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Abstract—The Internet of Things (IoT) represents the current
technology revolution that is intended to transform the current
environment into a more pervasive and ubiquitous world. In
this emerging ecosystem, the application of standard security
technologies has to cope with the inherent nature of constrained
physical devices, which are seamlessly integrated into the Internet
infrastructure. This work proposes a set of lightweight authenti-
cation and authorization mechanisms in order to support smart
objects during their life cycle. Furthermore, such mechanisms
are framed within a proposed security framework, which is
compliant with the Architectural Reference Model (ARM), re-
cently presented by the EU FP7 IoT-A project. The resulting
architecture is intended to provide a holistic security approach
to be leveraged in the design of novel and lightweight security
protocols for IoT constrained environments.

I. INTRODUCTION

Recent advances in wireless communications and pervasive

computing are driving the constant development of the so-

called Internet of Things (IoT) [1], providing ubiquity and

intelligence to our surrounding environment. IoT represents

the extension of Information Technology (IT) to all areas of our

lives, transforming current isolated networks and infrastruc-

tures into a global network of interconnected heterogeneous

objects as a key enabler of the future Big Data era [2]. In fact,

the increasing interest on IoT from academia and industry is

promoting the emergence of innovative services to be lever-

aged by societies, and enabling unprecedented economic and

social opportunities for governmental and private organizations

in the envisioned Smart Cities ecosystems [3].

Over recent years, significant technological challenges have

been solved through the extension and adaptation of wire-

less communication technologies and protocols. In particular,

several IETF working groups, such as IPv6 over Low power

WPAN (6LoWPAN) and Constrained RESTful Environments

(CoRE), are focused on the adaptation of existing Internet pro-

tocols to more efficient, interoperable and lightweight versions

to be used on constrained environments. These protocols are

intended to enable a seamless inclusion of smart objects into

the Internet to realize the scenarios which are envisaged by

IoT community. Specifically, the main goal of the 6LoWPAN

WG is the adaptation of the IPv6 protocol to be employed on

constrained environments such as IEEE 802.15.4 networks, in

order to obtain end-to-end connectivity between constrained

devices and any entity connected to the Internet [4], [5]. These

adjustments are based on header compression and encapsula-

tion mechanisms. Moreover, the CoRE WG was specifically

founded to define an application layer protocol for resource

constrained devices. As a result, the Constrained Application

Protocol (CoAP) [6] was designed. This protocol, based on

the same RESTful principles as HTTP, allows the realization

of embedded services but accommodated to the requirements

of constrained devices and networks [7].

In spite of such remarkable efforts, the application of

security mechanisms to be deployed on this new generation

of pervasive scenarios still remains as the main concern for

a global IoT deployment [8]–[10]. In fact, the realization of

these scenarios requires to address significant security and

access control implications, since physical and constrained

devices are being seamlessly integrated into the Internet in-

frastructure with network and processing abilities, making

them vulnerable to attacks and abuse [11]. However, cur-

rent security and access control solutions were not designed

with these aspects in mind and they are not able to meet

the needs of these incipient ecosystems regarding scalability,

interoperability, lightness and end-to-end security [12], [13].

In this direction, the IETF Authentication and Authorization

for Constrained Environments (ACE) WG has been recently

established to produce a standardized security solution to be
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used by devices and networks with tight resource constraints.

Specifically, the work of ACE WG is focused on the design

and development of authentication and authorization mech-

anisms to enable authorized access to resources, which are

hosted in constrained smart objects.

Under the main foundations of ACE WG, this work pro-

vides a set of lightweight authentication and authorization

mechanisms, as well as their application on IoT constrained

environments. These mechanisms are integrated and extended

with other standard security technologies in order to sup-

port smart objects during its life cycle. In particular, in

this work we consider the use of an lightweight version of

Extensible Authentication Protocol over LAN (EAPOL) [14]

to initiate a security bootstrapping process by integrating

standard technologies, such as EAP [15] and Remote Authen-

tication Dial In User Service (RADIUS) [16]. This process

has been extended with Extensible Access Control Markup

Language (XACML)-based authorization procedures [17] for

obtaining lightweight access tokens [18] to be employed at

operational plane achieving end-to-end secure communication

between constrained devices. Furthermore, such mechanisms

are framed within a security framework which is compliant

with the Architectural Reference Model (ARM) [19], recently

presented by the EU FP7 IoT-A initiative 1. While this work is

focused on authentication and authorization mechanisms, the

proposed framework is intended to provide a holistic security

approach to be leveraged by IoT devices throughout their

life cycle. Additionally, a set of evaluation results is analysed

and discussed to demonstrate the suitability of the proposed

mechanisms.

The remainder of this paper is structured as follows. Sec-

tion II analyses recent proposals addressing different security

aspects on IoT scenarios. Section III presents our ARM-

compliant framework for security management of IoT devices

during their life cycle. Section IV gives a description of the

proposed lightweight security mechanisms, whose integration

is provided in Section V. In Section VI, we present several

experimental results of the proposed mechanisms, while the

integration of the proposed approach into the emerging IETF

ACE WG is discussed in Section VII. Finally, in Section VIII,

we end up with some conclusions and an outlook of our future

work in this area.

II. RELATED WORK

The application of security mechanisms on IoT scenarios

has to address new requirements due to the nature and tight

constraints of devices and networks composing these incipient

ecosystems. This has given rise to a broad consensus among

academia and industry to consider security as the main barrier

to be overcome in next years for a global deployment of IoT

[20]–[23]. These challenges have attracted a huge attention

from the research community, and recently several efforts

are beginning to emerge addressing different security aspects

during the life cycle of smart objects.

Regarding the application of security mechanisms at the

bootstrapping stage for constrained devices, the authors in [24]

1IoT-A: http://iot-a.eu

provide an authentication and key establishment scheme for

WSNs in distributed IoT applications. The proposal, which

is also envisioned for bootstrapping phase, is based on a

simplified Datagram Transport Layer Security (DTLS) [25]

exchange and the use of TinyECC [26] for cryptographic

operations. [27] provides the main bootstrapping approaches

and protocols to be considered on IoT environments. Specif-

ically, EAP [15] is established as the standard authentication

framework for this process due to its maturity and flexi-

bility. Additionally, three alternative protocols are analysed

for security bootstrapping: HIP Diet EXchange (HIP-DEX)

[28], Protocol for Carrying Authentication for Network Access

(PANA) [29] and 802.1X [30]. The use of HIP-DEX for the

network access stage is analysed in [31]. Although the results

shown are promising compared to DTLS, HIP-DEX is not

widely adopted. This is mainly because it does not provide

native support for certificate-based public key agreement and

the high complexity of the puzzle mechanism to mitigate DoS

attacks. Moreover, the authors in [32] provide a lightweight

implementation of PANA called PANATIKI to be deployed

on constrained devices. Due to the high cost of public key

cryptographic operations, it is based on the use of Extensi-

ble Authentication Protocol-Pre-Shared Key (EAP-PSK) [33]

as the authentication method, providing a lower degree of

scalability and security. In addition, previous proposals as-

sume that the device has already been configured with an

IP address prior the network access stage, which can stand

for a potential security threat for the network. Alternatively,

our approach operates below the network layer, by using

802.1X to transport EAP messages at the bootstrapping stage,

offering a lightweight mechanism suitable to the requirements

of resource-constrained environments.

At operational plane, CoAP [6] has been recently declared

as a standard specialized web transfer protocol to be deployed

on constrained devices and networks. CoAP offers several

modes for securing the protocol through a security binding

to DTLS [25], which requires a heavy message exchange to

agree security parameters. Furthermore, it does not cover the

use of authorization and access control mechanisms at the

application level. In this direction, the work presented in [34]

provides an approach based on Elliptic Curve Cryptography

(ECC) for key establishment and Role-Based Access Control

(RBAC) model [35] for the definition of access control poli-

cies. They consider an inter-domain scenario in which different

registration authorities are responsible for the authentication

process. Several security gaps of this work are discussed

in [36], in which different enhancements are proposed in

order to satisfy the basic security properties of the scenario.

Moreover, an authentication and access control scheme for

the layer perception of IoT is given in [37]. It is based on an

efficient key establishment making use of ECC and Attribute-

Based Access Control (ABAC) [38], which requires a complex

management and hinders its application to constrained devices.

Consequently, they only provide theoretical results of the

proposed model. Recently, several access control mechanisms

based on authorization tokens have been proposed on IoT

scenarios [39], [40]. These approaches are based on the exter-

nalization of authorization decisions in a central entity which
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issues privileges to be enforced at the end device [41]. Under

the main foundations of these works, Distributed Capability-

Based Access Control (DCapBAC) [18] has been recently

introduced as a feasible access control approach to be deployed

on constrained environments. DCapBAC allows a distributed

approach in which constrained devices are enabled with au-

thorization logic by adapting the communication technologies

and data-interchange format. Specifically, it makes use of

JavaScript Object Notation (JSON) [42] as representation

format for the token, the use of emerging communication

protocols such as CoAP and 6LoWPAN, as well as a set of

cryptographic optimizations for ECC [43].

While previous works address partially security concerns

on IoT environments, this work presents an integral scenario

for the security management of a constrained device during

its life cycle. In particular, we provide a lightweight security

bootstrapping process based on standard technologies for

obtaining authorization tokens. These credentials are used by

devices through DCapBAC at the operation stage enabling a

secure Thing-to-Thing (T2T) communication.

III. ARM-COMPLIANT SECURITY FRAMEWORK FOR

SUPPORTING THE LIFE CYCLE OF IOT DEVICES

The secure management of the whole life cycle of IoT

devices is one of the key challenges to be tackled for a

broad adoption of the Internet of Things. Nowadays, typical

personal mobile devices such as smartphones or tablets provide

efficient user interfaces which are used for management and

maintenance tasks by people. However, the deployment of con-

strained IoT devices (e.g. sensors or actuators) on uncontrolled

scenarios, such as smart cities, triggers new requirements to

be overcome for an effective and secure management of such

devices. Nowadays, management tasks are usually provided

by manual maintenance and proprietary solutions which are

tailored to a specific device or service. This lack of automated

mechanisms leads to security breaches that can be potentially

exploited by malicious entities during the whole life cycle of

IoT devices.

Figure 1 shows the different phases of a smart object

during its life cycle and the security levels which must be

considered [12] [44]. The life cycle begins when an IoT

device is installed and commissioned in a network during the

bootstrapping process. This stage includes an authentication

and access control process in order to provide cryptographic

material and parameters, which can be used by the device for

secure access to services. Furthermore, this stage can make

use of security credentials which were provisioned to the

device at the manufacturing process. Subsequently, the smart

object starts to operate providing the corresponding services

for which it was created (e.g. temperature values). During this

stage, the consideration of security mechanisms is necessary

to protect access to resources that are hosted on the device.

Optionally, a smart object could be maintained in order to

be upgraded, reconfigured, and consequently commissioned

again. Finally, it can be decommissioned, in which case, the

revocation of the corresponding security credentials that were

acquired during its life cycle is required.

Figure 1: Security planes for the life cycle of a smart object

The high complexity for a secure management of smart

objects throughout their whole life cycle imposes the need

to consider architectural approaches, taking into account the

inherent requirements of the application of security mech-

anisms and protocols on IoT scenarios. The huge range

of application scenarios of IoT has led in recent years to

the specification of different architectures which are usually

tailored to be deployed on specific domains or addressing

particular requirements. This has been identified as one of the

main barriers for IoT adoption on a broad scale and the main

incentive for the development of coordinated efforts driven by

the Internet of Things European Research Cluster (IERC), in

order to define a common and harmonized IoT architecture to

be used by industry and academia. One of the first proposals

to address this issue was IoT-i [45], an European research

project which dealt with the analysis of different architectures

to create a joint and aligned vision of the IoT in Europe.

This effort meant a step forward in order to develop a holistic

environment that encourages a broader adoption of IoT. IoT-

A [19] was a large-scale project focused on the design of

an Architectural Reference Model (ARM) to instantiate IoT

architectures through a set of specific tools and guidelines.

The main motivation of this reference architecture was to

optimize the interoperability among isolated IoT applications

to create a global ecosystem of services under a common

understanding. This promoted additional initiatives adopting

ARM as the starting point of design activities, favoring the

alignment of architectures and enabling to reuse functionalities

and components among different application domains. In this

direction, the focus of the architecture proposed by IoT6 [46]

is to use the results of previous projects to design an IPv6-

based service-oriented architecture, in order to achieve a high

degree of interoperability between different applications and

communication technologies. Additional architectures were

proposed by other remarkable efforts at European level, such

as BUTLER [47], SENSEI [48] or FI-WARE [49] based on

the specific set of requirements from particular application do-

mains. On the one hand, SENSEI was focused on designing the

service layer in wireless sensor and actuators networks. On the

other hand, FI-WARE, under the FI-PPP program, designed an

open platform based on an architecture to be leveraged by the

so-called Future Internet. However, security concerns, which

are critical in the design of innovative and valuable services to

be deployed on IoT scenarios, are not the main focus of such

architectures. To fill this gap, our ARM-compliant security

framework [50] addresses these requirements by instantiating

and extending the security functional group of ARM, which
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Figure 2: ARM-based Security Framework for the IoT

promotes its applicability and interoperability in a wide range

of IoT scenarios in which security and privacy are required.

Figure 2 shows our ARM-compliant architecture, in which

the security functional group is detailed. In addition to the

functional components of ARM, we consider an extension

of it, in order to address more flexible data sharing models

in which some information can be shared with a group of

entities or a set of unknown receivers and, consequently,

not addressable a priori. Furthermore, due to the pervasive

character of envisioned IoT scenarios, the way in which this

information is disseminated must consider contextual data

where sharing transaction is going to be performed. Therefore,

the proposed framework is not just an instantiation of the

security functional group of ARM, but it actually extends it

by defining additional components which can be considered

by emerging IoT scenarios. While the integration of this

framework is being considered and analysed under several EU

Research Projects, in this work we focus on the Authentication

and Authorization functional components in order to provide

suitable mechanisms addressing different security planes ac-

cording to the life cycle of constrained smart objects.

Figure 3: Functional components and interactions involved in

the proposed scenario

In addition, Figure 3 shows the main functional components

and interactions involved in our proposal. At bootstrapping

plane, the Authentication functional component is responsible

for authenticating the device by using the corresponding infras-

tructure (e.g. AAA). As a result of a successful authentication,

a set of keys is derived (e.g. a Master Session Key (MSK)

and an Extended Master Session Key (EMSK) in the case of

EAP) and used to establish security associations between the

device and the infrastructure components. Furthermore, our

approach considers the extension of this process through an

authorization mechanism by which an authorization credential

is inferred and sent to the device through the infrastructure.

The Authorization functional component is in charge of this

process, while the credentials obtained in this phase are stored

in the Key Exchange and Key Management (KEM) functional

component. At operation plane, the same modules are needed

at the device level. In particular, the Authentication component

is responsible for checking that the requester device is who it

claims to be. In addition, the previously obtained authorization

credential is sent to the target device for authorization en-

forcement. This process takes into account context parameters

which are locally detected by the target device and received

from the Context Manager functional component. The instan-

tiation of these components in network elements, as well as

the required message exchange, are described in Section V.

IV. LIGHTWEIGHT SECURITY MECHANISMS FOR IOT

CONSTRAINED ENVIRONMENTS

The explanation of the proposed authentication and autho-

rization mechanisms is split according to the different stages of

a smart object during its life cycle. On the one hand, security

considerations at bootstrapping level, as well as the proposed

set of optimizations, are presented. On the other hand, the

proposed security mechanisms at operational level are de-

scribed. These mechanisms have been designed taking into

account the severe resource constraints of current IoT devices

and networks, as well as the initial set of considerations and

requirements of the recent IETF ACE WG [51].
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A. Security Bootstrapping

The bootstrapping process usually consists of a set of pro-

cedures in which a node is installed and commissioned within

a network. Optionally, this stage can include authentication

and access control mechanisms to get security parameters for

trusted operation. For a successful and secure bootstrapping

process, well-known mechanisms need to be on the basis.

Additionally, in the context of IoT constrained scenarios, the

application of such procedures need to be analysed due to

implicit requirements of these environments.

Currently, EAP [15] is widely used and recognized as the

standard mechanism to provide flexible authentication through

different EAP methods. According to EAP terminology, these

methods allow an EAP peer to be authenticated by an EAP

server through EAP authenticator for network access. More-

over, these EAP methods can provide keying material after

successful authentication. Depending on the place in where the

EAP server is located, there are two possible configurations:

standalone and pass-through. In the former option, the EAP

Server is collocated with the EAP authenticator and the com-

munication between the two components is local. In the pass-

through configuration, the EAP Server is located on a different

node and an additional AAA protocol is required for this

communication (e.g. RADIUS). For communication between

the EAP peer and the EAP authenticator, an additional protocol

is needed to transport EAP messages. For this purpose, there

are several options which operate at different communication

layers, such as PANA [29], 802.1X [30] and Internet Key

Exchange (IKE) [52]. The Internet Protocol security (IPsec)

and IKE have been evaluated by [53] and [54], whose results

show that both options could require excessive cost for con-

strained environments. Moreover, PANA operates on top of IP

layer and nodes need to be addressable at the bootstrapping

process before being authenticated. Moreover, the use of

PANA requires more overhead and processing requirements

than a solution operating at a lower level. Consequently, in

this work the transport of EAP messages is considered at link

layer.

Frame Size Overhead Ratio

EAPOL in 802.11 2304 bytes 6 bytes 0.26%

EAPOL in 802.15.4 127 bytes 6 bytes 4.72%

SEAPOL in 802.15.4 127 bytes 3 bits 0.59%

Figure 4: Comparison of EAPOL and SEAPOL overhead in

802.11 and 802.15.4 frames

In particular, the IEEE 802.11i standard [14] introduced the

EAPOL protocol for 802.11 wireless networks. The standard

approach requires 6 bytes of a 802.11 frame, which represents

a 0.26% of the frame size. However, in case of 802.15.4 net-

works, EAPOL represents almost 5% of the frame size. This

creates the need to design a more lightweight and optimized

solution for environments with tight resource constraints. The

proposed approach has been designed by considering the main

EAPOL functionality can be represented by only 5 different

frame types. In addition, the EAPOL Start and EAP Packet

frames could use the same frame type and be easily differ-

entiated by the frame payload size. This gives the possibility

to compress EAPOL in just 3 bits (93.75% less overhead in

comparison to the regular EAPOL) as shown in Figure 4. The

proposed has been called Slim EAPOL (SEAPOL) and the

required modifications of 802.15.4 to support it are shown in

Figure 5. Furthermore, it should be noted that SEAPOL does

not require additional space because it makes use of 3 reserved

bits of the IEEE 802.15.4 frame header, which are always sent

(and unused) during data messages exchange.

Figure 5: IEEE 802.15.4 Frame Control field modifications

to support Slim Extensive Authentication Protocol over Low-

Rate Wireless Personal Area Networks

Besides the use of SEAPOL to transport EAP messages

between the EAP peer and the EAP authenticator, AAA infras-

tructures can be used for an authentication and access control

process in which cryptographic material and configuration

parameters can be obtained by the corresponding IoT device,

enabling a secure operation. Section 5 provides a detailed

description of the proposed scenario, in which SEAPOL and

AAA infrastructures are extended to deliver authorization

tokens to constrained devices.

B. Operational Security

At operational level, security guarantees that only trusted

and legitimate instances of an application running in the IoT

can communicate with each other, through the use of the

corresponding security mechanisms at the application layer.

Specifically, CoAP [6] defines a security binding to DTLS

[25] through the use of pre-shared keys, raw public keys or

certificates. However, it does not cover the use of authoriza-

tion and access control mechanisms at the application level.

Because of the strong constraints of IoT devices and networks,

in recent years, the protection of resources and services which

are provided by smart objects, has been mainly addressed

by centralized architectures, in which a back-end server or

gateway is responsible for security tasks. While traditional

access control models and security standard technologies and

protocols can be used in these approaches, several drawbacks

arise when they are considered on a real deployment. On

the one hand, the inclusion of a central entity prevents end-

to-end security to be achieved. On the other hand, these

solutions cannot provide a suitable level of scalability for smart

environments with a potentially huge amount of constrained

devices. Furthermore, due to the fact that a single entity

stores and manages all the data from a set of devices, any
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vulnerability might compromise a vast amount of sensitive

information.

While most of mentioned drawbacks of centralized ap-

proaches can be solved, a distributed security approach re-

quires the analysis and adaptation of the standard mechanisms

to be deployed on devices with tight resource constraints.

Recently, the Distributed Capability-Based Access Control

model (DCapBAC) has been postulated as a realistic approach

to be used on IoT scenarios [18]. This model offers several

advantages over more established approaches and it is gaining

attention from research community providing support for least

privilege, and providing a greater level of suitability to cope

with the inherent requirements of a distributed approach. The

key element of DCapBAC is the capability. The concept of

capability was originally introduced in [55] as “token, ticket,

or key that gives the possessor permission to access an entity

or object in a computer system”. This concept is applied to

IoT environments and extended by defining conditions which

are locally verified on the constrained device. This feature en-

hances the flexibility of DCapBAC since any parameter which

is read by the smart object could be used in the authorization

process. Moreover, it is based on technologies which have been

proposed recently to be used in constrained environments. In

particular, authorization tokens are specified with JSON [42],

which are sent to the target device by using CoAP. Moreover,

DCapBAC is based on the use of Public Key Cryptography

(PKC), whose features fit IoT requirements regarding scala-

bility and interoperability. Specifically, the application of PKC

is based on a set of cryptographic optimizations for ECC for

point and field arithmetic [56], which are implemented on

the smart object in order to design a lightweight, end-to-end

secure authorization process. Based on these optimizations,

DCapBAC specifies a simplified DTLS-based exchange for

mutual authentication and key establishment through Elliptic

Curve Diffie-Hellman Ephemeral (ECDHE) and Elliptic Curve

Digital Signature Algorithm (ECDSA) [57].

The security approach at operational plane is based on

DCapBAC. However, while the proposed scenario in [18] is

mainly intended for a Human-to-Thing (H2T) communication,

this work is intended to achieve a transparent Thing-to-Thing

(T2T) communication in order to provide the benefits of a

decentralized approach for IoT scenarios in terms of end-to-

end security, scalability, interoperability, and flexibility. In ad-

dition, this work addresses the token generation stage in order

to provide an integral approach for the security management

during the life cycle of resource-constrained devices.

V. PROPOSED SCENARIO

The set of optimizations which were presented in the

previous section has been used for the definition of an integral

security approach for IoT constrained environments, which is

shown in the Figure 6. This scenario illustrates the application

of the proposed mechanisms during different stages of the life

cycle of an IoT device. Additionally, they have been combined

with other standard security technologies in order to realize the

desired functionality. Before the explanation of the required

message exchange for our approach, a description of the main

components involved is provided. This specification has been

defined based on the actors which are considered by the IETF

ACE WG in [58] and the assumptions made in [51] for IoT

constrained environments:

• Client device (C). Resource-constrained device acting as

a client to access services hosted on another constrained

device. In addition, it acts as Supplicant (802.1X ter-

minology) or EAP peer (EAP terminology) during the

bootstrapping stage.

• Server device (RS). Resource-constrained device acting

as a resource server receiving access requests. Such

requests are based on REST configuration by using CoAP

methods (i.e. GET, POST, PUT and DELETE). Sensor

values or configuration data are examples of resources.

Additionally, we consider both devices have valid certifi-

cates with an associated key-pair, which was given during

the provisioning or manufacturing process. Moreover, it is

assumed RS has no prior knowledge of C at the time of the

access request.

• EAP Authenticator. Also known as AAA client, it is

the entity (non-constrained) responsible for providing

network access. In the proposed scenario, it is assumed

that it operates on pass-through configuration, forwarding

EAP packets between the AAA server (RADIUS) and the

EAP peer.

• EAP Server. The component (non-constrained) that pro-

vides an authentication service to the authenticator by

checking the credentials provided by the EAP peer. IT

is based on RADIUS and has been extended to request

authorization tokens to be sent to the EAP peer after a

successful authentication.

• Authorization Server (AS). It is the entity (non-

constrained) in charge of authorization tasks. It consists

of two subcomponents:

– Policy Decision Point (PDP). This entity evaluates

authorization policies and makes authorization deci-

sions. It is based on the XACML standard [17] and

supports the Multiple Decision Profile (MDP) [59].

– Capability Manager (CapM). It is responsible for

receiving requests from the EAP Server to generate

authorization tokens for the EAP peer. Furthermore,

it sends authorization requests to the PDP in order

to obtain the set of privileges to be embedded into

the token.

Moreover, in the scope of the proposed scenario, it is

assumed that C and RS may not have connectivity with AS

when the access request is sent. This may be due to the

use of devices with limited battery power, mobile devices

taking part in the communication, or the inherent nature of

the common networks which are deployed on constrained IoT

environments.

The proposed scenario is split into two main phases. During

the bootstrapping stage (steps 1-17), the device tries to get

access to the network through an authentication process based

on SEAPOL, EAP and RADIUS. Additionally, this phase

includes a process by which a set of privileges are inferred

and sent to the device by using capability tokens, which are
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Figure 6: Bootstrapping and operational stages overview

used at the operation stage (steps 18-23). The bootstrapping

process comprises, in turn, two different stages. During the

authentication phase, the device wishing to get access to

the network, acting as a Supplicant, sends a SEAPOL-Start

message according to the description provided at Section IV-A.

This request is answered by the EAP authenticator through

an EAP-Request-Identity message. In order to continue the

authentication process, the device acting as an EAP peer, sends

an EAP-Response-Identity message. The content of this packet

depends on the EAP method being used. In this case, an

authentication method based on the use of certificates (e.g.

TLS [60] or a simplified version of it), which are given to

devices during the provisioning stage, is assumed. Once the

EAP authenticator (operating in pass-through mode) receives

this message, it encapsulates it within an EAP-Message at-

tribute, which is sent to the EAP server by using a RADIUS

Access-Request packet. Then, the EAP server issues a RADIUS

Access-Challenge message in order to obtain the required

credential from the device to be successfully authenticated.

Depending on the EAP method being used, this message

exchange can be repeated until the authentication process is

completed. Additionally, as a result of a successful authentica-

tion, the EAP method can export two keys: the MSK and the

EMSK. These keys are derived between the EAP peer (device)

and the EAP server, and can be employed in a subsequently

negotiated ciphersuite.

According to the proposed scenario, once the device is

successfully authenticated, the bootstrapping process continues

with the authorization stage. For this purpose, the RADIUS

server issues a request to the CapM in order to obtain

authorization credentials to be delivered to the device. This

request includes the identity attributes contained in the client

certificate, which is obtained during the previous stage. Ex-

amples of identity attributes for an IoT device could include:

owner, device class or hardware features. This message is sent

to the CapM, which is responsible for generating authorization

credentials. Furthermore, this communication is assumed to

be performed between non-constrained devices; consequently,

it can be secured by standard mechanisms (e.g. HTTPS). In

order to generate the authorization token, the CapM needs

to obtain the set of privileges which are granted to the

device. However, unlike a typical access control scenario in

which an authorization request contains the 3-tuple (subject,

resource, action), in this case only the identity attributes of

the device (subject) are known. Therefore, under the core

XACML foundations, this would require sending as many

requests as combinations of resources and actions exist. In

our scenario, this issue is tackled by employing the XACML
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Multiple Decision Profile (MDP) [59], which allows the CapM

(acting as a Policy Enforcement Point (PEP)) to formulate a set

of authorization queries with a single request. The motivation

behind the use of MDP is that on a common deployment,

the PDP is running on a separate network component. While

the communication between CapM and PDP is assumed to be

performed through non-constrained networks, an environment

with a huge number of resources could require a lot of

authorization requests, and consequently, a higher delay and

network resources. In particular, the MDP request is based

on the ”Repeated <Attributes> categories” type [59], which

makes use of multiple <Attributes> elements with repeated

category in a request context to specify a request for access

to multiple decisions. Therefore, in the proposed scenario,

the content of this request includes a 3-tuple consisting of:

subject (client device attributes), resource (set of resources

identified by <Attributes> elements in the Resource category)

and action (set of actions identified by <Attributes> elements

in the Action category). Resources are usually identified by

a URI (e.g. “coap://sensor1/temperature”), while the actions

considered are directly mapped to the set of CoAP methods

(i.e. GET, POST, PUT, DELETE).

When the PDP receives this message, it evaluates the MDP

request by generating a set of individual authorization queries.

Each of these queries is defined by the elements of the carte-

sian product of the sets of attributes composing the resource

and action categories. The set of authorization decisions which

are obtained during this process are sent to the CapM in a

single message. Then, it generates an authorization token with

the subset of ’PERMIT’ authorization decisions which was

returned by the PDP in the previous message. Additionally, the

token is signed by CapM in order to avoid security breaches.

The format of this credential is based on the capability token

defined in [18]. Depending on the specific scenario, the set of

privileges to be embedded into the token could be large, and

consequently, the size of the token may be oversized to be sent

on constrained environments. In that case, the set of privileges

can be split up into a set of tokens, each containing a subset of

access rights. Then, the CapM sends the authorization token(s)

to the RADIUS server by using a RADIUS-Access-Accept

message. This message is sent to the EAP authenticator,

indicating that the device has been successfully authenticated.

Finally, it sends two messages to the device. An EAP-Success

packet to confirm the devices was successfully authenticated,

and a SEAPOL-Key message including the authorization token,

which was previously obtained.

The operational stage begins when the client device (C) tries

to access a hosted service on another device acting as a re-

source server (RS). During this phase, constrained devices can

communicate by using the authorization credentials previously

obtained, in order to exchange information in a secure way. It

should be pointed out that, unlike the bootstrapping process,

the communication at this stage is intended to be performed

between constrained devices. Consequently, the required mes-

sage exchange for this phase has been designed taking into

account the requirements of IoT constrained environments

[51]. This process is based on CoAP, which is secured by

a simplified version of DTLS based on ECDHE-ECDSA [57].

Algorithm 1 Capability Token Evaluation process

Require: Encrypted CoAP Request ereq containing: Capability token of client c: ct;

Session key skx previously established;

Security Context sc with the association (skx, spkc);

req=decrypt(skx, ereq)

if association(sc, skx )=spkc then

if (currenttime > ct.nb > ct.ii) AND (currenttime < ct.na) then

for all accessright ar ∈ ct.accessrights do

if (ar.action=req.method=′POST ′ AND ar.resource=req.LocationPath) OR

(ar.resource=req.options.requestUri) then

if conditions co ∈ ar are fulfilled then

permittedAction = true

break

end if

end if

end for

if permittedAction then

if verifysignature(ct.si,pkcapm ) = true then

Authorized Token

end if

end if

end if

end if

As mentioned above, it is assumed that each device has a

certificate with an associated key pair: (spkc, sskc) for C, and

(spks, ssks) for RS. In addition, RS has the public key of

CapM (pkcapm), which is intended to manage the access to

devices within the network.

Before the first message is sent, C generates an ephemeral

key pair (epkc, eskc), in which epkc = eskc ∗ G and G is

the curve generator supported by RS. This information can

be embedded in the authorization token or obtained by C

before the communication. Then, C sends a CoAP request

containing both its static public key spkc and the ephemeral

public key epkc. This message is signed by C with sskc
using the ECDSA. In addition, timestamps are used in order

to avoid replay attacks. When RS receives this message, the

signature is verified by making use of spkc, which is attached

into the request. Then, RS generates an ephemeral key pair

(epks, esks) where epks = esks ∗ G. Thus, RS computes

(skx, sky) = esks ∗ epkc, where skx is the shared secret

between RS and C, which is used to send the token over a

protected channel. Additionally, RS creates a security context

in which the association between skx and spkc is set. Then,

RS sends a Coap Response (4.01 Unauthorized) indicating

C is not authorized to perform the requested action. This

message includes the epks key, and is signed with ssks by

using ECDSA. When C receives this message, it validates

the signature by employing spks, which was obtained before

this message exchange. In the same message, C receives epks
and, consequently, it can calculate (skx, sky) = eskc ∗ epks,

where skx is the secret key, which is shared with RS. At the

beginning of the second message exchange, both entities hold

skx to be used as a session key. Therefore, the authorization

token is sent over a protected channel for privacy concerns. In

this way, C sends a CoAP request containing the token, which

is encrypted with skx. When RS receives this message, it runs

the authorization process which is described in the Algorithm 1

based on the description provided by [18]. After the request is

decrypted with skx, it checks the associated public key which

was previously set in the security context. Then, the authoriza-

tion token is evaluated. Taking into account the constrained

nature of devices, this evaluation is performed according to

the complexity of the required operations. Firstly, the device

checks the token is valid, that is, if it has not expired. Then,

for each one of the privileges which are contained in the
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token, the device checks if the requested action of the CoAP

message matches the action of the access right. In addition,

contextual conditions are analysed. In the case that one of these

verifcations fails, the next action right element is taken for

evaluation, if any. Before granting the permission, the CapM

signature for this token has to be verified. For this purpose,

RS makes use of the CapM’s public key pkcapm. This phase

is left to the end due to the cost required by the cryptographic

operations. Finally, if the signature is successfully evaluated,

the request is permitted. Consequently, RS sends a CoAP

response (with 2.xx code), which is protected again with skx.

VI. EVALUATION RESULTS

A. Bootstrapping Stage

For the first stage of the proposed scenario, several tests

have been performed in which EAPOL and SEAPOL over

802.15.4 networks have been analysed and compared. These

tests were performed on Tmote Sky modules with MSP430

microcontrollers, with 10KB of RAM and 48 KB of flash

memory. One mote was connected to a regular PC through a

USB port acting as an Access Point, and other motes acted as

clients attempting to authenticate and connect to the network.

All motes were using Contiki OS 3.x.

NullMAC EAPOL SEAPOL

slip-radio 71906 75552 75189

slip-radio (flash) 30618 33380 33110

sky-websense 91293 97896 96789

sky-websense (flash) 45390 49144 48808

native-border-router 413177 453157 453157

Figure 7: Memory comparison (in bytes) between EAPOL and

SEAPOL for Contiki OS applications

In particular, three applications were modified: native-

boarder-router, slip-radio and sky-websense. In order to op-

timize the memory footprint and consider a MAC layer

without IEEE 802.15.4 design constraints, the lightweight

NullMAC driver (without MAC layer processing) was chosen

and extended to support two separate roles of Supplicant and

Authenticator. Furthermore, the functionality of EAP layer

was added with only MD5 as an EAP method to verify the

correctness of this design. In addition, a lightweight RADIUS

communication layer was implemented to support the message

exchange with the FreeRADIUS server through the IPv6

protocol. These comparisons were done taking into account

the NullMAC and NullRDC drivers. According to the results

in Figure 7, modifications to the native-border-router increased

its size around 9.68% in relation to the NullMAC driver.

This change is mostly due to the fact of the implementa-

tion of RADIUS communication mechanisms. The introduced

modifications are the same for the EAPOL and SEAPOL

solutions because the native-border-router does not use directly

the MAC driver; it communicates with the 802.15.4 network

through the access point through the slip-radio application. The

slip-radio modification of the EAPOL MAC driver increased

the size around 9% of the flash memory usage in relation to the

NullMAC/RDC drivers. The optimized version of the EAPOL

protocol (SEAPOL) reduced the usage of flash memory by

270 bytes. Moreover, the set of modifications of the sky-

websense application increased the flash memory usage by

3754 bytes for EAPOL MAC (that is, around a 12.2% increase

of memory usage). The SEAPOL MAC version decreased the

flash memory usage by 336 bytes (3418 used bytes), which

represents a 11.1% decrease in comparison to the EAPOL

MAC driver. It should be pointed out that during all of these

tests, Supplicant devices were able to successfully authenticate

with regular FreeRADIUS server by using EAP-MD5 as an

authentication mechanism.

Moreover, we analysed the impact of SEAPOL to different

EAP methods in relation to the standard EAPOL according

to implementation size and network usage. During this pro-

cess, EAP-MD5, EAP-PSK and EAP-TLS were successfully

implemented and tested on the testbed previously described.

Regarding the memory usage, the results are shown in Figure

8, in which different EAP methods are considered. According

to the results, EAP-MD5 is the most lightweight EAP Method.

It requires only 2498 bytes of ROM for SEAPOL (11.98%

memory usage reduction in comparison to the regular EAPOL

version) and 65 bytes of RAM. EAP-PSK [33] requires 9614

bytes of ROM (3.41% memory usage reduction in comparison

to the regular EAPOL version) and 226 bytes of RAM. It

provides a higher security level than MD5 but is only applica-

ble to scenarios with a small number of devices. The second

category of EAP methods which were analysed consists of

EAP-TLS methods with ECDSA as an authentication scheme.

Different configurations of these methods require a relatively

moderated amount of RAM memory (5169 bytes for the

SECG-P160 curve, and 5700 bytes for the NIST-P256 curve).

These methods represent the category with the highest ROM

memory requirements. Specifically, they require 29 and 33

kilobytes for TLS-1.0 (with a reduction of 1.09% and 1.01%

of ROM through SEAPOL) and 35 and 39 kilobytes for the

TLS-1.2 version (with 0.96% and 0.86% reduction in the

case of SEAPOL), respectively. Last category of the analysed

EAP methods consists of EAP-TLS methods with RSA as

an authentication scheme. In this case, while they require

less ROM memory than ECDSA version (with a 1.50% and

1.18% reduction with SEAPOL in relation to EAPOL), RAM

memory requirements are significantly higher. Consequently,

while they provide a similar security regarding ECDSA-based

methods, they are hardly applicable to devices with tight

memory constraints.

ContikiOS MAC driver EAPOL SEAPOL Memory usage reduction

ROM RAM ROM RAM ROM RAM

nullmac 17820 1410 17820 1410 0% 0%

EAP-NULL +832 +64 +492 +64 40.86% 0%

EAP-MD5 +2838 +65 +2498 +65 11.98% 0%

EAP-PSK +9954 +226 +9614 +226 3.41% 0%

EAP-TLS-1.0-ECDSA-160 +29335 +5169 +29015 +5169 1.09% 0%

EAP-TLS-1.2-ECDSA-160 +35575 +5169 +35235 +5169 0.96% 0%

EAP-TLS-1.0-ECDSA-256 +33758 +5700 +33418 +5700 1.01% 0%

EAP-TLS-1.2-ECDSA-256 +39978 +5700 +39638 +5700 0.86% 0%

EAP-TLS-1.0-RSA-480 +22546 +9278 +22206 +9278 1.50% 0%

EAP-TLS-1.2-RSA-480 +28766 +9278 +28426 +9278 1.18% 0%

EAP-TLS-1.0-RSA-512 +22546 +9509 +22206 +9509 1.50% 0%

EAP-TLS-1.2-RSA-512 +28766 +9509 +28426 +9509 1.18% 0%

EAP-TLS-1.0-RSA-1024 +22546 +13153 +22206 +13153 1.50% 0%

EAP-TLS-1.2-RSA-1024 +28766 +13153 +28426 +13153 1.18% 0%

EAP-TLS-1.0-RSA-2048 +22546 +20567 +22206 +20567 1.50% 0%

EAP-TLS-1.2-RSA-2048 +28766 +20567 +28426 +20567 1.18% 0%

Figure 8: Memory usage comparison between EAPOL and

SEAPOL
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Additionally, we studied the network usage different EAP

methods according to EAPOL and SEAPOL implementations.

The set of obtained results is shown in Figure 9. Firstly,

the EAP-MD5 over EAPOL requires the transmission of

6 packets with 161 bytes which is reduced by SEAPOL,

requiring 125 bytes (a 22.36% reduction). The EAP-PSK used

9 packets with 341 bytes which represents a 13.67% reduction

of transmitted data in comparison to the EAPOL standard.

Both ECDSA configurations of TLS require 1083 and 1217

bytes of network traffic with around 30 packets. SEAPOL

provides a 13.84% and 13.26% network traffic reduction for

SECG-P160 and NIST-P256 curves, respectively. Moreover,

RSA-based configurations of TLS require 19, 20, 27 and

43 packets, respectively. By using SEAPOL, 12%, 11.76%,

10.99% and 10% network traffic reduction was obtained.

0 500 1,000 2,000 3,000 4,000 5,000

EAP-MD5

EAP-PSK

EAP-TLS-ECDSA-160

EAP-TLS-ECDSA-256

EAP-TLS-RSA-480

EAP-TLS-RSA-512

EAP-TLS-RSA-1024

EAP-TLS-RSA-2048

Bytes

EAPOL-Transmited EAPOL-Received
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EAP-TLS-RSA-512

EAP-TLS-RSA-1024

EAP-TLS-RSA-2048

Bytes

SEAPOL-Transmited SEAPOL-Received

Figure 9: Network usage comparison between EAPOL and

SEAPOL

According to the results, ECDSA-based TLS methods pro-

vide a more suitable trade-off between security properties

and IoT constraints. These methods were implemented over

SEAPOL, providing an lightweight version of EAPOL in

terms of memory and network usage, which are required

in order to deploy security mechanisms on constrained IoT

environments. Additionally, SEAPOL can be leveraged for

the design and development of IoT network architectures in

order to deploy lightweight bootstrapping mechanisms, as the

proposed scenario in this work.

B. Operational Stage

For the second stage of the proposed scenario, the required

message exchange and the token evaluation have been im-

plemented. Specifically, C and RS have been developed over

JN5148 motes equipped with Contiki OS, programmable CPU,

and a unified memory architecture which contains 128 Kbytes

of ROM, 128 Kbytes of RAM and a 32-byte One Time

Programmable (OTP) eFuse memory.

At the operation stage, the memory usage which was

required for the designed functionality is shown in Figure

10. It should be noted that these values makes reference to

the device acting as a resource server (RS) in the proposed

Module ROM ROM increase RAM RAM increase

Contiki 2.6 51002 0% 11644 0%

CoAP server 53030 3.98% 12036 3.37%

JSON parser 57177 7.82% 12156 1%

Capability Token processing 57531 0.62% 12156 0%

MD5 60231 4.7% 12156 0%

base64 scheme 6164 1.55% 121556 0%

ECC library 70202 14.78% 12336 1.48%

Total 70202 37.65% 12336 5.94%

Figure 10: Code size for software modules for operation

security

scenario. These results were obtained according to the gradual

addition of the different modules, which are required for our

application. For this purpose, we used the ba-elf-size tool that

is provided by the ba-elf2 compiler for the “ba2” instructions

set of the JN5148 OpenRISC architecture According to the

results, the implementation of the components represents a

37.65% increase of ROM and a 5.94% of RAM, in relation

to an empty application for Contiki OS. As expected, the

component that needs more resources is the ECC library, rep-

resenting a 14.78% increase of ROM. Other heavy components

are related to the CoAP server functionality, as well as JSON

parser, which is required to parse the authorization token.

Nevertheless, our lightweight design and ECC optimizations

makes it possible to embed authentication and authorization

functionality on devices with tight resource constraints.

0 250 500 750 1,000 1,250 1,500 1,750

Authorization

Authentication

Time (ms)

Validate Signature Token Evaluation Generate keypair

Generate Signature Diffie-Hellman AES Encryption

Figure 11: Time results for operation security

Moreover, in order to demonstrate the feasibility of mech-

anism, 100 tests were executed of the proposed message

exchange. The mean values of the execution times are shown

in Figure 11. As discussed in Section V, in the first message

exchange C and RS are mutually authenticated and, as a result

of this step, a session key is established to send the authoriza-

tion token. Therefore, this stage includes the following tasks:

• Sign message (198.23 ms): it includes the delay required

to sign a CoAP message by using ECDSA.

• Validate signature (288.18 ms): time required to verify

the ECDSA signature from C or RS.

• Generate keypair (186.74 ms): it includes the time to

generate an ephemeral keypair.

• Generate session key (184.8 ms): includes the delay

required to generate the session key from ephemeral a

public key and ephemeral secret key.

These operations are performed by C and RS during the

first message exchange. According to results, the mean time

required for the mutual authentication stage is 1715.9 ms

(857.95ms ∗ 2). At this point, it should be pointed out that

some of these operations could be performed in parallel (e.g.

session key generation by RS) while messages are over the
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link. Furthermore, while this time includes the set of required

operations by C and RS, the Round-Trip-Time (RTT) for this

exchange would not include some of these tasks (e.g. the initial

signature by C). For the second message exchange, C sends

a CoAP request in which the capability token is attached.

Therefore, it requires the delays for:

• Symmetric encryption/decryption (104.38 ms): the delay

which is required for symmetric cryptography operations

by using Advanced Encryption Standard (AES) [61]. It

includes the time to encrypt and decrypt both messages.

• Token evaluation (59.7 ms): includes the delay to check

if the user is authorized to perform the requested action

and if the conditions are met.

• Validate signature (288.18 ms): time required to verify

the ECDSA signature which is contained in the capability

token (CapM’s signature).

Consequently, the mean time which is required for the

second stage is 452.26 ms. Therefore, taking into account

the results of the previous phase, the delay of the whole

process for secure operation is 2168.16 ms. At this point, it

should be noted that this time assumes that C and RS are

successfully authenticated, and C is authorized to perform the

requested action and, therefore, all steps of the mechanism

must be completed. As expected, the most expensive tasks

are related to public-key cryptography operations. However,

unlike most of previous security proposals for IoT which

are based on symmetric cryptography, our optimized ECC

library has enabled to embed this functionality into constrained

devices, improving results over more consolidated ECC im-

plementations, such as TinyECC [26] and NanoECC [62]. In

addition, our lightweight design has allowed the development

of a decentralized authentication and authorization mechanism,

providing the benefits of a distributed approach in terms of

flexibility, interoperability and end-to-end security.

VII. DISCUSSION

The seamless integration of physical objects in the Internet

infrastructure requires the application of lightweight security

mechanisms to be used even in constrained environments.

Current standard security solutions were not designed taking

into account the inherent nature of such IP-based global

ecosystem, and consequently, a deep revision and adaptation

of these mechanisms need to be considered. These challenges

have attracted more and more attention from research com-

munity and recently several efforts are starting to emerge

in this direction. In particular, the IETF Authentication and

Authorization for Constrained Environments (ACE) WG was

recently established to accommodate the current standard

security mechanisms to IoT environments with tight resource

constraints.

On the one hand, ACE WG is focused on the definition

of requirements and considerations that must be addressed

by security mechanisms that are designed for constrained

environments. Specifically, the work presented in [51] provides

a set of assumptions and requirements which were analysed

and mostly addressed by the integral scenario proposed in this

work. On the other hand, [58] provides an initial architecture

which is composed by a set of actors with different require-

ments and functionality. In particular, the scenario considered

by ACE is based on a client (C), which wants to get access

to a resource (R) hosted in a resource server (RS). As in the

proposed scenario, C and RS are considered as constrained

level actors, which communicate over a constrained level

protocol (i.e. CoAP). Moreover, the architecture defines an

Authentication Manager (AM) and an Authorization Server

(AS), which are supposed to be less-constrained level actors. In

particular, the AS functionality is performed by the Capability

Manager and the PDP in the proposed scenario; furthermore,

the functionality of the AM is carried out by the AAA

infrastructure. These entities are integrated in order to generate

proper credentials for authenticated and authorized entities,

which can be employed by constrained devices for secure

operation. Also, our lightweight authentication and authoriza-

tion mechanisms provide a flexible approach, allowing the

specification of temporal privileges and delegation, in order

to fit with the use cases which are considered in [63].

In addition to the main considerations of ACE WG, our

scenario includes a security bootstrapping process in order to

obtain authorization credentials to be used during the opera-

tional stage. This mechanism is based on standard technologies

and was optimized to be used over constrained environments.

Specifically, it is based on a lightweight version of EAPOL

(SEAPOL) to transport EAP messages, achieving a proper

security mechanism which does not require additional pro-

tocols or message exchange. While it was proven as a suitable

approach for constrained devices, it requires obtaining a cre-

dential or set of credentials containing all the privileges for a

device at the bootstrapping stage. On the one hand, with this

solution, a device does not have to request new authorization

credentials during their life cycle, which is a valuable feature

for constrained devices and Low power and Lossy Networks

(LLNs). On the other hand, the set of privileges for a specific

device can change, and the size of credentials could be too

large to be sent over LLNs, if this issue is not properly

addressed. Currently, other protocols could be employed as

an alternative to get security credentials to be employed

by constrained devices on IoT scenarios. Specifically, PANA

[29] uses notification messages (PNR/PNA) for signaling re-

authentication and performing liveness test, which are sent

at any time during the access phase. The semantics of these

messages could be extended by defining new Attribute-Value

Pairs (AVPs), which could be used by PANA Clients (PaC) to

request authorization credentials. In this case, while a device

could get credentials according to their needs at any time, ob-

taining an authorization token for a specific transaction could

hinder revocation tasks, as well the credentials management

for constrained devices.

VIII. CONCLUSIONS AND FUTURE WORK

The realization of IoT scenarios requires addressing signifi-

cant security implications, since everyday devices are being

integrated into the Internet infrastructure. While in recent

years, technological challenges were overcome through the

extension and adaptation of wireless communication tech-

nologies, IoT paradigm has to cope with challenges related
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to the application of security mechanisms over constrained

environments. Under these considerations, this work proposes

a set of lightweight authentication and authorization mech-

anisms in order to embed authentication and authorization

functionality on constrained smart objects. These mechanisms

are integrated and extended with other standard technologies

in order to address different security planes of the life cycle of

an IoT device within an ARM-compliant security framework

to be deployed on IoT scenarios. In addition, we present a

set of evaluation results in order to demonstrate the feasibility

of the proposed scenario, by optimizing different aspects of

these mechanisms. Future work is focused on the integration

of the proposed solution into the IETF ACE WG as well

as the definition of alternative scenarios, in order to assess

and compare the suitability of such scenario. Specifically,

the design and development of standard-based alternative

mechanisms, such as PANA, will be analysed in order to

obtain a trade-off between the features which are provided by

different solutions. Moreover, we will analyse the design and

development of other lightweight security solutions addressing

other components of the proposed framework, in order to

provide a comprehensive security approach for constrained IoT

environments.
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