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Abstract—Rapid developments in the fields of information and
communication technology and microelectronics allowed seamless
interconnection among various devices letting them to commu-
nicate with each other. This technological integration opened
up new possibilities in many disciplines including healthcare
and well-being. With the aim of reducing healthcare costs and
providing improved and reliable services, several healthcare
frameworks based on Internet of Healthcare Things (IoHT)
have been developed. However, due to the critical and hetero-
geneous nature of healthcare data, maintaining high quality of
service (QoS)—in terms of faster responsiveness and data-specific
complex analytics—has always been the main challenge in design-
ing such systems. Addressing these issues, this paper proposes
a five-layered heterogeneous mist, fog, and cloud-based IoHT
framework capable of efficiently handling and routing (near-
)real-time as well as offline/batch mode data. Also, by employing
software defined networking and link adaptation-based load bal-
ancing, the framework ensures optimal resource allocation and
efficient resource utilization. The results, obtained by simulating
the framework, indicate that the designed network via its vari-
ous components can achieve high QoS, with reduced end-to-end
latency and packet drop rate, which is essential for developing
next generation e-healthcare systems.
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I. INTRODUCTION

W
ITH the sudden growth of electronic devices and
improved connectivity of the Internet, nowadays more

devices are connected to the Internet than people [1]. This
has been facilitated by a concept, called “Internet of Things”
or IoT, which was coined back in 1999 by Kevin Ashton
and was meant to connect Radio-frequency identification
(RFID) devices in the supply chain of a consumer goods
manufacturer [2]. However, currently the term is used in
almost every field to describe a network of communicable
devices [3], [4].

In recent years, IoT enabled devices have emerged expo-
nentially and the estimated number of connected devices
are to exceed 28 billion by 2021 [see Fig. 1(a)]. As a
technology, the IoT has been adopted at a varied pace
among different industries and sectors with their respective
applications. The healthcare sector, which is slow in adopting
new technologies, however, shows an incredible estimated
growth and is expected to have over 50 million connected
devices worldwide by 2021 [see Fig. 1(b)] [5]. Also, dif-
ferent application domains in healthcare have shown varied
opportunities in applying IoT and, as per the current trend,
the smart healthcare products application domain [e.g., smart
pills, smart dispensing devices and syringes, smart monitoring
devices, smart RFID cabinets, electronic health record (eHR),
etc.] is the hottest [see Fig. 1(c)] [6].

Considering the increase of life expectancy, the Population
Reference Bureau projected that by 2050 the World’s
population will grow by 31% reaching 9.8 billion [7]. With
this unprecedented growth rate, the older population (aged
65 and over) is expected to raise 16% more than the total
population between 2025 and 2050 [8]. This will eventu-
ally result in increased vulnerability of the aging popula-
tion toward chronic diseases which is expected to account
for 73% of all deaths and 60% of the global burden dis-
eases by 2020 [9]. On the other hand, as predicted by
the World Health Organization, there will be a distressing
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(a) (b) (c)

Fig. 1. Global connectivity through IoT devices. (a) Global estimation of connected IoT devices by the year 2021. (b) Global estimation of IoHT devices
by the year 2021. (c) Heatmap of current IoHT application opportunities.

(a) (b) (c)

Fig. 2. Estimated data volume generated by different healthcare applications at North America between 2010 and 2015. (a) Aggregated volume of healthcare
data, (b) volume of general unstructured data only, and (c) volume of electronic health records data only.

shortage of 12.9 million healthcare workforce worldwide by
2035 [10]. Hence, energy-efficient, low cost, and scalable
healthcare solutions are needed to meet the shortage of health-
care workforce to support disease prevention, treatment, care,
and cure.

Leveraging the fast advancements in information and com-
munication technology, electronic healthcare (e-healthcare)
emerged itself as a revolutionary new paradigm [11].
Following the technological improvements, e-healthcare is
rapidly swapping the means of conventional healthcare [12],
and fostering development of novel healthcare applica-
tions [13]. In this ever changing scenario of healthcare,
IoT plays a key role [14] in redefining e-healthcare as the
Internet of Healthcare Things (IoHT), where both people and
devices interact, communicate, collect, and exchange data
through integration of physical objects, hardware, softwares,
and computing devices [15]. Connecting the digital world to
the physical world [16], IoHT—with the help of pervasive
and ubiquitous computing, and e-healthcare systems—allows
healthcare devices (e.g., Fitbits, sensors, Bluetooth, mobile
devices, etc.) to collect health related information (e.g., blood
oxygen saturation, blood pressure, weight, glucose level,

respiratory and heart rate, etc.) [17], [18] over an extended
period of time and save as eHR.

However, the various players of the e-healthcare
ecosystem generate a large amount of heterogeneous,
multidimensional and multimodal data databasing which
is a big challenge [19], [20]. In North America, during
2010 to 2015, the volume of healthcare data raised from 3
million Terabyte (TB) to 14 million TB [see Fig. 2(a)] [21]
with general unstructured data and eHR had an incredible
increment from 0.95 millon TB in 2010 to 3.26 million TB
in 2015 [see Fig. 2(b)] and from 0.22 millon TB in 2010
to 2.36 million TB in 2015 [see Fig. 2(c)], respectively.
In order to process this huge volume of healthcare data,
systems with enormous storage and processing power are
needed which can analyze the big data, thus, cloud computing
was used [22], [23]. Therefore, to shape next generation of
e-healthcare systems, IoHT, big data, and cloud computing
needed to converge to create the IoHT ecosystem [24]. Cloud
computing plays a prominent role in the IoHT ecosystem
by providing ubiquitous and on-demand access to shared
pool of reconfigurable resources. Nonetheless, the current
number of growing IoHT devices cause increasing latency
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due to network overloading, thus, reducing the suitability
of the system for real-time applications. To overcome this
situation, the concept of fog computing was introduced, by
Cisco Systems Inc., in 2012, which complemented the cloud
by providing a substantial amount of storage, communication
control, configuration, measurement and management at the
edge devices [25], [26]. The concept of fog computing is to
deploy cloud-like services closer to user end for local storage
and preliminary data processing to reduce congestion and
latency. The added flexibility of computation, geographical
distribution and user mobility support make fog computing
appealing for healthcare related applications which require
secure data transfer with low latency [27]. However, fog
computing architecture may susceptible to single point of
failure as it mostly depends on gateway device [28]. To
further increase the response time by reducing the data traffic
on fog nodes in local networks, mist computing can be used
to create an integrated network [29] which bridges the IoHT
devices to the virtual computing world, thus, reducing the
response latency and enhancing the performance and lifetime
of IoHT devices.

Different data types and applications of the IoHT ecosys-
tem require different processing and response times. To this
aim, this paper proposes a novel heterogeneous cloud-based
IoHT communication framework supported by fog and mist
computing. This heterogeneous IoHT framework consists of
five layers—perception, mist, fog, cloud, and application. The
novelty of this architecture lies in its capability to handle
separately data routing paths for different data types com-
ing from real-time as well as conventional data sources,
optimally balance the network load on demand, and opti-
mally allocate network resources as needed. The obtained
results show that the proposed IoHT framework provides bet-
ter quality of service (QoS) with low power consumption
and reduced latency, thus, improving the existing e-healthcare
systems.

II. STATE-OF-THE-ART OF IOHT FRAMEWORKS

Majority of the contributions concerning IoHT frameworks
have been in integrating IoT technology to healthcare sys-
tems. Islam et al. [14] surveyed diverse aspects of IoT-based
healthcare technologies with descriptions of various exist-
ing network architectures, platforms, industrial trends, and
applications which facilitate healthcare solutions in the con-
text of IoT. Additionally, the trends of IoT-based healthcare
research activities were examined to showcase how IoT can
address various healthcare issues like—pediatric and elderly
care, private healthcare, chronic disease supervision and fit-
ness management, and pointed out different research prob-
lems along with current security requirements and challenges.
Through a brief discussion on an intelligent collaborative
security model, the authors provided means for anomaly
detection. The survey concluded with some e-health and IoT
policies and regulations across the world to healthcare stake-
holders better understand IoT-based healthcare technologies
for sustainable development [14]. IoT enabled personalized
healthcare systems (PHS) were systematically reviewed by

Qi et al. [30], where the authors focused on identifying
the breadth and diversity of existing IoT enabled PHS, the
underlying key technologies along with their applications
and case studies on healthcare, and listed future research
trends and challenges. Farahani et al. [31] surveyed the
existing literature on IoT related e-healthcare systems from
a viewpoint of transitioning from the conventional clinic-
centric treatment to patient-centric treatment. The authors
discussed existing challenges of IoT-based e-healthcare sys-
tems and proposed a multilayer e-healthcare ecosystem with
their respective applications, such as, assisted living, mobile
health, warning systems, e-medicine, and population moni-
toring. Kraemer et al. [32] were among the first to survey
the benefits and challenges of fog computing within perva-
sive healthcare applications. The authors provided a summary
of deployment scenarios, requirement of future healthcare and
variety of fog processing tasks. Mutlag et al. [33] performed
a systematic literature review of the existing technologies
focusing on fog computing’s usage in the field of health-
care IoT systems. The study further identified the flaws of
the current fog-based frameworks and provided some rec-
ommendations toward more secure and reliable IoT systems.
Ahmad et al. [34] proposed HealthFog, a fog computing-
based framework, capable of successfully removing additional
E2E communication costs in comparison to their counter-
parts. Their framework also ensured enhanced privacy and
security using cryptographic primitives. To enhance reliabil-
ity of IoT architecture for healthcare, Rahmani et al. [35]
combined fog computing with smart e-Health gateways and
demonstrated that the proposed system is capable of coping
with many challenges of pervasive healthcare systems. They
also implemented it as an IoT-based early warning score health
monitoring system.

In addition to the studies mentioned above, other reported
works on IoT-based healthcare include: emergency medical
service [36], smart rehabilitation system [37], do-it-yourself
solution focusing on patient oriented infrastructure develop-
ment [38], smart hospital system [39], anomaly detection [40],
body sensor network-based healthcare system [41], cardiac
arrhythmia management system [42], and self-aware early
warning system [43]. Laplante and Laplante discussed about
their view on negetive effects of IoT in healthcare and show-
cased an example of the dissociation between patient and
caregiver resulting in loss of care [44].

With the growing amount of data, their processing and stor-
age requirements also escalated. To tackle this need, the IoT-
based healthcare systems were integrated into more extensive
cloud computing architectures. This integration of “IoT” and
“Cloud computing” has contributed toward the development
of many innovative solutions [45]–[47] spanning in different
fields including e-healthcare. With the aim of seamless integra-
tion of various remote health monitoring techniques (e.g., sens-
ing analytics, visualization, etc.), Hassanalieragh et al. [48]
discussed on the existing challenges related to such integration
and their views on integrating those techniques in the
clinical practice. Biswas et al. introduced e-health cloud,
a three-layered cloud-based framework—capable of mining
eHR data—where the network layer was designed using
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Rich Internet Application1-based client, the server layer with
SimpleDB,2 and a logic layer [49]. Pathinarupothi et al. [50]
presented a multilayered architecture consisting of IoT devices
coupled with body sensors which was implemented to
remotely monitor cardiac patients. The cloud HealthIIoT
(Health-care Industrial IoT) framework proposed by Hossain
and Muhammad [51] transmitted healthcare data securely to
the cloud to be accessed by healhcare professionals, and was
validated through an IoT driven ECG-based health monitoring
application. Suciu et al. proposed an e-health architecture
based on exalead cloudview3 which securely integrates big
data analytics with cloud-based Remote Telemetry Units4 [52].
Ma et al. [53] proposed a four-layered big health application,
system supported by IoHT and big data, for remote dis-
ease diagnosis, smart clothing-based healthcare, LTE assisted
telemedicine, and robotic interactions. Similar frameworks
include: monitoring systems for chronic diseases, such as car-
diovascular and respiratory diseases through IoT sensors [54],
mobile healthcare systems for patient monitoring using big
data analytics applied on sensor data [55], [56], heterogeneous
healthcare big data analytics system for decision making in
risk management and patient care [57].

The cloud can also be deployed to process and manage
the IoT data online [58], [59]. Dehury and Sahoo [60] imple-
mented a cloud-based service management framework for
analyzing real-time IoT data. Various cloud-IoT (cIoT) frame-
works have been suggested for pervasive healthcare [61]–[63].
A case study of voice pathology monitoring was proposed
using an cIoT model [64]. Bagula et al. [65] introduced cIoT
model to prioritize situation aware patients. Hasan et al. [66]
introduced a cIoT model, called Aura, which allowed mobile
clients to create ad-hoc clouds using IoT devices in their
adjacent environments and provided the clients full control
of the range of analyses to be performed regardless of their
physical locations.

Many studies have been reported which utilized the cIoT
model to remotely monitor patients [67]–[69] using: ECG
android application [70] along with other helathcare data [51],
FIWARE5 platform [71], and wearable sensors (IoT) and
body area network [72]. Additionally, other cIoT frameworks
include: personnel altering system regarding lifestyle diseases
from physical activity data [73], [74], collecting real-time
patient data from wireless body area network [75], accumulat-
ing physiological and healthcare data smart clothing with IoT
sensors [76], [77], selecting personalized treatment plan [78],
providing personalized medical diagnosis [79], supporting the
physically challenged with assistive devices [80].

The transmission and processing latency is the major
bottleneck for real-time handling of data in the cloud.
Dastjerdi and Buyya [81] proposed fog computing along with
edge and cloud computing to handle the big data generated
by IoT sensors. Shi et al. [82] outlined the various character-
istics of fog computing to manage real-time IoT healthcare

1https://en.wikipedia.org/wiki/Rich_Internet_application
2https://en.wikipedia.org/wiki/Amazon_SimpleDB
3https://en.wikipedia.org/wiki/Exalead#CloudView
4https://en.wikipedia.org/wiki/Remote_terminal_unit
5https://www.fiware.org/

Fig. 3. Overview of an IoHT ecosystem with its various stakeholders which
implements the proposed framework.

data. A low-cost fog-IoT healthcare system was presented
which collected the ECG, respiration rate, and body temper-
ature using energy-efficient sensor nodes and analyzed those
data for automatic decision making which can be given to
appropriate caregivers in real-time [83].

III. PROPOSED IOHT FRAMEWORK

Large scale IoT implementation results in large number
of connected devices. By default, most of these connected
devices are with limited processing power and resources. But,
the voluminous and heterogeneous data generated by these
devices require efficient and data type specific processing.
Centralized cloud-based IoT scheme brings out an effective
solution in this regard. However, solo cloud dependent pro-
cessing is constrained by latency and power consumption
issues which can be solved—up to certain extent—by intro-
ducing a fog layer. The fog assisted IoT framework with
smart gateways (as proposed in [35]) is an approach to
enhance reliability, energy-efficiency and performance of IoT
frameworks.

Nonetheless, there are still QoS issues with sensitive data
transmission and there is no need to process various types
of data (e.g., delay-sensitive and loss-sensitive) in each layer
of a framework. An effective solution to this problem is to
allow the framework to be able to handle different types of
“on demand” data processing in different layers. This has been
achieved in the proposed framework consisting of five layers
(perception, mist, fog, cloud, and application). The introduc-
tion of an additional layer (i.e., the mist layer) to the existing
fog-based architecture reduces data volume to be transmit-
ted by the IoT devices through rule-based preprocessing of
data. This reduction in data volume in turn reduces power
consumption of the IoT devices, and latency (processing as
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Fig. 4. Architecture of the proposed IoHT framework indicating different layers and possible connectivities among them. The arrow directions indicate the
flow of data.

well as transmission) and computational complexity of the
framework.

Therefore, the proposed IoHT framework is capable of
selecting appropriate data transmission policies based on the
disparate data sources to minimize latency; ensuring opti-
mal resource utilization through delegating and delivering
processes to layers with relatively less loads; guaranteeing
minimal transmission delay through appropriate load bal-
ancing; and assuring most favorable data-sensitive resource
allocation for prioritized data transmission. The following
sections describes the various components of the framework.

A. Ecosystem

An interoperable ecosystem consisting of diverse devices,
applications, and back-end systems is essential for success-
ful architectural design of an IoHT framework which will
ensure undisrupted information flow for accurate and timely
decision making [84], [85]. A conceptual overview of the pro-
posed IoHT ecosystem is shown in Fig. 3. As the ecosystem
diagram indicates, various IoHT stakeholders who reside at
the outer circle (e.g., healthcare organizations and profession-
als, patients, applications, and information systems) connect
to their relevant counterparts to the inner circles aiming seam-
less information exchange. Outer circle is the most interactive
and responsive one with very little analytical capabilities.
Gradually moving toward the inner circles, the analytical capa-
bilities along with latency and data storage increase. So, to
ensure delay tolerant data transmission of real-time data as
well as big data, the proposed architecture adopts appropriate
layer-specific data transmission polices.

Fig. 5. Layer-wise functionality of the proposed IoHT framework.

B. Network Architecture

Fig. 4 shows the proposed IoHT framework’s architecture.
The five layers are: 1) perception layer; 2) mist layer; 3) fog
layer; 4) cloud layer; and 5) application layer. Each of these
layers has been designed with predefined functionalities rele-
vant to the IoHT framework’s data transmission and processing
pipeline. Fig. 5 shows a block diagram with the functionality
of individual layers.
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Fig. 6. Flowchart of data transmission and processing taking place at different layers of the IoHT framework.

1) Perception Layer: The perception layer is the lowest
layer of the proposed IoHT framework. This layer is responsi-
ble for recognizing physical objects, and gathering contextual
and healthcare data from devices generating (near) real-time
as well as nonreal-time data. The data are mainly measured
from individuals and their surroundings through small sen-
sors, embedded systems, RFID tags, and readers, small to
medium to large diagnostic and healthcare devices, medical
and clinical imaging devices, and any data acquisition and
transmission enabled devices. These hardware devices are, in
general, connected to the data communication network.

Besides the real-time healthcare data, there are health-
care big data [e.g., structured eHR, electronic medical record
(eMR), (non-)clinical/medical imaging data, unstructured clin-
ical notes, etc.] which demand separate handling due to
their requirement of advanced data analytics [86], [87]. In
the proposed framework, both kinds of healthcare data are

transmitted to specific overlaying layer (either mist or fog
or cloud) based on the data type and their processing
requirements.

2) Mist Layer: To facilitate time-critical data processing,
the mist computing layer has been introduced in the model.
Mist computing resides directly within the network fabric and
operates on the extreme edge of it with the help of sensor and
actuator controllers. This layer is responsible for performing
basic rule-based preprocessing of the sensor data (e.g., data
aggregation, fusion, and filtering). At the edge of the IoT net-
work, a fair share of the “Things” are with limited resources
(e.g., power, communication bandwidth, and memory). Mist
computing contributes to optimal resource utilization of the
Things. For example, since communication consumes ∼5× the
power of computing, ensuring required transmission instead of
on demand transmission will facilitate in optimizing the power
consumption [88].
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3) Fog Layer: One of the main driving forces behind devel-
opment of the IoT technology is the necessity to process data
“on the fly” to detect anomalies, provide alerts at real-time, and
activate necessary actions automatically. This clearly demands
a system with high responsiveness and minimal latency. To this
goal, using centralized cloud-based models are inappropriate
due to their high latency. In such situations, decentralizing and
delegating the processing loads on different layers based on the
application’s demand is needed. The fog layer forms a decen-
tralized architectural pattern for bringing computing resources
and application services closer to the edge, thus, reducing the
response latency. As for the functional components, the fog
layer supports—local data storage, data filtering, data com-
pression, data fusion, and intermediate data analytics to reduce
disposable load on the cloud, improve system performance and
QoS, and save backbone bandwidth.

4) Cloud Layer: The cloud layer is capable of connect-
ing to perception layer, fog layer, and application layer.
Aggregated healthcare data from fog layer are sent to the
cloud layer for long-term storage, and big data and advanced
analytics. Also data from nonsensor sources, such as eMR,
eHR, e-prescription platform, etc. get seamlessly integrated
at this layer. In order to extract meaningful insights from
the heterogeneous healthcare data, the cloud layer performs
various advanced data analytics including, machine learning,
data mining, rule-based processing, and automated reasoning-
based algorithms. However, delegating appropriate computing
loads to fog layer and using cloud layer for computationally
expensive operations will improve system performance.

5) Application Layer: The application layer is the top-
most layer of the proposed IoHT framework. It provides user
interfaces between the IoHT stakeholders/consumers and the
framework itself to directly reflect the generated economic
and social benefits. Through these user interfaces various
healthcare applications are delivered to the respective stake-
holders. This layer also provides access—subject to access
rights and privileges—to relevant resources from the cloud or
fog layer directly to the healthcare application developers and
consumers.

C. Data Transmission Policy

To facilitate seamless communication of heterogeneous
data, a data-centric transmission scheme has been utilized in
the proposed five-layered architecture of the IoHT framework.
The perception layer generates three possible types of delay-
sensitive data, i.e., real-time, near-real-time, and offline/batch
mode data. In order to achieve better QoS, reduced latency, and
optimized power consumption, separate transmission paths for
real-time data and big data have been used. Fig. 6 represents
the transmission and processing flow of data in the proposed
model. Based on data traffic and resource availability, the
computational loads (e.g., rule-based preprocessing, pretrained
machine learning, advanced machine learning, big data ana-
lytics, etc.) are delegated to an appropriate layer (either mist
or fog or cloud) in the layered architecture. This resulted in
different scenarios with specific transmission paths as detailed
in the following sections and shown in Fig. 7.

Fig. 7. Possible data transmission and processing paths in the IoHT
framework’s layer stack.

1) Real-Time Data Transmission:

a) Scenario 1: Many healthcare applications require
data to be processed at real-time. In the proposed IoHT
model, real-time data analytics are hosted at the closest pos-
sible location, where the data is generated. As indicated in
Fig. 7 by the red-dashed lines with arrows, the generated
time-sensitive sensor data are at first forwarded to the mist
layer for preprocessing, followed by the fog layer for neces-
sary intermediate analytics, and finally rendering decision to
the application layer. For example, if a patient experiences
high blood pressure fluctuations along with symptomatic
discomforts, it is necessary to process the generated data and
forward a decision to the caregiver as soon as possible to
prevent a possible stroke. In this case, the preprocessed data
from mist layer are further processed in fog layer and for-
warded to the application layer for necessary actions by the
stakeholders.

b) Scenario 2: The intermediate data analytics per-
formed at the fog layer is not sufficient for some healthcare
applications. Rendering a decision for these types of applica-
tions may require big data analytics and advanced machine
learning or long-term data storage for longitudinal studies.
In those cases, data are offloaded to the cloud layer for the
required processing, analysis, and storage. This transmission
path is shown in Fig. 7 using the green dotted-dashed line with
arrows. The data and the analysis results are usually stored in
the cloud for further reference. Adverse drug reaction (ADR)
service can be an example of this scenario. Medication for
a particular disease needs diagnosis as well as patients pre-
vious history as ADR is inherently generic. So, in this case,
data sensed from patient’s terminal are forwarded to mist layer
for recognizing the drug. Later on, fog forwards the identified
drug to the cloud, where after careful analysis of relevant eMR
and allergy profiles the drug compatibility is decided and the
decision is sent to the application layer to be accessed by the
healthcare professionals.

2) Conventional Data Transmission:

a) Scenario 3: Massive data generated from advanced
medical instruments, test results, eMR requires data min-
ing, predictive analysis, and other advanced analytics. Only
cloud computing is capable of performing these computa-
tionally demanding processing. So, in this scenario, data
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Fig. 8. Exemplary scenario of the IoHT framework with mist, fog, and cloud layers. The network is configured using SDN. The AP allocates resources
based on the latency and packet drop rate demand of each IoHT nodes.

from conventional sources are directly offloaded to the cloud
for processing. This transmission path is indicated by the
arrowed blue dotted lines in Fig. 7. An example of such
a scenario is that, MRI produces thousands of high resolu-
tion images per examination which require more computation
power and storage, and can be efficiently served only by the
cloud. In this scenario, data are directly forwarded to the
cloud without any processing or holding in the mist or fog
layers.

IV. OPTIMAL RESOURCE ALLOCATION

AND LOAD BALANCING

The IoHT nodes in the perception layer collect the (near)
real-time as well as nonreal-time healthcare data to monitor
patients. These collected data are forwarded to the IoT
hub(s) (also called access point or AP). Based on the traffic
class and processing requirements, these data can be pro-
cessed in the mist, fog, and cloud layers as discussed in
Sections III-B and III-C. In the process of effective handling
of these data, the end-to-end (E2E) delay, throughput, packet
loss, energy efficiency are crucial for maintaining the QoS of
the proposed IoHT framework.

To handle these heterogeneous data efficiently while main-
taining the high QoS, the network resources are to be dynam-
ically allocated. To this goal, the proposed IoHT framework
relies on software defined networking (SDN), which is a pro-
grammable network structure that can be deployed on the
top of IoHT framework as a centralized/distributed control
layer for resources (e.g., bandwidth and buffer size) allocation,
scheduling, routing, and flow control through SDN controller
(SDNC) [89]. As SDN fulfills the requirements of various
applications and workloads through network virtualization by
decoupling control plane from data plane [90], it has been
considered with the IoHT framework to manage the resource
demand of exponentially growing IoT devices.

TABLE I
TRAFFIC CLASSIFICATION OF IOHT HEALTHCARE DATA

A. Traffic Classification

The perception layer of the IoHT framework (as discussed
in Section III-B1) generates heterogeneous data or network
traffic. In order to achieve better QoS, these network traffic
are classified as the delay-sensitive (DS), loss-sensitive (LS),
and both delay- as well as loss-sensitive (termed as “Mixed”)
(M) traffic. This classification is mainly based on transmission
data rate (C) and queuing delay (tQ), and is used to priori-
tize the network traffic. Table I shows various traffic classes,
their service types, transmission priority (P), and exemplary
applications.

B. Resource Allocation

In order to achieve better QoS, the objective is to reduce
the time delay (tD) and packet drop rate (Pktdrop) during the
transmission process. All the IoHT nodes in the mist layer
achieve the minimum threshold requirement for both of these
parameters through an optimal resource allocation. Fig. 8(a)
illustrates an example scenario of the resource allocation
problem.
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TABLE II
QOS REQUIREMENT AND CORRESPONDING RESOURCE DEMAND TO

ACHIEVE THE QOS REQUIREMENT OF THE iTH IOHT NODE

Consider the output link capacity of an AP is C, there are N

IoT devices in a mist (see Fig. 8), each IoHT device has packet
size of Pktsize. In order to ensure the QoS requirement of ith
IoT device, the user requirement is <tDi, Pktdropi

> and the
corresponding resource demand is <Bd

i , Ld
i >, where Bd

i and
Ld

i are the bandwidth demand and buffer length demand of the
ith IoHT user node (see Table II). As the allocated resource to
ith IoHT device is proportional to the requirement of that user,
the maximum resource (Ŵi) awarded to the ith IoHT node by
the SDN-based resource allocator is

Ŵi = max

[

Bi

C
,

Li

L

]

= max

[

Bd
i

C

Bi

Bd
i

,
Ld

i

L

Li

Ld
i

]

= max
[

Dc
i Uc

i , Dl
iU

l
i

]

(1)

where Dc
i = Bd

i /C and Dl
i = Ld

i /L are the ratios of bandwidth
demand of the ith node and the maximum capacity, and buffer
length demand of the ith node and the total buffer length of
AP, respectively. The Uc

i = Bi/Bd
i and Ul

i = Li/Ld
i are the

requirement to demand ratio of bandwidth and buffer length,
respectively, for the ith node.

Using the M/D/1 queue model [91], the E2E delay tD

includes the transmission delay tTx, processing delay tP, and
queuing delay tQ which are calculated by

tD = tTxi + tP + tQ

=

∑

cl

∑

fog

∑

sen

[

NpktPktsize

C
+

(

λ

2µ(µ − λ)
+

1

µ

)

+ cλ

]

(2)

where λ and µ are the arrival and service rate, Npkt is the
number of packets, c is the constant duration required to com-
plete a job by a processor, sen refers to sensor and cl refers
to the cloud.

The packet drop occurs when the average queuing length
E[Qi] is higher than demanded buffer length Ld

i /Pktsize. Based
on [91], the packet drop rate is expressed by

Pktdropi
=

E[Qi] − Ld
i /Pktsize

E[Qi]
. (3)

Finally, the resource allocation optimization problem is
formulated as

max
[(

Uc
1, Ul

1

)

,

(

Uc
2, Ul

2

)

, . . . ,

(

Uc
N, Ul

N

)]

s.t
N

∑

n=1

Bn ≤ C

N
∑

n=1

Ln ≤ L. (4)

TABLE III
SIMULATION PARAMETERS FOR THE HETEROGENEOUS

MIST-FOG-CLOUD-BASED IOHT FRAMEWORK SIMULATION

C. Load Distribution

In the Fog/access layer, the E2E latency can be reduced
by link distribution and link fusion techniques. As illustrated
in Fig. 8, a link scheduler selects multiple links, distributes
the traffic to reduce the E2E delay and finally aggregates the
traffic at the other end of the access layer.

If the link scheduler selects M links based on the demand
of the IoHT users, the link adaptation optimization problem
can be formulated as

max f (T, 1/Pktdrop)

s.t.
M

∑

m=1

γmBd
≤ C

M
∑

m=1

γmLd
≤ L (5)

where T is throughput, Bd and Ld are the bandwidth demand
and buffer length demand of an AP. γm is the fraction of
bandwidth/buffer length allocated by the load balancer and
is expressed by

γm = Fraction of allocation in the m link

=

(

Bm
∑

m Bm

)

β +

(

Lm
∑

m Lm

)

(1 − β) (6)

where

β =

⎧

⎨

⎩

0, if Traffic type is LS

1, if Traffic type is DS

0.5, if Traffic type is M.

The proposed load balancing scheme is shown in
Algorithm 1. The central SDN, as a logical controller, selects
M multiple links according to traffic demand to coordinate
load distribution. At the beginning of the process, network
controller specifies traffic classes based on demand. For each
outgoing link i the value of γi is calculated from (6). For
delay-sensitive and loss-sensitive traffics, loads are distributed
based on demanded bandwidth and demanded buffer length,
respectively. For mixed type data traffic, load distribution is
done based on comparatively greater requirement of demand.
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Algorithm 1 Algorithm for Load Balancing
Require: Output link capacity of AP as C, Queuing buffer

length as L, Bandwidth length demand of AP as Bd, Buffer

length demand of AP as Ld

Ensure: Distributed Load
1: procedure BALANCELOADS(C, L, Bd , Ld)
2: Initialize β, ν, η, �, ω;
3: SDNC selects M links based on traffic demand;
4: if TrafficPriorityClass == 1 then

5: β ←− 1;
6: else if TrafficPriorityClass == 2 then

7: β ←− 0;
8: else

9: β ←− 0.5;
10: end if

11: for all Selected Links as i do

12: Calculate γi using equation (6);
13: �i = γiB

d; and ωi = γiL
d;

14: if β == 1 then

15: Distribute load to link i using �i value;
16: else if β == 0 then

17: Distribute load to link i using ωi value;
18: else

19: B =
Bd

∑

i Bi
; L =

Ld
∑

i Li
; and η = max f(B,L);

20: if η == B then

21: Distribute load to link i using �i value;
22: else

23: Distribute load to link i using ωi value;
24: end if

25: end if

26: end for

27: end procedure

D. Computational Complexity

Considering the decentralized data processing capability
offered by the proposed framework enables it to perform pro-
cessing at multiple levels reducing the amount of computations
needed at subsequent levels. This is mainly because aggregat-
ing raw data from various IoT devices results in matrices with
very large dimensions, leading to a resource demanding system
with intolerable computation complexity. Therefore, the com-
putational complexity of the proposed framework is lesser in
comparison to other existing frameworks.

Additionally, the proposed load balancing algorithm’s com-
plexity has an upper bound of O(n), where n is the number
of active selected links of the network.

V. RESULTS

An example model is considered in this section to
demonstrate the feasibility and advantages of the pro-
posed multilayer mist-fog-cloud architecture for the IoHT
framework. Considering, there are 100 IoHT nodes collect-
ing delay-sensitive and loss-sensitive healthcare data from
a hospital/home. The links between IoHT nodes (through
microcontroller or microcomputer) and APs are IEEE 802.11.
There are 5 fog nodes, 1 cloud server, and the link data rate

Fig. 9. E2E delay of cloud, fog-cloud, and mist-fog-cloud for the simulation
setting listed in Table III. The latency is minimal when all the mist-fog-cloud
layers are involved in the process of data transmission and processing.

Fig. 10. Increase in buffer size reduces packet drop. When buffer size
increases, packet delivery ratios improve for all the layers.

is 54 Mb/s. The raw data generated by these IoHT nodes can
be processed using the resources available at the mist layer.
When the process is high (i.e., high processing delay), the mist
can offload the processing to the fog nodes (also called fog
processors). The process availability are generated randomly.
Also, the link bandwidth and the queue length in the router
are assumed to be distributed randomly. The fog nodes can
be selected based on the demand and the processing delay.
Finally, the information extracted from the mist/fog layer are
sent to the server in the cloud layer. The link speed between
the fog and the cloud is 10 Gb/s. The processing speed ratio
of the mist to fog and fog to cloud are 1 : 1000 and 1 : 100,
respectively. The parameters used to simulate the heteroge-
neous mist-fog-cloud for the delay-sensitive and loss-sensitive
IoHT healthcare data are listed in Table III.

Fig. 9 shows the E2E delay (or latency) for the simula-
tion settings given in Table III. The results indicate that the
E2E delay decreases when mist-fog nodes are involved in the
computation along with the cloud. However, involvement of
more fog neighbors and mist resources can reduce the E2E
delay as this process reduces the queuing and transmission
delays. The computational latency decreases when the number
of neighboring fog nodes increase.

Fig. 10 shows the effect of buffer size on the packet deliv-
ery rate. The buffer size reduces the packet drop. When the
buffer size increases the packet delivery rates in mist and mist-
fog layers reduce. However, it should also be noted that the
increase of buffer size also increases the queuing delay and
total latency. Thus, the appropriate size of the buffer must be
selected to ensure high delivery rate and low latency.
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Fig. 11. Effect of number of fog neighbors on the task distribution of fog/fog-
cloud layers. In both cases inclusion of more fog nodes decreases the work
load on the layers.

Fig. 12. Mist facilitates reduction in transmission time. At different network
conditions the Mist-based proposed framework showed an improvement in
the transmission time.

Fig. 11 illustrates the outcome of involving fog neighbors on
the task distribution of fog and cloud layers. The simulation
results suggest that when the flow controller includes more
fog neighbors in the task distribution process, the load on
the cloud decreases as the processing performance on the fog
nodes increase. The load on the cloud is about 60% with one
fog node, and the load drops exponentially to 37% when the
number of fog neighbors are four.

While evaluating the efficacy of the proposed framework,
we compared its transmission time with one of the state-of-
the-art fog computing-based framework [35]. As shown in
Fig. 12, the proposed heterogeneous framework (denoted by

mist-fog-cloud) requires comparable or less time to transmit
same amount of processed samples in comparison to fog-based
framework (denoted by Fog-Cloud) proposed in [35]. The mist
plays its role in reducing the transmission time while handling
real-time data (i.e., smaller sample size). In transmitting 60 KB
samples in different network conditions defined in [35] (e.g.,
light load, medium load, and heavy load), the proposed mist-
fog-cloud framework would require 1.5, 2.16, and 3.39 ms
in comparison to Fog-Cloud-based framework which would
require 1.67, 2.4, and 3.395 ms.

The above specified lower transmission time is also facili-
tated by the fact that there are multiple levels of data filtering
in our proposed model. This reduces the amount of real-time
data to be transmitted along the network, thus, reducing com-
putational complexity of the proposed framework [92]–[94].
Additionally, sophisticated data analytic schemes can also be
employed to further reduce the computational complexity [95].

VI. CONCLUSION

This paper proposes a heterogeneous cloud-based IoHT
communication framework with mist and fog computing. The
framework consists of perception, mist, fog, cloud, and appli-
cation layers which can handle separately data routing paths
for real-time as well as conventional data sources. To ensure
high QoS of such heterogeneous communication frameworks,
reducing E2E latency and packet drop rate are two main
challenges. Through optimizing resource allocation and flow
control, the proposed framework delivers improved overall
QoS. Simulation results show that the proposed framework can
achieve low E2E latency and packet drop rate. The obtained
results clearly indicate the suitability of the proposed IoHT
framework in the healthcare domain. Nonetheless, this paper
can be extended by incorporating advanced machine learning
techniques (e.g., deep learning) in identifying the heteroge-
neous traffic, and employing bio-inspired models to ensure
effective resource usage, schedule optimal flow to improve
performance and increase data distribution to reduce over-
all computational complexity of next generation IoHT-based
healthcare systems.
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