K20
PAU1

0J20
PAU1

0H20
PAU1

0G20
PAU1

0F20
PAU1

0E20
PAU1

0D20
PAU1

0C20
PAU

10B
20

PAU
10A

20

PAU1
0AB1

9
PAU1

0AA1
9

PAU
10Y

19
PAU1

0W19
PAU1

0V19
PAU1

0U19
PAU1

0T19
PAU1

0R19
PAU1

0P19
PAU1

0N19
PAU

10M
19

PAU
10L

19
PAU1

0K19
PAU1

0J19
PAU1

0H19
PAU1

0G19
PAU1

0F19
PAU1

0E19
PAU1

0D19
PAU1

0C19
PAU

10B
19

PAU
10A

19

PAU1
0AB1

8
PAU1

0AA1
8

PAU
10Y

18
PAU1

0W18
PAU1

0V18
PAU1

0U18
PAU1

0T18
PAU1

0R18
PAU1

0P18
PAU1

0N18
PAU

10M
18

PAU
10L

18
PAU1

0K18
PAU1

0J18
PAU1

0H18
PAU1

0G18
PAU1

0F18
PAU1

0E18
PAU1

0D18
PAU1

0C18
PAU

10B
18

PAU
10A

18

PAU1
0AB1

7
PAU1

0AA1
7

PAU1
0Y17

PAU10
W17

PAU10
V17

PAU10
U17

PAU10
T17

PAU10
R17

PAU10
P17

PAU10
N17

PAU1
0M17

PAU1
0L17

PAU10
K17

PAU10
J17

PAU10
H17

PAU10
G17

PAU10
F17

PAU10
E17

PAU10
D17

PAU10
C17

PAU1
0B17

PAU1
0A17

PAU1
0AB1

6
PAU1

0AA1
6

PAU1
0Y16

PAU10
W16

PAU10
V16

PAU10
U16

PAU10
T16

PAU10
R16

PAU10
P16

PAU10
N16

PAU1
0M16

PAU1
0L16

PAU10
K16

PAU10
J16

PAU10
H16

PAU10
G16

PAU10
F16

PAU10
E16

PAU10
D16

PAU10
C16

PAU1
0B16

PAU1
0A16

PAU1
0AB1

5
PAU1

0AA1
5

PAU
10Y

15
PAU1

0W15
PAU1

0V15
PAU1

0U15
PAU1

0T15
PAU1

0R15
PAU1

0P15
PAU1

0N15
PAU

10M
15

PAU
10L

15
PAU1

0K15
PAU1

0J15
PAU1

0H15
PAU1

0G15
PAU1

0F15
PAU1

0E15
PAU1

0D15
PAU1

0C15
PAU

10B
15

PAU
10A

15

PAU1
0AB1

4
PAU1

0AA1
4

PAU
10Y

14
PAU1

0W14
PAU1

0V14
PAU1

0U14
PAU1

0T14
PAU1

0R14
PAU1

0P14
PAU1

0N14
PAU

10M
14

PAU
10L

14
PAU1

0K14
PAU1

0J14
PAU1

0H14
PAU1

0G14
PAU1

0F14
PAU1

0E14
PAU1

0D14
PAU1

0C14
PAU

10B
14

PAU
10A

14

PAU1
0AB1

3
PAU1

0AA1
3

PAU
10Y

13
PAU1

0W13
PAU1

0V13
PAU1

0U13
PAU1

0T13
PAU1

0R13
PAU1

0P13
PAU1

0N13
PAU

10M
13

PAU
10L

13
PAU1

0K13
PAU1

0J13
PAU1

0H13
PAU1

0G13
PAU1

0F13
PAU1

0E13
PAU1

0D13
PAU1

0C13
PAU

10B
13

PAU
10A

13

PAU1
0AB1

2
PAU1

0AA1
2

PAU
10Y

12
PAU1

0W12
PAU1

0V12
PAU1

0U12
PAU1

0T12
PAU1

0R12
PAU1

0P12
PAU1

0N12
PAU

10M
12

PAU
10L

12
PAU1

0K12
PAU1

0J12
PAU1

0H12
PAU1

0G12
PAU1

0F12
PAU1

0E12
PAU1

0D12
PAU1

0C12
PAU

10B
12

PAU
10A

12

PAU1
0AB1

1
PAU1

0AA1
1

PAU
10Y

11
PAU1

0W11
PAU1

0V11
PAU1

0U11
PAU1

0T11
PAU1

0R11
PAU1

0P11
PAU1

0N11
PAU

10M
11

PAU
10L

11
PAU1

0K11
PAU1

0J11
PAU1

0H11
PAU1

0G11
PAU1

0F11
PAU1

0E11
PAU1

0D11
PAU1

0C11
PAU

10B
11

PAU
10A

11

PAU1
0AB1

0
PAU1

0AA1
0

PAU
10Y

10
PAU1

0W10
PAU1

0V10
PAU1

0U10
PAU1

0T10
PAU1

0R10
PAU1

0P10
PAU1

0N10
PAU

10M
10

PAU
10L

10
PAU1

0K10
PAU1

0J10
PAU1

0H10
PAU1

0G10
PAU1

0F10
PAU1

0E10
PAU1

0D10
PAU1

0C10
PAU

10B
10

PAU
10A

10

PAU
10A

B9
PAU

10A
A9

PAU
10Y

9
PAU1

0W9
PAU1

0V9
PAU1

0U9
PAU1

0T9
PAU1

0R9
PAU1

0P9
PAU1

0N9
PAU

10M
9

PAU
10L

9
PAU1

0K9
PAU1

0J9
PAU1

0H9
PAU1

0G9
PAU1

0F9
PAU1

0E9
PAU1

0D9
PAU1

0C9
PAU

10B
9

PAU
10A

9

PAU
10A

B8
PAU

10A
A8

PAU
10Y

8
PAU1

0W8
PAU1

0V8
PAU1

0U8
PAU1

0T8
PAU1

0R8
PAU1

0P8
PAU1

0N8
PAU

10M
8

PAU
10L

8
PAU1

0K8
PAU1

0J8
PAU1

0H8
PAU1

0G8
PAU1

0F8
PAU1

0E8
PAU1

0D8
PAU1

0C8
PAU

10B
8

PAU
10A

8

PAU1
0AB7

PAU1
0AA7

PAU1
0Y7

PAU1
0W7

PAU1
0V7

PAU1
0U7

PAU1
0T7

PAU1
0R7

PAU1
0P7

PAU1
0N7

PAU1
0M7

PAU1
0L7

PAU1
0K7

PAU1
0J7

PAU1
0H7

PAU1
0G7

PAU1
0F7

PAU1
0E7

PAU1
0D7

PAU1
0C7

PAU1
0B7

PAU1
0A7

PAU
10A

B6
PAU

10A
A6

PAU
10Y

6
PAU1

0W6
PAU1

0V6
PAU1

0U6
PAU1

0T6
PAU1

0R6
PAU1

0P6
PAU1

0N6
PAU

10M
6

PAU
10L

6
PAU1

0K6
PAU1

0J6
PAU1

0H6
PAU1

0G6
PAU1

0F6
PAU1

0E6
PAU1

0D6
PAU1

0C6
PAU

10B
6

PAU
10A

6

PAU
10A

B5
PAU

10A
A5

PAU
10Y

5
PAU1

0W5
PAU1

0V5
PAU1

0U5
PAU1

0T5
PAU1

0R5
PAU1

0P5
PAU1

0N5
PAU

10M
5

PAU
10L

5
PAU1

0K5
PAU1

0J5
PAU1

0H5
PAU1

0G5
PAU1

0F5
PAU1

0E5
PAU1

0D5
PAU1

0C5
PAU

10B
5

PAU
10A

5

PAU
10A

B4
PAU

10A
A4

PAU
10Y

4
PAU1

0W4
PAU1

0V4
PAU1

0U4
PAU1

0T4
PAU1

0R4
PAU1

0P4
PAU1

0N4
PAU

10M
4

PAU
10L

4
PAU1

0K4
PAU1

0J4
PAU1

0H4
PAU1

0G4
PAU1

0F4
PAU1

0E4
PAU1

0D4
PAU1

0C4
PAU

10B
4

PAU
10A

4

PAU
10A

B3
PAU

10A
A3

PAU
10Y

3
PAU1

0W3
PAU1

0V3
PAU1

0U3
PAU1

0T3
PAU1

0R3
PAU1

0P3
PAU1

0N3
PAU

10M
3

PAU
10L

3
PAU1

0K3
PAU1

0J3
PAU1

0H3
PAU1

0G3
PAU1

0F3
PAU1

0E3
PAU1

0D3
PAU1

0C3
PAU

10B
3

PAU
10A

3

PAU
10A

B2
PAU

10A
A2

PAU
10Y

2
PAU1

0W2
PAU1

0V2
PAU1

0U2
PAU1

0T2
PAU1

0R2
PAU1

0P2
PAU1

0N2
PAU

10M
2

PAU
10L

2
PAU1

0K2
PAU1

0J2
PAU1

0H2
PAU1

0G2
PAU1

0F2
PAU1

0E2
PAU1

0D2
PAU1

0C2
PAU

10B
2

PAU
10A

2

PAU
10A

B1
PAU

10A
A1

PAU
10Y

1
PAU1

0W1
PAU1

0V1
PAU1

0U1
PAU1

0T1
PAU1

0R1
PAU1

0P1
PAU1

0N1
PAU

10M
1

PAU
10L

1
PAU1

0K1
PAU1

0J1
PAU1

0H1
PAU1

0G1
PAU1

0F1
PAU1

0E1
PAU1

0D1
PAU1

0C1
PAU

10B
1

PAU
10A

1

COU
1

PAU
209

PAU205
PAU206

PAU207
PAU208

PAU204
PAU203

PAU202
PAU201

CO
U2

PAU3
01

PAU3
02

PAU3
03

PAU
304

CO
U3

PAU4019
PAU4020

PAU4021
PAU4022

PAU402
3

PAU4024

PA
U4
01
3

PA
U4
01
4

PA
U4
01
5

PA
U4
01
6

PA
U4
01
7

PA
U4
01
8

PAU407
PAU40

8PAU
409PA

U4010
PAU4011

PAU4012
P
A
U
4
0
6

P
A
U
4
0
5

P
A
U
4
0
4

P
A
U
4
0
3

P
A
U
4
0
2

P
A
U
4
0
1

PAU4
025

CO
U4

PAU50
M

PA
U5
05

PA
U5
06

PA
U5
07

PA
U5
08

PA
U5
04

PA
U5
03

PA
U5
02

PA
U5
01

CO
U5

PAU6
05

PAU6
04

PAU6
03P

AU60
2PA

U601

COU
6

PAU701P
AU702PA

U703PA
U704PAU

705P
A
U
7
0
6

P
A
U
7
0
7

P
A
U
7
0
8

P
A
U
7
0
9

P
A
U
7
0
1
0

PAU7011
PAU7012

PAU7013
PAU7014

PAU7015
PA
U7
01
6

PA
U7
01
7

PA
U7
01
8

PA
U7
01
9

PA
U7
02
0

PAU7
021

CO
U7

PAVB
AT01

C
O
V
B
A
T

F
ig
u
re

A
.2
5
:
H
e
li
co

p
te
r
b
ra

in
p
ro

to
ty
p
e
co

m
p
o
n
e
n
ts
:
fr
o
n
t

139

PA1V
0N01

CO
1V
0N

PA1V
0P01

CO
1V
0P

PA3V
3N01

CO
3V
3N

PA3V
3P01

C
O
3
V
3
P

PA4V
7N01

C
O
4
V
7
N

PA4V
7P01 C

O
4
V
7
P

PA5V
201CO

5V
2

PAC1
02

PAC1
01

CO
C1

PAC2
02

PAC2
01COC
2

PAC
302

PAC
301

CO
C3

PAC
402

PAC
401

CO
C4

PAC
502

PAC
501

CO
C5

PAC
602

PAC
601

CO
C6

PA
C7
02

PA
C7
01

CO
C7

PA
C8
02

PA
C8
01

CO
C8

PAC9
02

PAC9
01CO

C9

PAC1
002

PAC1
001

CO
C1
0

PAC11
02

PAC11
01

CO
C1
1

PAC
120

2

PAC
120

1

COC12

PAC13
01

PAC13
02 CO

C1
3

PAC14
02

PAC14
01 COC14

PAC1
502

PAC1
501

CO
C1
5

PAC1
602

PAC1
601

CO
C1
6

PAC1
702

PAC1
701

CO
C1
7

PAC1
802

PAC1
801

CO
C1
8

PAC
190

2
PAC

190
1

CO
C1
9

PAC
200

2
PAC

200
1

CO
C2
0

PAC
210

2
PAC

210
1 COC

21

PAC
220

2
PAC

220
1

CO
C2
2

PAC2
302

PAC2
301

CO
C2
3

PAC2
402

PAC2
401CO

C2
4

PAC2
502

PAC2
501

COC25

PAC2
602

PAC2
601 COC26

PAC2
702

PAC2
701

COC27

PAC28
02

PAC2
801

CO
C2
8

PAC2
902

PAC2
901

COC29

PAC3
002

PAC3
001 COC30

PAC3
102

PAC3
101

COC31

PAC3
202

PAC3
201COC32

PAC3
302

PAC3
301

COC33

PAC3
402

PAC3
401 COC34

PAC3
501

PAC3
502

COC35

PAC3
601

PAC3
602 COC36

PAC3
701

PAC3
702

COC37

PAC3
801

PAC3
802COC38

PAC3
901

PAC3
902

COC39

PAC4
001 PAC40
02COC40

PAD1
0Out

1

PAD
10I

n

PAD1
0Out

2
PAD1

0Out
3

PAD1
0Out

4

CO
D1

PAGN
D01COGND

PAL1
01

PAL1
02

CO
L1

PAL2
01

PAL2
02

COL
2

PAL
301

PAL
302
COL

3

PAP106
PAP105

PAP10
0

PAP104
PAP103

PAP102
PAP101

CO
P1

P
A
P
2
0
1

PA
P2
02

PA
P2
03

PA
P2
04

PA
P2
00

COP
2

PA
P3
00

P
A
P
3
0
4

PA
P3
03

PA
P3
02

PA
P3
01COP

3

P
A
P
4
0
1

PA
P4
02

P
A
P
4
0
3

PA
P4
04

PA
P4
00

P
A
P
4
0
5

PA
P4
06 COP

4

P
A
P
5
0
6

PA
P5
05

PA
P5
00

P
A
P
5
0
4

PA
P5
03

P
A
P
5
0
2

PA
P5
01COP

5

PAP601P
AP602

PAP603P
AP604

PAP605P
AP606

PAP607
PAP608P

AP609PA
P6010

PAP6020
PAP6011PAP6012PAP6013

PAP6014
PAP6015PAP6016

PAP6017PAP6018
PAP6019

CO
P6

PAP701P
AP702

PAP703P
AP704

PAP705P
AP706

PAP707
PAP708P

AP709PA
P7010

PAP7020
PAP7011PAP7012PAP7013

PAP7014
PAP7015PAP7016

PAP7017PAP7018
PAP7019

CO
P7

PAPG
OOD0

1
C
O
P
G
O
O
D

PAR
102

PAR
101

CO
R1PAR

202
PAR

201
CO
R2

PAR
302

PAR
301

CO
R3

PAR
402

PAR
401

CO
R4

PAR
502

PAR
501
CO
R5

PAR
602

PAR
601COR
6

PAR
702

PAR
701
CO
R7

PA
R8
02

PAR
801

CO
R8

PAR
901

PAR
902COR
9

PAR1
002

PAR1
001

COR1
0

PAR1
102

PAR1
101COR11

PAR1
202

PAR1
201COR12

PAR1
302

PAR1
301COR13

PAR1
402 PAR14
01COR14

PAR
150

2
PAR

150
1

CO
R1
5PAR1

602

PAR1
601

COR16
PAR1

702PAR17
01

COR17

PAR1
802

PAR1
801CO
R1
8

PAR1
902

PAR1
901CO
R1
9

PAR
200

2
PAR

200
1

CO
R2
0

PAR
210

2
PAR

210
1

CO
R2
1

PAR
220

2
PAR

220
1 C
OR
22

PAR
230

2
PAR

230
1

CO
R2
3

PAR
240

2
PAR

240
1

CO
R2
4

PAR2
501

PAR2
502

CO
R2
5

PAR2
601

PAR2
602

CO
R2
6

PAR
270

1
PAR

270
2

CO
R2
7

PAR
280

1
PAR

280
2

CO
R2
8

PAR2
902

PAR2
901

CO
R2
9

PAR3
002

PAR3
001

CO
R3
0

PAR3
102

PAR
310

1COR31

PAR
320

2
PAR

320
1

CO
R3
2

PAR
330

2
PAR

330
1 C
OR
33

PAR
340

2
PAR

340
1

CO
R3
4

PAT
201COT
2

PAT
301COT
3

PAT
401COT
4

PAT
601COT
6

PAT
701COT
7

PAT
801

CO
T8

PAT
901

COT
9

PAT1
001 CO

T10

PAT1
101CO

T11

PAT1
201 CO

T12PAT
130

1 COT
13

PAT1
401 CO

T14

PAT1
501COT

15

PAT1
601 COT

16

PAT2
501

CO
T2
5

PAT2
601

CO
T2
6

PAT2
701

CO
T2
7

PAT2
801
CO
T2
8

PAT2
901

CO
T2
9

PAT3
001

CO
T3
0

PAT3
101

CO
T3
1

PAT3
201

CO
T3
2

PAU1
0AB2

2
PAU1

0AA2
2

PAU
10Y

22
PAU1

0W22
PAU1

0V22
PAU1

0U22
PAU1

0T22
PAU1

0R22
PAU1

0P22
PAU1

0N22
PAU

10M
22

PAU
10L

22
PAU1

0K22
PAU1

0J22
PAU1

0H22
PAU1

0G22
PAU1

0F22
PAU1

0E22
PAU1

0D22
PAU1

0C22
PAU

10B
22

PAU
10A

22

PAU1
0AB2

1
PAU1

0AA2
1

PAU
10Y

21
PAU1

0W21
PAU1

0V21
PAU1

0U21
PAU1

0T21
PAU1

0R21
PAU1

0P21
PAU1

0N21
PAU

10M
21

PAU
10L

21
PAU1

0K21
PAU1

0J21
PAU1

0H21
PAU1

0G21
PAU1

0F21
PAU1

0E21
PAU1

0D21
PAU1

0C21
PAU

10B
21

PAU
10A

21

PAU1
0AB2

0
PAU1

0AA2
0

PAU
10Y

20
PAU1

0W20
PAU1

0V20
PAU1

0U20
PAU1

0T20
PAU1

0R20
PAU1

0P20
PAU1

0N20
PAU

10M
20

PAU
10L

20
PAU1

0K20
PAU1

0J20
PAU1

0H20
PAU1

0G20
PAU1

0F20
PAU1

0E20
PAU1

0D20
PAU1

0C20
PAU

10B
20

PAU
10A

20

PAU1
0AB1

9
PAU1

0AA1
9

PAU
10Y

19
PAU1

0W19
PAU1

0V19
PAU1

0U19
PAU1

0T19
PAU1

0R19
PAU1

0P19
PAU1

0N19
PAU

10M
19

PAU
10L

19
PAU1

0K19
PAU1

0J19
PAU1

0H19
PAU1

0G19
PAU1

0F19
PAU1

0E19
PAU1

0D19
PAU1

0C19
PAU

10B
19

PAU
10A

19

PAU1
0AB1

8
PAU1

0AA1
8

PAU
10Y

18
PAU1

0W18
PAU1

0V18
PAU1

0U18
PAU1

0T18
PAU1

0R18
PAU1

0P18
PAU1

0N18
PAU

10M
18

PAU
10L

18
PAU1

0K18
PAU1

0J18
PAU1

0H18
PAU1

0G18
PAU1

0F18
PAU1

0E18
PAU1

0D18
PAU1

0C18
PAU

10B
18

PAU
10A

18

PAU1
0AB1

7
PAU1

0AA1
7

PAU1
0Y17

PAU10
W17

PAU10
V17

PAU10
U17

PAU10
T17

PAU10
R17

PAU10
P17

PAU10
N17

PAU1
0M17

PAU1
0L17

PAU10
K17

PAU10
J17

PAU10
H17

PAU10
G17

PAU10
F17

PAU10
E17

PAU10
D17

PAU10
C17

PAU1
0B17

PAU1
0A17

PAU1
0AB1

6
PAU1

0AA1
6

PAU1
0Y16

PAU10
W16

PAU10
V16

PAU10
U16

PAU10
T16

PAU10
R16

PAU10
P16

PAU10
N16

PAU1
0M16

PAU1
0L16

PAU10
K16

PAU10
J16

PAU10
H16

PAU10
G16

PAU10
F16

PAU10
E16

PAU10
D16

PAU10
C16

PAU1
0B16

PAU1
0A16

PAU1
0AB1

5
PAU1

0AA1
5

PAU
10Y

15
PAU1

0W15
PAU1

0V15
PAU1

0U15
PAU1

0T15
PAU1

0R15
PAU1

0P15
PAU1

0N15
PAU

10M
15

PAU
10L

15
PAU1

0K15
PAU1

0J15
PAU1

0H15
PAU1

0G15
PAU1

0F15
PAU1

0E15
PAU1

0D15
PAU1

0C15
PAU

10B
15

PAU
10A

15

PAU1
0AB1

4
PAU1

0AA1
4

PAU
10Y

14
PAU1

0W14
PAU1

0V14
PAU1

0U14
PAU1

0T14
PAU1

0R14
PAU1

0P14
PAU1

0N14
PAU

10M
14

PAU
10L

14
PAU1

0K14
PAU1

0J14
PAU1

0H14
PAU1

0G14
PAU1

0F14
PAU1

0E14
PAU1

0D14
PAU1

0C14
PAU

10B
14

PAU
10A

14

PAU1
0AB1

3
PAU1

0AA1
3

PAU
10Y

13
PAU1

0W13
PAU1

0V13
PAU1

0U13
PAU1

0T13
PAU1

0R13
PAU1

0P13
PAU1

0N13
PAU

10M
13

PAU
10L

13
PAU1

0K13
PAU1

0J13
PAU1

0H13
PAU1

0G13
PAU1

0F13
PAU1

0E13
PAU1

0D13
PAU1

0C13
PAU

10B
13

PAU
10A

13

PAU1
0AB1

2
PAU1

0AA1
2

PAU
10Y

12
PAU1

0W12
PAU1

0V12
PAU1

0U12
PAU1

0T12
PAU1

0R12
PAU1

0P12
PAU1

0N12
PAU

10M
12

PAU
10L

12
PAU1

0K12
PAU1

0J12
PAU1

0H12
PAU1

0G12
PAU1

0F12
PAU1

0E12
PAU1

0D12
PAU1

0C12
PAU

10B
12

PAU
10A

12

PAU1
0AB1

1
PAU1

0AA1
1

PAU
10Y

11
PAU1

0W11
PAU1

0V11
PAU1

0U11
PAU1

0T11
PAU1

0R11
PAU1

0P11
PAU1

0N11
PAU

10M
11

PAU
10L

11
PAU1

0K11
PAU1

0J11
PAU1

0H11
PAU1

0G11
PAU1

0F11
PAU1

0E11
PAU1

0D11
PAU1

0C11
PAU

10B
11

PAU
10A

11

PAU1
0AB1

0
PAU1

0AA1
0

PAU
10Y

10
PAU1

0W10
PAU1

0V10
PAU1

0U10
PAU1

0T10
PAU1

0R10
PAU1

0P10
PAU1

0N10
PAU

10M
10

PAU
10L

10
PAU1

0K10
PAU1

0J10
PAU1

0H10
PAU1

0G10
PAU1

0F10
PAU1

0E10
PAU1

0D10
PAU1

0C10
PAU

10B
10

PAU
10A

10

PAU
10A

B9
PAU

10A
A9

PAU
10Y

9
PAU1

0W9
PAU1

0V9
PAU1

0U9
PAU1

0T9
PAU1

0R9
PAU1

0P9
PAU1

0N9
PAU

10M
9

PAU
10L

9
PAU1

0K9
PAU1

0J9
PAU1

0H9
PAU1

0G9
PAU1

0F9
PAU1

0E9
PAU1

0D9
PAU1

0C9
PAU

10B
9

PAU
10A

9

PAU
10A

B8
PAU

10A
A8

PAU
10Y

8
PAU1

0W8
PAU1

0V8
PAU1

0U8
PAU1

0T8
PAU1

0R8
PAU1

0P8
PAU1

0N8
PAU

10M
8

PAU
10L

8
PAU1

0K8
PAU1

0J8
PAU1

0H8
PAU1

0G8
PAU1

0F8
PAU1

0E8
PAU1

0D8
PAU1

0C8
PAU

10B
8

PAU
10A

8

PAU1
0AB7

PAU1
0AA7

PAU1
0Y7

PAU1
0W7

PAU1
0V7

PAU1
0U7

PAU1
0T7

PAU1
0R7

PAU1
0P7

PAU1
0N7

PAU1
0M7

PAU1
0L7

PAU1
0K7

PAU1
0J7

PAU1
0H7

PAU1
0G7

PAU1
0F7

PAU1
0E7

PAU1
0D7

PAU1
0C7

PAU1
0B7

PAU1
0A7

PAU
10A

B6
PAU

10A
A6

PAU
10Y

6
PAU1

0W6
PAU1

0V6
PAU1

0U6
PAU1

0T6
PAU1

0R6
PAU1

0P6
PAU1

0N6
PAU

10M
6

PAU
10L

6
PAU1

0K6
PAU1

0J6
PAU1

0H6
PAU1

0G6
PAU1

0F6
PAU1

0E6
PAU1

0D6
PAU1

0C6
PAU

10B
6

PAU
10A

6

PAU
10A

B5
PAU

10A
A5

PAU
10Y

5
PAU1

0W5
PAU1

0V5
PAU1

0U5
PAU1

0T5
PAU1

0R5
PAU1

0P5
PAU1

0N5
PAU

10M
5

PAU
10L

5
PAU1

0K5
PAU1

0J5
PAU1

0H5
PAU1

0G5
PAU1

0F5
PAU1

0E5
PAU1

0D5
PAU1

0C5
PAU

10B
5

PAU
10A

5

PAU
10A

B4
PAU

10A
A4

PAU
10Y

4
PAU1

0W4
PAU1

0V4
PAU1

0U4
PAU1

0T4
PAU1

0R4
PAU1

0P4
PAU1

0N4
PAU

10M
4

PAU
10L

4
PAU1

0K4
PAU1

0J4
PAU1

0H4
PAU1

0G4
PAU1

0F4
PAU1

0E4
PAU1

0D4
PAU1

0C4
PAU

10B
4

PAU
10A

4

PAU
10A

B3
PAU

10A
A3

PAU
10Y

3
PAU1

0W3
PAU1

0V3
PAU1

0U3
PAU1

0T3
PAU1

0R3
PAU1

0P3
PAU1

0N3
PAU

10M
3

PAU
10L

3
PAU1

0K3
PAU1

0J3
PAU1

0H3
PAU1

0G3
PAU1

0F3
PAU1

0E3
PAU1

0D3
PAU1

0C3
PAU

10B
3

PAU
10A

3

PAU
10A

B2
PAU

10A
A2

PAU
10Y

2
PAU1

0W2
PAU1

0V2
PAU1

0U2
PAU1

0T2
PAU1

0R2
PAU1

0P2
PAU1

0N2
PAU

10M
2

PAU
10L

2
PAU1

0K2
PAU1

0J2
PAU1

0H2
PAU1

0G2
PAU1

0F2
PAU1

0E2
PAU1

0D2
PAU1

0C2
PAU

10B
2

PAU
10A

2

PAU
10A

B1
PAU

10A
A1

PAU
10Y

1
PAU1

0W1
PAU1

0V1
PAU1

0U1
PAU1

0T1
PAU1

0R1
PAU1

0P1
PAU1

0N1
PAU

10M
1

PAU
10L

1
PAU1

0K1
PAU1

0J1
PAU1

0H1
PAU1

0G1
PAU1

0F1
PAU1

0E1
PAU1

0D1
PAU1

0C1
PAU

10B
1

PAU
10A

1

COU
1

PAU
209

PAU205
PAU206

PAU207
PAU208

PAU204
PAU203

PAU202
PAU201

CO
U2

PAU3
01

PAU3
02

PAU3
03

PAU
304

CO
U3

PAU4019
PAU4020

PAU4021
PAU4022

PAU402
3

PAU4024

PA
U4
01
3

PA
U4
01
4

PA
U4
01
5

PA
U4
01
6

PA
U4
01
7

PA
U4
01
8

PAU407
PAU40

8PAU
409PA

U4010
PAU4011

PAU4012
P
A
U
4
0
6

P
A
U
4
0
5

P
A
U
4
0
4

P
A
U
4
0
3

P
A
U
4
0
2

P
A
U
4
0
1

PAU4
025

CO
U4

PAU50
M

PA
U5
05

PA
U5
06

PA
U5
07

PA
U5
08

PA
U5
04

PA
U5
03

PA
U5
02

PA
U5
01

CO
U5

PAU6
05

PAU6
04

PAU6
03P

AU60
2 PA

U601

COU
6

PAU701P
AU702PA

U703PA
U704PAU

705P
A
U
7
0
6

P
A
U
7
0
7

P
A
U
7
0
8

P
A
U
7
0
9

P
A
U
7
0
1
0

PAU7011
PAU7012

PAU7013
PAU7014

PAU7015
PA
U7
01
6

PA
U7
01
7

PA
U7
01
8

PA
U7
01
9

PA
U7
02
0

PAU7
021

CO
U7

PAVB
AT01

C
O
V
B
A
T

F
ig
u
re

A
.2
6
:
H
e
li
co

p
te
r
b
ra

in
p
ro

to
ty
p
e
co

m
p
o
n
e
n
ts
:
ba

c
k

140

Bibliography

[1] Centeye image sensor. URL http://centeye.com/projects/robobees.

[2] Intel Atom processor E6x5C series. URL http://www.altera.com/devices/processor/

intel/e6xx/\proc-e6x5c.html.

[3] Spartan product tables. URL http://www.xilinx.com/publications/\matrix/Spartan_

Series.pdf.

[4] Vivado Design Suite. URL http://xilinx.com/vivado.

[5] Zynq-7000 all programmable SoC. URL http://xilinx.com/zynq.

[6] DSP/BIOS Real-Time Kernel. Technical report, Apr. 2010.

[7] OMAP Technology. Technical report, Apr. 2010.

[8] D. Arora, A. Raghunathan, S. Ravi, M. Sankaradass, N. K. Jha, and S. T. Chakradhar.
Software architecture exploration for high-performance security processing on a multiprocessor
mobile SoC. In Design Automation Conference, 2006 43rd ACM/IEEE, pages 496–501, 2006.

[9] Arvind and others. High-level synthesis: An Essential Ingredient for Designing Complex
ASICs. In ICCAD 2004.

[10] Benini. Networks on chips: a new SoC paradigm. Computer, 35(1):70–78, 2002.

[11] S. Borkar. Design challenges of technology scaling. IEEE Micro, 19(4):23–29, 1999.

[12] A. Broder and M. Mitzenmacher. Network applications of bloom filters: A survey. In Allerton,
2002.

[13] S. Chang, A. Kirsch, and M. Lyons. Energy and storage reduction in data intensive wireless
sensor network applications. Technical Report TR-15-07, Harvard University, 2007.

[14] B. Chen, K.-K. Muniswamy-Reddy, and M. Welsh. Ad-hoc multicast routing on resource-
limited sensor nodes. In REALMAN ’06, pages 87–94. ACM Press, 2006. ISBN 1-59593-360-3.
doi: http://doi.acm.org/10.1145/1132983.1132998.

[15] D. Chen, J. Cong, Y. Fan, G. Han, W. Jiang, and Z. Zhang. xPilot: A Platform-Based
Behavioral Synthesis System. In SRC TechCon, Oct. 2005.

[16] J. Cong, K. Gururaj, and G. Han. Synthesis of reconfigurable high-performance multicore
systems. FPGA, 2009.

141

http://centeye.com/projects/robobees
http://xilinx.com/vivado
http://xilinx.com/zynq

[17] J. Cong et al. High-level synthesis for FPGAs: From prototyping to deployment. IEEE
TCADICS, 30(4):473–491, 2011.

[18] J. Cong et al. Charm: a composable heterogeneous accelerator-rich microprocessor. ISLPED,
2012.

[19] M. Corporation. http://www.moteiv.com/products/docs/tmote-sky-datasheet.pdf,
2007.

[20] E. Cota, P. Mantovani, M. Petracca, M. Casu, and L. Carloni. Accelerator memory reuse in
the dark silicon era. Computer Architecture Letters, PP(99):1–1, 2013.

[21] M. Dales. Managing a reconfigurable processor in a general purpose workstation environment.
DATE, 2003.

[22] S. Dharmapurikar and J. Lockwood. Fast and scalable pattern matching for content filtering.
In ANCS ’05: Proceedings of the 2005 ACM symposium on Architecture for networking and
communications systems, pages 183–192, New York, NY, USA, 2005. ACM. ISBN 1-59593-
082-5. doi: http://doi.acm.org.ezp1.harvard.edu/10.1145/1095890.1095916.

[23] M. Dietzfelbinger, T. Hagerup, J. Katajainen, and M. Penttonen. A reliable randomized
algorithm for the closest-pair problem. J. Algorithms, 25(1):19–51, 1997. ISSN 0196-6774. doi:
http://dx.doi.org/10.1006/jagm.1997.0873.

[24] J. Eyre and J. Bier. The evolution of DSP processors. Signal Processing Magazine, IEEE, 17
(2):43–51, Mar. 2000.

[25] W. Fu and K. Compton. An execution environment for reconfigurable computing. FCCM,
pages 149–158, 2005.

[26] P. Glaskowsky. ATI and Nvidia face off–obliquely.

[27] R. E. Gonzalez. Configurable and Extensible Processors Change System Design. In Hot Chips
17. IEEE Computer Society, Aug. 2005.

[28] L. Gwennap. ADAPTEVA: MORE FLOPS, LESS WATTS. Technical report, June 2011.

[29] R. Hameed, W. Qadeer, M. Wachs, O. Azizi, A. Solomatnikov, B. Lee, S. Richardson,
C. Kozyrakis, and M. Horowitz. Understanding sources of inefficiency in general-purpose chips.
ISCA ’10: Proceedings of the 37th annual international symposium on Computer architecture,
June 2010.

[30] R. Hameed, W. Qadeer, M. Wachs, O. Azizi, A. Solomatnikov, B. C. Lee, S. Richardson,
C. Kozyrakis, and M. Horowitz. Understanding Sources of Inefficiency in General-Purpose
Chips. In ISCA 37, June 2010.

[31] Y. Hasegawa et al. An adaptive cryptographic accelerator for IPsec on dynamically reconfig-
urable processor. FPT, 2006.

[32] P. Hebden and A. R. Pearce. Bloom filters for data aggregation and discovery: a hierarchical
clustering approach. In ICIS ’05, pages 175–180, 2005.

[33] M. Hempstead and others. An Ultra Low Power System Architecture for Sensor Network
Applications. In ISCA ’05, pages 208–219, 2005.

142

http://www.moteiv.com/products/docs/tmote-sky-datasheet.pdf

[34] M. Hempstead, N. Tripathi, P. Mauro, G.-Y. Wei, and D. Brooks. An ultra low power system
architecture for sensor network applications. In ISCA ’05, pages 208–219. IEEE Computer
Society, 2005. ISBN 0-7695-2270-X. doi: http://dx.doi.org/10.1109/ISCA.2005.12.

[35] M. Hempstead, G.-Y. Wei, and D. Brooks. Navigo: An early-stage model to study power-
constrained architectures and specialization. In ISCA MoBS Workshop, June 2009.

[36] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister. System architecture directions
for networked sensors. SIGOPS Oper. Syst. Rev., 34(5):93–104, 2000. ISSN 0163-5980. doi:
http://doi.acm.org/10.1145/384264.379006.

[37] R. Ho. High Speed and Low Energy Capacitively Driven On-Chip Wires. Solid-State Circuits,
IEEE Journal of, 43(1):52–60, 2008.

[38] C. Huang and F. Vahid. Transmuting coprocessors: dynamic loading of FPGA coprocessors.
In DAC, 2009.

[39] S. S. Huang, A. Hormati, D. F. Bacon, and R. Rabbah. Liquid Metal: Object-Oriented
Programming Across the Hardware/Software Boundary. In ECOOP ’08: Proceedings of the
22nd European conference on Object-Oriented Programming, pages 76–103, Berlin, Heidelberg,
2008. Springer-Verlag.

[40] H. Kalte and M. Porrmann. Context saving and restoring for multitasking in reconfigurable
systems. FPL, 2005.

[41] J. Kelm and S. Lumetta. HybridOS: runtime support for reconfigurable accelerators. FPGA,
2008.

[42] J. H. Kelm, D. R. Johnson, M. R. Johnson, N. C. Crago, W. Tuohy, A. Mahesri, S. S. Lumetta,
M. I. Frank, and S. J. Patel. Rigel: an architecture and scalable programming interface for a
1000-core accelerator. In ISCA 2009: Proceedings of the 36th annual international symposium
on Computer architecture, pages 140–151, New York, NY, USA, 2009. ACM.

[43] M. M. Kim, M. Mehrara, M. Oskin, T. Austin, M. M. Kim, M. Mehrara, M. Oskin, and
T. Austin. Architectural implications of brick and mortar silicon manufacturing. ACM
SIGARCH Computer Architecture News, 35(2):244–253, June 2007.

[44] R. Kumar, K. I. Farkas, N. P. Jouppi, P. Ranganathan, and D. M. Tullsen. Single-ISA Hetero-
geneous Multi-Core Architectures: The Potential for Processor Power Reduction. In MICRO
36: Proceedings of the 36th annual IEEE/ACM International Symposium on Microarchitecture,
page 81, Washington, DC, USA, 2003. IEEE Computer Society.

[45] I. Kuon and J. Rose. Measuring the gap between FPGAs and ASICs. In FPGA 2006.

[46] K. Lim, J. Chang, and T. Mudge. Disaggregated memory for expansion and sharing in blade
servers. ACM SIGARCH, 2009.

[47] Y. Lin, Y. L. Hyunseok, M. Woh, Y. Harel, S. Mahlke, T. Mudge, and C. Chakrabarti. SODA:
A Low-power Architecture For Software Radio. In ISCA-33, pages 89–101, 2006.

[48] M. D. Linderman, J. D. Collins, H. Wang, and T. H. Meng. Merge: a programming model
for heterogeneous multi-core systems. In ASPLOS XIII: Proceedings of the 13th international
conference on Architectural support for programming languages and operating systems. ACM
Request Permissions, Mar. 2008.

143

[49] M. Lyons, G. Wei, and D. Brooks. Shrink-fit: A framework for flexible accelerator sizing.
IEEE CAL, PP(99), 2012.

[50] M. J. Lyons, D. Brooks, and G.-Y. Wei. The accelerator store: A shared memory framework
for accelerator-based systems. ACM TACO, 8(4):1–22, 2012.

[51] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. Tag: a tiny aggregation service
for ad-hoc sensor networks. SIGOPS Oper. Syst. Rev., 36(SI):131–146, 2002. ISSN 0163-5980.
doi: http://doi.acm.org/10.1145/844128.844142.

[52] K. Mai, T. Paaske, N. Jayasena, and R. Ho. Smart memories: A modular reconfigurable
architecture. ISCA, Jan. 2005.

[53] V. Manh Tuan and H. Amano. A preemption algorithm for a multitasking environment on
dynamically reconfigurable processor. ARC, 2008.

[54] J. Meany. Golomb coding notes. http://ese.wustl.edu/class/fl06/ese578/

GolombCodingNotes.pdf, 2005.

[55] A. Meixner. Unified microprocessor core storage. Computing Frontiers, Jan. 2007.

[56] R. Merritt. ARM CTO: power surge could create ’Dark Silicon’. EE Times, 2009.

[57] T. Mudge. Power: A first-class architectural design constraint. Computer, 34(4):52–58, 2001.
ISSN 0018-9162. doi: http://dx.doi.org/10.1109/2.917539.

[58] M. Muller. 2008 IEEE International Solid-State Circuits Conference - Digest of Technical
Papers. In 2008 International Solid-State Circuits Conference - (ISSCC), pages 32–37. IEEE,
2008.

[59] J.-K. Peir, S.-C. Lai, S.-L. Lu, J. Stark, and K. Lai. Bloom filtering cache misses for accurate
data speculation and prefetching. In ICS ’02, pages 189–198. ACM Press, 2002. ISBN 1-58113-
483-5. doi: http://doi.acm.org/10.1145/514191.514219.

[60] N. Pinto, D. Doukhan, J. J. DiCarlo, and D. D. Cox. A High-Throughput Screening Approach
to Discovering Good Forms of Biologically Inspired Visual Representation. PLoS Comput Biol,
5(11):e1000579, Nov. 2009.

[61] P. Pratim. Performance evaluation and design trade-offs for network-on-chip interconnect
architectures. Computers, IEEE Transactions on, 54(8):1025–1040, 2005.

[62] A. Roth. Store vulnerability window (SVW): Re-execution filtering for enhanced load opti-
mization. In ISCA ’05, pages 458–468. IEEE Computer Society, 2005. ISBN 0-7695-2270-X.
doi: http://dx.doi.org/10.1109/ISCA.2005.48.

[63] K. Sayood. Introduction to Data Compression. Morgan Kaufmann Publishers, second edition,
2000.

[64] SD Association. SD Speed Class. URL http://www.sdcard.org/developers/tech/speed_

class.

[65] M. Shalan and V. I. Mooney. Hardware support for real-time embedded multiprocessor system-
on-a-chip memory management. In Hardware/Software Codesign, 2002. CODES 2002. Pro-
ceedings of the Tenth International Symposium on, pages 79–84, 2002.

144

http://ese.wustl.edu/class/fl06/ese578/GolombCodingNotes.pdf
http://ese.wustl.edu/class/fl06/ese578/GolombCodingNotes.pdf
http://www.sdcard.org/developers/tech/speed_class
http://www.sdcard.org/developers/tech/speed_class

[66] Y. Shan et al. FPMR: MapReduce framework on FPGA. In FPGA, 2010.

[67] D. E. Shaw, R. O. Dror, J. K. Salmon, J. P. Grossman, K. M. Mackenzie, J. A. Bank, C. Young,
M. M. Deneroff, B. Batson, K. J. Bowers, E. Chow, M. P. Eastwood, D. J. Ierardi, J. L.
Klepeis, J. S. Kuskin, R. H. Larson, K. Lindorff-Larsen, P. Maragakis, M. A. Moraes, S. Piana,
Y. Shan, and B. Towles. Millisecond-scale molecular dynamics simulations on Anton. In SC
’09: Proceedings of the Conference on High Performance Computing Networking, Storage and
Analysis, pages 1–11, New York, NY, USA, 2009. ACM.

[68] S. S. Stone, J. P. Haldar, S. C. Tsao, W. m. W. Hwu, B. P. Sutton, and Z. P. Liang. Accelerating
advanced MRI reconstructions on GPUs. J. Parallel Distrib. Comput., 68(10):1307–1318, 2008.

[69] D. Talla. Evaluating VLIW and SIMD Architectures for DSP and Multimedia Applications.
Technical report.

[70] C. Taylor, A. Rahimi, J. Bachrach, H. Shrobe, and A. Grue. Simultaneous localization, cal-
ibration, and tracking in an ad hoc sensor network. In IPSN ’06, pages 27–33. ACM Press,
2006. ISBN 1-59593-334-4. doi: http://doi.acm.org/10.1145/1127777.1127785.

[71] M. Ullmann et al. An FPGA run-time system for dynamical on-demand reconfiguration.
IPDPS, 2004.

[72] G. Venkatesh, J. Sampson, N. Goulding, S. Garcia, V. Bryksin, J. Lugo-Martinez, S. Swanson,
and M. B. Taylor. Conservation cores: reducing the energy of mature computations. In
ASPLOS ’10: Proceedings of the fifteenth edition of ASPLOS on Architectural support for
programming languages and operating systems, pages 205–218, New York, NY, USA, 2010.
ACM.

[73] G. Venkatesh et al. Conservation cores: reducing the energy of mature computations. ASPLOS,
2010.

[74] A. Wang, B. H. Calhoun, and A. P. Chandrakasan. Sub-threshold Design for Ultra Low-Power
Systems. Springer, 2006.

[75] J. R. Wernsing and G. Stitt. Elastic computing: a framework for transparent, portable, and
adaptive multi-core heterogeneous computing. In LCTES, 2010.

[76] M. Woh, Y. Lin, S. Seo, S. Mahlke, T. Mudge, C. Chakrabarti, R. Bruce, D. Kershaw, A. Reid,
M. Wilder, and K. Flautner. From SODA to scotch: The evolution of a wireless baseband
processor. In MICRO ’08: Proceedings of the 2008 41st IEEE/ACM International Symposium
on Microarchitecture, pages 152–163, Washington, DC, USA, 2008. IEEE Computer Society.

145

