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ABSTRACT Integration of the Internet into the entities of the different domains of human society (such as

smart homes, health care, smart grids, manufacturing processes, product supply chains, and environmental

monitoring) is emerging as a new paradigm called the Internet of Things (IoT). However, the ubiquitous and

wide-range IoT networks make them prone to cyberattacks. One of the main types of attack is a denial

of service (DoS), where the attacker floods the network with a large volume of data to prevent nodes

from using the services. An intrusion detection mechanism is considered a chief source of protection for

information and communications technology. However, conventional intrusion detection methods need to be

modified and improved for application to the IoT owing to certain limitations, such as resource-constrained

devices, the limited memory and battery capacity of nodes, and specific protocol stacks. In this paper,

we develop a lightweight attack detection strategy utilizing a supervised machine learning-based support

vector machine (SVM) to detect an adversary attempting to inject unnecessary data into the IoT network.

The simulation results show that the proposed SVM-based classifier, aided by a combination of two or three

incomplex features, can perform satisfactorily in terms of classification accuracy and detection time.

INDEX TERMS Intrusion detection system, anomaly detection, Internet of Things, support vector machine.

I. INTRODUCTION

The concept of Internet of Things (IoT) is based on the

integration of uniquely identifiable heterogeneous physical

objects around us (humans, animals, sensors, instant cameras,

vehicles etc.) and the cyber world with the ability to transfer

data over a network without requiring human-to-human or

human-to-computer interfaces. As illustrated in Figure 1,

the applications of the IoTmay range from a simple appliance

for a smart home to a complex apparatus in a smart grid.

The IoT provides a tremendous opportunity for societies

around the world. Even with different objectives, contrasting

IoT applications have an intersection set of characteristics.

Broadly speaking, a primary node in IoT has capability to

perform three distinct actions; data collection, data transmis-

sion, and data processing and utilization [1]–[3].

In the data collection stage, small, memory-constrained

and low energy-consumption sensors with a short-range
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communications capability are employed to collect informa-

tion about the physical environment. Ethernet, WiFi, ZigBee,

andwire-based technologies are combinedwith Transmission

Control Protocol/Internet Protocol to connect the objects and

users across prolonged distances during data transmission.

During the data processing and utilization stage, applications

process the data to obtain useful information, and may ini-

tiate control commands to act on the physical environment

after making decisions based on the collected information.

The coordination of diverse technologies, the heterogeneity,

and the distributed nature of communications technologies

proposed for the IoT by different standards development

organizations [4] magnify the threat to end-to-end security in

IoT applications.

Numerous methods for improving data confidentiality,

authentication, and access have been reported in the lit-

erature; however, even with these mechanisms, IoT net-

works are prone to multiple attacks aimed at disrupting

the network. The growth, complexity, ubiquity, and diver-

sity of the IoT expands the potential attack surface.
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FIGURE 1. An example of IoT applications.

Therefore, intrusion prevention tools and signature-based

intrusion detection methods cannot be effective against mod-

ified attacks, and fundamentally new types of attacks, in the

IoT. A defense mechanism aiming to detect novel and poten-

tial intrusions is required. Intrusion detection systems (IDSs)

based on anomaly detection (a.k.a. statistically based) fulfill

this purpose [5]. Anomaly detection does not require prior

identification of attack signatures.

Considering that the development of IDSs for the IoT

represents a significant challenge for information security,

researchers describe IoT networks in terms of specific char-

acteristics as follows [1], [6].

• Unlike traditional networks, where the system adminis-

trator deploys IDS agents in network entities with high

computing and storage capacities, the memory capac-

ity, processing power, and battery energy-capacity con-

straints of IoT network nodes that host IDS agents is

challenging.

• In conventional networks, end systems are directly con-

nected to specific nodes (e.g., wireless access points,

switches, and routers) that are responsible for forward-

ing packets to the destination. In contrast, there are

multiple hops in IoT networks. Regular nodes may

simultaneously forward packets and work as end sys-

tems. Moreover, in some IoT applications, the net-

work topology regularly changes (e.g., VANETs, mobile

sinks, dynamic selection of cluster heads). The speci-

ficity of the topology poses new challenges for IDSs.

• Protocols used in IoT networks are different from con-

ventional networks, such as IEEE 802.15.4, IPv6 over

Low-power Wireless Personal Area Network (6LoW-

PAN), IPv6 Routing Protocol for Low-Power and Lossy

Networks (RPL) and Constrained Application Proto-

col (CoAP). Heterogeneity in protocols introduces new

weaknesses which result in new challenges for IDSs in

the IoT.

The characteristics of IoT networks given above limit the

design of an IDS to be lightweight still efficient enough

to secure the network from potential attacks. The term

lightweight does not refer to simplicity of the system.

It means that the IDS should be able to perform its operation

with the available amount of resources in the sensor nodes of

the network. Roesch et al. [7] defined a lightweight IDS as

small, powerful, and flexible enough to be used as permanent

element of the network security infrastructure. According to

Hai et al. [8], a lightweight system aims at energy saving

and reduced computational resources. Maleh and Ezzati [9]

consider a system as lightweight if it has reduced energy con-

sumption. Concluding, a lightweight system is the one which

can perform in limited energy and computation resources

regardless of simplicity. Keeping these definitions in mind,

we design a lightweight IDS system by avoiding the complex
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features extraction and feature selection steps. We provide

rather uncomplicated and limited number of features to be

extracted from raw data. The results show that, this type of

system can perform efficiently in discriminating an intrusion

in the IoT network.

The proposed scheme is intuitive to perform well in this

type of application. However, there is no literature address-

ing the intrusion detection problem using such a foolproof

algorithm. This leaves gap for proposing and analyzing such

uncomplicated and intuitive algorithms for these applications

rather than utilizing complex statistical techniques.

There are many datasets available providing samples

DoS attacks under different scenarios including KDD’99,

DARPA, CAIDA DDoS, etc. [10]. The issue to use these

datasets for evaluating our proposed algorithm lies in the

attributes in which these datasets are available. The only

characteristic of network traffic that is used in our algorithm

is the packet arrival rate per node. However, this characteristic

of the data is not given in any of the above given dataset. For

instance, the dataset KDD’99 represent the data samples in

attributes such as protocol type, duration of connection, Land

etc. but packet arrival rate [11]. This limits our algorithm to

be tested utilizing these online available datasets.

A. MOTIVATION

The novelty of this manuscript lies in the design of an IDS for

IoT networks with the characteristics of lightweight i.e., min-

imizing cost of system in terms of energy consumption and

computational resources. An Ideal IDS system is lightweight

enough to be implemented in a sensor node equipped with

limited battery capacity and computational resources, still

performing efficiently. In this work, this is achieved by elim-

inating the complex features extraction from data and the

feature selection steps. Instead of taking different charac-

teristics the proposed IDS rely on only the packet arrival

rate attribute of raw data. Moreover, the complexity of an

SVM-based classifier directly depends on the dimensions

of input vector. The higher the dimensions of input vector

the higher the complexity of SVM. Keeping this in mind,

we reduce the dimensions by extracting only 2 to 3 features

from input vector. In short, we try to develop a lightweight

IDS by the following way. We considering only one attribute,

i.e., the packet transmission rate, and extract only 2 to 3

features from that attribute. The three features utilized include

mean, median and maximum values obtained to perform the

classification. Intuitively, these steps reduce the energy and

computational cost as compared to a system considering up

to 40 complex attributes, such as protocol type, service, land,

wrong fragments etc. as given inNSL-KDDdataset [11]. This

approach makes the proposed IDS suitable for implementa-

tion in sensor nodes of IoT while keeping the efficiency of

system satisfactory as illustrated in the experimental results.

Furthermore, several researchers have proved that an

SVM-based classifier outperform neural networks, k-nearest

neighbor, random forest etc. [12]–[14]. This is the motivation

to design our proposed algorithm based on an SVM-based

classifier. A performance comparison of SVM-based classi-

fier and other machine learning-based algorithms can also be

found in literature supporting this argument.

B. CONTRIBUTIONS

Thus, to unlock the IoT potential, we need to improve

IoT security and the performance of IDS. In this paper,

we are motivated to consider intrusions (and corresponding

anomaly-based IDS) accompanied by changes in traffic inten-

sity. This effect is typical for a wide range of attacks in the

IoT environment. The main contributions of this paper are as

follows.

• We analyze DoS attacks in the IoT that were reported

in the literature [15]–[20] and conclude that the conse-

quences of the intrusions include changes in the intensity

of the transmitted packets. In some cases, the change

in traffic intensity is an attack tool; in other cases, it is

a concomitant effect. Analysis reveals the relationship

between traffic change profiles and types of intrusion.

• An intrusion detection on a sensor-by-sensor basis is

a challenging problem. At the same time, there is an

industrial demand on intrusion detection in devices [21].

In some recent papers it has been declared a low quality

of SVM based intrusion detection on a sensor-by-sensor

basis [22]. However, in this paper we demonstrate that

a foolproof SVM based approach combined with proper

statistics and feature engineering provides good perfor-

mance in various scenarios.

• Instead of utilizing complex attributes (given in online

datasets such as NSL-KDD) of the system, we utilize

only one attribute, the packet arrival rate to the sensor

node. To the best of authors’ knowledge, this work is

pioneer considering specifically this attribute for devel-

oping an IDS for IoT.

• Based on the above analysis, we develop a support vector

machine (SVM)-based classifier for a lightweight IDS.

The performance of classifier is analyzed for linear,

polynomial, and radial-basis kernel functions.

• Simulation experiments are conducted to verify the

choice of SVM parameters and to demonstrate the

method’s efficiency. The performance of IDS is ana-

lyzed in terms of true positive rate, true negative rate,

false positive rate, false negative rate, accuracy and

detection time.

• Furthermore, the performance of proposed SVM-

based IDS is compared with other machine learning

algorithms-based IDS including neural network, KNN

and decision tree. The accuracies comparison of 100 iter-

ations of experiments prove the efficiency SVM-based

classifier using linear and polynomial kernel functions.

• Finally, the performance of proposed algorithm is

compared with some of the proposed algorithms in liter-

ature. The accuracy measure is used to assess how effi-

ciently an algorithm can detect the intrusions. The CPU

time measure is used to compare the lightweightness

measure of different algorithms. The results show that
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the proposed algorithm is not only lightweight among

the given set of algorithms but it also outperforms these

algorithms.

C. PAPER ORGANIZATION

The rest of this paper is organized as follows. Section II

introduces the related work. An analysis of IoT attacks is pre-

sented in Section III, and we discuss the models of trustwor-

thy activity and abnormal behavior. Section IV proposes the

machine learning-based framework of the intrusion detection

system, followed by a performance evaluation in Section V.

The conclusion and future research directions are presented

in Section VI. The abbreviations used in this paper, are sum-

marized in Table 1.

II. RELATED WORKS

Farahnakian and Heikkonen [20] proposed a deep auto-

encoder (DAE)-based classification model to detect and clas-

sify intrusions in the network. The proposed classifier was

obtained by combining a set of auto-encoders (AE) such

that the output of an AE at (n − 1)th layer is the input to

the AE at the nth layer. The results presented showed that

the proposed DAE performed better in detecting intrusions

in the systems, compared to the deep belief network (DBN)

and a combination of AE+DBN. Shone et al. [23] stepped

forward and proposed a nonsymmetric deep auto-encoder

(NDAE) to learn features in an unsupervised manner. A set of

NDAEs is stacked to perform the learning and classification

tasks.

A malicious pattern detection mechanism was proposed by

Oh et al. [24] to secure networks in the IoT. They reduced

memory usage in a pattern-matching process by proposing

an auxiliary shifting method and an early decision scheme.

They reported efficient results in early detection of a mali-

cious pattern; however, they failed to detect and classify

other attacks, such as denial of service (DoS), false data

injection, etc. Furthermore, an attacker may try a unique

pattern each time, making it difficult for the node to detect

an attack. Moreover, Ali et al. [25] proposed a fast learn-

ing network (FLN) with particle swarm optimization (PSO)

applied for convergence of classifier parameters. Although

the results were satisfactory, the complexity of the system is

too high to be applied to sensor nodes due to their low com-

putation and energy-storage capabilities. Moukhafi et al. [26]

combined a hybrid genetic algorithm (GA) and an SVM with

PSO for feature subset selection in their proposed intrusion

detection system. This system was successful in differenti-

ating DoS attacks from other types of attack with an accu-

racy of almost 100%; however, it could not discriminate

normal class signals from other types of attacks with reason-

able accuracy. Vajayanand et al. [27] tried to improve clas-

sification accuracy by proposing a hybrid feature-selection

technique based on a GA and mutual information (MI) for

an SVM-based classifier. They also proved (by illustrating

their experimental results) that an SVM-based classifier is

successful in achieving better performance than an artificial

neural network (ANN). The highest accuracy achieved in

their experiment was 96% when the classifier was trained

with 400 samples. The results showed that utilizing both the

GA and MI could need as few as three informative features

to obtain these results. However, considering the battery and

computation-cost limitations of IoT devices, this scheme does

not seem like a promising solution.

Recently, Kabir et al. [28] proposed an optimum

allocation-based least square SVM (OA-LS-SVM) for intru-

sion detection systems. This technique first combines the

training and testing datasets. Then, an optimal alloca-

tion (OA) scheme determines the volume of training and test-

ing sets. Later, it selects representative samples directly from

training and testing datasets for the classifier. Although this

paper presented some interestingly satisfactory results, it can

miss some important information or features in the dataset

owing to their limiting the training dataset to samples having

a specific relation with a representative sample. Furthermore,

obtaining all the samples from training and testing datasets is

a challenge difficult to overcome.

Another IDS was proposed in [6] based on an automata

or finite state machine. The automata transitions are used to

characterize the network, and are later used to detect if an

intrusion occurred. The experimental results addressed only

three types of attack: the jamming attack, the false attack,

and the reply attack. DoS or false data injection attacks were

not addressed. A two-step technique to effectively detect

intrusions was proposed in [29]. In the first step, several

binary classifiers are utilized to classify the sample. In the

next step, the sample is classified by a k-nearest neighbors

(k-NN) algorithm if the output of step 1 is ambiguous. The

highest accuracy obtained in these experiments was around

94% at the cost of high computation resources usage and

high energy consumption to implement the several types of

classifier. Furthermore, Tao et al. [30] proposed an IDS based

on feature selection, weight, and parameter optimization of

an SVM based on a GA (shortened to FWP-SVM-GA).

The GA first selects the features subset, and then simul-

taneously optimizes the parameters of the SVM. Finally,

the trained classifier is used to detect and classify anomalies

in the network. In [31] the authors proposed an intrusion

detection system based on a conditional variational autoen-

coder (CVAE). The labels of the samples are added as extra

input to the decoder block of a VAE. An IDS based on

long short-term memory recurrent neural networks (LSTM-

RNNs) was proposed [32]. The authors showed that their pro-

posed technique can successfully overcome various machine

learning techniques, including SVM, k-NN, and Bayesian.

Khalvati et al. [33] used both SVM and naïve Bayes clas-

sifiers to efficiently detect and classify intrusions in a net-

work. Han et al. [34] focused on the energy efficiency of

the system, yet achieved satisfactory performance with the

proposed IDS based on game theory and an autoregres-

sive model. In [35], the authors used naïve Bayes, SVM,

and a random forest decision tree algorithm to detect DoS

attacks in wireless sensor networks (WSNs). Ozay et al. [36]
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TABLE 1. Nomenclature.

presented an analysis of supervised and unsupervised

machine learning algorithms to detect attacks targeting smart

grids. James et al. [37] targeted the detection of false data

injection attacks using a wavelet transform and a deep neural

network. Several other authors focused on false data injec-

tion attacks and proposed detection systems based on deep

learning techniques [38]–[40]. Teng et al. [41] proposed a

collaborative intrusion detection system using an SVM and

decision tree algorithms.

Helmer et al. [42] presented a distributed agent to imple-

ment a lightweight IDS. The reserved mobile agents would

move in the network to collect and report to a mediator

to obtain the status of the network. Although, this type of

architecture is successful to overcome the critical problems

of centralized network such as computing cycles on user’s

computer and providing higher ease of adding nodes to the

network. However, this type of network can have some crit-

ical issues of higher delay due to the transmission of data to

other nodes and then waiting for the response from media-

tor. Furthermore, these transmissions between nodes makes

this network more prone to cyber-attacks. Another attempt

to develop a lightweight IDS was done by Li et al. [43].

This algorithm includes feature selection phase as the first

step of training a linear SVM-based classifier. Although, this

algorithm performs satisfactory results when used to classify

an online sample, this scheme relies on a randommutation hill

climbing (RMHC) optimization technique to select the set of

best features. Furthermore, the time taken by feature selection

schemes to obtain final set of features increases with increase

in the number of features in dataset. Moreover, it is possible

that the feature selection strategy may select features which

are not capable of discriminating new types of intrusions.

Although all these proposed methods were able to per-

form efficiently in detecting intrusions in the network, these

techniques rely on resource-intensive computing and may be

too heavy for the low-capacity nodes of IoT networks. It is

necessary to design an IDS requiring low computational

costs, miminal energy, and little memory in the network

nodes [1].

III. ANALYSIS OF IOT THREATS

A. TYPICAL ATTACKS IN IOT AND CONCOMITANT EFFECT

Considering the specific characteristics of IoT networks,

an adversary can launch attacks to disrupt the system in many

ways. In this paper, we consider the typical attacks reported in

the literature [15]–[17], [44], [45]. Remark, there are several

projects on, and standardization initiatives for, WSNs, which

may eventually converge with the Internet of Things (IoT),

for example European Union projects of Internet of Things

Architecture (IoT-A) have been addressing the challenges

of IoT solutions development from the WSNs perspective.

A brief description of the typical attacks follows. A brief

description of these attacks follows.

• Packets Flooding: In a wide range of attacks, an intruder

can generate a storm of spoofed packets or repeatedly

duplicated legal packets. This results in the channels

being overloaded, network node buffers overflowing,

and in some cases, the goal of the intruder can be the

depletion of a network node battery (a vampire attack).

However, in all cases, the attack obviously increases

traffic intensity.

• Vulnerability Attacks: During a vulnerability attack,

some malformed packets are sent to the target to mislead

a protocol or an application running under it. It leads to

degradation of device functionality, and therefore, data

transmission intensity is degraded as well.

• Blackhole Attack: A malicious node can attract all the

packets by requesting a fresh, misleading route to the

destination. Then, it accepts them without forwarding

them to the destination.

• Jamming: An intruder transmits a signal and jams net-

work working frequencies in a way that decreases the
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FIGURE 2. Typical IoT Attacks and Concomitant Effects.

signal-to-noise ratio to a level where the nodes of the

wireless network can no longer function. As a result

of the attack, a group of nodes becomes isolated and

does not generate traffic. Therefore, the attack decreases

traffic.

• Selective Forwarding: An intruder drops part of the

packets, which leads to information integrity degrada-

tion. If an intruder does not replace the legal packets with

spoofed packets, that quickly unmasks the intrusion, and

then, traffic intensity decreases.

• Sybil Attack: A node in an IoT network is compro-

mised by adversaries in such a way that it depicts itself

with false identities to other nodes. Depending on an

intruder’s goal, the attack can lead to two scenarios

of traffic change. Sham nodes can generate additional

traffic, or inhibit the traffic of legal nodes.

• Sinkhole Attack: In this scenario, a compromised node

tries to attract network traffic by advertising false routing

information. Subsequently, it can be used to initiate other

attacks, like selective forwarding, acknowledge spoof-

ing, altering packets or dropping them etc.

• Clone Attack: In this situation, adversaries acquire the

secret information of nodes and create duplicates of

this information in the whole network to mislead data

packets. These kinds of attack are very dangerous to

wireless sensor networks. Cloned nodes can launch a

variety of attacks: blackhole, inject false data etc.

• Wormhole Attack: The adversary can attract and avoid

a huge amount of network data by creating a tunnel

between two distant nodes in an IoT network. This attack

is generally used in conjunction with eavesdropping or

selective forwarding.

• Hello, Flood Attack: In the network, each new node

sends ‘‘Hello’’ messages to discover its neighbor nodes.

Also, it broadcasts its route to the base station. Other

nodes may choose to route data through this new node if

the path is shorter. If a malicious node equipped with a

power transmitter sends a ‘‘Hello’’ message with attrac-

tive conditions, then a lot of nodes choose it for data

transmission. However, the packets of these nodes will

never be retransmitted. Therefore, the attack decreases

general intensity.

Thus, the typical attacks in the IoT are accompanied by

changes in traffic intensity. As the result of some attacks,

the intensity grows; in others, it declines. There are some

cases where the same attack leads to traffic increasing in one

location yet decreasing in another. In the preliminary stages

of the attack, an intruder usually explores the network looking

for vulnerabilities, which can be accompanied by an increase

in traffic. The relationships of typical IoT attacks to traffic

change are shown in Figure 2. The concomitant effect can be

inherent in all components of the CIA triad.

DoS attacks, especially distributed DoS (DDoS) are seri-

ous problems in the IoT, which have been inherited from

traditional IP networks. An efficient protection against these

types of attack does not exist yet; for example, the biggest

attack ever, recorded in 2016, left hundreds of thousands

of connected devices infected [18]. In the IoT, the situation

becomes worse due to the limited resources of IoT devices.

In the preliminary stages of an attack, an intruder can generate

some traffic to explore a network and identify system bottle-

necks. Moreover, fundamentally new attacks on the IoT lead

to traffic change, as well [19].

Thus, observations of traffic intensity can be used for an

IDS. To design an IDS for the IoT, the representative charac-

teristics of low computing power, limited memory capacity,

and constrained energy capacity in the nodes should be taken

into account. In this paper, we investigate a foolproof and
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FIGURE 3. Framework of the proposed support vector machine-based intrusion detection system.

lightweight IDS based on an SVM. We show in a series of

experiments that by extracting only two or three features from

an input sample, the SVM can achieve satisfactory results

detecting attacks against the network in a timely manner.

B. IOT TRAFFIC MODELING

Generally, to analyze network behavior, a mathematical

model of the traffic is used. Real traffic records are only

available in particular cases. The models are based on sim-

plifying assumptions; however, some often provide a basis

for adequate approximations of network behavior, as well as

worthwhile insights. The scientific and engineering commu-

nity has accepted the following fact [46]–[53]: the Poisson

process (i.e. exponentially distributed times between packet

arrivals) is appropriate for traffic modeling in the IoT as well

as in WSNs, which are considered an essential part of the

IoT [54].

Here, we consider conditions for Poisson process deriva-

tion. Let N (t) be the number of packets that have arrived in

the time interval (0, t), and let λ be a positive constant. Let us

formulate the following four conditions:

1) N (0) = 0.

2) Packet arrivals in non-overlapping time intervals are

mutually independent.

3) The probability reflecting the number of packet arrivals

in the interval (t, t + h) depends only on length h and

not on time origin t .

4) For a sufficiently small h, we get equations for the

probabilities as follows:

P [N (t + h) − N (t) = 1] = λh+ o (h)

P [N (t + h) − N (t) = 0] = 1− λh+ o (h)

P [N (t + h) − N (t) > 1] = o (h) (1)

where o (h) is the quantity as lim
h→0

o(h)
h
= 0.

In other words, if interval h is small enough, then the

probability of the event ‘‘more than one packet arrival during

time h’’ is negligibly small.

If the four conditions above are met, then the traffic is

described by a Poisson process [55], i.e. the time between

packet arrivals is exponentially distributed, and the probabil-

ity mass function of N (t) is as follows:

P [N (t) = n] =
(λt)n

n!
e−λt , n ≥ 0. (2)

The Poisson process is used in many practical situations.

So in this paper, we use it to generate training and testing

samples for SVM performance analysis. However, we would

remark that we do not use special properties of a Poisson

probability mass function. Our features are limited by order

statistics, mean, and median. So, the proposed approach can

be applied even in more general situations.

IV. THE PROPOSED INTRUSION DETECTION SYSTEM

The framework of the proposed IDS is given in Figure 3. The

two main phases of the system include the training phase and

the evaluation phase. Remark, in this paper we consider intru-

sions accompanied by changing traffic intensity. However,

the proposed approach does not utilize any specific properties

of intrusions. Thus, it can be adopted for other cases. In the

training phase, a training dataset containing labeled samples

is obtained. Features are extracted from these samples in the

first stage of this phase to obtain a feature pool. The resulting

feature pool along with a vector of labels is then used to train

the classifier. After a trained classifier is obtained, it is then

presented to classify the unobserved samples from the test

dataset. To evaluate the performance of the classifier, similar

features used in the training phase are extracted from the

test samples in the test dataset. These unlabeled test samples
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are then given input to the classifier to obtain the predicted

output.

1) SUPPORT VECTOR MACHINE

The SVM was developed from the concepts of statisti-

cal learning theory in the late 1970s. The SVM primarily

deals with two-class classification problems. A linear line,

or hyperplane, is constructed as a decision boundary between

the datasets of two classes for classification. The data points

nearest to the hyperplane, which impart the construction of

the hyperplane, are called support vectors. Hence, the algo-

rithm is a support vector machine [12], [13], [56]. The opti-

mized hyperplane can be mathematically expressed as

wT x + b = 0, (3)

where w is the vector of weights, x is an input vector, and b

represents the bias. The equations of the support vectors for

each class are given as

wT x + b = +1, fordi = +1,

wT x + b = −1, fordi = −1, (4)

where di corresponds to the respective class, i.e., di = +1

for class A, and di = −1 for class B. The optimization

problem for training sample {(xi, di)}
k
i=1 to find the optimal

hyperplane, is given as:

min8(w) =
1

2
wTw, (5)

such that di(w
T xi + b) ≥ 1, fori = 1, 2, . . . , k.

The final decision function can be obtained as follows:

f (x) = sign

(

N
∑

i=1

αo,i(x
T xi)+ b

)

, (6)

where x denotes the input vector to be classified and N is

the number of support vectors obtained in the training phase.

The non-negative parameters αo,i are used to define support

vectors among input vectors. The linearly non-separable pat-

terns are transformed into a higher dimensional feature space,

using a mapping function ϕ(x), allowing for classification of

the data using the linear hyperplane. The decision function in

Eq. (4) can be modified to

f (x) = sign

(

N
∑

i=1

αo,i(ϕ(x)ϕ(xi))+ b

)

. (7)

The inner-product kernel function, defined as K (x, y) =

ϕ(x)ϕ(xi), is used to reduce the complexity of numerical opti-

mization in high-dimensional space. The decision function

can be updated as follows:

f (x) = sign

(

N
∑

i=1

αo,iK (x, xi)+ b

)

. (8)

There are several kernel functions used in an SVM for

non-linear pattern classification, such as linear, polynomial,

sigmoid, and the radial-basis function (RBF). In this work,

TABLE 2. Inner-product kernels.

Algorithm 1 Training Phase of the Classifier

INPUT

λnorm: Parameter of the normal class

λint : Parameter of the intrusion class

m: Length of the sample/observation

M : Number of observations/samples

F1×K : Feature set of K variables

Kernel_function

Kernel_scale

cross_validation.

OUTPUT

svm_model: Trained classification model.

1: XnormM×n ← GenerateM signals of m-dimensions using the

Poisson distribution parameter λnorm
2: XFnormM×K ← Extract features from XnormM×n

3: Y normM×1 ← Label the normal class

4: X intM×n← GenerateM signals of m-dimensions using the

Poisson distribution parameter λint
5: XFintM×n← Extract features from X intM×n

6: X intM×1← Label the intrusion class

7: Y2M×1← XnormM×1: Concatenate the two vectors vertically

8: svm_model ← Train SVM model using

Kernel_function, cross_validation with samples X2M×K
and Y2M×K

three kernel functions (linear, polynomial and RBF) are used.

The mathematical expressions of these kernel functions are

given in Table 2.

For multi-class classification problems, the SVM can be

used in a one-versus-rest manner [12], [30], [41]. In this

approach, m distinct classifiers are formed for m-class clas-

sification. In each mth classifier, the data related to the mth

class are trained as true values, while the rest of the m − 1

classes are false values. The label of the test dataset is deter-

mined by the classifier giving the maximum output value.

Algorithm 1 illustrates the training phase of the classifier.

The parameters of normal class λnorm and intrusion class λint ,

the length of sample m, the number of samples M , the set K

of features F1×K , the kernel function, the kernel scale, and

the cross-validation technique applied, are all given as input

to the algorithm. The output of the algorithm is a trained

classification model based on an SVM: ‘svm-model’.

At first, M signals of m-dimensions using a Poisson dis-

tribution with parameter λnorm are generated. Then, the fea-

tures are extracted from each sample, and all observations
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FIGURE 4. Flowchart of Training Phase.

are labeled as the normal class. Similarly, M signals of

m-dimensions using a Poisson distribution with parameter

λint are generated. Then, the features are extracted from

each sample, and all observations are labeled as an intru-

sion class. Then, the vectors of observations and labels

are concatenated vertically. Finally, the classifier is trained

using this set of observations. A flowchart is given in Fig-

ure 4 showing the steps as explained above of training

phase.

Algorithm 2 shows the steps involved in the testing phase

of the proposed scheme. The parameters of the normal

class, λnorm, and the intrusion class, λint , the length of test

signal N , the length of window w, the set K of features

F1×K , and the trained classifier model (svm_model) are

given input to the algorithm. The output is obtained in the

form of a vector showing the predicted outputs of the test

signals.

In first step, generate random number r between 1 and N .

Then, an r-dimensional normal signal is generated using

Poisson distribution parameter λnorm. Similarly, an (N −

r)-dimensional intrusion signal using Poisson distribution

parameter λint is generated. These vectors are then concate-

nated horizontally to obtain a single signal of N dimensions.

Then, starting from the first element of the resulting signal,

a window of size w is extracted from the signal and given to

the classifier for classification. The output label is stored in

vector Y . In the next step, the window is obtained by starting

from the second element of the signal up to the (w + 1)th

element and tested. Similarly, all the (N − w+ 1) elements

of the signal are presented for testing and the output labels are

FIGURE 5. Flowchart of Testing Phase.

stored in vector Y . These steps of testing phase are illustrated

in flowchart given in Figure 5.

V. EXPERIMENTAL RESULTS

All the experiments and data acquisition steps are performed

in MATLAB version 2018b simulation tool. To obtain the

Poisson distributed signal, a built-in function, poissrnd is
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Algorithm 2 Testing Phase of the Classifier

INPUT

λnorm: Parameter of the normal class

λint : Parameter of the intrusion class

N : Length of the signal/sample

w: Length of the window/sample

F1×K : Feature set of K variables

itr : Number of iterations.

OUTPUT

Yitr×(N−n+1): Predicted labels.

1: for i in itr do

2: x ← random number ≤ N

3: Xnorm1×(x−1) ← Generate (x − 1)- dimensional normal

signal using Poisson distribution parameter λnorm
4: X int1×(N−x+1) ← Generate (N − x + 1)-dimensional

normal signal using Poisson distribution parameter

λint

5: X1×N ←
[

Xnorm1×(x−1),X
int
1×(N−x+1)

]

concatenate these

vectors horizontally

6: for j in N − w+ 1 do

7: XT ← X (j : j+ n)

8: XFT ← Extract Features

9: Yi,j ← svm_model
(

XFT
)

, Test XFT using trained

svm_model

10: end for

11: end for

used. Similarly, for implementation of different models such

as NN, k-NN and SVM, the built-in functions feedforward-

net, fitcknn, fitcsvm are used, respectively. For some exper-

iments, the online dataset is utilized. The online dataset is

downloaded and saved in the computer first in the format of

comma separated values (csv) file. Later on, they are loaded

to MATLAB to perform these experiments. Our intrusion

detection method and methods offered in other considered

papers are independent of routing protocol.

A. PERFORMANCE EVALUATION PARAMETERS

The performance evaluation parameters terms employed in

this paper are defined as follows

• True Positive (TP): Actual positive predicted as positive

• True Negative (TN): Actual negative predicted as nega-

tive

• False Positive (FP): Actual negative predicted as posi-

tive

• False Negative (FN): Actual positive predicted as nega-

tive

• Accuracy (ACC): The ratio of true values to total obser-

vations, calculated as follows:

ACC =
TP+ TN

N
, (9)

where N is the total number of observations.

• True Positive Rate:The ratio of true positives to the num-

ber of observations predicted as positive. Also known as

sensitivity, recall, or hit rate:

TPR =
TP

TP+ FN .
(10)

• False Positive Rate: The ratio of false positives to the

sum of false positives and true negatives. Also known as

fall-out.

FPR =
FP

FP+ TN
(11)

• False Detection Rate: Defined as (1 - accuracy) and

calculated as follows:

FDR =
FP+ FN

N .
(12)

B. DATA ACQUISITION

The dataset used to prove the efficiency of the proposed

IDS system is obtained through simulation. It is composed

of 100 normal samples and 100 intruded samples. A sample

or observation is the reading of the sensor in a unit time.

For instance, a raw sample represent a vector of readings

of packet arrival rates obtained during a time instant. The

100 samples are the 100 vectors obtained in 100 different time

instants where each vector is comprised of numbers repre-

senting packet arrival rates. The term raw here represent the

reading obtained from the sensor without applying prepro-

cessing i.e., feature extraction. Each vector has a length, N ,

referred to as the number of elements per observation directly

related to the size of observation time instant. To obtain a

normal sample, a vector is generated through simulation,

assuming as the packet arrival ratio reading of a time instant

under no attack/intrusion scenario, using Poisson distribution

with the parameter λnorm. Similarly, the vector obtained using

Poisson distribution with the parameter λintr is considered as

a sample from intruded class i.e., the network is under attack.

In this way, 100 raw samples from each class are obtained.

The simulation parameters are varied for each experiment

as illustrated in Table 3. Here, N represent the number of

elements per sample and w is the length of window explained

and used in next experiments 2 to 4. The features mean,

median, and max values are extracted from each of these

vectors. The three features or a combination of any two of

these features extracted from a single vector are referred to

as a preprocessed sample or observation. These preprocessed

observations are then utilized for training and validating the

proposed IDS, as illustrated in Figure 3.

C. EXPERIMENTS

To avoid any misunderstanding, we use two different terms;

attribute and features. The primary measure of packet arrival

rate which is obtained from the input data to node is termed

as attribute. The minimum, maximum and median extracted

from the only attribute (packet arrival rate) are termed as fea-

tures. Hence, the attribute and features should be considered

two different parameters throughout this paper.
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TABLE 3. Experimental parameters.

TABLE 4. Combinations of features.

TABLE 5. Performance evaluation of linear kernel-based SVM.

1) EXPERIMENT 1

To obtain the initial simulation results, an SVM-based clas-

sifier is trained with three kernels: linear, polynomial, and

radial-basis function. The four feature combinations include

mean and maximum (max) values, mean and median values,

max and median values, and mean, max, and median val-

ues. The parameter of the Poisson distribution to generate a

normal (or non-intruded) signal is 2.2, whereas to generate

an intruded signal, the parameter value is 2.4. The length

of a single observation, i.e., the number of elements per

observation, is 500. The dataset contained 100 observations

from each class (normal and intruded), and 40 observations

from each class were used to train the classifier, whereas the

remaining 60 observations were used for testing. The feature

combinations are listed in Table 4.

Table 5 shows ACC, TPR, FPR, TDR, FDR, and total

detection time (τ ) from classifying all 60 test observations

with the linear kernel-based SVM classifier (linear-SVM).

The results show that the classifier can achieve at least 91%

accuracy if the input combination of features has a mean

value. The worst performance was reported when only max

and median were used as input features. A combination of

mean and median obtains the highest accuracy among the

given combinations. This combination of features also had the

highest TPR and TDR, as well as the lowest FPR and FDR.

However, τ was slightly higher than the two combinations of

max and median, and mean, max, and median.

The results of the performance metrics of the polynomial

kernel-based SVM (poly-SVM) are given in Table 6, where

kernel scale = 3. A similar trend in performance can be seen

across the different combinations of features, from mean and

max, through to mean, max, and median. Mean and median

TABLE 6. Performance evaluation of polynomial kernel-based SVM.

FIGURE 6. Graphical representation of bigram techniques used to obtain
(a) signal S obtained for Experiments 2 to 4 and (b) testing signal used in
Experiments 2 to 4 with N = 1000 and w = 2.

outperformed all other combinations of features, achieving a

92% accuracy. However, the accuracies in all feature combi-

nations were degraded, compared to linear SVM. TPR, FPR,

TDR, and FDR have almost equal values, with an average

difference of 0.099, compared to that of the linear SVM,

except for one combination of features: max and median. The

TPR in this case was degraded from 0.866 to 0.3; however,

the FPR was reduced from 0.7333 to 0.1833. TDR, FDR,

and τ are similar to the linear-SVM for this combination of

features, as well.

The results obtained from the RBF kernel-based SVM (rbf-

SVM) for kernel scale = 0.8 are illustrated in Table 7. As can

be seen, the performance of each combination of features is

degraded further by using rbf-SVM. However, the mean and

median proved to be the best combination from among all

of them, achieving the highest accuracy of 91%. Moreover,

the TPR increased from 0.3 with poly-SVM to 0.43, as did the

FPR (from 0.18 to 0.33) for the max and median combination

of features.

In conclusion, linear-SVM outperformed the counter poly-

SVM and rbf-SVM in terms of accurately classifying the

input signal using all four combinations of features. However,

rbf-SVM achieved the highest values in TPR for all combina-

tions of features other than max and median. FPR, TDR, and

FDR values varied for different combinations of features for

different kernel-based SVMs. In addition, the detection time
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FIGURE 7. ACC, TPR, FPR, FDR, and τ comparison for each features set and kernel function obtained in Experiment 2.

TABLE 7. Performance evaluation of RBF kernel-based SVM.

for all types of SVM was similar for respective combinations

of features. Mean and max took the longest time among all

of them to classify 120 observations in the test set. On the

other hand, mean, max, and median was the combination

of features that required the shortest time from among all

combinations of features to obtain final results.

2) EXPERIMENT 2

In the following experiments, the performance of the clas-

sifier was tested using a signal, S, of length 1000 elements

obtained using a bigram technique (N-gram with N=2) as

follows : S = {s1, s2, . . . , sr }. To obtain this signal, first,

a number, r , was generated randomly between 1 and 1000.

Then, signal Snorm = {s1, s2, . . . , sr } was obtained through

Poisson distribution with parameter λnorm, and the signal

Sintr = {Sr+1, Sr+2, . . . , S1000}was generated with a Poisson

distribution from parameter λintr . Finally, the two vectors,

Snorm and Sint were concatenated to obtain one signal, S =

[Snorm,Sintr ], of 1000 elements as shown in Figure 6(a).

It is assumed that each element si represent the signal

element obtained at time ti. The input test observation, I ,

to the classifier at time ti is the window obtained from signal S

of window sizew, given as I ={st−w+ 1,st−w+ 2, . . . ,st }.

Figure 6(b) shows an example of such a test signal obtained

for N = 1000 and w = 2. The window size, w, is varied

from 5, 10,. . ., 50 to obtain the results in Figure 7. Each

column shows the results obtained for each feature set: 1, 2,

3, and 4, respectively. Each row illustrates the performance

of the classifier in terms of ACC, TPR, FPR, FDR, and τ .

λnorm = 2 and λintr = 4 are used to obtain the training and

testing signals.

Figure 7 shows that, for all types of classifier, i.e., lin-

ear, polynomial and RBF kernel-based classifiers, there was

an increase in the performance efficiency of the classifier

with an increase in the size of the window from 5 to 20.

Further increases in the window size had no (or a slightly

degrading) effect on performance. For instance, the accuracy

of classifiers using feature sets 1 and 2 slightly decreased

with an increase in window size. However, for feature sets

3 and 4, the performance was almost similar for all win-

dow sizes above 20. Nevertheless, the linear kernel-based

classifier outperformed the other two classifiers in terms of

accuracy. The polynomial kernel-based classifier reported the

worst accuracy for features sets 1, 2 and 3. But using feature

set 4, the RBF kernel-based classifier showed the lowest

accuracy.
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FIGURE 8. ACC, TPR, FPR, FDR, and τ comparison for each features set and kernel function obtained in Experiment 3.

The RBF kernel-based classifier outperformed the linear

and polynomial kernel-based classifiers in terms of TPR.

The worst results were reported by the polynomial kernel-

based classifier. Similarly, the linear kernel-based classifier

outperformed the two other kernels, in most cases, in terms

of FPR, FDR, and τ . The polynomial kernel-based classifier

showed the worst results.

3) EXPERIMENT 3

In this experiment, λnorm is the same as the previous experi-

ment; however, λintr was increased to 6. Interestingly, the per-

formance of the polynomial kernel-based classifier improved

to outperform the linear and RBF kernel-based classifiers in

most cases, as shown in Figure 8. For instance, using feature

set 1, the accuracy and TPR of the polynomial kernel-based

classifier increased for window sizes lower than 20. Further

increases in window size degraded the performance of the

classifier to a lower level than that reported by the linear

and RBF kernel-based classifiers. However, with feature sets

2, 3, and 4, the polynomial kernel-based classifier showed

comparable performance to the other two classifiers. Simi-

larly, the improved performance of the polynomial kernel-

based classifier is reported in terms of FPR, FDR, and τ .

Furthermore, it should be noted that the performance of all

classifiers for all sets of features improved, compared to

the results obtained in the previous experiment. Intuitively,

an increase in λintr increases the efficiency of all classifiers

for all sets of features.

4) EXPERIMENT 4

In this experiment, λintr was set to 1.5, a lower value than

λnorm = 2. All the other parameters were kept the same

as in experiments 2 and 3. As we can see from Figure 9,

the performance of the polynomial kernel-based classifier

was worse compared to the other two classifiers in many

cases. Moreover, the performance of the linear and RBF

kernel-based classifiers are comparable to each other.

5) EXPERIMENT 5

In this experiment, λintr was further decreased to 1 to analyze

the effect on the performance of the classifiers. The perfor-

mance by all classifiers improved for all cases and classifier

types, especially for the polynomial kernel-based classifier.

These results strengthen the statement that an increase in the

difference between λnorm and λintr increases the performance

of the classifiers, as shown in Figure 10. Furthermore, the lin-

ear kernel-based classifier can achieve the best results from

among the three types of classifiers.

6) EXPERIMENT 6

Figure 11 illustrates the comparison results of the proposed

SVM-based algorithm with neural network (NN), k-nearest
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FIGURE 9. ACC, TPR, FPR, FDR, and τ comparison for each features set and kernel function obtained in Experiment 4.

neighbor (KNN) and decision tree (DT) algorithm. The

SVM-based algorithm was implemented using three differ-

ent kernels i.e., linear, polynomial and radial-basis func-

tion, illustrated by SVM(L), SVM(P) and SVM(R) in figure,

respectively. The properties and parameters of each algorithm

used in this experiment are given as follows;Neural Network,

a feed forward network with input, hidden and output layers

comprised of 2 or 3 (depending on the number of input dimen-

sions), 2, and 1 node, respectively. A Levenberg-Marquardt

(LM) technique was used in training phase to perform back-

propagation; k-nearest neighbor, a classification KNN was

used to classify an input sample by obtaining the Euclidean

distance from 3 nearest neighbors; Decision Tree, a classifi-

cation decision tree was fitted in training phase to perform

classification of test samples; Finally, the SVM-based IDS

was implemented with three different kernel functions: Lin-

ear, Polynomial and RBF, exclusively. All of these algorithms

were implemented in MATLAB using built-in tools, feed-

forwardnet, fitcknn, fitctree, and fitcsvm. All the parameters,

except given above, were set to default values to perform this

experiment. The number of training samples per class were

set to 40, i.e., 40 samples from normal class and 40 samples

from intruded class, resulting in a total of 80 training sam-

ples. Whereas the testing set was composed of 1000 sam-

ples; 500 from normal class and 500 from intruded class.

The parameters λnorm = 2.2 and λintr = 2.4. The length of

sample was set to 50 elements. A total of 100 experiments

were performed whose results are given in figure in terms

of accuracies obtained in each iteration of experiment. The

feature sets are kept similar to the previous experiments.

It can be observed from figure that in most cases, the SVM-

based classifier perform better than other machine learning

algorithms. The mean accuracies of SVM(L) and SVM(P)

are higher than other algorithms irrespective of the feature set

utilized. However, using SVM(R) while using Feature Set 1

and Feature Set 4 perform poor than other techniques. These

results verify the results obtained in previous experiments.

Furthermore, these results verify the efficiency of proposed

IDS implemented with SVM-based classifier using linear and

polynomial kernels.

7) EXPERIMENT 7

To prove the efficiency of the proposed algorithm, we present

performance comparison in terms of accuracy and CPU time

among the proposed algorithm, and the algorithms given in

GA-SVM [30], A-IDS [57], and WFS-IDS [43]. The mea-

sure of accuracy shows how efficiently an algorithm clas-

sify an input signal as normal or intruded. To measure the

lightweightness of an algorithm, the two parameters includ-

ing consumed energy and elapsed time, can be used [58].
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FIGURE 10. ACC, TPR, FPR, FDR, and τ comparison for each features set and kernel function obtained in Experiment 5.

FIGURE 11. Comparative analysis of proposed SVM-based IDS with that implemented using NN, KNN
and DT in terms of accuracies of 100 iterations of experiment 6.
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In practice, these parameters are directly proportional to each

other, given the similar computational resources. In other

words, an algorithm taking longer time to execute will more

likely consume larger amount of energy as compared to

another algorithm with lower computation time. Unfortu-

nately, to obtain the energy consumption analysis of an

algorithm, a proper testbed and tools are required to obtain

these measurements. In the paper, subsequently we choose

the elapsed time as a performance index for the lightweight

measurement of the algorithms because we use MATLAB

version 2018b to simulate all the algorithms. More specif-

ically, the MATLAB provides some functions to obtain the

elapsed time to execute an algorithm. Taking advantage of

these functions, we present here the elapsed time analysis of

each algorithm to prove the lightweight property of proposed

algorithm.

As defined in the introduction section of our paper,

the lightweightness is not limited to the property of sys-

tem requiring low computational resources. There are other

requirements which should also be achieved in order to be

a lightweight system such as being small, powerful, and

flexible enough to be included in a node or network as a

permanent element. However, the requirement of being able

to perform using low computational resources, which aim

to reduce energy consumption of the system, is an integral

and the most important characteristic of lightweight IDSs.

It should be noted that, the proposed IDS try to achieve all

the above-mentioned properties while focusing mainly on the

property of being able to perform with low computational

resources. This property is proved using CPU time measure.

The CPU time is not very decisive factor in determining the

‘lightweightness’ of an algorithm. However, we are forced

to use this measure because other researchers widely use

the CPU time to prove the lightweightness of systems, for

example [43], [58]–[61]. Moreover, the authors of [60] have

also utilized MATLAB for performing the experiments to

prove efficiency of the model. We also do not investigate a

particular solution and we consider more general situation.

Thus, similar to themethod followed in [60], usingMATLAB

and performing simulation-based experiments is the only way

that we can follow to perform these experiments and prove the

efficiency of proposed algorithm.

We must accept the following arguments of previously

published papers. The energy consumed is obtained as the

product of power consumption and CPU time [59]. The

power consumption being constant (using same computa-

tional resources), the energy consumption is directly related

to the CPU time only. Furthermore, Lim et al. [58] state

that the processing time somewhat depends on the imple-

mentation of the system. However, a large difference in time

(seconds versus hours or even days) cannot be characterized

by the implementation method exclusively. Moreover, Chen

and Li [60] presented a comparison of energy consumption

and CPU time of their model. The given results generate

our claim. The energy consumed is in a direct relation

with the CPU time. Even a very small difference in time

(micro seconds) is reflected in the energy consumed measure

of the system perfectly in direct relation with CPU time

measure. These results show that, presenting only CPU time

may not replicate the exact practical behavior of the system,

however, it can be used to estimate the lightweightness trend

of the system.

First, we present a performance comparison among the

algorithms GA-SVM, A-IDS, WFS-IDS and the proposed

algorithm by utilizing the generated dataset using Poisson

distribution as explained in SectionV-B. This dataset contains

a total of 10 000 samples where the 60% samples are reserved

for training the algorithm, with equal number of normal and

intruded samples. The remaining 40% samples, with equal

number normal and intruded samples, are used to test the

algorithms. Each sample in this dataset is attributed in the

form of three features; mean, maximum andmedianmeasures

of the packet arrival rate as explained in the previous sections.

We set the parameters of the proposed algorithm based on

the results of experiments 1 to 6 as follows; we use the

polynomial kernel-based SVM algorithm with kernel scale

value 3 and select the features 1 and 3 from the dataset.

However, the algorithms from GA-SVM, A-IDS, WFS-IDS

have their respective feature selection procedures to select

two most discriminative among three features. To obtain the

accuracy given in Table 8, each algorithm is trained using the

training set. After the training is finished, the testing subset

is used to assess each algorithm.

As it can be seen from Table, the proposed algorithm

achieves the highest accuracy of 98.35%. As the GA-SVM

algorithm becomes a similar algorithm to the proposed algo-

rithm in the testing phase (because only SVMpart is utilized),

the accuracy of this algorithm is 98.21%, almost equal to that

of the proposed algorithm. However, the A-IDS and WFS-

IDS get the accuracy of almost 97.9 and 97.08%, respectively.

In terms of the CPU time, the proposed algorithm is also listed

on the top with the minimum training, testing and total times

as 16.3125, 0.0469, and 16.3594 seconds, respectively. The

A-IDS comes next by taking 17.1719, and 0.6250 seconds for

training and testing phases, respectively. However, the GA-

SVM and WFS-IDS algorithms take much longer training

time of almost 135 and 134 seconds. Nevertheless, the testing

time of these algorithm is lower than that of A-IDS. However,

the proposed algorithm has the lowest testing time as well.

The dataset used in previous comparative analysis was

generated by using theMATLAB 2018b according to Poisson

distribution with two different parameter values, each corre-

sponding to one class of Normal and Intruded. There are some

online datasets which the researchers normally have used to

prove their proposed intrusion detection system [10]. Some

famous datasets include the NSL-KDD and CICIDS217 both

generated by Canadian Institute for Cybersecurity unit based

at University of New Brunswick. These datasets are consid-

ered as benchmark for analysis of IDS by many researchers.

However, it should be noted that the proposed IDS in this

paper has two equally important parts; the attribute of the

received data used to perform intrusion detection, and the
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TABLE 8. Performance comparisons among the proposed algorithm with GA-SVM, A-IDS, and WFS-IDS using beget Dataset in terms of accuracy and
CPU time.

TABLE 9. CICIDS2017 dataset features.

classifier part. As the first part, we have proposed to utilize the

packet arrival rate of the receiving data. After that, the SVM-

based classifier is used to classify the input sample as normal

or intruded. Unfortunately, the benchmark datasets, which are

available online, do not contain the required attribute of data,

i.e. the packet arrival rate. This is why it is not possible to

directly use this dataset to prove the efficiency of the proposed

algorithm. To prove the efficiency of the proposed algorithm,

however we generate a parallel synchronized dataset to the

CICIDS2017. The steps of generating this beget dataset,

which is used for further analysis, are shown by using a

flowchart in Figure 12.

The CICIDS2017 dataset [62]is a benchmark dataset avail-

able online to assess and prove the cybersecurity algorithms

such as intrusion detection systems (IDS) and intrusion

FIGURE 12. Procedure of generating Beget Dataset.

prevention systems (IPS). Generated in 2017, this dataset

contains benign (normal) and the then up-to-date attacks. The

dataset is composed of data obtained for 5 days, starting at 9

a.m., Monday, July 3, 2017 and ending at 5 p.m. on Friday

July 7, 2017. On different days, different types of attacks

were implemented in the network to obtain this dataset.

We select a subset of CICIDS2017 dataset to assess and com-

pare the proposed algorithm. The selected subset contained

the samples obtained from network in the afternoon of Friday,

July 7, 2017. The DDoS attack was implemented in the net-

work at random points in time. This subset contained a total

of 225,745 samples attributed in 78 features given in Table 9.

We obtain the labels vector of CICIDS2017 dataset. Then we

check labels one-by-one to obtain the beget dataset. If the

ith label of CICIDS2017 dataset is benign, we add a benign

sample S, which is generated by Poisson distribution with

parameter of normal class, λnorm, as the i
th sample to beget

dataset. Similarly, the ith sample of beget dataset is obtained

by Poisson distribution with parameter of intruded class,

λintr if the ith sample of CICIDS2017 dataset is intruded.
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TABLE 10. Performance comparison among the proposed algorithm, GA-SVM, A-IDS, and WFS-IDS using CICIDS2017 dataset.

In this way, we obtain a synchronized beget dataset with

CICIDS2017 which has similar number and position (class

label) of samples, as shown in Figure 12.

The data is divided into two subsets; training and testing

data sets. The training data contain 60% of the samples

including 86 729 benign samples and 48 718 intruded sam-

ples. Similarly, the testing data contain 49 000 benign and

41 298 intruded samples. This CICIDS2017 dataset is utilized

for GA-SVM, A-IDS and WFS-IDS algorithms while the

synchronized parallel generated beget dataset is utilized for

the proposed algorithm. However, the number of training,

testing and total samples as well as the labels remain same

in both datasets. In this way, we present the performance

comparison among the algorithms in Table 10 by using

CICIDS2017 dataset.

The second column shows the features selected by each

algorithm from the dataset. In the proposed algorithm, we use

the beget dataset which has three features; mean, max and

median. Based on the results from experiments 1 to 6,

we select mean and median values for the proposed algo-

rithm. The other techniques utilize respective feature selec-

tion algorithm to obtain the set ofmost discriminative features

given in the second column of Table 10. The accuracy of

the proposed algorithm is the highest at 98.03%. The worst

performance is shown by the A-IDS algorithm with 89.76%

accuracy. Similarly, the CPU execution time of the proposed

scheme is the lowest with 208.9063, and 2.281 seconds for

training and testing phases, respectively. Subsequently, these

results prove the lightweightness property of the proposed

algorithm with the given set.

A confusion matrix is a simple table layout used to under-

stand or analyze the performance of a classifier under consid-

eration. The actual labels of the samples should be known to

obtain this table. Generally, each row represents the labels of

actual class while the columns correspond to the instances

in predicted class. In practice, one class is set as positive

and the other as negative to fill up confusion matrix. In this

paper, the Benign or Normal class is set as positive class and

the Intruded class as negative class. In this table, each cell

represents a specific measure among the TPs, FNs, FPs, and

TNs instances in the order shown in Figure 13.

Figure 14 shows the confusion matrices obtained for

(a) Proposed IDS, (b) GA-SVM, (c) A-IDS and WFS-IDS

algorithms using the CICIDS2017 and related Benign

datasets. The results of proposed, GA-SVM and WFS-IDS

are comparable. However, the A-IDS shows comparatively

poor performance. Moreover, the proposed IDS successfully

FIGURE 13. Confusion matrix.

FIGURE 14. Confusion Matrices obtained utilizing CICIDS Dataset with
(a) proposed, (b) GA-SVM, (c) A-IDS, and (d) WFS-IDS algorithms.

achieve highest TPs, TNs and lowest FNs instances. However,

the FPs instances of proposed algorithm are slightly higher

than those obtained by GA-SVM.

VI. DISCUSSION

The tradeoff for using only three features as opposed to

‘40 complex attributes’ is related to the issue of feature

selection and reduction. The advantage of using only three

features is as following: First, the system processing time can

be reduced due to low time consumption of single attribute

acquisition from input data instead of multiple attributes.

Secondly, extracting just 2 or 3 features from that single

attribute takes lower time as compared to extraction of up

to 40 features from the multiple attributes. Lastly, the com-

plexity of SVM is also reduced because of utilizing a much

lower number of dimensions (features) of input samples.

Combining all these effects makes a big difference to the

complexity of system. Furthermore, the feature selection step

is omitted in the case of the proposed algorithm. These points

can be considered as the positive effects of utilizing the pro-

posed algorithm along with the proposed signal preprocess-

ing model. Nevertheless, the feature selection and reduction

techniques do not necessarily converge to global optimum,

and sometimes end up selecting redundant features, which

ultimately results in poor performance of classifier.
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Apparently, the main drawback of the proposed algorithm

is that it lacks the ability to detect intrusions which do not

have concomitant (increasing or decreasing) effect on the

traffic intensity of node. The algorithms which consider the

complex 40 features may be able to detect more sophisticated

intrusions. This issue is reserved for future works.

In this paper, we have considered the packet arrival rate,

which follow the Poisson distribution, of the traffic intensity

to the node. The Poisson distribution is just used for per-

formance evaluation. We use this distribution because it had

been offered in papers of authoritative journals [46]–[54].

It should be noted that, we do not use specific properties of

CDF. Therefore, all expenses will be the same for any other

traffic pattern followed in practice. However, the selected

features such as mean, maximum and median, and the pro-

posed detection scheme can be used irrespective of the type

of distribution, given the condition that the intrusion or attack

has an increasing or decreasing effect on the traffic intensity

(packet arrival rate) to the node.

A. WHY NEED TO USE PACKET ARRIVAL RATE ATTRIBUTE?

As we have explained in Section III, the types of intrusions or

attacks considered in this paper are the ones which influence

the traffic intensity. Either the data rate is decreased (e.g.

in case of packets flooding attack, jamming attack etc.) or

increased (e.g. black hole attack, wormhole attack) whenever

any of these intrusions occur. This means that if the IDS

monitor the traffic intensity alone (ormore specifically packet

arrival rate measure), it may be able to detect these intrusions

most of the time. This is our motivation of proposing an IDS

which rely on packet arrival rate attribute exclusively to detect

the intrusions. This claim is also supported by experimental

results given in the paper.

B. WHY NEED TO EXTRACT MIN, MAX AND MEDIAN

FEATURES?

The packet arrival rate is the only attribute of data which is

used for intrusion detection in the network. Now, the question

is why needed to extract features from this attribute? Why

not use this attribute to detect an intrusion using a threshold

value? If the packet arrival rate goes higher than the threshold

value, it can be considered as intrusion and vice versa. The

answer to these questions can be given in a single argument;

the threshold value selection is not an easy and reliable way.

To find out a threshold for any system needs a continuous

monitoring of the network for a long time to get an esti-

mate of the threshold value. Selecting a sub-optimal value

of threshold would result in higher miss-detection or false-

alarm instances. Moreover, it is believed that the network

conditions are not consistent all the times. The nodes may

observe variations in packet arrival rate depending on the

network conditions i.e., network may be very busy or idle.

Therefore, the threshold selection method is not favored for

detection and classification application. On the other hand,

the machine learning algorithms try to learn the characteris-

tics of the network from a handful amount of historical data.

At this point, we have two choices; either directly use the

only attribute (packet arrival rate attribute value) as the single

input, or extract features (minimum, maximum and median

values) from this attribute to give input to machine learning-

based classifier. In former case, using the single input to the

classifier may degrade the performance of system because

of two reasons. First, there may be a single value which

is included in both classes i.e., intrusion and non-intrusion

classes. For instance, depending on the network condition,

a specific packet arrival rate may or may not be resulted due

to the intrusion in the network. Secondly, if a single value

of packet arrival rate attribute is used, the classifier needs to

perform detection every time we get a new value. Ultimately,

the energy consumption is increased due to the utilization

of computational resources more frequently. In this paper,

the minimum, maximum and median values are obtained

from the packet arrival rate attribute over a window of time

to solve both the problems. For instance, a packet of data is

arrived every t seconds to the node. If this single value is

used, then the classifier will perform the classification task

every t seconds. On the contrary, if we use a time window

T >> t , then the classifier has to perform classification every

T seconds. This leads to reduce the frequency of utilizing

computational resources as well as the algorithm converge

better as compared to using the first case of utilizing a single

attribute alone.

C. WHY SVM?

The SVM is favored among other machine learning algo-

rithms because of its efficient performance. The performance

comparison among different machine learning algorithms

given in the experimental results section confirms our claim.

Furthermore, the lightweightness of the proposed algorithm

is proved in the experimental results as well.

D. HOW DO WE GET LESS TRAINING AND TESTING

TIMES?

The main reason that the proposed algorithm has the lowest

training and testing time is that the other algorithms have

additional feature selection properties. They try to select

the best subset of features using complex optimization tech-

niques. For instance, GA-SVM utilizes genetic algorithm to

choose the best features among given set. Similarly, A-IDS

andWFS-IDS algorithms analyze and select the best features

using wrapper-based feature selection mechanism. A detailed

explanation about these algorithms is out of scope of the

current work, therefore, readers are suggested to refer these

papers for more details. However, the major reason which

reduces the computational time of the proposed algorithm is

the elimination of the feature selection which is the part of

training phase only.

The testing phase has no feature selection step, and hence,

the difference between the testing time of all these algorithms

is very low as given in Table 8 and 10. However, the small

differences in training time are reported because of using

different algorithms.
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E. HOW DO WE GET BETTER ACCURACY?

The complexity of the classifier has a direct effect of the com-

plexity and size of input vectors. The simple and small vectors

with high discrimination power among different classes are

easy to classify by classifier. On the other hand, the higher

number of the dimensions with complex relation among fea-

tures of input vector increases the challenge of classification

for classifier. In authors’ opinion, the input vector of only 2

dimensions with comparatively low complexity among fea-

tures are the key factors which lead the classifier to obtain a

highest accuracy of proposed IDS.

There are a few control values used in the proposed algo-

rithm. First, the kernel parameter used in the support vector

machine. Changing this value may affect the performance of

classifier. An optimized value can be obtained by hit and trial.

Another value which should be selected carefully is the time

window size. As shown in the experimental results, increase

in time window size may improve the performance to some

extent. Further increase in the time window size may degrade

the performance of classifier.

VII. CONCLUSIONS AND FUTURE WORKS

The IoT is a promising technology developed for applications

ranging from small smart-home systems to large networks,

such as smart grids. However, this vast network is exposed

to different types of attacks, compromising its reliability.

Furthermore, the limitations in the nodes, including memory,

computational resources, and battery capacity, challenge net-

work security. It is necessary to design a lightweight system

that can efficiently improve the security of the IoT with the

available resources.

This paper focuses on designing a lightweight IDS for

anomaly detection in the IoT. A common type of attack,

known as DDoS, is the target. The proposed IDS is focuses

on two major issues; the attribute of the receiving data used to

classify the signal and the machine learning based classifier.

The only attributed considered in this paper is the packet

arrival rate to the node. For classification purpose, an SVM-

based classifier with input given in the form of two or three

incomplex features is utilized. Through a series of experi-

ments, we prove that these two factors (the packet arrival

rate attribute and an SVM-based classifier) can be enough to

detect the intrusion in IoT network.

Furthermore, we presented a comparative analysis of

SVM-based classifier with other machine learning-based

classifiers includingNN, k-NN andDT to show the advantage

of utilizing SVM in terms of accuracy over other techniques.

For further proof, we also presented a comparison of pro-

posed algorithm with other IDS proposed in literature. The

results show that an SVM-based IDS can perform satisfacto-

rily in detection of attacks. Also, the lightweightness measure

of proposed algorithm is proven in terms of CPU time execu-

tion.

An investigation of various concomitant effects of attacks

and increase in the scope of this IDS system to encompass

other types of intrusions, where the effect of changing traffic

intensity is not clearly pronounced or masked by intruders,

is reserved for future works. Furthermore, concrete details

of IDS implementation and intrusions mitigation are defined

by application domains and strategy of security perimeter

deployment. It is also a direction of our future work.
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