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ALGORITHM FOR THE DENSE SYMMETRIC EIGENVALUE

PROBLEM∗

AZZAM HAIDAR† , HATEM LTAIEF‡ , AND JACK DONGARRA§

Abstract. Classical solvers for the dense symmetric eigenvalue problem suffer from the first step,
which involves a reduction to tridiagonal form that is dominated by the cost of accessing memory
during the panel factorization. The solution is to reduce the matrix to a banded form, which then
requires the eigenvalues of the banded matrix to be computed. The standard divide and conquer
algorithm can be modified for this purpose. The paper combines this insight with tile algorithms
that can be scheduled via a dynamic runtime system to multicore architectures. A detailed analysis
of performance and accuracy is included. Performance improvements of 14-fold and 4-fold speedups
are reported relative to LAPACK and Intel’s Math Kernel Library.

Key words. divide and conquer, symmetric eigenvalue solver, tile algorithms, dynamic schedul-
ing
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1. Introduction. The objective of this paper is to introduce a new high perfor-
mance tile divide and conquer (TD&C) eigenvalue solver for dense symmetric matri-
ces on homogeneous multicore architectures. The necessity of calculating eigenvalues
emerges from various computational science disciplines, e.g., in quantum physics [33],
chemistry [37], and mechanics [25], as well as in statistics when computing the prin-
cipal component analysis of the symmetric covariance matrix. As multicore systems
continue to gain ground in the high performance computing community, linear algebra
algorithms have to be redesigned or new algorithms have to be developed in order to
take advantage of the architectural features brought by these processing units.

In particular, tile algorithms have recently shown very promising performance
results for solving linear systems of equations on multicore architectures using Cho-
lesky, QR/LQ, and LU factorizations available in the PLASMA [34] library and other
similar projects like FLAME [44]. The PLASMA concepts consist of splitting the
input matrix into square tiles and reorganizing the data within each tile to be con-
tiguous in memory (block data layout) for efficient cache reuse. The whole dataflow
execution can then be represented as a directed acyclic graph (DAG) where nodes
are tasks operating on tiles, and edges represent dependencies between them. An
efficient and lightweight runtime system environment named QUARK [30] (internally
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C250 AZZAM HAIDAR, HATEM LTAIEF, AND JACK DONGARRA

used by the PLASMA library) is exploited to dynamically schedule the different tasks
and to ensure that the data dependencies are not violated. As soon as the depen-
dencies are satisfied, QUARK initiates and executes the corresponding tasks on the
available computational resources. This engenders an out-of-order execution of tasks
which removes unnecessary synchronization points and allows different computational
stages to overlap. The authors propose to extend these ideas to the symmetric TD&C
eigenvalue solver case using a two-stage approach, in which the symmetric dense ma-
trix is first reduced to band form followed by the band divide and conquer (BD&C)
eigenvalue solver directly applied on the symmetric band structure.

The resulting TD&C symmetric eigenvalue solver algorithm has been extensively
evaluated across many matrix types and against similar D&C symmetric eigenvalue
solver implementations from state-of-the-art numerical libraries. The performance
results show that the proposed TD&C symmetric eigenvalue solver achieves up to a
14-fold speedup compared to the reference LAPACK [2] implementation and up to
a 4-fold speedup compared to the vendor Intel’s Math Kernel Library (MKL) [27].
Performance results are also reported comparing the TD&C symmetric eigenvalue
solver with other standard methods such as the bisection algorithm, the QR iteration,
and the multiple relatively robust representation (MRRR). A study on the accuracy of
the computed eigenvalues is provided, which gives a certain confidence on the quality
of the overall TD&C symmetric eigenvalue solver framework presented in this paper.

The remainder of this paper is organized as follows: Section 2 recalls some back-
ground on symmetric dense matrix eigenvalue solvers and gives a detailed overview
of previous projects. Section 3 provides detailed information on the symmetric D&C
eigenvalue solver framework applied on band matrices. Section 4 extends the main
concepts behind the standard symmetric BD&C eigenvalue solver to instead use tile
algorithms associated with a dynamic scheduler. Section 5 presents the algorithmic
complexity of the resulting TD&C symmetric eigenvalue solver. Section 6 presents
performance results of the overall algorithm on shared-memory multicore architec-
tures against the corresponding standard D&C routines from LAPACK [2] and In-
tel’s MKL V10.2 [27] on various matrix types. Also, performance comparisons against
other numerical methods are illustrated, along with a study on the accuracy of the
computed eigenvalues. Finally, section 7 summarizes the results of this paper and
discusses ongoing work.

2. Background and related work. This section recalls the standard algorithm
to compute the eigenvalues of a symmetric dense matrix and its inherent bottlenecks.
One of the eigenvalue solvers is based on the D&C strategy applied to the final con-
densed tridiagonal form. This section also shows how to extend the D&C eigenvalue
solver to compute the eigenvalues from a symmetric band structured matrix, one of
the main contributions of the paper.

2.1. The standard symmetric eigenvalue solver approach. The common
way of stating the eigenvalue problem for a symmetric dense matrix is

Ax = λx, A ∈ R
n×n, x ∈ R

n, λ ∈ R,

with A being a symmetric matrix (A = AT ) (Hermitian with A = AH if A ∈ Cn×n),
λ an eigenvalue, and x the corresponding eigenvector. The goal is first to transform
the matrix A into a symmetric tridiagonal matrix T via orthogonal transformations
(e.g., Householder reflectors):

T = Q×A×QT , A,Q, T ∈ R
n×n.
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Once the tridiagonal form is reached, eigenvalues can then be computed using various
methods [24, 43], e.g., the bisection algorithm, the QR method, divide and conquer,
and MRRR. However, the tridiagonalization step (which requires O(n3)) is the most
time-consuming phase in a symmetric eigenvalue solver. It can reach 90% of the
global elapsed time when only the eigenvalues are requested (because the calculation
of the eigenvalues requires only O(n2)) and roughly 50% of the global time when
both eigenvalues and eigenvectors are requested (the calculation of the eigenvectors
requires O(n3)).

2.2. Bottlenecks of the standard approach. Because it is the most time-
consuming step, it is very important to identify the bottlenecks of the tridiagonal-
ization step, as implemented in LAPACK [2]. The block LAPACK algorithms are
characterized by two successive computational steps: the panel factorization and the
update of the trailing submatrix. The panel factorization computes the transforma-
tions within a specific rectangular region using level 2 BLAS operations (memory-
bound) and accumulates them so that they can be applied into the trailing submatrix
using level 3 BLAS operations (compute-bound). The parallelism in LAPACK re-
sides within the BLAS library, which follows the expensive fork and join model. This
produces artifactual synchronization points between the panel factorization and the
trailing submatrix update phases.

In particular, the tridiagonal reduction implemented in LAPACK performs succes-
sive panel-update sequences. The symmetric matrix is reduced following a one-stage
approach where the reduced form is obtained without intermediate steps. The panel
factorization requires loading the entire trailing submatrix into memory. As fast mem-
ory is a very scarce resource, this will obviously not scale for large matrices, and thus
will generate a tremendous amount of cache and TLB misses. Later, the SBR toolkit
[7] introduced a two-stage approach where the matrix is first reduced to a band form
during a compute-intensive phase and eventually to the final required form through a
memory-bound phase (the bulge-chasing procedure). The two-stage approach permits
the casting of expensive memory operations occurring during the panel factorization
into faster compute-intensive ones. However, the toolbox still implements block al-
gorithms as in LAPACK and therefore relies on optimized multithreaded BLAS for
parallel performance (based on the fork and join paradigm).

2.3. The symmetric eigenvalue solver using D&C approach. Introduced
by Cuppen [12], the D&C algorithm computes the eigenvalues of the tridiagonal ma-
trix T . Many serial and parallel Cuppen-based eigensolver implementations for shared
and distributed memory have been proposed [18, 22, 26, 28, 38, 40, 42]. The D&C
approach can then be expressed in three phases: (a) the partition phase, (b) the
solution of the simple eigenvalue problems, and (c) the merging phase.

The overall method consists of splitting the problem into two subproblems repre-
senting a rank-one tear (a rank-one modification). Each of these subproblems may be
considered as an independent problem without any data dependencies on the other
subproblems of the same tree level. This process is recursively repeated until the
bottom level of the tree, where the bottom nodes will have two independent sons of
small size considered as two simple eigenvalue problems. This process amounts to
constructing a binary tree and is referred to as the partition phase (a). Phase (b) can
be described by the independent computation of the eigensystem of all those simple
eigenvalue problems at the bottom of the tree. Phase (c) consists of merging, on
each parent node, the two subproblems (left and right sons) which are defined by a
rank-one modification of a diagonal matrix, and then proceeding to the next level
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with a bottom-up fashion. In fact, each merge (a rank-one modification) consists of
computing the eigensystem of a matrix of the form

(2.1) Q̃D̃Q̃T = (D + σuuT ),

where D is a real n×n diagonal matrix, σ is a nonzero scalar, and u is a real vector of
order n and has Euclidean norm equal to 1. The eigensystem can be computed based
on solving what we call the “secular equation,” which restates results of [8, 23, 41, 45],
where we refer the reader for more details on the proof. More details on the high-level
ideas behind the standard D&C algorithm can be found in [12, 18, 22, 26]. The D&C
approach is sequentially one of the fastest methods currently available if all eigenvalues
and eigenvectors are to be computed [13]. It also has attractive parallelization proper-
ties as shown in [42]. Finally, it is noteworthy to mention the deflation process, which
occurs during the computation of the low rank modifications. It consists of avoiding
the computation of an eigenpair of a submatrix (matrix of a son in the tree) that is
acceptable to be an eigenpair of the larger submatrix (matrix of a father in the tree).
Therefore, the greater the amount of deflations, the lesser the number of required op-
erations, which leads to better performance. The amount of deflations depends on the
eigenvalue distribution as well as on the structure of the eigenvectors. In practice, most
of the application matrices arising from engineering areas provide a reasonable amount
of deflations, and so the D&C algorithm runs at less than O(n2.5) instead of O(n3).

2.4. Previous work. The standard D&C eigenvalue solver for symmetric ma-
trices can be extended to start from a symmetric band matrix form. Moreover, band
matrices naturally arise in many areas such as the electronic simulations in quantum
mechanics, vibrating systems approximated by finite elements or splines, and also in
the block Lanczos algorithm, where a sequence of increasingly larger band symmetric
eigenvalue problems are generated. Besides the overhead of further reducing the sym-
metric band matrix to the final tridiagonal form, this motivates attempts to compute
the eigendecomposition directly from the band form using variants of the standard
D&C algorithm.

Arbenz and coauthors [3, 4, 5] investigated a generalized D&C approach for com-
puting the eigenpairs of symmetric band matrices. The authors provide many im-
portant theoretical results concerning the eigenanalysis of a low rank modification
of a diagonal matrix. Arbenz [3] proposed two methods for computing eigenpairs
of a rank-b modification of a diagonal matrix. The first approach consists of com-
puting the rank-b modification as a sequence of rank-one modifications. The second
approach lies in compressing the rank-b modification to a small b × b eigenproblem,
solving it, and then reconstructing the solution of the original problem [4, 5]. The
first approach requires more floating point operations (flops) than the second one,
which has serial complexity in the O(n3) term. The author opted for the second ap-
proach. Unfortunately, numerical instabilities in the computation of the eigenvectors
have been observed [3], and currently no numerically stable implementation of the
second approach exists.

Also, Gansterer, Schneid, and Ueberhuber [19] developed a D&C algorithm for
band symmetric matrices which computes the eigendecomposition. Their approach
is based on the separation of the eigenvalue and the eigenvector computations. The
eigenvalues are computed recursively by a sequence of rank-one modifications of the
standard D&C technique. Once the eigenvalues are known, the corresponding eigen-
vectors are computed using modified QR factorizations with restricted column pivot-
ing.
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Later, Gansterer, Ward, and Muller [20] proposed another alternative for the
generalized D&C algorithm, which computes approximate eigenvalues and eigenvec-
tors of symmetric block tridiagonal matrices. Gansterer et al. [21] then introduced a
threshold value τ in the eigensolver algorithm so that the user could decide whether
to compute only lower-rank approximations of the off-diagonal blocks or to compute
full-rank calculations if higher eigenpair accuracy is desired.

Bai and Ward [6] proposed a parallel and distributed version of [20]. Their al-
gorithm calculates all eigenvalues and eigenvectors of a block-tridiagonal matrix to
reduced accuracy by approximating the rank deficient off-diagonal blocks of lower
magnitudes with rank-one matrices.

The tile band D&C symmetric eigenvalue solver algorithm (BD&C) presented in
this paper differs from Arbenz’s algorithm [4, 5] in that it uses the first approach
(sequence of b rank-one updates) for the solution of the low-rank modifications along
with tile algorithms. The first approach, based on a sequence of b rank-one updates,
has also been used by Gansterer, schneid, and Ueberhaber [19]. However, our BD&C
algorithm differs from that of [19] in the representation of the subdiagonal blocks,
which are not rank deficient. Moreover, our proposed algorithm has been developed
in close analogy to the work of Gansterer, Ward, and Muller [20], although we do not
compute an approximation of the subdiagonal blocks. We consider the subdiagonal
blocks as having a full dense matrix structure, similar to that of Gansterer et al. [21].
The entire algorithm can then be expressed using tiles as a basic block, and once the
different computational tasks are defined, a dynamic runtime library is employed to
efficiently schedule them on the available resources.

3. The standard BD&C symmetric eigenvalue solver. We assume in this
section that the symmetric matrix is originally in band form or has been reduced
to band structure by a preprocessing step. We then describe the D&C methodology
applied on a symmetric band matrix A, which is divided into p parts. For simplicity,
we define p = 2, but it is easy to generalize for any p < n, with n being the matrix
size (see section 3.4).

3.1. Partitioning into subproblems. Similarly to Cuppen’s D&C for tridiag-
onal matrices, the band matrix A can be divided into p parts. If we split A into two
parts, A can be written as follows:

(3.1) A =

(
B1 CT

1

C1 B2

)
,

where Bi ∈ Rpi×pi , p1 + p2 = n, and C1 ∈ Rb×b is the upper triangular block of A,
with b the bandwidth size. A can be rewritten in the following form:

(3.2) A =

(
B̃1 0

0 B̃2

)
+R, where B̃i ∈ R

pi×pi , p1 + p2 = n.

There are several ways to define the matrix R. It can be shown that the complexity
to compute the eigendecomposition of A in the assembly phase is proportional to
the square of rank(R). It is therefore important to keep rank(R) as low as possible.
Arbenz [3] shows that it is possible to have the rank of R = b if one defines

(3.3) R =

⎛
⎜⎜⎝

Op1−b O O O
O M CT

1 O
O C1 C1M

−1CT
1 O

O O O Op2−b

⎞
⎟⎟⎠ ,D
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where M = ΘΔΘT , Δ = ΔT , and Δ and Θ are any regular matrices. Gansterer,
Schneid, and Ueberhuber [19] have chosen M = I. For this choice, R is in most
cases unbalanced, meaning that ‖ C1M

−1CT
1 ‖ can be much smaller or larger than

‖ M ‖= 1. However, if we choose M = (CT
1 C1)

1/2, we get a matrix which is balanced
in that sense, and, if XΣY T is the singular value decomposition (SVD) of C1, then
M = Y ΣY T and C1M

−1CT
1 = XΣXT . Both matrices are symmetric and have the

same norm and condition number as C1. Bai and Ward [6] and Gansterer, Ward, and
Muller [20] chose to “approximate” the off-diagonal tile C1 by lower-rank matrices
using their SVDs. Later, Gansterer et al. [21] calculated the full-rank of the off-
diagonal tiles by default and, depending on the desired eigenpair accuracy, lower-rank
approximations of the off-diagonal blocks can be computed instead.

Going back to the standard Cuppen algorithm, we plug in the new notation and
A can then be rewritten as

(3.4) A =

(
B̃1 0

0 B̃2

)
+ R =

(
B̃1 0

0 B̃2

)
+ ZΣZT ,

where B̃1 = B1 − Y ΣY T , B̃2 = B2 − XΣXT , and Z = ( YX ). The next step is the

computation of the eigendecompositions for each updated block B̃i.

3.2. Solution of the subproblems. The second phase corresponds to the spec-
tral decomposition of each symmetric diagonal tile (B̃i). As a result, we can write

(3.5) B̃i = Q0iD0iQ
T
0i.

The diagonal matrices D0i contain the eigenvalues of B̃i, and the matrices Q0i are the
corresponding eigenvectors. Thus, the original matrix A can be rewritten as follows:

(3.6)

A =

(
B̃1 0

0 B̃2

)
+ ZΣZT

=

(
Q01 0
0 Q02

){ (
D01 0
0 D02

)
+UΣUT

}(
Q01 0
0 Q02

)T

,

where U = QT
0 Z and Q0 =

(
Q01 0
0 Q02

)
.

The eigenvalues of A are therefore equal to those of {(D01 0

0 D02

)
+ UΣUT}. This

is equivalent to (D + UΣUT )y = λy, where U ∈ Rn×b is a matrix of maximal rank
b ≤ n. Thus, having computed the local spectral decompositions of each tree leaf B̃i,
the global spectral decomposition of A can then be calculated by merging the two
eigensystems of the two leaves as described in the next subsection.

3.3. Amalgamation of the subproblems. The amalgamation phase consists
of traversing the tree in a bottom-up fashion, where the results are merged at each
node from the left son and the right son calculations. The merging step handles
the computation of the spectral decomposition of (D + UΣUT )y = λy. Here, again,
it is obvious that all the merging operations, which perform a rank-b updating pro-
cess between two adjacent eigenvalue subproblems, can concurrently run within the
corresponding levels.

There are different methods for computing the eigendecomposition of a low-rank
modification of a symmetric matrix (D+UΣUT )y = λy. Two main strategies can be
distinguished:
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• “b × 1” approach, which computes a sequence of b rank-one modifications of a
diagonal matrix.

• “1 × b” approach, which computes a rank-b modification of a diagonal matrix.
Arbenz [3] followed the “1×b” approach to compute the eigenpairs of a rank-b modifi-
cation by transforming the problem into a smaller b× b eigenproblem. Unfortunately,
numerical instabilities in the computation of the eigenvectors have been observed [3].
The orthogonality of the eigenvectors may be lost if close eigenvalues are present. The
resulting algorithm can lose two to four decimal places of accuracy compared to the
LAPACK library.

As previously suggested by Gansterer, Schneid, and Ueberhuber [19], one can take
advantage of the stability of the existing methodology of the standard D&C algorithm
to follow the first approach and compute a sequence of b rank-one modifications for
calculating the eigenvalues of (D + UΣUT )y = λy.

The problem to solve now is how to merge the right and the left subproblems. As
mentioned above, each merging step consists of a sequence of rank-one updates:

(3.7)

A =

(
B̃1 0

0 B̃2

)
+ ZΣZT =

(
B̃1 0

0 B̃2

)
+ σ1z1z

T
1 + σ2z2z

T
2 + · · ·+ σbzbz

T
b .

Substituting (3.5) into (3.7) yields

(3.8)

A =

(
Q01 0
0 Q02

){(
D01 0
0 D02

)}(
Q01 0
0 Q02

)T

+ σ1z1z
T
1 + σ2z2z

T
2 + · · ·+ σbzbz

T
b

= Q0{D0}QT
0 + σ1z1z

T
1 + σ2z2z

T
2 + · · ·+ σbzbz

T
b .

Then the rank-bmodification will be successively computed as a sequence of b rank-one
updates.

First rank-one update:

(3.9)
A = Q0 {D0 + σ1u1u

T
1 } QT

0 + σ2z2z
T
2 + · · ·+ σbzbz

T
b

= Q0 {Q1 D1 QT
1 } QT

0 + σ2z2z
T
2 + · · ·+ σbzbz

T
b ,

where u1 = QT
0 z1, D1 is the rank-one updated eigenvalues of D0, and Q1 contains the

eigenvectors resulting from this rank-one update.
Second rank-one update:

(3.10)
A = Q0 Q1 {D1 + σ2u2u

T
2 } QT

1 QT
0 + · · ·+ σbzbz

T
b

= Q0 Q1 {Q2 D2 QT
2 } QT

1 QT
0 + · · ·+ σbzbz

T
b ,

where u2 = QT
1 QT

0 z2, D2 is the rank-one updated eigenvalues of D1, and Q2 con-
tains the eigenvectors resulting from this rank-one updates. This process of rank-one
updates is successively applied to all the zi rank-one vectors 1 ≤ i ≤ b.

bth rank-one update:

(3.11)

A = Q0 Q1 · · ·Qb−2Qb−1 {D} QT
b−1Q

T
b−2 · · ·QT

1 QT
0 + σbzbz

T
b

= Q0 Q1 · · ·Qb−2Qb−1 {D + σbubu
T
b } QT

b−1Q
T
b−2 · · ·QT

1 QT
0

= Q0 Q1 · · ·Qb−2Qb−1Qb {Λ} QT
b Q

T
b−1Q

T
b−2 · · ·QT

1 QT
0 ,
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where ub = QT
b−1 Q

T
b−2 · · · QT

1 QT
0 zb and Λ = diag{λ1, λ2, . . . , λn} are the eigenvalues

of A.
As a result, once the sequence of b rank-one updates has been computed, we

obtain Λ = diag{λ1, λ2, . . . , λn}, which corresponds to the actual eigenvalues of the
matrix A.

The whole algorithm for p > 2 can be easily described in the following section.

3.4. General case. The band matrix A can be divided into p parts:

(3.12) A =

⎛
⎜⎜⎜⎜⎜⎜⎝

B1 CT
1

C1 B2 CT
2

C2
. . .

. . .

. . . Bp−1 CT
p−1

Cp−1 Bp

⎞
⎟⎟⎟⎟⎟⎟⎠

∈ R
n×n.

A can be rewritten as follows:

(3.13) A = diag(B̃i) +

p−1∑
i=1

ZiΣiZ
T
i ,

where XiΣiY
T
i is defined as the SVD of Ci, B̃1 = B1−Y1Σ1Y

T
1 , B̃i = Bi−YiΣiY

T
i −

Xi−1Σi−1X
T
i−1 for 2 ≤ i ≤ p− 1, B̃p = Bp −Xp−1Σp−1X

T
p−1, and

Z1 =

⎛
⎜⎜⎝

Y1

X1

0
0

⎞
⎟⎟⎠ , Zi =

⎛
⎜⎜⎝

0
Yi

Xi

0

⎞
⎟⎟⎠ for 2 ≤ i ≤ p− 2, and Zp−1 =

⎛
⎜⎜⎝

0
0

Yp−1

Xp−1

⎞
⎟⎟⎠ .

In this case, the binary tree has a depth k = log2(p) if p is a power of two;
k = �(log2(p))�+1 otherwise. The nodes at the bottom of the tree (level = k) are the
matrices B̃i. As mentioned above, the tree is then traversed in a bottom-up fashion,
starting from level k − 1, where at each level l, 2l independent merging problems are
computed. The desired eigenvalues of A are finally computed at the top level l = 0,
i.e., the root of the tree.

4. The tile D&C symmetric eigenvalue solver. This section highlights the
skeleton of the tile D&C (TD&C) eigenvalue solver for dense symmetric matrices after
recalling the main ideas behind tile algorithms. The dense matrix is first reduced to
band form with a given bandwidth b. The three stages of the BD&C symmetric
eigenvalue solver (see section 3) are then developed using tile algorithms to calculate
all eigenvalues, starting from the symmetric band matrix.

4.1. Concepts of tile algorithms. Tile algorithms have received a lot of in-
terest in recent years for solving linear systems of equations [1, 9, 29, 31, 35, 36]. The
main idea consists of overcoming, especially, the fork-join bottleneck of block algo-
rithms, described in section 2.2. The original matrix stored in column-major format
is split into a two-dimensional grid of tiles, where the elements are now stored con-
tiguously in memory within each tile (tile data layout), as in Figure 4.1. This may
demand a complete reshaping of the standard numerical algorithm. The parallelism
is then no longer hidden inside the BLAS routine calls, but rather it is brought to
the fore. The whole computation can then be represented as a DAG where nodes
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Fig. 4.1. Translation from LAPACK layout (column-major) to tile data layout.

represent tasks operating on tiles and edges represent dependencies among them. A
dynamic runtime environment system QUARK [30] is employed to ensure the correct
processing of all generated tasks at runtime in a holistic fashion and is highlighted in
the next section.

4.2. Dynamic scheduling with QUARK. The main, perhaps the most crit-
ical, issue when writing a parallel algorithm is how to distribute the data and the
work across the available processing units in an efficient way. We have integrated
the standalone QUARK [30] framework (engine of the PLASMA [34] library)—a dy-
namic runtime system environment—into our TD&C symmetric eigenvalue solver al-
gorithm. It is worth mentioning that there exist various scheduling frameworks similar
to QUARK, e.g., SuperMatrix [11], part of the libflame [44] library, or SMPSs [39] as
a general scheduling library. Our scheduler is designed to use sequential nested-loop
code. This is intended to make it easier for algorithm designers to experiment with
algorithms and design new algorithms. Each of the original kernel calls (i.e., tasks) is
substituted by a call to a wrapper that decorates the arguments with their sizes and
their usage (INPUT, OUTPUT, INOUT, VALUE). As an example, in Figure 4.2 we
can see how the DGEQRT call (QR factorization) is decorated for the scheduler. The
tasks are inserted into the scheduler, which stores them to be executed when all the
dependencies are satisfied. That is, a task is ready to be executed when all parent
tasks have been completed. The execution of ready tasks is handled by worker threads
that simply wait for tasks to become ready and execute them using a combination of
default task assignments and work stealing. The thread doing the task insertion is
referred to as the master thread. Under certain circumstances, the master thread will
also execute computational tasks. Figure 4.3 provides an idealized overview of the
architecture of the dynamic scheduler. Moreover, QUARK does not explicitly build
the DAG prior to the execution for scalability purposes, but rather unrolls it on the
fly within a parametrized window of tasks. Therefore, the execution flow is solely
driven by the data dependencies. By providing appropriate hints to QUARK, we are
able to resolve two interrelated issues which come into play with regard to schedul-
ing optimality: data locality and the pursuit of the critical path (possibly lookahead
opportunities). There are many other details about the internals of the scheduler,
including its dependency analysis, memory management, and other performance en-
hancements that are not covered here. However, information about this scheduler
can be found in [30]. The authors would like to use the QUARK’s highly productive
features, along with applying the concepts of tile algorithms to tackle the challenging
two-sided reductions, and in particular, the symmetric tile D&C eigenvalue solver.
To our knowledge, this is the first time a dynamic runtime system coupled with tile
algorithms has been employed to solve one of the two-sided reductions on multicore
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int QUARK core dgeqrt ( Quark ∗quark , int n ,
double ∗A, int lda , double ∗T, int ldt , int ∗ i n f o )

{
QUARK Insert Task ( quark , TASK core dgeqrt , 0x00 ,
s izeof ( int ) , &n , VALUE,
s izeof (double)∗n∗n , A, INOUT | LOCALITY,
s izeof ( int ) , &lda , VALUE,
s izeof (double)∗n∗n , T, OUTOUT,
s izeof ( int ) , &ldt , VALUE,
s izeof ( int ) , i n f o , OUTPUT,
0 ) ;

}
void TASK core dgeqrt (Quark ∗quark )
{
int n ; double ∗A; int lda ; int ∗T; int l d t ; int ∗ i n f o ;
quark unpack args 6 ( quark , n , A, lda , T, ldt , i n f o ) ;
dgeqr t ( &n , A, &lda , T, &ldt , i n f o ) ;

}

Fig. 4.2. Example of inserting and executing a task in the scheduler. The QUARK core dgeqrt
routine inserts a task into the scheduler, passing to it the sizes and pointers of arguments and their
usage (INPUT, OUTPUT, INOUT, VALUE). Later, when the dependencies are satisfied and the
task is ready to execute, the TASK core dgeqrt routine unpacks the arguments from the scheduler
and calls the actual dgeqrt factorization routine.

architecture.

Fig. 4.3. Idealized architecture diagram for the dynamic scheduler. Inserted tasks go into an
(implicit) DAG based on their dependencies. Tasks can be in NotReady, Queued, or Done states.
Workers execute queued tasks and then determine if any descendants have now become ready and
can be queued.

4.3. First step: Symmetric matrix reduction to band form. This section
describes the numerical kernels involved in the reduction to symmetric band form and
highlights the grouping technique used to further enhance data locality during this
first step while achieving a small bandwidth size.

4.3.1. Description of the numerical kernels. The matrix reduction to sym-
metric band form follows the tile algorithm strategy developed for the QR algorithm
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(a) xGEQRT: QR factor-
ization of a single tile.

(b) xSYRFB: Left/right
updates on a sym-
metric diagonal tile.

(c) xORMQR: Right up-
dates of a single tile
down to the bottom.

(d) xTSQRT: QR factor-
ization of a triangular
tile on top a square
tile.

(e) xTSMQRLR: Left-
/right applications on
the diagonal region.

(f) xTSMQR: Left ap-
plication using the
transpose of the light
gray upper tile.

(g) xTSMQR: Right ap-
plication down to the
bottom.

(h) Matrix structure at
the end of the reduc-
tion step 2.

Fig. 4.4. Kernel execution breakdown of the TD&C algorithm during the first stage.

[10] and relies on highly optimized compute-intensive kernels to achieve high perfor-
mance. It is composed of eight kernels total. Four kernels come directly from the
one-sided QR factorization [10], and the four others have been recently implemented
to handle the symmetry property of the matrix when updating the trailing submatrix
around the diagonal.

Figure 4.4 highlights the execution breakdown at the second step of the reduction
to band form. Since the matrix is symmetric, only the lower part is referenced, and
the upper part (gray color) stays untouched. We recall that xGEQRT computes a QR
factorization of a single subdiagonal tile, as presented in Figure 4.4(a). Then the left
and right applications of a Householder reflector block on a symmetric diagonal tile is
done by the new xSYRFB kernel, as shown in Figure 4.4(b). The right applications on
the single tiles then proceed along the same tile column using the xORMQR kernel, as
depicted in Figure 4.4(c). Once this is done, we start the annihilation of the tiles below
the subdiagonal, one by one using the xTSQRT kernel, and for each tile annihilated we
will apply its corresponding left and right updates. Figure 4.4(d) shows an example of
how xTSQRT computes a QR factorization of a matrix composed by the subdiagonal
tile (3,2), and the square tile located below it (5,2), on the same tile column. Once
the Householder reflectors have been calculated, they need to be applied from left and
right to the trailing submatrix.

On the example illustrated in Figure 4.4, we need to apply the Householder reflec-
tors from left to two rows of tiles formed by row1(3,3:5) and row2(5,3:5) taking care
of the symmetry, and from right on the two columns of tiles formed by col1(3:6,3) and
col2(3:6,5) taking special care of the symmetry. For that, we developed a new kernel
to appropriately handle the symmetric property of the trailing matrix. Indeed, the
xTSMQRLR kernel in Figure 4.4(e) loads three tiles together—two of them are sym-
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metric diagonal tiles—and carefully applies left and right orthogonal transformations
on them.

Once the special treatment for the symmetric diagonal structure has completed,
we then apply the same transformations to the remaining left side of the matrix as
well as to the right side (down to the bottom of the matrix) using the xTSMQR
kernel with the corresponding side variants, as displayed in Figures 4.4(f) and 4.4(g),
respectively. The remaining left side is between tiles (3,4) and (5,4). It is necessary
to further explain the left variant, as it should require the light gray tile located in
position (3,4) from Figure 4.4(f). In fact, this tile is not referenced since only the
lower part of the matrix is being operated. Therefore, by taking its transpose located
in position (4,3), we can apply the “left” on tile (4,3)T and tile (5,4) updating (5,4).
But, because of the symmetry, this later is similar to the “right” on tile (4,3) and
tile (4,5), and thus by doing the “left” on tile (4,3)T and tile (5,4), updating both
of them, we are able to compute the “right” operations on (4,3). As result, only
the “left” application is done updating both tiles, and thus the remaining right side
becomes tiles (6,3) and (6,5). Finally, Figure 4.4(h) represents the matrix structure
at the end of the second step of the reduction. The symmetric band structure starts
to appear at the top left corner of the matrix (the dashed area).

Since the entire algorithm operates on tiles, the tile size b naturally corresponds
to the bandwidth size. This matching between tile and bandwidth sizes is in fact more
than just a choice for productivity purposes. Indeed, it is an algorithmic restriction
to avoid destroying the obtained zeroed structure while computing the symmetric
band form. For instance, in the lower symmetric case, the left updates have to be
shifted one tile down (i.e., the actual bandwidth size) from the diagonal tile such that
the right ones do not produce fill-in elements in the already annihilated part of the
matrix. Thus, tuning the parameter b is critical, as explained in the next section.

4.3.2. Enhancing data locality by grouping tasks. A small bandwidth b
will dramatically affect the efficiency of the reduction phase and increase the elapsed
time due to (1) the huge bus traffic required to load all the kernel data into memory,
(2) the inefficiency of the kernels on small b, and (3) the runtime system overhead of
scheduling very fine granularity tasks. At the same time, as analyzed later in section 5,
the number of flops of the BD&C symmetric eigenvalue solver strongly depends on
the band size b. The smaller the b, the fewer the number of operations. This trade-
off between achieving high performance for the reduction step and diminishing the
number of flops of the band D&C symmetric eigenvalue solver must then be addressed.

To overcome those three limitations, we have implemented a task grouping tech-
nique, which consists of aggregating different data tiles as well as the computational
kernels operating on them, in order to build a super tile. The idea is that the ker-
nels operate on a super tile overcoming limitations (1) and (2), also increasing data
reuse where we are forced to apply all the possible operations that could be applied
to the super tile. Moreover, such a technique allows us to decrease the number of
tasks, as all the operations occurring on a super tile are considered as only one task.
This later helps us to sweep over limitation (3) by removing the scheduler overhead.
Figure 4.5 shows the super tiles of size 2. The kernels operating on those super tiles
are actually a combination of the kernels used without the grouping technique. For
instance, in Figure 4.5, to enhance the data locality, the single call to the update
kernel on the dark gray super tiles will be internally decoupled by multiple calls to
the corresponding kernel variants (i.e., left update, followed by a left transposed and
right updates). For instance, the elapsed time for reducing a symmetric dense matrix
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(n > 4000) to band form with b = 20 on an Intel Xeon system using 16 cores can
be reduced up to one order of magnitude by enabling the task grouping technique,
and the number of tasks can decrease up to two orders of magnitude compared to the
original version, i.e., without the task grouping technique. Therefore, applying the
task grouping technique permits us to substantially improve the reduction phase and,
at the same time, to obtain a small bandwidth size, which is necessary for the second
step to be effective.

Fig. 4.5. A schematic description of the task grouping technique using super tiles of size 2.

Once the band form is obtained, the goal is to compute the eigenvalues directly
from the band form using the BD&C symmetric eigenvalue solver, which is the main
topic of the next section.

4.4. Second step: Computing all eigenvalues from the band form us-
ing BD&C. Applying the D&C algorithm on the symmetric band form using tile
algorithms turns out to be straightforward, thanks to the high level of productivity
provided by the QUARK framework. The partitioning into subproblems consists of
computing the SVDs of each off-diagonal tile, which are independent from each other
and can therefore run concurrently. Once the SVDs are computed, the symmetric
diagonal tiles are then updated accordingly, and the solutions of each subproblem can
be triggered by calculating the spectral decompositions. Here, again, the spectral de-
compositions are completely independent and can run in parallel. The computational
routines used for the two phases are DGESVD and DSYEVD from LAPACK, respec-
tively. The last phase consists of the amalgamation of the subproblems in which the
contributions of a pair of subproblems are merged together (b rank-one modifications)
following a reverse tree traversal. A customized kernel has been implemented to merge
the different subproblems, which are independent from each other when located on
the same tree level.

The three phases can thus be easily mapped into the tile algorithms. It is also
noteworthy to mention that a dynamic-type scheduler is preferred over a static one,
especially since the work of the BD&C algorithm depends strongly on the amount of
deflations, which can produce load balancing issues. Therefore, there is no need to
wait until the end of the merging procedure of all subproblems within a tree level. The
merge of the subsequent subproblems at higher level of the tree can proceed as soon
as the previous subproblem amalgamations terminate. Moreover, the fine granularity
of tile algorithms, together with the dynamic scheduler, permits the removal of the
artifactual synchronization points seen in the standard D&C parallel implementation
located (1) inside the fork/join paradigm and (2) between the different phases of the
algorithm. Tile algorithms alleviate (1) by bringing the parallelism to the fore and
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relying on sequential high performance kernels with a smaller granularity. Since the
execution flow of the BD&C symmetric eigenvalue solver through QUARK is solely
driven by the data dependencies, a task immediately proceeds after the dependen-
cies coming from its parent are satisfied, regardless of the application global status.
Therefore, the unnecessary synchronization points between the different phases of the
algorithm are completely removed, solving (2). Tasks from the reduction phase and
from the BD&C phase can substantially overlap. The BD&C phase can in fact start
even before the dense matrix has completely achieved the band form.

5. Algorithmic complexity. In this section, we calculate the number of flops
required by the TD&C symmetric eigenvalue solver algorithm. We recall that b corre-
sponds to the tile and the bandwidth sizes. The matrix is divided into p blocks/tiles,
i.e., p = n/b, with n being the size of the matrix.

The algorithmic complexity of the full tridiagonal reduction is O(4/3n3). The
calculation of the number of flops for the band reduction step is then straightforward.
It requires 4/3n × (n − b) × (n − b) flops and therefore gets closer to O(4/3n3) for
small bandwidth size b. The flop calculation for the BD&C algorithm to get the actual
eigenvalues is more complicated. The flop count for each phase is reported below:

• Partitioning phase. This phase is characterized by the SVD of the off-diagonal
blocks (estimation bound for small square matrices of size b is 6.67b3) and the
construction of the new diagonal blocks B̃i as defined by (3.4). The number
of flops is then at most (p− 1)× (6.67)b3 + (p− 1)× 2× 2b3.

• Subproblems solution phase. This phase computes the spectral decomposi-
tions of each symmetric B̃i as described by (3.5). Its cost depends on the
algorithm used and the convergence of the eigenvalues (an upper bound for
small square matrices of size b is 9b3 [24]). It requires at most p× 9b3 flops.

• Amalgamation phase. This phase consists of the merging of the son nodes of a
giving level, two by two, starting from level k− 1 up to level 0. Each merging
step of two-by-two nodes involves the application of a sequence of b rank-
one modifications. Each rank-one modification necessitates the computation
of a rank-one vector ui = QT

i zi and an eigensolution of D + σiuiu
T
i . The

computation of the rank-one vector ui involves a set of matrix-vector products
with the computed QT

i from the current level (cost detailed in α) and also
with all the QT

i from the previous deeper levels of the tree (cost detailed in
β). The cost of the eigensolution will be reported in γ.
α – For the current level, for each rank-one modification “j,” as described

by (3.11), we will have to apply a matrix-vector product with all the
previously computed QT

r (where r = 1, . . . , j − 1) of the current level.
Thus, for the b rank-one modifications, this gives rise to b

2 (b−1) matrix-
vector products of a matrix of size ( n

2i ). Note that for each level there are

2i leaves to be amalgamated, giving rise to 2i× b
2 (b− 1)× 2( n

2i )
2. Thus,

for all the levels (0, . . . , k − 1), this is expressed by the first component
of the formula below.

β – The cost of the matrix-vector product with the QT
i from the previous

deeper levels of the tree can be described as follows:
For each level, we don’t store the Q matrices; thus for each Q generated,
we multiply it by all the vectors u of the upper parents. Thus, for a
given level i, we generate b matrices Q of size n/(2i), and each of these
matrices is multiplied by all the u vectors of the upper parent in the tree.
In other words, each Q is multiplied by the b vectors u of each upper
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level of the tree. For a given level i, we will have i upper level, and
thus Q is multiplied by ib vectors u. We generate b matrices Q of size
n/(2i), so overall, for a level i, we will have b× ib matrix-vector products
of size ( n

2i ). The cost is b × ib × 2( n
2i )

2, and for the 2i submatrices Q,
2i × b × ib × 2( n

2i )
2. Thus for all the levels, where we have to multiply

the generated matrices Q by those of upper parents (levels 1, . . . , k− 1),
the cost is represented by the second term of the formula below.

γ – The eigendecomposition of D + σuuT ∈ Rr×r demands two distinct
computation steps: the zero finding algorithm, which requires an average
of 5r2 operations, and the calculation of r eigenvectors, which costs 2r2

operations. The number of flops involved in the eigensolution of a rank-
one modification is O(7r2). In practice, this number is the worst-case
scenario, as the remarkable phenomenon of deflation takes place and may
dramatically reduce this cost depending on the number of nondeflated
vectors. Finally, for b rank-one modifications, for all the 2i leaves and for
all the levels, the cost is reported in the third component of the formula
below.

Now, if we sum up all eigendecomposition computations occurring at all tree
levels with a depth k = �log2(p)�, the cost of the amalgamation step is equal
to

k−1∑
i=0

2i × b

2
(b− 1)× 2

( n

2i

)2

+

k−1∑
i=1

2i × b× ib× 2
( n

2i

)2

+

k−1∑
i=0

2i × b× 7
( n

2i

)2

=

k−1∑
i=0

b

2
(b− 1)× 2n2

(
1

2

)i

+

k−1∑
i=1

b× ib× 2n2

(
1

2

)i

+

k−1∑
i=0

b× 7n2

(
1

2

)i

≈ b2

2
× 2n2

k−1∑
i=0

(
1

2

)i

+ 2b2n2
k−1∑
i=1

i

(
1

2

)i

+ 7bn2
k−1∑
i=0

(
1

2

)i

We know that
∑∞

i=0 ar
i = a

1−r and
∑∞

i=0 ir
i = r

(1−r)2 for |r| < 1, and thus

≈ 2b2n2 + 4b2n2 + 14bn2 ≈ O(6 b2n2) flops.

The total arithmetic complexity of the BD&C algorithm will be dominated by the
amalgamation phase and will require at most O(6 b2n2) flops.

We note that the cost of the TD&C for computing all eigenvalues of a dense
symmetric matrix is O(4/3n3 + 6 b2n2). It is straightforward to see that the size
of the bandwidth b will have a huge impact on the overall algorithm complexity.
The TD&C symmetric eigenvalue solver algorithm will be cost-effective if and only
if b ≪ n. Also, if all corresponding eigenvectors are to be calculated, the TD&C
symmetric eigenvalue solver will not be suitable, as the cost will be dominated by
the accumulation of the intermediate eigenvector matrices for each single rank-one
modification. This would involve matrix-matrix multiplications, and thus the overall
cost will substantially increase and become dominated by 8

3bn
3 flops. Although these

level 3 BLAS operations are well suited for hardware accelerators such as GPUs, other
methods, such as MRRR [16, 17], may be more competitive and need to be explored
if the eigenvectors are required.

6. Performance results and accuracy analysis. This section summarizes
our main performance results of the TD&C symmetric eigenvalue solver algorithm.
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6.1. Machine description. All of our experiments have been run on a shared-
memory multicore architecture composed of a quad-socket quad-core Intel Xeon
EMT64 E7340 processor operating at 2.39 GHz. The theoretical peak is equal to
9.6 Gflop/s per core or 153.2 Gflop/s for the whole node, composed of 16 cores. The
practical peak achieved with DGEMM on a single core is equal to 8.5 Gflop/s or 136
Gflop/s for the 16 cores. The level-1 cache, local to the core, is divided into 32 kB
of instruction cache and 32 kB of data cache. Each quad-core processor is actually
composed of two dual-core Core2 architectures, and the level-2 cache has 2 × 4 MB
per socket (each dual-core shares 4 MB). The machine provides Intel Compilers 11.0
together with the Intel MKL V10.2 vendor library.

6.2. Tuning the tile/band size b. From sections 4 and 5, it is clear that the
tile/band size is the paramount parameter. Figure 6.1 highlights the effect of this
parameter on the reduction phase (line with squares), on the BD&C phase (line with
pluses), and on the overall TD&C eigenvalue solver (line with circles). For a very large
b, the BD&C phase is the dominant part of the general algorithm and, reciprocally,
for a very small b, the reduction phase governs the whole application. From these
experiments, a tile size b = 20 looks to be the best compromise for a matrix of order
less than 20000, while 30 < b < 40 appears to be the best choice for a matrix of larger
order.

6.3. Performance comparisons of the first stage reduction from dense
to band. Figure 6.2(a) highlights the performance of the first stage (PLASMA-
DSYRDB) when varying the semibandwidth size. We compare our first stage pro-
cedure against the equivalent function from the SBR toolbox using two different tile
sizes, i.e., b= 200 and b= 20. Our implementation of the first stage performs very well,
thanks to the increased parallelism degree brought by the tile algorithms. Although
this stage is very computationally intensive, we could easily note that the perfor-
mance of the first stage is very sensitive to the semibandwidth size. The performance
decreases as the tile size gets smaller; however, it remains sustainably acceptable.
The equivalent SBR function to reduce the symmetric dense to band form does not

 

 

Fig. 6.1. Effect of the tile/band size.
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(a) Performance comparisons of the first stage when
varying the semibandwidth size.
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(b) Performance comparisons of finding the eigen-
values of band matrices with a bandwidth equal
to 20.

Fig. 6.2. Kernel execution breakdown of the TD&C algorithm during the first stage.

perform similarly, surprisingly, mainly due to the overhead of the nested parallelism
within the fork-join paradigm.

6.4. Performance comparisons of the second stage finding the eigenval-
ues of band matrices. Figure 6.2(b) presents timing comparisons in seconds of the
second stage, finding the eigenvalue of band matrices using either our BD&C or the
standard techniques of reducing the band matrices to tridiagonal, then finding the
eigenvalue of the tridiagonal matrices. The elapsed time of the standard techniques is
divided by the elapsed time of our BD&C. We compare against the MKL-DSBTRD
and also against the SBR-DSBRDT, which reduce a band matrix to tridiagonal. The
bandwidth size is equal to 20, which corresponds to our choice of optimal bandwidth.

6.5. Performance comparisons with other symmetric D&C implemen-
tations. This section shows the performance results of our TD&C symmetric eigen-
value solver and compares them against the similar routine using D&C algorithms
available in the state-of-the-art open source and vendor numerical libraries, i.e., mul-
tithreaded reference LAPACK V3.2 with optimized Intel MKL BLAS and Intel MKL
V10.2, respectively. Since the eigensolver routines used (DSTEDC) operate on a tridi-
agonal matrix, the dense symmetric matrix first needs to be reduced to tridiagonal
form. Intel MKL actually provides two interfaces to reduce the symmetric dense ma-
trix to tridiagonal form. The first corresponds to the optimized version of DSYTRD
from LAPACK (MKL-LAPACK), and the second one integrates the optimized ver-
sion of the corresponding routine named DSYRDD from the SBR toolbox [7] (MKL-
SBR). Figure 6.3 summarizes the experiments in Gflop/s. The number of flops used
as a reference is 4/3n3, which is roughly the total number of flops for the tridiagonal
reduction, since the D&C eigenvalue solver of a tridiagonal matrix is of order n2.
All experiments have been performed on 16 cores, with random matrices, in double
precision arithmetic.

The performance results show that the proposed TD&C symmetric eigenvalue
solver achieves up to a 14-fold speedup compared to the reference LAPACK imple-
mentation, and up to a 2.5-fold speedup as compared to the vendor Intel MKL library
on random matrices.

The next sections describe a collection of different matrix types and compare our
TD&C symmetric eigenvalue solver against D&C (DSYTRD+DSTEDC) as well as
other methods to compute the eigenvalues of a symmetric dense matrix, e.g., the bisec-
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Fig. 6.3. Performance comparisons of the TD&C symmetric eigenvalue solver against open-
source (OS) and vendor (V) libraries.

tion BI (DSYTRD+DSTEVX), QR (DSYTRD+DSTEV), and MRRR (DSYTRD+
DSTEMR). For simplicity, in the experiments shown in the next sections, we com-
pare our implementation with those four routines from the Intel MKL and skip the
comparison with the reference LAPACK library.

6.6. Description of the matrix collections. In this section, we present the
different matrix collections used during the extensive testing to get performance re-
sults (section 6.7) as well as the numerical accuracy analysis (section 6.8). There are
three matrix collections:

• The matrices from the first set, represented in Table 6.1, are synthetic testing
matrices chosen to have extreme distributions of eigenvalues as well as other specific
properties that exhibit the strengths and weaknesses of a particular algorithm. More
information about these matrix collections can be found in [14, 15, 32].

Table 6.1

Synthetic testing matrices from LAPACK testing (types 1–6) and from [15] (types 7–9). Note
that for distributions of types 1–5, the parameter k has been chosen to be equal to one over the
machine precision 1/ulp in double precision arithmetic. We use the LAPACK routines DLATMS
or DLAGSY to generate A = QDQT . Given the eigenvalues λ, the dense matrix A is generated by
multiplying D = diag(λ) by an orthogonal matrix Q generated from random entries.

Description

Type 1 λ1 = 1, λi =
1
k
, i = 2, 3, . . . , n

Type 2 λi = 1, i = 2, 3, . . . , n− 1, λn = 1
k

Type 3 λi = k
−( i−1

n−1
)
, i = 2, 3, . . . , n

Type 4 λi = 1− ( i−1
n−1

)(1 − 1
k
), i = 2, 3, . . . , n

Type 5 n random numbers in the range ( 1
k
, 1); their logarithms are uniformly distributed

Type 6 n random numbers from a specified distribution
Type 7 λi = ulp× i, i = 1, 2, . . . , n− 1, λn = 1
Type 8 λ1 = ulp, λi = 1 + i×√

ulp, i = 2, 3, . . . , n− 1, λn = 2
Type 9 λ1 = 1, λi = λi−1 + 100× ulp, i = 2, 3, . . . , nD
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Table 6.2

Matrices with interesting properties.

Description

Type 10 (1,2,1) tridiagonal matrix
Type 11 Wilkinson-type tridiagonal matrix
Type 12 Clement-type tridiagonal matrix
Type 13 Legendre-type tridiagonal matrix
Type 14 Laguerre-type tridiagonal matrix
Type 15 Hermite-type tridiagonal matrix

Table 6.3

Matrices from real-life applications.

Description

Type 16 Matrices from an application on quantum chemistry and electronic structure
Type 17 The bcsstruc1 set in the Harwell–Boeing collection
Type 18 Matrices from the Alemdar, NASA, cannizzo, etc., sets at the University of Florida

• The second set of matrices are matrices with interesting properties, which are
represented in Table 6.2. Those matrices will only be used for the accuracy analysis
in section 6.8 since they are already in tridiagonal form.

• The third set are practical matrices, which are based on a variety of practical
applications, and thus are relevant to a large group of users. Some of these matrices
are described in Table 6.3.

6.7. Performance comparisons with other symmetric eigenvalue solvers.
This section compares the TD&C approach with other state-of-the-art symmetric
eigenvalue solvers.

6.7.1. Understanding the various graphs. All experiments have been per-
formed on 16 cores with matrix types from Tables 6.1 and 6.3. The matrix sizes vary
from 1000 to 24000, and the computation is done in double precision arithmetic. Our
TD&C symmetric eigenvalue solver is compared with the bisection BI, QR iteration,
and MRRR (“MR”), as well as with the D&C symmetric eigenvalue solvers. Simi-
larly to DSTEDC, the other eigenvalue solver implementations necessitate the matrix
being reduced into tridiagonal form using either the MKL LAPACK-implementation
routine DSYTRD, or the MKL SBR-implementation routine DSYRDD. The graphs
represents the speedup obtained by computing the ratio between the elapsed time of
these four methods over the TD&C total execution time—in other words, a value t
above 1 means that our TD&C is t times faster than the corresponding algorithm, and
a value t below 1 means that our TD&C is 1/t times slower than the corresponding
algorithm. The symbol codes used for all plots are as follows: BI is denoted by “×”,
QR is denoted by “*”, MR is denoted by “�”, D&C is denoted by “◦”, and TD&C is
denoted by a thick horizontal line considered as a reference for the speedup graphs.

6.7.2. Synthetic testing matrices (Table 6.1). Figure 6.4 shows the speedup
obtained by the TD&C symmetric eigenvalue solver as compared to BI, QR, MR,
and D&C when the MKL LAPACK-implementation routine DSYTRD is used to
reduce the first stage. Figure 6.5 shows the speedup obtained by the TD&C sym-
metric eigenvalue solver as compared to BI, QR, MR, and D&C when the MKL
SBR-implementation routine DSYRDD is used to reduce the first stage. In this case
we can expect that the performance obtained will have a similar trend to the ones
using the MKL LAPACK DSYTRD presented in Figure 6.4, but slightly better due
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Fig. 6.4. TD&C speedup as compared to BI, QR, MR, and D&C for all synthetic testing
matrices from Table 6.1. For BI, QR, MR, and D&C, the MKL LAPACK-implementation routine
DSYTRD is used to transform the dense symmetric matrix A to tridiagonal.

to the fact that the DSYRDD routine is slightly faster than the DSYTRD routine.
Thus, we show in Figure 6.5 only two representative graphs.

The results show that the TD&C symmetric eigenvalue solver algorithm performs
better than all other represented algorithms and for all synthetic testing matrices for
n ≥ 3000. The results also indicate that the TD&C speedup ranges from two times
faster for matrices of size 3000 ≤ n ≤ 10000 to more than three times faster for
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Fig. 6.5. TD&C speedup as compared to BI, QR, MR, and D&C for all synthetic testing
matrices from Table 6.1. For BI, QR, MR, and D&C, the MKL SBR-implementation routine
DSYRDD is used to transform the dense symmetric matrix A to tridiagonal.

matrices of size n ≥ 10000. For small matrix sizes with n ≤ 3000, TD&C runs slower
than the other eigenvalue solvers. It is clear, from the algorithmic complexity study in
section 5 that our TD&C algorithm requires 4/3n3+6b2n2 flops, which, for example,
for b = 20 and n = 3000 means 4/3n3+2400n2 � 2n3 flops, while the other algorithms
roughly perform 4/3n3 flops.

On the other hand, BI seems to be the slowest algorithm for computing eigen-
values, although its efficiency mostly depends on the distribution of the eigenvalues.
Indeed, for matrices with strongly clustered eigenvalues (e.g., type 1), BI perfor-
mance is slower than the other symmetric eigenvalue solver methods. Furthermore,
the TD&C symmetric eigenvalue solver is able to take full advantage of a situation
where a significant amount of deflations occur for special matrices of types 1 and 2.
By avoiding unnecessary calculations, especially in the amalgamation phase thanks
to deflations, the TD&C runs at even higher performance. This is also emphasized
when comparing matrices from types 2 and 6. While a type 6 matrix represents the
worst-case scenario for the TD&C symmetric eigenvalue solver in which less than 2%
of deflations happen, a type 2 matrix corresponds to a matrix where a considerable
amount of deflation occurs.

The TD&C performs considerably fewer flops in the latter case, and thus it runs
more than twice as fast as when no deflations take place. For example, for a matrix of
size n = 16000, the reduction to band form requires 145 seconds. The BD&C phase
with lots of deflations requires 30 seconds instead of 74 seconds when no deflations
occur, giving a total execution time of 175 seconds and 219 seconds, respectively
(1.3-fold overall speedup). From a global point of view, the elapsed time and the
performance results of the other methods (BI, QR, MR, and D&C) are very similar
to one another. In addition to that, in the presence of deflation, the improvement is
easily noticed for the TD&C algorithm, but it is rather moderate for the standard
D&C algorithm. Therefore, once again, it is important to mention that when only
eigenvalues are computed, BI, QR, MR, and D&C count only for O(n2) on the overall
algorithm complexity, and the leading term corresponding to the tridiagonal reduction
phase is about 4/3n3. The time spent on this reduction phase can be as high as 90%
of the total execution time when only eigenvalues are needed but more than 50% when
eigenvectors are to be computed. Thus, no matter how D&C or the other methods
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Fig. 6.6. Timings comparison for practical matrices. The tridiagonalization has been done
either by the MKL-LAPACK-DSYTRD (left) or by the MKL-SBR-DSYRDD (right).

are improved, the impact on the overall algorithm performance is rather negligible for
large matrix sizes.

6.7.3. Practical matrices (Table 6.3). The most important testing matrices
are perhaps those which come from real applications. Figure 6.6 shows the speedup
obtained by the TD&C symmetric eigenvalue solver as compared to BI, QR, MR, and
D&C for a set of more than 100 matrices arising in different scientific and engineering
areas. Similar to synthetic testing matrices, the TD&C symmetric eigenvalue solver
algorithm outperforms all the other symmetric eigenvalue solvers, between two to
three times faster, and achieves up to 36 Gflop/s.

6.8. Accuracy analysis. This section is dedicated to the analysis of the TD&C
symmetric eigenvalue solver accuracy as compared to the other four symmetric eigen-
value solvers: QR, BI, MR and D&C.

6.8.1. Metric definitions. For a given symmetric matrix B, computed eigen-
vectors Q = [q1, q2, . . . , qn] and their corresponding eigenvalues Λ = diag(λ1, λ2, . . . ,
λn), we use the following accuracy tests by using the LAPACK testing routines
(DLANSY, DSTT21 for tridiagonal, and DSYT21 for dense symmetric):

(6.1)
‖I −QQT ‖
n× ulp

,

which measures the orthogonality of the computed eigenvectors,

(6.2)
‖B −QΛQT‖
‖B‖n× ulp

,

which measures the accuracy of the computed eigenpairs, and

(6.3)
‖λi − δi‖
‖λi‖ × ulp

,

which measures the accuracy of the computed eigenvalues compared to the refer-
ence eigenvalue δ, which are the exact eigenvalues (analytically known), or the ones
computed by the QR iteration routine using LAPACK (DSTEV). The value ulp rep-
resents the machine precision computed by the LAPACK subroutine DLAMCH. Its
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value on the Intel Xeon, where the accuracy experiments were conducted, is equal to
2.220446049259313E-16.

For most of the tests presented here, the original matrix is either generated from
a multiplication of a given diagonal eigenvalue matrix by an orthogonal matrix or
given directly as a symmetric matrix. Then, for the standard algorithms (QR, BI,
MR, and D&C), the symmetric dense matrix is first reduced to tridiagonal form us-
ing the DSYTRD routine and then solved using one of the algorithms cited above.
However, for our TD&C symmetric eigenvalue solver, the original matrix is first re-
duced to band form, and then solved using the band D&C method according to the
approach described in this paper. Therefore, the matrix B considered in the met-
rics (6.1), (6.2), (6.3) is either tridiagonal obtained from the DSYTRD routine or in
symmetric band form obtained from our TD&C symmetric eigenvalue solver.

6.8.2. Accuracy evaluations. We present the results obtained using the ac-
curacy metrics defined above, for all sets of the matrices described in subsection 6.6.
Our TD&C symmetric eigenvalue solver provides the three metrics with the same
order of magnitude as compared to the other eigenvalue solvers.

Figure 6.7 and Figure 6.8 depict the losses of orthogonality (6.1) and the maxi-
mal residual norm (6.2) for practical and interesting matrix categories and synthetic
testing matrix type, respectively. These figures allow for the study of the errors with
respect to the matrix size n. The error of our TD&C symmetric eigenvalue solver de-
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Fig. 6.7. Summary of accuracy results observed on matrices from Tables 6.2 and 6.3.
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Fig. 6.8. Summary of accuracy results observed on synthetic testing matrices from Table 6.1.
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creases when n increases, similarly to QR and D&C eigenvalue solvers. The observed
accuracy is on the order of O(

√
n · ε). However, it is clear that MRRR and BI do not

achieve the same level of accuracy as QR, D&C, and TD&C. Finally, after measuring
the eigenvector orthogonality (6.1), the residual norms (6.2) and the eigenvalue accu-
racy (6.3), our TD&C framework is one of the most accurate symmetric eigenvalue
solver algorithms, which gives us a certain confidence on the quality of the overall
TD&C symmetric eigenvalue solver presented in this paper.

7. Summary and future work. The tile divide and conquer symmetric eigen-
value solver (TD&C) presented in this paper shows very promising results in terms
of performance on multicore architecture, as well as in terms of numerical accuracy.
TD&C has been extensively tested using different matrix types against other well-
known symmetric eigenvalue solvers such as the QR iteration (QR), the bisection
algorithm (BI), the standard divide and conquer (D&C), and the multiple relatively
robust representations (MRRR). The performance results obtained for large matrix
sizes and certain matrix types are very encouraging. The proposed TD&C symmetric
eigenvalue solver reaches up to a 14-fold speed up compared to the state-of-the-art
numerical open source library LAPACK V3.2, and up to a 4-fold speedup against
the commercial numerical library Intel MKL V10.2. Our TD&C symmetric eigenvalue
solver also proves to be one of the most accurate symmetric eigenvalue solvers avail-
able. The authors plan to eventually integrate this symmetric eigenvalue solver within
the PLASMA library [34]. The authors are also currently looking at the eigenvector
calculations. Indeed, the TD&C symmetric eigenvalue solver is not really appropriate
for that purpose due to the large amount of extra flops required to accumulate them.
The authors are investigating the possibility of applying a single rank-b modification
(instead of b rank-one modifications), which would remove the cost of accumulating
the subsequent orthogonal matrices to generate the eigenvectors.

Acknowledgment. The authors would like to thank the two anonymous review-
ers for their insightful comments, which greatly helped to improve the quality of this
article.

REFERENCES

[1] E. Agullo, B. Hadri, H. Ltaief, and J. Dongarra, Comparative study of one-sided fac-
torizations with multiple software packages on multi-core hardware, in Proceedings of the
Conference on High Performance Computing Networking, Storage and Analysis (SC ’09),
2009, pp. 1–12.

[2] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz,

A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen, LAPACK Users’
Guide, 3rd ed., SIAM, Philadelphia, PA, 1999.

[3] P. Arbenz, Divide and conquer algorithms for the band symmetric eigenvalue problem, Parallel
Comput., 18 (1992), pp. 1105–1128.

[4] P. Arbenz, W. Gander, and G. H. Golub, Restricted rank modification of the symmetric
eigenvalue problem: Theoretical considerations, Linear Algebra Appl., 104 (1988), pp. 75–
95.

[5] P. Arbenz and G. H. Golub, On the spectral decomposition of Hermitian matrices modified by
low rank perturbations with applications, SIAM J. Matrix Anal. Appl., 9 (1988), pp. 40–58.

[6] Y. Bai and R. C. Ward, A parallel symmetric block-tridiagonal divide-and-conquer algorithm,
ACM Trans. Math. Softw., 33 (2007), 25.

[7] C. H. Bischof, B. Lang, and X. Sun, Algorithm 807: The SBR toolbox—software for succes-
sive band reduction, ACM Trans. Math. Softw., 26 (2000), pp. 602–616.

[8] J. R. Bunch, C. P. Nielsen, and D. C. Sorensen, Rank-one modification of the symmetric
eigenproblem, Numer. Math., 31 (1978), pp. 31–48.

D
ow

nl
oa

de
d 

05
/2

1/
15

 to
 1

09
.1

71
.1

37
.2

10
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

TOWARD HPC D&C SYMMETRIC EIGENSOLVER C273

[9] A. Buttari, J. Langou, J. Kurzak, and J. Dongarra, A class of parallel tiled linear algebra
algorithms for multicore architectures, Parallel Comput., 35 (2009), pp. 38–53.

[10] A. Buttari, J. Langou, J. Kurzak, and J. J. Dongarra, A class of parallel tiled linear
algebra algorithms for multicore architectures, Parallel Comput. Syst. Appl., 35 (2009),
pp. 38–53.

[11] E. Chan, F. G. Van Zee, P. Bientinesi, E. S. Quintana-Orti, G. Quintana-Orti, and R.

van de Geijn, Supermatrix: A multithreaded runtime scheduling system for algorithms-by-
blocks, in Proceedings of the 23rd ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming (PPOPP’2008), Salt Lake City, UT, 2008, pp. 123–132.

[12] J. J. M. Cuppen, A divide and conquer method for the symmetric eigenproblem, Numer. Math.,
36 (1981), pp. 177–195.

[13] J. W. Demmel, Applied Numerical Linear Algebra. SIAM, Philadelphia, PA, 1997.
[14] J. W. Demmel, O. A. Marques, B. N. Parlett, and C. Vömel, Performance and Accuracy
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