
From Proc. IEEE Conference on Decision and Control, San Antonio TX, December 1993. c©IEEE

Toward a Modeling Language Standard

for Hybrid Dynamical Systems

James H. Taylor
Odyssey Research Associates (ORA)
301 Dates Drive, Ithaca, NY 14850

jim@oracorp.com

Abstract1

A rigorous means for modeling and evaluating hybrid
systems is needed for the efficient and cost-effective de-
velopment of embedded real-time software for a wide
variety of applications (weapons, manufacturing, in-
telligent vehicles, process control, . . .). The develop-
ment of a standard hybrid systems modeling language
(SHSML) and corresponding rigorous simulation envi-
ronments represent important contributions to fulfilling
this requirement.

1. Introduction

A standard hybrid systems modeling language called
SHSML is under development, to serve five purposes:

• to define formally what is meant by the term “hy-
brid system”,

• to provide a modeling language that matches re-
cent advances in mathematical formalisms for hy-
brid systems [1], and thus permits their rigorous
evaluation,

• to define an architectural description language for
hybrid systems, in support of domain-specific /
reference-architecture-based approaches to hybrid
systems development [2],

• to provide the basis for a language-based “front
end” for hybrid system simulation environments,
and

• to serve as a definitive interface to software en-
gineering tools for real-time code generation and
composition of the overall architecture.

The specific target in regard to the fourth point is Hy-
brid DsTool [3], a package that very rigorously simulates
hybrid systems but lacks such a front end.

1Support for the research described herein has been provided
by the Advanced Research Project Agency (ARPA) through the
U.S. Army AMCCOM at Picatinny Arsenal, NJ by Contract
Number DAAA21-92-C-0013.

2. The Hybrid Systems Domain

SHSML is being designed to support a broad definition
of a hybrid system, which we may express informally as
being an arbitrary interconnection of components that
are arbitrary instances of continuous-time, discrete-time
and logic-based subsystems. As such, SHSML may be
considered to be a general architectural description lan-
guage (ADL) for hybrid systems, with a scope that en-
compasses not only the digital software components
but also the physical subsystems (e.g., tank and
propulsion unit, machine tool and drives) and humans-
in-the-loop (by standard modeling approaches includ-
ing perception, decision-making, neuro-muscular delay,
etc.). This breadth is a prerequisite for the meaningful
evaluation of embedded real-time software modules, as
their dynamic behavior cannot be decoupled from that
of the “real-world” portions of the system. Within this
framework, SHSML will permit each component to be
modeled with high fidelity (to whatever level the mod-
eler deems appropriate) and provide features that will
permit the hybrid system to be simulated with utmost
accuracy.

SHSML is based on the conceptual definition of a hy-
brid system that underlies Hybrid DsTool [3] and on the
modeling environment provided by Simnon [5]. Sim-
non was used as the starting point because it provides
a solid language-based environment for building hierar-
chies of interconnected components of various types,
and because it has a degree of rigor and encapsula-
tion not found in most other modeling methods. In
addition, features of the earlier standard CSSL [6], the
ACSL modeling approach [7], and the MEAD definition
of component interconnection [8] have been considered.
Note that graphical model-building standards are not
considered – we believe that the definition of a language
standard must precede the definition of a graphical one.

2.1. Hierarchical Model Building:

Specific requirements addressed by this modeling lan-
guage research include:

• Components at the lowest level are “pure” con-
tinuous-time, discrete-time or logic-based (sym-
bolic) in type (see below).

• Pure components may be arbitrarily assembled into
composite components.

• Each component is completely encapsulated. The
only access to its variables is via first-class in-
put/output ports (which may be connected to
other component first-class i/o ports) or second-
class input/output ports (which provide the
means to change parameters or display (e.g. plot)
variables; the latter cannot be connected to first-
class i/o ports).

• Components (pure or composite) may be arbitrar-
ily configured into hierarchical hybrid systems ar-
chitectures.

These high-level features are designed to promote model

reuse and automatic component generation.

2.2. Continuous-time Components (CTCs):

A continuous-time component may be described by an
arbitrary ordinary differential equation set:

ẋc = fc(xc, uc, uk, mj , bi, t) (1)

yc = gc(xc, uc, uk, mj , bi, t) (2)

where xc is the state vector, yc is the output vector,
uc and uk are numeric input signals (continuous- and
discrete-time, respectively), bi is a vector of discrete-
time boolean variables, mj is comprised of symbolic in-
put variables, and t is the time; in general uc, uk, bi and
mj are vectors. There are implicit “zero-order holds”
operating on the elements of uk, bi and mj, i.e., these
inputs remain constant between those times when they
change instantaneously.

• Note: The above notation is not all-inclusive –
classes of differential-algebraic and implicit ordi-
nary differential equations may also be supported.

• Rigorous handling of unpredictable state events
(e.g., mechanical parts engaging and disengaging)
will be supported [9]. In such cases the dynamics
are unsmooth; transitions from one smooth model
to another must be done carefully to avoid numer-
ical integration errors.

• Support for models that undergo structural changes
(e.g., changes in the definition or number of state
variables) will be provided. In the case of mechani-
cal parts engaging, the number of states decreases,
producing a “higher-index” model that can be re-
duced using the Pantelides algorithm [10] to auto-
matically reduce it to state–space form.

Example: a CTC may represent the continuous-time dy-
namics of an aircraft or land vehicle; an input uc might
represent wind-gust forces, uk could be a controller ac-
tuation command (with implicit or explicit digital-to-
analog conversion), bi might signal whether or not an
actuator has failed, and mj might define a higher-level
symbolic condition such as ‘engine-has-stalled’.

2.3. Discrete-time Components (DTCs):

A discrete-time component may be represented by an
arbitrary up-date or difference equation set:

xk+1 = fk(xk, uc, uk, mj, bi, k) (3)

yk+1 = gk(xk+1, uc, uk, mj, bi, k) (4)

where xk is the discrete state vector, k is the index
corresponding to the discrete time point tk, yk+1 is the
output vector, and uc, uk, bi, mj are as above. Note that
there are implicit “sampling” operators on uc, i.e., the
input value uc(tk) is used in updating xk. The times
tk are usually – but not necessarily – uniformly spaced
(tk = k∗Ts where Ts is the “sampling time”); in any case
we assume that the update times can be anticipated.

• Note that there may be computational delays (e.g.,
yk+1 may be output at time tk +∆) – the language
will allow offsets wherever required. This compo-
nent type represents a particular digital module
class that is reserved for pure numerical computa-
tions. The advantages of this particular taxonomy
are that (i) the detailed structure of Eqns. (3, 4)
can be fully supported, and (ii) such components
can meaningfully be linearized and analyzed while,
in general, logic-based components (below) cannot.

• Digital modules are easier to emulate in a digital
simulation environment; therefore, we do not antic-
ipate that special features for state-event handling
will be required.

• Support for models that undergo structural changes
(e.g., changes in the definition or number of discrete
state variables) will be provided.

Example: a DTC may represent the discrete-time nu-
merical algorithm of a Kalman filter or LQR controller;
an input bi might govern whether or not the algorithm
has to accommodate a sensor failure, and a symbolic in-
put mj may provide information for modifying the algo-
rithm (‘target-is-accelerating’ might necessitate switch-
ing to a 9-state Kalman filter).

2.4. Logic-based Components (LBCs):

Each logic-based component may have numeric and/or
symbolic inputs, symbolic outputs, and symbolic inter-
nal variables called “modes”. At this point, it is not
clear that these components have a “generic form” in
mathematical terms as above except in terms of the

categorization of input and output variables. Thus we
formally write

mj+1 = Φj(mj , uc, uk, bi, j) (5)

where mj is the mode vector, j is the index correspond-
ing to the discrete event triggering the LBC action, Φj

is an undefined relationship (logic), and uc, uk, bi are as
above. The output of each LBC is the mode mj which
changes instantaneously at a discrete event (e.g., trig-
gered by an event in a CTC such as a sensor failure);
in contrast to the case in DTCs, we assume that mode
changes usually cannot be anticipated.

• There may be a computational delay between the
trigger event and the mode change; this may be
modeled with varying degrees of realism, from a
fixed delay time to an actual emulation of the com-
putational burden required in handling the event.

• LBCs will also exhibit unpredictable state- or
discrete-event behavior – provision will provided for
this as in the continuous-time case.

• Lack of a unifying paradigm for logic-based com-
ponents precludes providing more than a “shell”
definition for this class of component.

Example: an LBC may represent a discrete-event sys-
tem or AI-based module that implements a failure de-
tection, isolation and accommodation scheme, or serve
as a means of managing the complicated sequence of
continuous-time state events involved in reconfiguring a
flight-control system when an aircraft engine stalls.

2.5. Composite Components (CCs):

As mentioned before, pure components may be arbitrar-
ily assembled into composite components (CCs), and
CCs in turn can be used to build arbitrary hierarchical
hybrid systems. Combining pure components to create
a CC is illustrated in Section 3.3.

3. SHSML Overview

The semantics of SHSML have been developed in detail
and documented [11]. Its syntax is still undefined; this
task will be completed in conjunction with the develop-
ment of a SHSML interpreter. Page limitations do not
permit a full description of the semantics of SHSML;
therefore, we simply conclude by providing a few com-
ments to establish the appropriate context for the de-
velopments in [11] and two small illustrative examples:
a low-order CTC and a composite component.

3.1 Comments:

SHSML will naturally lack many of the features of a
modern general-purpose high-order language:

• to avoid excessive complexity and unnecessary de-
tail, and

• to allow model-specific support (see below).

Modeling support will include:

• syntactic checks (e.g., is there a state differential
equation corresponding to each declared state vari-
able, do all input/output connections involve con-
sistent variable types), and

• semantic checks (e.g., detection of algebraic loops,
checks for the correct use of structures for state-
event handling, model structural changes, etc.)

Note that some of the features of the modeling lan-
guage outlined here impose important requirements on
the corresponding algorithms for numerical integration.
Those considerations are also discussed in [11].

3.2 Illustration 1 - a Simple CTC:

The following SHSML model represents a nonlinear
electro-mechanical component. There is one elementary
state event, modeling Coulomb friction:

CTC turret is

%

% an electric-drive ’turret’ example

%

interface % interface definition:

input(volts,signal,(-vl,vl)); % applied voltage

input(load_dist,signal); % load disturbance

input(Ksat,real); % variable gain

output(theta,signal); % turret azimuth angle

output(volt_lim,signal); % aux. output variable

knob(del_theta); % supply any offset

view(curr); % displayed variable

end interface;

body % body definition:

declarations % internal variables:

state(theta,theta_dot); % state and deriv names

state(theta_dot,moment);

local(moment,signal,(-m_max,m_max));

flag(funct01); % state-event flag

end declarations;

initial % now handle initialization:

% initial turret azimuth angle offset:

theta = del_theta;

% initial friction sign:

sgn = if theta_dot < 0.0 then -1.0

else if theta_dot > 0.0 then 1.0

else sign(moment);

end initial;

event(funct01) % now handle the state event:

funct01 = theta_dot % zero-crossing => event

negative-to-positive

sgn = 1.0;

end negative-to-positive;

positive-to-negative

sgn = -1.0;

end positive-to-negative;

end event;

dynamics % now handle system dynamics:

% input is softly saturated

volt_lim = volts/(1.0 + Ksat*abs(volts));

curr = (volt_lim - Km*theta_dot)/R; % current

frict = B * sgn; % Coulomb friction

% combine electrical, friction & load torques

moment = (Km*curr - frict - load_dist)/J;

end dynamics;

assignments % now assign parameter values:

vl: 15.0; % [volts]

del_theta: 0.1; % [rad] - default value

Ksat: 2.0; % [v**-1]

Km: 6.2E-3; % [Nm/A]

R: 5.3; % [Ohm]

B: 1.0E-2; % [Nm]

J: 7.5E-7; % [kg-m**2]

m_max: 25.0; % [Nm]

end assignments;

end body;

end turret;

The above example illustrates many general semantic fea-
tures of the proposed SHSML language:

• Note that the notation % denotes the beginning of a
comment; here we have used this feature to provide a
road-map of the component model.

• Superfluous and / or redundant programming has been
minimized, and the language has been kept simple.
Simplicity is important because it allows the incorpo-
ration of model checking in the compiler or simulator
that can perform equation sorting, detection of alge-
braic loops, checking for topological consistency, etc.

• The tentative syntax above is moderately terse rather
than verbose. A more readable or novice-friendly nota-
tion might use key words (as in Ada); for example

output(name=>theta,type=>signal);

state(name=>theta,derivative=>theta_dot);

eliminates the need to remember that the second ele-
ment plays a very different role in these two statement
types. On the other hand, the language is not cryp-
tic, either – for example, the event subsection delim-
iter positive-to-negative could be p2n, and so on.
Construction of more succinct or verbose variants of
SHSML would be a straightforward task.

interface Section: Permitted variable categories are input,
output, knob and view. As mentioned before, the first two
types are primary input/output (i/o) ports, to which con-
nections may be made, while knob and view statements des-
ignate secondary variables that can be accessed from outside
the component – knobs are parameters (constants that can
be varied during a set of simulation experiments), and views
are variables that the modeler might want to display after
simulation. CTC input variables may be of type signal,

real, symbolic or boolean, corresponding to the input list

in Eqns. (1, 2); output variables are of type signal, by def-
inition. The distinction between first-class inputs and out-
puts (which can be connected to other first-class i/o vari-
ables) and second-class ones (knob and view elements) is
important when analyzing the topology of the system and
performing operations such as linearization where unwanted
inputs and outputs may be bothersome. Note that the mod-
eler may declare a component input variable to be a knob at
a higher level, and similarly for output and view variables
(e.g., output volt lim in turret is made a view variable in
Illustration 2).

declarations Section: Key internal variables are catego-
rized as state, local and flag. The state variables in
a CTC are those dynamic states which will be evolved by
numerical integration of the state equations (Eqns. 1, 2) or
differential-algebraic equations; the states and their deriva-
tives are named in the state statement, and the deriva-
tives (and perhaps constraint equations) are evaluated in
the dynamics section (and perhaps constraint section, see
below). The local variables are arbitrary “other” signals
which might need to be constrained (see example). The flag
variables are state-event signatures, i.e., functions whose
zero-crossings correspond to state events such as two me-
chanical parts engaging and disengaging.

Ranges: Variable ranges may be specified for input and
local variables, as shown – e.g., volts must be in the range
(-vl, vl); this feature is needed to prevent a component
model from being driven outside its known domain of va-
lidity. The simulator would have to support checking such
restrictions and either warning the user or stopping the sim-
ulation if they are violated.

Precision: Precision specification could be supported for rep-
resenting the continuous-time signals in a CTC – however,
many simulators do not provide this capability, so it is not
clear there would be sufficient benefit to be worth the extra
detail. Single-precision arithmetic is usually adequate, as
automatic step-size-control algorithms generally reduce or
eliminate the need for higher-precision arithmetic.

Units: Support for specifying units of key physical vari-
ables might be provided. This would prevent errors like
connecting an output torque in foot-pounds to an input
torque in newton-meters or worse yet to a voltage. How-
ever, checking that units are correct and consistent is a dif-
ficult task (is it appropriate to connect 0.3048*l(feet) times
4.4482*F(pounds) to a torque in Nm?) and a poorly imple-
mented facility would be very frustrating to use.

initial Section: Initial condition calculations and other
“set-up” evaluations are performed here. In this example
we have specified that the turret angle is initially offset from
zero by amount del theta, and that the variable sgn takes
the sign of theta dot if that state is not zero, otherwise it
takes the sign of moment (θ̈).

event Sections: These provide for state-event handling (e.g.,
change of sign in the Coulomb friction term when theta dot

passes through zero); the occurrence of a state event is indi-
cated by a zero-crossing in the variable contained in the flag
statement. Separate subsections are provided to account for

the negative-to-positive and positive-to-negative transitions.
There would be a separate event section for each state event
if there is more than one. A more detailed discussion of this
feature is provided below.

dynamics Section: Differential equations are simply and nat-
urally rendered. Here we have a “chain” of integrators, i.e.,
the derivative of state 1 is state 2; then the derivative of
state 2 is moment – in mathematical terms, θ̈ = M where
M = moment denotes the total moment acting on the tur-
ret. Therefore, moment is the only derivative evaluated in
the dynamics section of this component.

constraint Section: We believe that support for an impor-
tant class of differential-algebraic equations (DAEs), i.e.,
systems modeled by ẋ = f(x, u, t) subject to 0 = h(x, u, t),
could be incorporated by adding a constraint . . .

end constraint; section to the formal definition of a CTC.
The code in a constraint section could be similar to that in
the dynamics section except each constraint would have to
be stylized (e.g., 0.0 = <arbitrary expression>), to dis-
tinguish it from other regular function evaluations. It is not
clear whether other limitations or mechanisms would be re-
quired for this approach to handle all problems in this class
– this extension is still tentative. Of course, the simulator
would have to support nonlinear equation solving in coordi-
nation with numerical integration; DASSL [12] is the best-
reputed solver for this class of DAEs. For a more general
and rigorous discussion of DAE solvers, see [13].

Encapsulation: Each component is rigorously encapsu-

lated, i.e., its internal variables and parameters cannot
be confused with or influenced by those of other compo-
nents. This is critical if components are to be interchange-
able, reusable and arbitrarily interconnectable without hav-
ing to worry about “side effects”. We observe, however, that
there are circumstances when it is tempting to permit cir-
cumscribed abuses to complete encapsulation. For example,
if there were another CTC tank body with azimuth angle
theta one might wish to initialize turret’s state theta in
terms of an offset from tank body’s azimuth :

theta = tank_body.theta + del_theta;

where a “global” designation <component>.<element> is
used for the external variable. This would eliminate the
need to create an artificial input variable to “connect” this
external signal. Other cases are also considered in [11]; at
this point this question is still open.

State Events: This CTC model contains a simple ‘state
event’, i.e., the change in sign of the friction term when the
angular velocity theta dot passes through zero. Substantial
errors in simulation may occur if such an event is not “cap-
tured” correctly [1, 3]; the purpose of the event section of
the model above is to handle the state event rigorously [1].
State events can, of course, be more complicated than this
example. In general, a state event can be formulated as an
arbitrary zero-crossing condition:

S(xc, uc, uk, mj , bi, t) = 0 (6)

where S is a general expression involving the state and per-
haps input variables and time. The result of the state event
in model turret is also extremely simple: change the sign

of the friction term in the moment equation. This too can
be more general in the dynamics section – for example, the
switching variable sgn may be used in arbitrarily compli-
cated expressions of the form if sgn > 0.0 then do ...

else do ... endif;. Finally, the above example assumes
that the dynamics are such that a trajectory can always cross
the boundary – in conflict situations this may not be so,
and additional machinery is needed to model motion along
a boundary submanifold in such cases, as described in [11].
This example, however, is complete enough to convey the
ideas and issues without getting involved in a lot of unnec-
essary complexity.

3.3 Illustration 2 - a Simple CC:

The component turret may be connected to a digital con-
troller dctrl and a digital signal processor az filter to form
a composite component (CC), as follows:

CC turret_azimuth_control is

%

% composite component connection

%

interface % declare CC interface variables:

input(theta_com,real); % controller command input

input(disturbance,signal); % external disturbance

input(noise,signal); % sensor noise source

knob(k_sat); % two parameters to

knob(k_noise); % ... experiment with

output(azimuth) = output(turret.theta);

output(az_meas) = input(az_filter.theta);

output(az_filt) = output(az_filter.theta_trk);

% make turret.volt_lim a ’view’ variable:

view(volt_lim) = output(turret.volt_lim);

end interface;

body

connections % define the component connections:

input(dctrl.ref) = theta_com;

input(dctrl.fdbk) = output(az_filter.theta_trk);

input(turret.volts) = output(dctrl.command);

input(turret.load_dist) = disturbance;

% make turret.Ksat a ’knob’ variable:

input(turret.Ksat) = k_sat;

input(az_filter.theta) = output(turret.theta)

+ Knoise*noise;

end connections;

assignments

k_noise: 1.0 % default noise gain

end assignments;

end body;

end turret_azimuth_control;

A graphic representation corresponding to this textual spec-
ification is also presented in [11]. Briefly, we note that:

• CC inputs and outputs are defined as in the pure com-
ponent case. Each CC output variable inherits the type
of the associated component variable; each input vari-
able in the CC description must be typed in accordance
with the typing in the component where it is consumed.

• A global variable “dot notation” is used to create
unique identifiers for system variables. For example,

any number of components may have a variable theta;
turret.theta is unique to component turret.

CC inputs: are named in the interface section; these names
must be used to specify component inputs within the system.
In this example, disturbance is a disturbance torque from
an external module that acts on turret, noise corrupts the
signal processed by the azimuth filter, etc. Inputs may be
instantiated by connecting this CC to a “driver” (signal gen-
erator) or by using this module as a composite component
of a larger system. Either way, such a connection defines the
specific nature of the inputs, e.g. how disturbance varies
with time, etc. Consistency between an input source and
component constraints would be checked as part of validat-
ing the model when it is assembled.

CC outputs: are named in the interface section and must
be (in the same statement) connected to an appropriate com-
ponent input or output. In this example, azimuth is the
azimuth angle of the current target being tracked, az meas

is the input to az filter, etc. Note that we allow a com-
ponent input to be a CC output only because we permit
operations in the connection definition (see following point)
– this would not be necessary or desirable if operations were
not permitted in that context.

This example shows two simple operations beyond con-
nection, i.e., multiplication by a gain factor Knoise and
then addition to inject the signal into the track filter input
az filter.theta. It is an open question whether to allow
more generality – e.g. to permit multiplication or division
of variables or other nonlinear operations – or conversely to
forbid all operations (in which case one must move the gain
and addition into the az filter component).

The validity of each component connection is checked and
enforced by the interpreter / compiler before a system is
deemed acceptable for use (simulation or analysis).

4. Conclusion

The lack of precise tools for modeling and evaluating hy-
brid control systems is a major impediment to the efficient
and cost-effective development of embedded real-time soft-
ware for a wide variety of applications. The development
of a standard hybrid systems modeling language (SHSML)
and corresponding rigorous simulation environments (e.g.,
Hybrid DsTool) represent important contributions to elim-
inating this barrier. In addition, SHSML has been devised
to provide a direct interface with software engineering tools
for implementing such systems. The result should be a sub-
stantial reduction in the design-cycle time and life-cycle cost
of hybrid control systems.

Acknowledgements: The author would like to thank col-
leagues at ORA (Jin Lu, Matt Stillerman) and in the DSSA
[2] Community (Bob Balzer, USC/Information Sciences In-
stitute; Frank Belz, TRW; Christine Braun, GTE Contel
Federal Systems; Lee Erman, Teknowledge Federal Systems;
Marc H. Graham, CMU Software Engineering Institute;
David Luckham, Stanford University; Erik Mettala, ARPA
SISTO (retired); Will Tracz, IBM Federal Systems Com-
pany; Steve Vestal, Honeywell System Research Center; and

Dave Wile, USC/Information Sciences Institute) for many
helpful discussions and suggestions.

5. References

1. Kohn, W. and Nerode, A., “Foundations of Hybrid Sys-
tems”, to appear in Logical Methods: A Symposium
in Honor of Anil Nerode’s 60th Birthday, Birkhauser,
1993.

2. Mettala, E. and Graham, M. H., Eds., The Domain-
Specific Software Architecture Program, Special Report
CMU/SEI-92-SR-9, Carnegie Mellon University Soft-
ware Engineering Institute, Pittsburgh, PA 15213, June
1992.

3. Guckenheimer, J. and Nerode, A., “Simulation for Hy-
brid Systems and Nonlinear Control”, Proc. IEEE Con-
ference on Decision and Control, Tucson, AZ, Decem-
ber 16-18, 1992.

4. Cellier, F. E., Elmqvist, H., Otter, M., and Taylor, J.
H., “Guidelines for Modeling and Simulation of Hybrid
Systems”, Proc. 12th IFAC World Congress, Sydney,
Australia, July 18-23, 1993.

5. Elmqvist, H., “SIMNON - An Interactive Simulation
Program for Non-Linear Systems”, in Proc. of Simula-
tion ’77, Montreux, France, 1977.

6. Augustin, D. C., Strauss, J. C., Fineberg, M. S., John-
son, B. B., Linebarger, R. N., and Sansom, F. J., “The
SCi Continuous System Simulation Language (CSSL)”,
Simulation, Vol. 9, No. 6, December 1967.

7. Advanced Continuous Simulation Language (ACSL)
Reference Manual. Mitchell & Gauthier Associates,
Concord MA 01742.

8. Taylor, J. H., Frederick, D. K. Rimvall, C. M. and
Sutherland, H. A., “The GE MEAD Computer-Aided
Control Engineering Environment”, Proc. IEEE Sym-
posium on CACSD, Tampa, FL, December 16, 1989.

9. Cellier, F. E., “Combined Continuous/Discrete System
Simulation by Use of Digital Computers: Techniques
and Tools”, PhD Thesis ETH 6438, Swiss Federal In-
stitute of Technology, Zurich, Switzerland, 1979.

10. Pantelides, C. C., “The Consistent Initialization of
Differential-Algebraic Systems,” SIAM J. on Scientific
Computing, Vol. 9, No. 2, pp. 213–231, 1988.

11. Taylor, J. H., A Proposed Modeling Language Standard
for Hybrid Dynamical Systems, Odyssey Research As-
sociates Technical Report, April 1993.

12. Brenan, K. E., Campbell, S. L. and Petzold, L.
R., Numerical Solution of Initial Value Problems in
Differential-Algebraic Equations, North Holland, 1989.

13. Mattsson, S. E. and Söderlind, G., “A New Technique
for Solving High-Index Differential-Algebraic Equations
Using Dummy Derivatives”, Proc. CACSD’92, IEEE
Computer-Aided Control Systems Design Conference,
Napa, Calif., pp. 218–224, March 17–19, 1992.

