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Abstract: Dual-specificity phosphatases (DSPs) are important, but poorly understood, cell signaling enzymes that remove 
phosphate groups from tyrosine and serine/threonine residues on their substrate. Deregulation of DSPs has been impli-
cated in cancer, obesity, diabetes, inflammation, and Alzheimer’s disease. Due to their biological and biomedical signifi-
cance, DSPs have increasingly become the subject of drug discovery high-throughput screening (HTS) and focused com-
pound library development efforts. Progress in identifying selective and potent DSP inhibitors has, however, been re-
stricted by the lack of sufficient structural data on inhibitor-bound DSPs. The shallow, almost flat, substrate binding sites 
in DSPs have been a major factor in hampering the rational design and the experimental development of active site inhibi-
tors. Recent experimental and virtual HTS studies, as well as advances in molecular modeling, provide new insights into 
the potential mechanisms for substrate recognition and binding by this important class of enzymes. We present herein an 
overview of the progress, along with a brief description of applications to two types of DSPs: Cdc25 and MAP kinase 
phosphatase (MKP) family members. In particular, we focus on combined computational and experimental efforts for de-
signing Cdc25B and MKP-1 inhibitors and understanding their mechanisms of interactions with their target proteins. 
These studies emphasize the utility of developing computational models and methods that meet the two major challenges 
currently faced in structure-based in silico design of lead compounds: the conformational flexibility of the target protein 
and the entropic contribution to the selection and stabilization of particular bound conformers. 

Keywords: Dual-specificity phosphatases, computer-aided drug discovery, high throughput screening, structure-based virtual 
screening, molecular docking, intrinsic dynamics, focused library design. 

 INTRODUCTION 

Dual-specificity phosphatases (DSPs) are important sig-
nal transduction enzymes that regulate various cellular proc-
esses including cell division, growth differentiation, prolif-
eration and apoptosis, in coordination with protein kinases 
[1]. They form a subclass of the protein tyrosine phosphatase 
(PTP) superfamily, which are distinguished by the active-site 
signature motif HCX5R at the phosphatase (PTPase) loop [2]. 
Forty of the 107 PTP genes in the human genome encode 
DSPs [3]. Deregulation of DSP protein expression levels has 
been implicated in at least ten cancer types, obesity, diabetes, 
inflammation, and Alzheimer’s disease [1, 4]. This therapeu-
tic spectrum has led to a growing medicinal chemistry inter-
est in exploring DSPs. 

DSPs are functionally defined by their ability to catalyze 
the removal of two covalently attached phosphate groups 
from tyrosine and serine/threonine residues on the same 
substrate. This activity is achieved via the PTPase catalytic 
mechanism at a relatively shallow active site; presumably, 
this shape is required for accommodating the phosphorylated 
serine/threonine residues which, in contrast to phosphory-
lated tyrosine, only extend slightly beyond the peptide back-
bone [5]. DSP inhibitors have been identified in natural 
product collections [6, 7], diversity-oriented chemical librar-
ies [8-10] as well as in larger scale drug-like compound 
libraries [11]. These compounds have not been widely used 
as molecular probes or lead compounds in part because of  
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their lack of potency, redox properties, and inadequate phos-
phatase selectivity, despite some limited synthetic analog 
follow up studies [12]. Fig. (1) presents an overview of the 
ensemble of proteins targeted by approved drugs, retrieved 
from DrugBank [13], which showcases the small fraction of 
protein phosphatases and the lack of representation of DSPs. 

Computational methods have become ubiquitous in all 
aspects of drug discovery [15], including structure-based 
modeling studies broadly used in lead discovery and optimi-
zation [16]. Applications of structure-based modeling to 
DSPs have been limited, however, due to the lack of struc-
tural data. Over the past two years, the number of known 
distinct DSP structures has more than doubled, providing the 
framework for developing structure-based modeling for 
compounds of therapeutic interest. Fig. (2) illustrates the 
catalytic domain of a DSP, cell division cycle 25B (Cdc25B) 
phosphatase, in comparison to two extensively studied cell 
signaling enzymes, protein tyrosine phosphatase 1B 
(PTP1B) [17] and cyclin-dependent kinase 2 (Cdk2) [18]. 
PTP1B and Cdk2 structures have a deep groove at their ac-
tive sites, which ensures the tight binding of small molecule 
ligands, and allows for the design of selective inhibitors. The 
lack of analogous active site features in DSPs increases the 
challenge for the design of small molecule inhibitors. 

It is reasonable to hypothesize that improving our under-
standing of the interactions of DSPs with their substrates and 
inhibitors could accelerate the discovery and development of 
therapeutic agents. Here we will focus on two therapeutically 
important groups of the DSPs: Cdc25s and MAP kinase 
phosphatases (MKPs), and present an overview of recent 
advances in understanding their interactions with ligands at 
the molecular level. We summarize the results from high-
throughput methods for lead discovery and chemical synthe-
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sis and virtual design methods for lead optimization applied 
to these DSPs. Two major challenges in the in silico design 

of lead compounds that target these DSPs, which are com-
mon with most molecular docking efforts, are modeling the 
conformational flexibility of the protein and accounting for 
the entropic effects that stabilize bound inhibitor conforma-
tions. Finally, we discuss prospects toward addressing these 
challenges by applying advances in protein structural dynam-
ics modeling. 

CDC25 PHOSPHATASES: STRUCTURE, FUNCTION 
AND INTERACTIONS 

Overview of Function, Sequence and Structure of Cdc25 
Phosphatases 

Cdc25 phosphatases are key regulators of the cell divi-
sion cycle and modify Cdks [19]. The human genome en-
codes three Cdc25 isoforms, designated by the suffixes A, B, 
and C. In the normal cell division, they catalyze the activa-
tion of Cdk/Cyclin complexes leading to cell cycle progres-
sion, e.g., Cdc25B activates Cdk2-pTpY/CycA contributing 
to early G2 phase progression. In addition, the inactivation of 
Cdc25s by checkpoint kinases (Chk1 and Chk2) in response 
to damage to or improper replication of DNA results in cell 
cycle arrest [20]. In the context of cell division progression, 
the A and B isoforms have been reported as potential onco-
genes [21], being overexpressed in more than ten types of 
human cancer, including prostate [22] and breast [23] can-
cers. 

The Cdc25 encoding sequences are 460 to 550 amino ac-
ids long and are described in terms of N-terminal and C-
terminal functional regions. The N-terminal region contains 
the regulatory sites; the C-terminal region, around 200 resi-
dues long, encodes the catalytic domain. The regulatory 
domain shows high sequence variability among the isoforms 
including alternative splice variants, whereas 85% of the 
amino acids in the catalytic domain are identical. The cata-
lytic domain of Cdc25 is topologically unique from that of 
other PTPs (Fig. 2) and assumes almost identical structures 
in the isoforms A [24] and B [25] (0.8Å root-mean-square 
deviation (RMSD) in their 148 C -coordinates) with the 
exception of the disordered C-terminal -helix in isoform A. 
Several high-resolution structures of the catalytic domain of 
Cdc25B have been determined, including single residue 
mutations [26] or different oxidation states of the catalytic 
cysteine [27]. These structures show minor conformational 
differences in the side chains of solvent-exposed residues. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. (1). Distribution of biological targets among approved 
drugs. Molecular functions of 1321 approved human drug targets 
retrieved from DrugBank [13] are assigned using the PANTHER 
classification system [14]. Phosphatase and kinase slices are en-
larged in two separate pie charts. We note that a much smaller 
number of protein phosphatases are validated as targets compared 
to protein kinases. The numbers in parentheses represent the num-
bers of target proteins in each category and their fractional contri-
bution to the entire set of approved drug targets. There are no dual-
specificity phosphatases approved as drug targets. MKP-3 is listed 
in the DrugBank as an experimental drug target. 

 
 
 
 
 
 
 
Fig. (2). Comparison of the active sites of Cdc25B, PTP1B and Cdk2. The active site on Cdc25B is rather shallow, compared to the deep 
pockets that permit the insertion of ligands in PTP1B and Cdk2. A remote hot-spot is shown in the Cdc25B structure. Recent identification of 
a hotspot interaction between Cdc25B and its native substrate, the Cdk2/CycA complex, has shifted some drug discovery efforts targeting 
Cdc25B from the active site to the remote hotspot region. 
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This conformational variability, illustrated for Arg482 and 
Asn532 in Fig. 3A, affects the binding pose of the ligand at 
the active site of Cdc25B. 

Cdc25B Substrate Interactions: Enzyme Inhibitors and 
High Throughput Screening (HTS)  

A general challenge in developing effective small mole-
cule inhibitors is the identification of an appropriate starting 
or lead structure. Such compounds are often identified seren-
dipitously or by systematic experimental or computational 
HTS of small-molecule libraries. The first Cdc25 inhibitors, 
the dnacins and the dysidiolides, have been reported more 
than a decade ago [1, 28]. Since then, a variety of different 
chemical classes of Cdc25 inhibitors have been identified by 
traditional or HTS methods. These include lipophilic acids, 
oxazoles, sterols, polyphenols, terpenoids, indoles, and qui-
nones [28, 29]. HTS strategies to identify small molecule 
inhibitors of Cdc25s have generally followed the approaches 
used for other PTPs [30]. Either low or high throughput 
screens have been developed using recombinant protein with 
a variety of small molecule substrates, including p-
nitrophenyl phosphate, 6,8-difluoro-4-methylumbelliferyl 
phosphate, fluorescein diphosphate or O-methyl-fluorescein 
phosphate. These artificial substrates are selected in prefer-
ence to the native substrate to avoid the need to generate 
both a Cdk and a Cyclin and then phosphorylating the com-
plex with a kinase. Recent HTS protocols and screening 
results against Cdc25B and MKPs that were sponsored by 
the NIH Roadmap Molecular Libraries Initiative, including 
data from the University of Pittsburgh Molecular Libraries 
Screening Center, can be found online (PubChem; http:// 
pubchem.ncbi.nlm.nih.gov/). 

Cdc25B Substrate Interactions: Protein-Protein Inter-
faces 

The shallow nature of the Cdc25 active site suggests that  
a large interfacial area is involved in recognizing Cdk. In  
view of the difficulty of specifically targeting this site, atten- 
tion has turned in recent years to alternative regions in the  
enzyme. One strategy focuses on identifying single amino  
acids that are critical for the phosphatase-substrate interac- 
tion, so-called hotspots, at protein-protein interfaces [31, 32].  
In the case of Cdc25B, 13 residues were selected, based on  
their proximity to the active site, conservation in Cdc25  

isoforms, and potential geometric and physicochemical  
complementarity to the Cdk2 structure. Site-directed  
mutagenesis was used to determine the importance of each of  
the 13 residues for Cdc25B-Cdk2/CycA interaction. [33].  
Mutations of Arg488 and Tyr497 reduced both the in vitro  
and in vivo dephosphorylation of Cdk2-pTpY/CycA by  
Cdc25B. Computational modeling of the Cdc25B- 
Cdk2/CycA tertiary complex by Rudolph and coworkers  
further improved our understanding of the mechanism of  
substrate recognition by Cdc25B (Fig. 3B) [34]. Binding  
experiments of mutants selected after computer modeling  
identified additional key residues (Arg492 on Cdc25B and  
Asp206 and Asp210 on Cdk2) that mediate the protein- 
protein association. The Arg492-Asp206 interaction was  
found to make the largest contribution (3.8 kcal/mol) to the  
total free energy of binding, followed by Arg488-Asp206  
(2.8 kcal/mol). Structural characterization of this region  
revealed several features that support the feasibility of  
developing Cdc25B-Cdk2/CycA interaction inhibitors. A  
pocket located next to the hotspot arginines remained  
unoccupied by Cdk2, and was suggested by computational  
models to serve as an anchor for small molecule binding.  
The hotspot residues and this nearby pocket provided  
approximately 350 Å2 solvent accessible surface area (220  
Å2 non-polar and 130 Å2 polar) [35] and featured several  
potential hydrogen bond acceptors and donors (backbone  
atoms of Leu378, Asp397, Arg485, Pro503 and Met505, and  
side-chain atoms of Glu377, Lys399, Arg485, Arg488,  
Glu489 and Arg492) (Fig. 3B). The volume of the pocket  
was approximately 200 Å3, which was large enough to  
accommodate a fragment-like molecule (MW < 250). Amino  
acid variations at two positions in the pocket, Phe386  
(Cdc25A:Tyr344 and Cdc25C:Cys290) and Met505  
(Cdc25A:Leu362 and Cdc25C:Leu409) further supported the  
feasibility of anchoring selective inhibitors at this site. 

MKPS: STRUCTURE, FUNCTION AND INTERAC-
TIONS 

Overview of Function, Sequence, and Structure Charac-
teristics of MKPs 

MKPs dephosphorylate and inactivate mitogen-activated 
protein (MAP) kinases [36]. Their substrates include p38 
kinases (p38s), c-Jun amino-terminal kinases (JNKs) and 

 
 
 
 
 
 
 
 
Fig. (3). Active site and remote hotspots at the Cdc25B catalytic domain. A. Cdc25B active site. A sulfate is bound to the catalytic site 
cavity. Different side-chain orientations might affect the outcome of inhibitor docking studies (PDB IDs: 1QB0 colored green, 1YMK col-
ored orange). B. Computer model for the Cdc25B-Cdk2/CycA ternary complex and remote hotspot interactions at the interface between 
Cdc25B and Cdk2.  
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extracellular signaling-related kinases (ERKs) [37]. Mem-
bers of the MKP family show tissue specific expression 
patterns and tight growth/mitogen/stress regulated transcrip-
tional induction profiles [38]. At least five of the 11 family 
members have been implicated with various cancer types 
[39]. Among these, MKP-1, the prototypical member, and 
the structurally well-characterized MKP-3 have been most 
closely examined. MKP-1 is a nuclear protein and shows 
selectivity for p38s and JNKs over ERKs. Its expression 
levels are elevated in at least eight cancer types and correlate 
with the progression of breast [40] and lung [41] cancers. 
MKP-3 is a cytosolic phosphatase with preference for ERKs 
over other MAP kinases. Overexpression of MKP-3 is asso-
ciated with lung [42] and pancreatic [43] cancers. 

MKPs vary in length from 180 to 660 amino acids and all 
possess a canonical tyrosine phosphatase domain [44]. Most 
of the members also possess an N-terminal substrate binding 
domain (BD) that facilitates substrate recognition and speci-
ficity. A list of MKP catalytic domain structures resolved to 
date is given in Table 1, along with Cdc25A and Cdc25B 
catalytic domains. These DSPs exhibit at least 40% sequence 
identity with respect to the catalytic domains of MKP-1 and 
MKP-3 (Table 1). Selected structures are shown in Fig. (4), 
and their sequence alignments are presented in Fig. (5). MKP 
catalytic domains share the same fold with PTPs, - a five 
stranded -sheet (six stranded in the inactive state of PTPase 
loop) surrounded by four -helices on one side and one -
helix on the other (Fig. 4). The MKP structures resolved in 
the inactive state of the PTPase loop, MKP-3 [45] and PAC-
1 [46], are known to adopt the active PTPase loop conforma-
tion upon binding their substrates. On the other hand, MKP-
5 [47] and VH3 [48] adopt the active state PTPase loop con-
formation even in the absence of bound substrate, consistent 
with the intrinsic ability of some enzymes to sample confor-
mations that facilitate ligand binding even in the unbound 
state [49]. In addition, BD structures of MKP-3 [50] and 
MKP-5 [51] have been resolved. 

Substrate Recognition and Catalytic Activation: Alter-
nate Mechanisms for Inhibition 

Substrate recognition is achieved by the BD of MKPs. In  
the case of MKP-1 [52], MKP-3 [53], and PAC-1 [54], allos- 

terically bound substrate triggers a catalytic activation and  
induces a movement of about 5 Å in the acidic loop (Fig. 4).  
This geometric adjustment provides two potential inhibition  
mechanisms as alternatives to the conventional direct cata- 
lytic PTP inhibition. The first would involve the inhibition of  
substrate recognition, similar to the mechanism proposed  
above for Cdc25B-Cdk2/CycA. The second would target the  
obstruction of the allosteric mechanism of activation. Such  
an inhibitory action has been achieved for PTP1B via the  
restriction of a catalytically important loop from adopting an  
active state conformation upon binding a small molecule  

Table 1. Known DSP Catalytic Domain Structures and their Sequence Identities 

 

 Catalytic domain structures % pairwise sequence identity among MKPs * 

Name PDB ID Res. (Å) State MKP-1 MKP-3 MKP-4 MKP-5 PAC-1 VH3 

MKP-1 – – – – 47.26 46.58 41.78 73.97 64.38 

MKP-3 1MKP [45] 2.35 Inactive 58.06 – 80.14 47.26 47.95 43.84 

MKP-4 2HXP 1.83 Active 54.84 96.77 – 46.58 47.95 43.84 

MKP-5 1ZZW [47] 1.60 Active 54.84 54.84 58.06 – 42.47 34.93 

PAC-1 1M3G [46] NMR Inactive 77.42 51.61 48.39 48.39 – 57.53 

VH3 2G6Z [48] 2.70 Active 70.97 48.39 45.16 41.94 58.06 – 

Cdc25A 1C25 [24] 2.30 – – – – – – – 

Cdc25B 1QB0 [25] 1.91 – – – – – – – 

*Upper triangular entries refer to the sequence identity percentages at the catalytic domains; lower triangular entries to those at the active site region of the catalytic domain. The 
corresponding multiple sequence alignment is given in Fig. (5). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. (4). MKP CD domain structures of active and inactive 
states. The active site loops display substantial changes between 
active and inactive states. General acid loops are marked with an 
asterisk. Coloring is according to the sequence alignment shown in 
Fig. (5). 
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[55]. We note that MKP-3 preferentially dephosphorylates  
ERK2, and in addition to the resolved structures of the cata-
lytic domain and BD, a structure of ERK2 complexed with  
the kinase interaction motif from MKP-3 BD has been de- 
termined [56]. The specific regions of MKP-3 that interact  
with ERK2 have been elucidated in systematic mutation and  
deletion analyses [57]; and finally the results from H/D ex- 
change experiments [58] have been used to construct a struc- 
tural model of the MKP-3/ERK2 complex. All of these data  
suggest that a further examination of the binding surface and  
dynamics of MKP-3 is warranted and could assist in identi- 
fying novel sites for enzyme inhibition. 

COMPUTATIONAL MODELING OF PROTEIN-
INHIBITOR INTERACTIONS  

Modeling Protein-Ligand Interactions: Importance of 
Entropic Effects in Defining Binding Affinities 

Molecular docking enables the rapid investigation of mo-
lecular recognition at an atomic scale [59]. With the steady 
increase in the number of experimentally determined protein 
structures, docking, including docking virtual libraries, is 
becoming widely used in drug discovery for predicting in-
hibitor/substrate binding modes, especially in the absence of 
a co-crystal structure. A comprehensive overview of current 
docking methods can be found in a recent review [60]. The 
critical assessment of a series of docking programs and a 
large set of scoring functions used in computer-aided drug 
discovery led to two conclusions: docking software are use-
ful for distinguishing active compounds from a large set of 
relevant decoys, and (ii) scoring functions are less successful 
in selecting the crystallographic conformation of a ligand 
from a set of docking poses, and cannot provide an accurate 
ranking of the relative binding affinities of different ligands 
which limits their utility in lead optimization [61].  

The deficiency of scoring functions is essentially attrib-
uted to the insufficient consideration of entropic effects [62]. 
Due to computational efficiency considerations, molecular 
docking simulations are usually conducted by employing an 
optimal conformation of the target protein; for example, a 
known structure of the protein complexed with other ligands. 
The small molecule is allowed to undergo rigid body and 
internal structural changes to optimize its interaction with the 
fixed protein or a fixed backbone conformation with a few 
rotatable side chains. This level of approximation based on a 
single, ‘optimal’ bound conformation, results in systematic 
errors in binding free energy calculations [63]. Current dock-

ing algorithms predict an incorrect binding pose for 50-70% 
of all ligands when only a single fixed receptor conformation 
is considered [64], and models with increased levels of com-
plexity to capture conformational variations have been sug-
gested [65]. In 2007, two notable studies that take rigorous 
account of entropy showed significant success in predicting 
binding affinities: Gilson and coworkers analyzed the asso-
ciation of amprenavir with HIV-1 protease using the Mining 
Minima method, which calculates binding free energy as the 
difference between the standard chemical potentials in the 
bound and unbound states using multiple conformations of 
the ligand at each state [66]. Dill and coworkers, on the other 
hand, studied T4 lysozyme ligands using an alchemical free 
energy calculation method in explicit solvent [67]. They 
showed that the consideration of the multiple binding modes 
of ligand and multiple side-chain orientations in calculations 
gradually increases the accuracy of the predictions.  

The Shape, not only the Depth, of the Free Energy Sur-
face, Defines Binding Affinities 

Recently, Ruvinksy showed that the energy well associ-
ated with the experimentally observed binding mode of 
ligands is broader than all energy wells associated with non-
native binding poses [68]. In other words, the bound confor-
mation accommodates slight variations in the binding pose 
without affecting (weakening) protein-ligand interaction 
energy (enthalpy), and this variability, or associated favor-
able entropy, helps in lowering the free energy of binding. 
This finding is consistent with the above-mentioned studies 
of the Gilson and Dill groups, which point to the importance 
of entropic effects in stabilizing bound conformers. A similar 
ensemble modeling approach that takes into account the 
width of the energy wells was recently adopted to explain the 
differences in the catalytic rates of cytochrome P450 
orthologs that process the same substrates [69]. 

These results provide us with insights into how one 
should select the most likely docking poses. Using molecular 
docking programs, an improved accuracy of predictions can 
be achieved by clustering analysis of a population of docking 
poses. Thus, it is possible to define various bound ‘states’ 
(clusters), comprised each of the multiple ‘microstates’ (con-
formations). The evaluation of the binding energy at each 
state can then be based both on the energetic interaction and 
on the population of microstates in each state. Indeed the 
interaction energies, usually accounted for by the scoring 
functions of the docking software, simply represent the en-
thalpic contribution to the binding free energy, and the en-

 
 
 
 
 
 
 
Fig. (5). Sequence alignment of the catalytic domain of MKP-1 against other MKPs with known high-resolution structure. The small 
triangles indicate the sequence positions of the two residues (His229 and Phe299 in MKP-1) implicated in inhibitor binding. 
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tropic contributions scale with the size of the populations of 
microstates. A practical shortcut that may improve docking 
calculations was shown to utilize multiple fixed receptor 
conformations, i.e. perform the simulations with an ensemble 
of structures, either experimentally determined by crystallog-
raphy or NMR, or computationally generated [64]. Such 
approaches are expected to be particularly useful in the study 
and design of DSP inhibitors, because the shallow active 
sites of these enzymes provide considerable conformational 
freedom to bound small-molecule ligands. 

Modeling Functional Dynamics of Proteins: Flexible 
Docking 

To make an accurate assessment of the ensemble of mi-
crostates accessible in a given bound state, it is important to 
consider the conformational flexibility of the target protein. 
A major challenge in virtual docking studies, however, is to 
accurately consider target protein flexibility without signifi-
cantly increasing the computational (time) cost [70]. We note 
that the Abagyan laboratory has made significant progress in 
developing docking methods and software that incorporate 
protein flexibility [64, 71,72]. 

Recent years have seen a surge in the number of studies 
exploring the conformational dynamics of proteins using 
coarse-grained normal mode analysis (NMA) [73] with the 
realization that the NMA of a given protein structure (e.g., 
apo form, or ligand-bound) can provide information on alter-
native functional conformations most likely to be assumed 
by the same protein in the presence of other ligands, or under 
other conditions. The beauty of such analyses is the robust-
ness of low frequency modes, which can be captured even by 
low resolution models such as ENMs. The underlying hy-
pothesis in these studies, now confirmed in many experi-
ments [74, 75], is that each protein has an ‘intrinsic dynam-
ics’ favored by its 3-dimensional structure, i.e. it samples a 
well-defined ensemble of conformations in the neighborhood 
of the native state that are structurally defined; the experi-
mentally observed alternative forms are simply those con-
formations that are intrinsically accessible and stabilized by 
substrate or ligand binding [49]. This permits one to generate 
an ensemble of conformers for each target protein, which can 
be utilized in docking simulations with selected lead com-
pounds. Alternatively, ENM-based methods permit one to 
make an assessment of conformational changes that are eas-
ily accessible and those requiring excessive strains, when 
evaluating the alternative bound conformations of target 
proteins. In fact, normal mode analysis is now thought to be 
a prerequisite for drug design [76]. 

COMPUTATIONAL MODELING OF DSP-INHIBI-
TOR INTERACTIONS  

Modeling Cdc25B Interactions with Inhibitors: Multiple 
Modes of Binding 

Several groups have performed molecular docking stud-
ies to help clarify the nature of catalytic inhibitor interactions 
with DSPs. We examined two chemotypes, 2,3-bis-[2-
hydroxyethylsulfanyl]-[1,4]naphthoquinone (NSC 95397) 
and 3-benzoyl-naphtho[1,2-b]furan-4,5-dione (5169131), as 
potential lead compounds for Cdc25B inhibition [9, 11]. The 

Cdc25B active site was targeted in these docking simula-
tions, revealing a potential small molecule interaction with 
Arg482 and Arg544 side chains (Fig. 3A). In another study, 
several inhibitors of Cdc25B were examined using two dock-
ing programs and the results were supported by structure-
activity relationship and site-directed mutagenesis data and 
guided the design of more potent inhibitors [77]. More re-
cently, Park et al. studied ligand binding to a relaxed con-
formation of the Cdc25B catalytic domain generated by 
molecular dynamics simulations and proposed a new binding 
pose for NSC 95397 [78]. The different binding poses are 
likely from the result of the combined effects of the selected 
docking algorithms, scoring criteria, and receptor conforma-
tions, further complicated by the shallow shape of the 
Cdc25B active site. It is also possible that the enzyme ac-
commodates more than one binding mode, but this has not 
yet been verified by any structural data. A systematic analy-
sis of the ensemble of the most favorable binding modes 
using clustering methods would appear to be a plausible 
computational approach toward gaining further insights into 
the possible modes of inhibitor binding to Cdc25B. 

A more recent application of molecular docking was to 
identify new catalytic inhibitors of Cdc25B in a multistep 
virtual screening procedure [79]. The research group selected 
1,500 compounds from a set of 313,000 based on their com-
plementarities to the Cdc25B active site. These compounds 
were subjected to an in vitro enzymatic assay to yield 99 
compounds with 20% inhibitory activity at 100 μM 
concentration. Two compounds with the highest in vitro 
potency (IC50 values of 13 ± 0.5 μM and 19 ± 1.3 μM) were 
also shown to inhibit the proliferation of HeLa cells in a 
concentration dependent manner (IC50 = 15.8 ± 1.8 μM and 
3.6 ± 1.2 μM).  

Assessment of MKP-1 and Inhibitor Interactions Using 
Ensemble Modeling 

MKP-inhibitor interactions were recently modeled for the 
first time upon the determination of the active structure of 
MKP-5 [47]. Members of a pyrrole carboxamide (focused) 
library were investigated to gain insights into possible 
mechanisms of MKP-1 inhibition and selectivity [80, 81]. 
The most potent member of this library, compound (1), 
based on IC50 measurements is shown in Fig. (6). Based on 
unbiased docking simulations using AutoDock [82], we 
identified the regions in the vicinity of the active sites of 
MKP-1, MKP-3, VHR, and Cdc25B that can potentially be 
involved in competitive inhibition [81]. The comparative 
analysis of the surface properties of these four DSPs at the 
identified regions showed that the MKP-1 and MKP-3 are 
characterized by a more hydrophobic character compared to 
other DSPs. The higher tendency of these two DSPs to bury 
a hydrophobic region appears to be in accordance with the 
relatively higher inhibitory activity of compounds against 
MKP-1 and MKP-3 observed in in vitro assays.  

We further performed targeted (or biased) docking simu-
lations in the putative binding site of MKP-1. Results from 
ensemble modeling of interactions were obtained using a 
combination of comparative modeling (MODELLER [83]), 
structure refinement (Sybyl 7.2; Tripos, Inc. St. Louis, MO), 
and docking tools (GOLD [84]). Using the catalytic domain 
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structures of MKPs in the active state listed in Table 1, we 
generated 300 models (conformations) of MKP-1. The ob-
jective was to take into consideration the possible structural 
flexibility (and/or inaccuracy) of the modeled target proteins 
(encircled region in Fig. 7A). The two enantiomers of com-
pound 1 were docked five times onto each MKP-1 conforma-
tion, resulting in 3,000 docking poses. Analysis of the result-
ing ensemble of poses to retrieve dominant patterns and 
identify the most favorable poses revealed the role of the 
solvent-exposed side-chains of His229 and Phe299 in opti-
mizing the interactions with the inhibitor (Fig. 7B). These 
residues presumably mediate the binding of pyrrole carbox-
amide inhibitors in favor of a geometry that occludes the 
access of substrates to the catalytic site. 

These observations suggest some criteria for designing 
MKP inhibitors. However, achieving selectivity remains a 
challenge. Sequence comparison between the members of 
the MKP family shows that MKP-1 shares a high sequence 
identity with others especially in the active site region (Table 
1). Specifically, Phe299 is highly conserved (see Fig 4), 
while the His229 position appears to sustain substitutions to 

Trp, Asn or Glu, which may impart some selectivity. MKP-1 
inhibitors are known to have comparable inhibitory potency 
against MKP-3 (see the IC50 values in Fig. 6). We note that 
the MKP-1 His229 residue is substituted by Trp264 in MKP-
3. Cross-docking of the above described compounds to an 
ensemble of MKP-3 models resulted in similar observations, 
in accordance with their comparable inhibitory activities. 
These observations highlighted the need for locating other 
binding sites on MKP-1 for designing selective inhibitors. 
We also note that these simulations were based on models 
generated using the active state structures of the MKP cata-
lytic domains listed in Table 1. Further studies considering 
the inactive conformation of the active site loop, as well as 
the accessible conformations predicted by normal mode 
analysis, are expected to assist in generating more accurate 
and comprehensive predictions of MKP-inhibitor interac-
tions. 

FUTURE PROSPECTS: INTEGRATED CHEMICAL 
SYNTHESIS AND VIRTUAL DESIGN 

The studies highlighted above, along with others [85, 86], 
show that noteworthy advances have recently been made in 
addressing the challenging problem of designing inhibitors 
for DSPs, although overall progress in this field has been 
limited by the peculiar structural characteristics of this class 
of signaling enzymes. An integrated chemical synthesis and 
structure-based ligand design strategy, along with virtual 
docking tools that take into account the conformational vari-
ability of the target protein, emerge as key components in the 
advances made to date in this area. While high throughput 
screening assays provide us with extensive data, these results 
are often of limited utility unless they are complemented by 
structure-based, detailed studies of well-defined target pro-
teins and their interactions with small molecules, which in 
turn, depend on the availability of accurate experimental 
data. A major bottleneck toward rapid progress in the struc-
ture-based discovery of lead compounds, including in par-
ticular those for DSPs, is the lack of detailed, complete 
datasets, combining both structural and binding affinity data 
with a series of ligands for well-defined target proteins. The 
collection of such high quality data for a representative set of 
protein targets of therapeutic significance is likely to provide 
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MKP-1 IC50 =   8.0 ± 0.9 mM
MKP-3 IC50 = 43.2 ± 0.7 mM  

Fig. (6). MKP-1 inhibitor from a focused chemical library [81]. 
Note the comparable activities (IC50 values) of these compounds 
against MKP-1 and MKP-3. 

 
 
 
 
 
 
 
 
 
Fig. (7). MKP CD structures and docking solutions for MKP-1 inhibitors. A. Template structures used in modeling the MKP-1 catalytic 
domain. The inhibitor docking site is encircled. B. Docking solutions for enantiomers of compound (1). Note the interactions with H229 and 
F299, in addition to those with A260, I261 and R264 on the HCX5R motif. Inhibitors are shown in a ball-and-stick representation with C 
atoms colored green. Approximately 5% of docking poses in the same bound state/cluster are shown transparently. 
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a benchmarking set that can assist in improving current mo-
lecular computational models, methods and software, which 
in turn, will assist experimental efforts toward drug discov-
ery. It is important to note that the optimal development 
cycle involves an iterative design-synthesis strategy, 
whereby new computational hypotheses can be evaluated by 
specifically prepared synthetic small molecules. 
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