
1

Toward a More Dependable Software Architecture

for Autonomous Robots∗

Saddek Bensalem†, Matthieu Gallien†, Félix Ingrand‡, Imen Kahloul‡, Thanh-Hung Nguyen†

†Verimag Laboratory, Grenoble I University, CNRS, France
‡LAAS/CNRS, Toulouse University, France

Abstract—Autonomous robots are complex systems that re-
quire the interaction/cooperation of numerous heterogeneous
software components. Nowadays, robots are getting closer to
humans and as such are becoming critical systems which must
meet safety properties including in particular logical, temporal
and real-time constraints.

We present an evolution of the LAAS Architecture for Au-
tonomous System and its tool Gen

oM. This evolution is based
on the BIP (Behaviors Interactions Priorities) component based
design framework which has been successfully used in other
domains (e.g. embedded systems). In this study, we show how
we seamlessly integrate BIP in the preexisting methodology. We
present the componentization of the functional level of a robot,
the synthesis of an execution controller as well as validation
techniques for checking essential safety properties. This approach
has been integrated in the LAAS architecture and we have
performed a number of experiment in simulation but also on
a real robot (DALA).

I. INTRODUCTION

A. Toward More Dependable Robots

Autonomous robots are designed to perform high level tasks

on their own , or with very limited external control. They are

needed in situations where human control is either infeasible

or not cost-effective. In most cases:

1) they operate in highly variable, uncertain, and time-

changing environments;

2) they must meet real-time constraints to work properly;

and

3) they are often interacting with other agents, both humans

and other machines.

For example, service home robots will need to contend with

all the complexities of sensing, planning, acting in real time

in an uncertain, dynamic environment; to interact intelligently

with humans and other robotic systems; and to guarantee

their safety and the one of the people they encounter. Some

examples, such as tour robots, or nurse robots, have demon-

strated their reliability through extensive experimentations and

testing, but in limited environments [1], [2]. We are far from

giving formal assurances of safety that would be needed before

deploying more widely such robots. In such applications, the

need for guarantees of safety, reliability, and overall system

correctness is acute.

∗Part of this work has been funded by the ANR-SSIA AMAES project and
by the FNRAE MARAE project.
A shorter version of this paper will appear in IEEE Robotics and Automation
Magazine, Special Issue on Software Engineering for Robotics (2008).

The degree of assurance we can provide today is based on

extensive simulation and testing. The goal of simulation is to

catch errors as early as possible in the design phase to reduce

the need for more costly testing of the implemented system.

Both simulation and testing suffer from being incomplete:

each simulation run and each test evaluates the system for

a single set of operating conditions and input signals. For

complex autonomous and embedded systems it is impossible

to cover even a small fraction of the total operating space with

simulations. Finally, testing is already too expensive; today

building a test harness to simulate a component’s environment

is often more expensive than building the component itself.

B. Architecture and Tools

Designing and developing software for an autonomous robot

is quite a challenging and complex task. One has to take into

account the following context:

• there is a wide range of software “types” to integrate

(from low level servo loop, to data processing, up to high

level automated action planning and plan execution).

• the temporal requirements of these software components

vary a lot (from hard real-time, to polynomial, and up to

NP complete decisional algorithm).

• the various software components are developed by differ-

ent programmers, with different backgrounds who in most

case know little about the other components involved,

To address these concerns, the robotic community has relied

on architectures and tools. these architecture and tools rely on

a number of good software engineering practices.

• The software components are organized in levels or

layers. Most of the time, these layers correspond to dif-

ferent temporal requirements, or to different abstraction

requirements.

• The architecture and tools provide some control flow

mechanisms to support requests or commands with ar-

guments passed from one component to another, as well

as reports sent back to the requester upon completion.

• Similarly, some data flow mechanisms are provided to

offers access to data produced by a component to another

component.

Some architectures go further and provide:

• Interoperability library to convert data from one frame-

work to another (e.g. your low level functional com-

ponents may be written in C or C++, while your high

2

level planner or execution controller use a symbolic

representation)

• Software tools which encapsulate the components and

provide a clear API of what each component provides

as services, or exported data structures (e.g. Gen
oM).

• Software development environment to map particular

services in threads, processes and even CPUs.

• Seamless integration with higher level tools for autonomy

(action planner, plan execution control, FDIR, etc)

All of these properties are welcomed and have been of great

value in the development of software platforms in the robotics

community. This has resulted in a large number of successful

architectures (LAAS [3], CLARAty [4], etc), middleware

(PlayerStage [5], ORCA2 [6], etc), and tools (CARMEN [7],

YARP [8], etc) etc1. Each of them has pros, cons, strong

points and limitations. The reader will find references and

some comparisons in the surveys presented in [9] (with respect

to some communication performances, or memory footprint)

but also in [10] (along a number of criteria grouped in four

categories). Nevertheless, as of today, these architectures, tools

and middleware have achieved a lot, and they have allowed

the deployment of numerous successful robotic experiments.

However none of them rely on any formal model which allows

to synthesize controller correct by construction, nor to verify

safety properties on the resulting system while these guarantee

may soon be expected by certification bodies and imposed on

manufacturers.

C. Desirable and Critical Properties

None of the current architecture and associated tools are

able to unambiguously answer simple questions such as:

• Can you prove that your nursebot will not start full

throttle while an elderly person is walking while leaning

on it?

• Can you guarantee that the arm of your service robot

is not going to open its gripper while holding a cup of

coffee and drop it on the carpet?

• Can you prove that there is no deadlock in the initializa-

tion sequence of your robot?

• Can you prove that there is no race condition in a

perception action loop?

• Can you prove that current speed of the robot is consistent

with the range of your sensor and the data processing

duration?

• etc

These are difficult questions, even for regular software, and

a fortiori even more for autonomous robots software. But

one must admit that little has been done to address them

on a complete robotics system. In [11], the authors present

an interesting approach based on a the Esterel synchronous

language which however suffer from the limitation of the

synchronous programming paradigm. Meantime, robots are

becoming more and more pervasive, and the time will soon

1We invite the reader to check the wiki:
http://wiki.robot-standards.org/index.php

/Current_Middleware_Approaches_and_Paradigms for a good
overview and comparative analysis.

come where a certification body will require robot software

developers to exhibit what is being done to address such

serious security and dependability issues. It is not clear if just

having good software engineering practices will be enough.

Roboticists are interested in a number of properties, and one

need to “translate” these in formal statement or constraints,

such as (but not limited to):

• deadlock detection (e.g. to prove that adding a particular

software module on the robot will not lead to deadlock

during execution),

• temporal constraints (e.g. to guarantee that any particular

initialization sequence of the robot will execute action A

before action B),

• timed constraints (e.g. to guarantee that a particular

perception/action loop takes less than a given amount of

time).

• etc.

D. Formal Methods

Formal verification is the process of determining whether

a system satisfies a given property of interest. Today the best

known verification methods are model checking and theorem

proving, both of which have sophisticated tool support and

have been used in non-trivial case studies, including the

design and debugging of microprocessors, cache coherence

protocols, internetworking protocols, smartcards, and air traffic

collision avoidance systems (see [12] for other examples).

Model checking in particular has enjoyed huge success in

industry for verifying hardware designs. Formal verification

can be used to provide guarantees of system correctness. It

is an attractive alternative to traditional methods of testing

and simulation, which for autonomous and embedded systems,

as argued above, tend to be expensive, time consuming, and

hopelessly inadequate. By formal verification we mean not

just the traditional notion of program verification, where the

correctness of code is at question. We more broadly mean

design verification, where an abstract model of a system is

checked for desired behavioral properties. Finding a bug in a

design is more cost-effective than finding the manifestation of

the design flaw in the code.

Unfortunately, after decades of research formal verification

has not become part of standard engineering practice. One

reason is that these techniques do not scale: code size is too

large for practical program verification; the underlying math-

ematical formalisms (i.e., logics) do not handle all features

of the programming language or all behavioral aspects of

the system; and proof methods lack compositionality. Another

reason is that the tools do not scale: model checkers are limited

by the size of the state spaces they can handle; theorem provers

require too much human time and effort for too little perceived

gain; and the tools are not integrated to work with others found

already in the engineer’s workbench.

The software is an integral part of autonomous robot sys-

tems2. The shortcomings of current design, validation, and

maintenance processes make software, paradoxically, the most

2Our most complex robotic experiments have source code whose size is in
the order of half million to one million lines.

3

costly and least reliable part of the systems used in critical

application. In the following we will lay out what we see as an

autonomous robot software design challenge. In our opinion,

this challenge raises not only a technology questions, but

more importantly, it requires the building of a foundation that

systematically and even-handedly integrates, from the bottom

up, computation and physicality [13].

E. The Claims of this Paper

This paper presents an evolution of the LAAS architecture

which integrates a state of the art component based design

approach (BIP). This evolution allows us to produce a com-

plete controller correct by construction which enforces online

the safety properties modeled. The resulting model can also

be checked offline with Verification & Validation tools and

suites (deadlock detection, timed automata, etc). Of course,

the proposed approach cannot cope with silent failures, i.e.

situations where a sensor or an effector misbehave while the

system has no mean to observe this failure.

The paper is organized as follow. Section II presents the

existing LAAS architecture with an emphasis on the Gen
oM

tool, while section III introduces the BIP componentization

approach for embedded systems. Section IV explains how

we merged the later in the former to obtain a model of all

the generic components of any Gen
oM module. Section V

presents a real example on the DALA robot and show how

we write a BIP model for the functional modules involved in

its navigation activity. We then explain how we produce a con-

troller correct by construction (section V-B) and what are the

properties we are able to show on the model (section V-C). We

conclude the paper with the prospective, and future research

avenues we intend to explore.

II. AN EXISTING ARCHITECTURE...

At LAAS, researchers have developed a framework, a global

architecture, that enables the integration of processes with

different temporal properties and different representations. As

presented on fig. 1, this architecture decomposes the robot

software into three main levels, having different temporal con-

straints and manipulating different data representations [14].

This architecture is used on all our robots at LAAS (e.g.

DALA, an iRobot ATRV; HRP2; Rackham, an iRobot B21;

Jido, etc) and in other institutes. The levels in this architecture

are :

• a functional level: it includes all the basic built-in robot

action and perception capacities. These processing func-

tions and control loops (e.g., image processing, obstacle

avoidance, motion control, etc.) are encapsulated into

controllable communicating modules developed using

Gen
oM3. Each module provides services which can be

activated by the decisional level according to the current

tasks, and exports posters containing data produced by the

module and for others (modules or the decisional level)

to use.

3The GenoM tool as well as other tools from the LAAS architecture can be
freely downloaded from:
http://softs.laas.fr/openrobots/wiki/genom

Execution Control Level

Execution Controller (R2C)

Decisional Level
Procedural
Executive

(open-PRS)

Temporal Planner
Temporal Executive

(IxTeT)

Po

s Y
Module

X
Functional Module Poster

Functional Level

Pos

5

Module
5

Pos 6
Module

6

Modality 1

Pos

2

Module
2

Module
4

Pos

4
Module

12

Module
12

Pos

12

Module
11

Pos

11

Module
8

Pos 8

(Modules produced

with GenoM)

Modality 2
Modality 4

Modality 3

ENVIRONMENT

Module
3

Pos

3

Pos

1

Module
1

Pos

9

Module
9

Pos

10

Module
10

Fig. 1. The LAAS Architecture.

• a decisional level: this level includes the capacities of

producing the task plan (using the IxTeT planner) and

supervising its execution (with OpenPRS), while being

at the same time reactive to events from the functional

level.

• At the interface between the decisional and the functional

levels, lies an execution control level that controls the

proper execution of the services according to safety

constraints and rules, and prevents functional modules

from unforeseen interactions leading to catastrophic out-

comes. In recent years, we have used the R2C [15] to

play this role, yet it was programmed on the top of

existing functional modules, and controlling their services

execution and interactions, but not the internal execution

of the modules themselves. One of the goal of this study

is to embed such models in the controller correct by

construction produced with BIP.

This study focuses, for now, on the functional level and

on the execution control level. Our approach heavily relies on

the existing functional module generation tool: Gen
oM but also

completely replaces the R2C.

4

A. Gen
oM Functional Modules

The LAAS/Gen
oM methodology is based on the encapsula-

tion of each basic functionality of the robot in a module. For

example the basic sensors and effectors are managed by their

own module (e.g. one module for the camera pair, one module

for the laser range finder, etc). More complex functionalities

are encapsulated in higher level module (e.g. a module doing

stereo correlation will use the image taken by the camera

module, a module building an obstacle map will use the LRF

scan, etc). Last, some complex modalities, such as navigation,

are obtained by combining a number of modules.

control
poster

functional

poster

Control Task

Execution Tasks

activities

Functional
IDS

Control IDS
P
o
s
te

rs
 in

te
rfa

ce

Request

Report

Services Interface

Fig. 2. A GenoM module organization.

All these modules are built by instantiating a unique generic

canvas (Fig. 2). Each module is specified by providing the

following information: the internal functional data structure

(IfDS), the list of services (started with requests) provided by

this module, the list of posters (if any) exported by this module

and the list of execution tasks with their respective activation

period.

• The internal functional data structure (IfDS) defines the

various “public” C-structures used by the module . These

can be used to specify posters, arguments and reports to

services, etc.

• The services correspond to the ”commands” the module

will accept. There are two types of service: the control

ones only modify the IfDS and will not be executed by

an activity and the execution ones will be executed by

an activity. Arguments can be passed and reports (status

and values) can be sent back upon completion. For each

execution service, one has to specify the various pieces

of C code (codels) which have to be executed, and in

which execution task the activity of the service will run.

• Posters are data structures which are produced by the

module and can be read by other modules.

• Execution tasks are cyclic tasks (threads in most imple-

mentations) which execute the activities corresponding to

the active services.

Fig. 3. Execution automaton of an activity. The codels of GenoM are called
in each state except ETHER and ZOMBIE.

The services are initially managed by a control task which

is responsible for launching the corresponding activities within

the appropriate execution tasks and for executing control

services. Control and execution tasks share data using the

internal data structures (IDS). Fig. 3 presents the automata of

an activity as executed by all the launched services. Activity

states correspond to the execution of particular codels avail-

able through libraries and dedicated either to initialize some

parameters (START state), to execute the activity (EXEC state)

or to safely end the activity leading to reseting parameters,

sending error signals, etc. According to the value returned by

the codels, the automata make the proper transition E.g. if the

EXEC codel return EXEC, then it stays in this state, and the

same codels will be called the next time the activity is run but

if it returns OK, it goes in the END state.

The organization of the LAAS architecture in layers and

of the functional level in modules are definitely a plus with

respect to the ease of integration and reusability. Our goal is

not to redesign a new architecture and develop a new set of

tools from scratch. Most of the assets offered by the existing

setup should be kept. Thus our approach is merely to build on

the existing solution.

III. ... AND A COMPONENTIZATION APPROACH FOR

EMBEDDED SYSTEMS...

A. Component Based Design

Component-based design is essential to any engineering

discipline when complexity dictates methodologies that lever-

age reuse and correct-by-construction approaches. A cen-

tral idea in systems engineering, such as robot software, is

that complex systems are built by assembling components

(building blocks) [16], [17]. This is essential for the devel-

opment of large-scale, evolvable systems in a timely and

affordable manner. Component-based design confers many

advantages with respect to monolithic design, such as reuse

of solutions, modular analysis and validation, reconfigurability

and controllability. Components are systems characterized

5

by an abstraction that is adequate for composition and re-

use, provided via an interface. An interface specifies how

a component is viewed by its potential users. Composition

and its properties are essential for mastering the component

construction process. Component-based design relies on a

separation between coordination and computation. Systems

are built from units processing sequential code insulated from

concurrent execution issues. The isolation of coordination

mechanisms allows their global treatment and analysis.

One of the main limitations of the current state-of-the-art is

the lack of unified frameworks for describing and analyzing

the coordination between components. This is particularly

true for robotic systems where the coordination is usually

enforced by a high level model, but not from a clean bottom

up approach. Such frameworks would allow system designers

and implementers to formulate their solutions in terms of

tangible, well-founded and organized concepts, instead of

using dispersed low-level coordination mechanisms including

semaphores, monitors, message passing, remote call, protocols

etc. Unified frameworks should allow a comparison and evalu-

ation of otherwise unrelated architectural solutions, as well as

derivation of implementations in terms of specific coordination

mechanisms. The component-based design problem can be

formulated as follows: “build a system meeting a given set

of requirements from a given set of components that are

known to satisfy another set of requirements.” This is an

essential problem in any engineering discipline. It lies at the

basis of various system-design activities, including modeling,

architecting, programming, synthesis, upgrading, and reuse.

Component-based design has been used in hardware. During

the past decade, IT developers and end-users have benefited

from the commoditization of commercial-off-the-shelf (COTS)

hardware (such as CPUs and storage devices) and network-

ing elements (such as IP routers). For VLSI circuit design,

component-based design methodologies, supported by CAD

tools, have been in use for System-on-Chip products albeit

much remains to be done to achieve the level of maturity

needed to make this approach a standard in the industry.

An important trend in modern systems engineering is

model-based design, which relies on the use of explicit

models to describe development activities and their prod-

ucts. It aims at bridging the gap between application soft-

ware and its implementation by allowing predictability and

guidance through analysis of global models of the system

under development. The first model-based approaches, such

as those based on ADA, synchronous languages [18] and

Matlab/Simulink, support very specific notions of components

and composition. More recently, modeling languages, such

as UML [19] and AADL [20], attempt to be more generic.

They support notions of components which are independent

from a particular programming language, and put emphasis

on system architecture as a means to organize computation,

communication, and implementation constraints. Software and

system component-based techniques have not yet achieved a

satisfactory level of maturity. Systems built by assembling

together independently developed and delivered components,

often exhibit pathological behavior. Part of the problem is that

developers of these systems do not have a precise way of ex-

pressing the behavior of components at their interfaces, where

inconsistencies may occur. Components may be developed

at different times and by different developers with, possibly,

different uses in mind. Their different internal assumptions,

further exposed by concurrent execution, can give rise to

emergent behavior when these components are used in concert,

e.g. race conditions, and deadlocks. All these difficulties

and weaknesses are amplified in embedded system design

in general. They cannot be overcome, unless we solve the

hard fundamental problems raised by the definition of rigorous

frameworks for component-based design.

B. BIP

BIP is a software framework for modeling heterogeneous

real-time components. The BIP component model is the

superposition of three layers: the lower layer describes the

behavior of a component as a set of transitions (i.e a finite

state automaton extended with data); the intermediate layer

includes connectors describing the interactions between tran-

sitions of the layer underneath; the upper layer consists of a

set of priority rules used to describe scheduling policies for

interactions. Such a layering offers a clear separation between

component behavior and structure of a system (interactions

and priorities).

BIP allows hierarchical construction of compound compo-

nents from atomic ones by using connectors and priorities.

An atomic component consists of a set of ports used for

the synchronization with other components, a set of transitions

and a set of local variables. Transitions describe the behavior

of the component. They are represented as a labeled relation

between control states.

empty

full

get, 0<x

y:=f(x)g
e
t

p
u

t

x y

put

Fig. 4. An example of an atomic component in BIP.

tick1 tick2 tick3

out1 in2 in3

Fig. 5. Possible interactions in BIP (triangle for complete port, and circle
for incomplete port).

Fig. 4 shows an example of an atomic component with two

ports get, put, variables x, y, and control states empty, full.

6

At control state full, the transition labeled get is possible if

the guard 0 < x is true. When an interaction through get

takes place, the variable x is possibly modified through the

interaction and a new value for y is computed. From control

state empty, the transition labeled put can occur.

Connectors specify the interactions between the atomic

components. A connector consists of a set of ports of the

atomic components which may interact. An interaction of a

connector is any non empty subset of its set of ports. A typing

mechanism is used for the ports in order to determine the

feasible interactions of a connector and in particular to model

the two basic modes of synchronization. As shown on Fig. 5:

rendezvous when all the ports are incomplete (tick1 and tick2

and tick3) and broadcast when at least one port is complete

(out1, out1 and in2, out1 and in3).

Priorities In composite components, many interactions can

be enabled at the same time, introducing a degree of non-

determinism in the product behavior. Non-determinism can

be restricted by means of priorities, specifying which of the

interactions should be preferred among enabled ones.

The model of a system is represented as a BIP compound

component which defines new components from existing com-

ponents (atoms or compounds) by creating their instances,

specifying the connectors between them and the priorities.

The BIP toolset [21] is a collection of tools dedicated to

execution and analysis of BIP programs currently providing:

• A compilation chain that transforms BIP programs into

C/C++ code. Compilation relies on model-based technologies

available for Java under the Eclipse platform. Starting from

BIP programs, the compiler generates BIP models conforming

to a full-fledged BIP meta-model developed using EMF4. On

the models, we can apply source-to-source transformations as

well as static analysis techniques. Finally, models are used to

generate C/C++ code to be executed on a dedicated platform,

as follows.

• A platform for execution and analysis of the generated

C/C++ code. The execution platform includes an Engine and

the associated software infrastructure for multithreaded execu-

tion of the C/C++ code. Each atomic component is assigned

to a thread, the Engine being a thread itself. Communication

takes place only between the atomic components and the

Engine, and never directly between different atomic compo-

nents – this leads to a centralized architecture. The Engine

implements the distributed semantics [22] and is parameterized

by a dynamic5 or lazy6 oracle. Iteratively, the Engine computes

feasible interactions available on ready components. Then, if

such interactions exist and the oracle allows them, the Engine

selects one for execution and notifies the involved components.

IV. ... MERGED IN AN UNIFIED FRAMEWORK

In section II we have described the “previous” LAAS archi-

tecture, while in section III we introduces the BIP framework.

4Eclipse Meta-modeling Framework.
5For the dynamic oracle, the Engine does not need a complete knowledge

of the state of the system in order to compute a dynamic approximation for
a given partial state.

6The lazy oracle forbids all interactions from partial states. It waits for all
the atomic components to finish their computation in order to know all the
possible interactions.

The main idea of this work is to retain the modular and leveled

organization of the former while merging the later in a new

framework. Indeed, if we model the Gen
oM generic module

and its components in BIP and if we then instantiate it and

connect the existing “codels” to the resulting component, then

we obtain a BIP model of all the Gen
oM modules. Adding the

BIP model of the interaction between the modules (which were

encapsulated in the R2C in the previous LAAS architecture)

will give us a BIP model of the overall functional layer and

of the execution control layer. Such a BIP model is then

used to synthesize a controller for the overall execution of

all the functional modules and to enforce by construction the

constraints and the rules inside modules but also between the

various functional modules.

In this section we show how we map the Gen
oM modules

and components in BIP. The Gen
oM generic module orga-

nization (Fig. 2) can easily be mapped in a hierarchy of

BIP components (Fig. 6): execution tasks, activities, etc. For

example, the service components are further composed with (at

least one if not more) Execution Task and poster components

to obtain a module component.

!"#$%&

'&()*+&

'&()*+&,

-"./("%&(

0+1)*/2

'&()*+&

'&()*+&,

-"./("%&(

0+1)*/2

3"4/&(

3"4/&(

5,5,5

5,5,5

67&+$1".,894:

8*;&('+<&#$%&(,0+1)*/2

67&+$1".,894:

8*;&('+<&#$%&(,0+1)*/2

3"4/&(

5,5,5

Fig. 6. The componentization of a GenoM module.

Overall, we propose the following mapping:

Functional level ::= (Module)+

Module ::= (Service)+ . (Execution Task)+ . (Poster)+

Service ::= (Service Controller) . (Activity)

Execution Task ::= (Timer) . (Scheduler Activity)

where ”+” means the presence of one or more of sub-

component and”.” means the composition of different com-

ponents.

A component modeling the generic service (as presented

in section II-A and Fig. 3) is obtained from the atomic

components service controller and activity and the connectors

between them, as shown on Fig. 7.

The left sub-component represents the controller of a ser-

vice. It is launched by synchronization through port trigger.

7

!"#

status

getStatus

getStatus

getStatus

getStatus
getStatus

abort_ex

control

trigger

error

start

abort

abort

end

fail

abort

execexec_end

inter

inter_end

start

start_end

fail

fail_end

end_end

end

send-final-
report

codel_finished

start failexec

abort_ex

interend

start end inter exec fail

exec_endstart_endend_endinter_end fail_end

start

end

inter

fail

control

trigger getStatus

error

send-final-
reportabort

abort_ex

START

EXEC_S

EXEC

FAIL

END

ABORT_S
ABORT

ETHER
EXEC

START

SEND_FR

ETHER

ABORT

Fig. 7. The BIP generic model of an execution GenoM service.

Fig. 8. The partial BIP model corresponding to the NDD module. All services are not included in the figure in order to make it more readable.

The Service Controller controls the validity of the parameters

(if any) of the request and will either reject it or start the

activity by synchronizing with the activity component (right

sub-component). In each state, the status of the service is

available by synchronizing through port status of the controller

component. The activity will then wait for execution (i.e.

synchronization on the exec port with the control task) and

will either safely end, fail, or abort. Each of the transitions

control, start, exec, fail, end and inter may call an external

function corresponding to Gen
oM codels.

To ease the integration of BIP in the new framework, we

developed a tool that produces a BIP model from a Gen
oM

module description file. Moreover, keep in mind one does not

have to rewrite codels as we reuse the existing ones by a

simple call in the corresponding atomic component behavior.

Thus, for already existing Gen
oM modules, the BIP model

can be obtained without writing a line of code. So there

are no “overhead” for the module developper in using BIP.

Still, if one want to enforce some safety properties inside a

module (intra-module) or between modules (inter-modules),

these constraints have to be explicitly added to the resulting

BIP model. One has to identify in the safety properties the

components involved, then add connectors between component

ports and the appropriate guards (if needed) so has to have the

BIP engine enforcing these properties.

So from the point of view of the Gen
oM module developper,

there is absolutely no overhead in using BIP. The only added

work he will have correspond to the new safety properties he

8

may want to add to the BIP model for them to be enforced

by the resulting controller. For the moment, these properties

have to be directly written in BIP, however, we are working

on a tool and a language to express them in a form which is

more appealing to roboticists.

V. AN ILLUSTRATED EXAMPLE AND RESULTING

PROPERTIES

The approach presented has been implemented and tested

on a real robot as well as its simulation.

Functional level

Execution control level

OR

Execution controller (R2C)

Pos

Y
Module

X Functional Module Poster

Decisional level
Procedural

executive

(open-PRS)

Planner and
temporal executive

(IxTeT)

Antenna

Science

Aspect Obs

Laser

RF
Scan

Camera Im.

NDD Speed

PosRFLEX

Platine

Simulator
GAZEBO

Fig. 9. An instance of the LAAS architecture for the DALA Robot on which
we applied the BIP approach.

A. The DALA Robot: previous approach

To illustrate the overall approach, we implemented our new

approach on the DALA robot, an iRobot ATRV (see Fig. 9)

running a simple, yet complete, functional layer with a laser

based navigation using the Near Diagram navigation. The

Gen
oM/BIP approach has been used to model the following

modules as well as their interactions. We focus our first

efforts on these four modules, because together they close the

perception action loop, and yet are sufficient to have the robot

moving around controlled with our new approach.

• RFLEX: This is the module that ensures the robot

locomotion. After proper initialization, upon receiving

the RflexTrackSpeedStart (with a poster name as

argument) it servo-controls (at a period of 4 ticks7) the

wheels speed contained in the poster given as argument

(in our case this poster is produced by NDD). It also

maintain the current robot odometry position in a poster

(pos).

• Laser RF: This module manages the laser range finder

sensor. After proper initialization with the service Init,

it cyclically (every 20 ticks) produces the position of the

closest obstacles with respect to the robot position. These

data are stored in the (scan) poster.

• Aspect: It uses the (scan) poster to periodically (every

4 ticks) produce/update a poster (Obs) of the obstacles

map in the robot vicinity.

• NDD: This module is responsible for the navigation of

the robot, i.e. reach a goal while avoiding obstacles.

After proper initialization, it cyclically (every 10 ticks)

recovers the current position (in the RFLEX (pos)

poster) and the obstacles in the Aspect (Obs) poster,

and it produces the poster (Speed) which will be used

by RFLEX to speed servo-control the wheels.

This experiment uses other modules (antenna, platine,

camera and science) whose role is not critical in the scope

of this paper. Moreover, the full BIP description of the four

functional modules presented above is also beyond the scope

of this paper. We rather focus on the modeling of the NDD

module (which is the most complex one) to illustrate the

general idea.

The NDD module contains six services, one poster and

has one execution task as sub-components and the connectors

between them, as shown in Fig. 8 (see Fig. 10 for an example

of BIP code of the NDD module). Each service is an instance

of the service model presented on Fig. 7. Similarly, the poster

and the execution task are instance of their respective BIP

model.

The control task wakes up periodically (managed by the

bottom-left component with alternating sleep and trigger tran-

sitions) and always triggers the Permanent service8 at the

beginning of each period. For each cycle, the various services

(GoTo, SetParams, etc) will have the opportunity to execute

the interaction if possible.

Moreover, the BIP formalism allows complex relations to

be defined; such as triggering the Stop control service stops

the robot by interacting with the ”abort” port of the GoTo

service. The connector enforcing this interaction is a broadcast

between the execution task and the port Stop.trigger9

and GoTo.abort. Another property which must always

be verified is that a GoTo should only occur if it is pre-

ceded by the proper initialization with a successful execution

71 tick is equal to 10 ms.
8The Permanent service executes a codel associated to the execution task

in GenoM.
9Notation used: service.port

9

of SetParams and SetSpeed services. We model this

safety property by a connector between GoTo.trigger,

SetParams.getStatus and SetSpeed.getStatus.

These are example of allowed interaction inside the NDD

module. However, we can also model interaction between

modules. For example to model that NDD can only execute

a GoTo (which produced the (Speed) poster) if Aspect

has produced a map (Obs), or that RFLEX can only start

moving the robot if a proper (Speed) reference has been

produced by NDD, etc. All these “operational” constraints will

be introduced in the BIP model and the resulting controller

will enforce them by construction.

component nddGoToExecActivity

port incomplete start, finished, fail, inter

port incomplete exec, abort_ex

port incomplete check_posters_to_update

port incomplete codel_is_executed, send_final_report

data {#

ACTIVITY_EVENT event;

#}

extern data ACTIVITY_EVENT event, ETHER, EXEC, END, FAIL

data int manualPosterNeedUpdate

data int report

behavior

initial

do manualPosterNeedUpdate = false;

to Q_ETHER

state Q_ETHER

on start do

{#

manualPosterNeedUpdate = 0;

//call the start codel

event = nddGoToStart(&nddGoToParams,

&report,

&manualPosterNeedUpdate);

#}

to Q_START_RUNNING

state Q_SLEEP

on finished provided (event == END) do

[...]

component nddGoToService

contains nddGoToExecControl NddGoToControl

contains nddGoToExecActivity NddGoToActivity

connector connNddGoToStart = NddGoToControl.start,

NddGoToActivity.start

behavior

end

[...]

Fig. 10. Example of BIP model/code for the NDD module.

B. Functional Level Controller Synthesis

Previously, in the LAAS architecture, a centralized con-

troller (R2C) was used to control the proper execution of the

services and to enforce the safety constraints on the modules

interactions. On the contrary, in the BIP model, the proper

execution order and the safety properties are enforced by the

BIP connectors between the controllers of different services.

A BIP connector has guarded actions associated to each of its

possible interactions. Dependency between the controllers of

service in different modules are modeled by connectors associ-

ated with guards which represents either some valid execution

condition or some safety rule. The composite behavior of these

local controllers, synchronized by the connectors and restricted

by priorities, is equivalent to the behavior of the centralized

controller.

As an example, we had to enforce a rule between the

NDD and the RFLEX modules which states that the robot can

move using the TrackSpeedStart service of the RFLEX

module only if the module NDD has already executed success-

fully its GoTo service (which updates the poster (Speed)).

Such a rule is enforced by constructing a connector between

port trigger of the TrackSpeedStart service and port

status of the GoTo service, and guarded by the status

value.

With respect to the generation of the real controller, the

BIP tool-chain generates code from the BIP model of generic

components, and from the Gen
oM module definition. The

resulting model has for respectively Laser RF, Aspect, NDD

and RFLEX; 88, 77, 116 and 100 States; 60, 60, 89 and

89 connectors; and 27, 22, 29 and 35 components with at

most a depth of 4 levels. This model is then linked to

the corresponding Gen
oM codels. With Gen

oM, these codels

were triggered in the corresponding service/automata states,

similarly, with BIP the codels are now executed upon the

transition of the corresponding component automata.

The code generated for the four modules NDD, RFLEX,

Aspect, and Laser RF has been integrated and executed on

the real robot.The performance analysis shows that when run-

ning the BIP generated controller the CPU load is on average

globally 2.5 higher (with peaks at 3.0) than when one runs the

pure Gen
oM generated code. There are mainly two reasons for

this overhead. The first one is that the componentized code

has not yet been optimized (compare to Gen
oM code). The

second reason is that there is a price to pay for the BIP engine

to check all the interactions before executing them. This is

done in one main program which starts a thread for every

states transition (in component) which executes some code.

During the experiment, the engine fires approximately 550

interactions per seconds. So even if the checking and firing

of an interaction is really small, the penalty comes from the

large number of interactions fired.

C. Verified Safety Properties

While the constraints imposed by the software architecture

of autonomous system facilitate development, they are also the

potential source of undesired or unexpected task interactions.

In particular, there are special classes of decisional and real-

time bugs that frequently arise in the use of such architectures.

In this work, we addressed three classes of problems:

1) Ordering violations: arise at the behavioral level when

several behaviors recommend conflicting actions. In au-

tonomous systems, there is typically an explicit arbitration

mechanism that chooses among the different behaviors. In

this case, bugs arise when the priority mechanism leads to

the wrong choice of action for a given set of input conditions.

Typically, this is because the developer has made some implicit

assumption about the external, or internal, state of the system

at the behavior is triggered. By making these assumptions

explicit, and by reasoning about the interactions of the various

components (using the D-Finder tool [23]) we are able to

check if the model allows the system to reach a state where

orders have been violated or where conflicts arise. D-Finder is

10

an interactive tool that takes as input BIP programs and applies

proof strategies to verify deadlock freedom and other safety

properties by computing increasingly stronger invariants.

For example, in the NDD module, it is required that the

GoTo service should be executed only after a successful

termination of Init, SetParams and SetSpeed services.

Using D-Finder, we have been able to show that this property

is not preserved. To guarantee this property, we added in the

NDD module model a connector to restrict the behavior. This

means that the interactions with the trigger port of the GoTo

service is possible only if the other services have been suc-

cessfully executed (i.e. by interacting with the getStatus

port of those services). We checked again the modified model

and we found that there were still possibilities to violate the

property if you restart the Init service after the beginning

of SetParams and Init execution fails before the end of

SetParams. Finally, to obtain the desired property, we added

a new constraint to guarantee the mutual exclusion between

the two services.

One can see that some ordering or conflict avoiding con-

straints can be explicitly added to a model, from the beginning

(in which case, they will be enforced by the BIP generated

controller) or, they can be checked against an existing model

and explicitly added if needed. Thus the development of a

“safe” model requires to extensively use a tool such as D-

Finder to check each model for deadlock freedom and for

satisfaction of the ordering properties.

2) Synchronization violations: typically appear when tasks

are mis-synchronized. Excess synchronization can lead to

deadlock. Lack of synchronization can lead to resource con-

flict. To verify whether the BIP model of the functional level

satisfies a synchronization-related property such absence of

deadlocks, we also use the D-Finder tool (it takes up to three

hours to check for deadlock freedom for the NDD module).

In our example. the result of one such analysis lead to several

potential deadlocks. There were due to a fault made during the

modeling of the generic MsgBox component. This component

is responsible for the communications between the decisional

level and the services provided by the BIP modules. It will

regularly check if a new request for a service has been received

and then will trigger it. If the service is already running, it is

not possible to trigger it and the MsgBox component will

be blocked until the execution of the previous instance is

finished. This was blocking its associated timer which was

blocking all other timers and lead to a system deadlock. The

obvious solution was to not block, if you cannot do a trigger,

but instead refuses to start the service. We modified/fixed the

model and there was no more deadlocks in the NDD BIP

model.

Note that in order to check this property we have to make

hypothesis on the behavior of the codels of the NDD module.

These codels return the next state of the automata for the

corresponding service (see Fig. 3 or Fig. 7). For example

if we are in the START_S state and the value returned is

EXEC, then the activity automaton has to go in the EXEC_S

state; but if we are in the ABORT_S state, this value is

not a priori possible and will provoque a deadlock. Thus

we are making the “reasonnable” hypothesises, that codels

returns values “consistant” with the state in whichthey where

launched. Hence, avoiding dedlocks which are impossible to

reach.

3) Data freshness: As already mentioned above, the com-

munication and the data transfers between the modules of

the robot are achieved using posters (shared memory in most

implementation). Each poster contains data needed by the

module which is reading it. The very near future behavior

of each module depends very strongly on the content of the

posters it is reading.

The data freshness property consists in reading posters

which are “up-to-date”. If the module is still keeping an old

value of the poster, it is using, then this may cause it to make

wrong decisions which may be critical in some cases. For

instance, consider the situation where the robot is in front of an

obstacle while it is moving. The obstacle shall be detected by

the Laser RF module. The latter writes this information in its

poster (Scan) which is read by the Aspect module. In turn,

Aspect writes the obstacle map in its (Obs) poster which is

read by NDD. If all these operations and the corresponding

processing do not happen fast enough then the robot may keep

moving and collide the obstacle.

To avoid such a situation, we want a poster reader to refuse

to take into account data which are too old. Thus, if the service

find outdated data in the poster, it will stop by itself.

To illustrate this we consider the read of the poster (Obs)

of the Aspect module by the permanent service of NDD.

There are two possibilities. First, we may force the property by

adding an adequate guard on the connector used to model the

read. In some way, we synthesize a (timed) controller which

guarantees the property to be satisfied. The second possibility

consists in considering the periodic behavior of each module

and to check whether the freshness property is satisfied for the

considered periods of the two modules or not. In this case, the

property is not explicitly forced but is checked offline with D-

Finder.

In both cases (on-line and off-line), one can use the so-

called observers to monitor the property. An observer is a BIP

component which encodes the considered property. This BIP

component has a particular state called ERROR. This state

is reached as soon as the property is violated. To be able

to detect if the property is violated or not we compose the

observer component with the existing model.

VI. CONCLUSION AND PERSPECTIVES

Programming autonomous robots is still in the ad-hoc phase,

and suffers from the lack of paradigm and model which en-

compass the full autonomous robot software design challenge.

Current robotic software suffers from limitations that are

introduced by many manual steps, such as system integration,

which proceed mostly by “trial and error” (i.e. test and tweak).

Current models are inadequate, because they address only

isolated aspects of autonomous robot systems, while their

interactions are not always well understood. Meanwhile, as

the need to make autonomous robots more dependable and

safer rises, so does the requirements on the dependability of

the overall software which “drives” these systems.

11

We propose a mathematical basis for autonomous robot

systems modeling and analysis which integrates both abstract-

machine models and transfer-function models in order to deal

with computation and physical constraints in a consistent,

operative manner. The theory, the methodologies, and the tools

encompass heterogeneous execution and interaction mecha-

nisms for the components of a system, and they provide

abstractions that isolate the subproblems in design that require

human creativity from those that can be automated.

We present an approach integrating component-based con-

struction and validation of robotic systems. We show that a

complex robotic system can be considered as the composition

of a small set of atomic components. Although we build up on

the pre-existing modular LAAS architecture for autonomous

robots, and model in BIP all the generic components of this

architecture, such an approach could be used with other robot

software architectures and tools.

The approach has been fully implemented and we now

have a Gen
oM/BIP controller for the navigation part of a

functional layer of DALA (an iRobot ATRV), running in

simulation and on the real robot. This controller enforces

online by construction the interactions model (intra-module

and inter-module). Our first runs on the robot show that the

BIP engine performance are good enough for a simple yet

complete robotics experiment. At this stage, the controller is

multi-threaded but not multi-CPU. Current research at Verimag

is being conducted to address this limitation with an interface

model of the host hardware.

The paper shows that it is possible to use structural analysis

techniques for deadlock detection and for verification of safety

properties. Another possibility is the online monitoring of the

functional level execution using observer components, which

would be able to generate feedback actions for the decisional

level which can be useful for error-recovery. Another work

direction is to extend the BIP model to take into account the

decisional capabilities of autonomous robots. To this effect, we

could model part or all of the decisional layer and components.

For example we already had a study which uses UPPAAL tiga

as a planning system [24]. A similar model could be made in

BIP and we could apply some reachability analysis to perform

planning.

REFERENCES

[1] M. Montemerlo, J. Pineau, N. Roy, S. Thrun, and V. Verma, “Experi-
ences with a mobile robotic guide for the elderly,” in Proceedings of

the AAAI National Conference on Artificial Intelligence. Edmonton,
Canada: AAAI, 2002.

[2] A. Clodic, S. Fleury, R. Alami, R. Chatila, G. Bailly, L. Brthes,
M. Cottret, P. Dans, X. Dollat, F. Elise, I. Ferran, M. Herrb, G. Infantes,
C. Lemaire, P. Lerasle, J. Manhes, P. Marcoul, P. Menezes, and V. Mon-
treuil, “Rackham: An interactive Robot-Guide,” in IEEE International

Symposium on Robot and Human Interactive Communication (demon-

stration session) (RO-MAN), University of Hertforshire, Hatfield, UK,

06/09/06-08/09/06. http://www.ieee.org/: IEEE, 2006, pp. 502–509.
[3] R. Alami, R. Chatila, S. Fleury, M. Ghallab, and F. Ingrand, “An

architecture for autonomy,” IJRR, 1998.
[4] I. Nesnas, A. Wright, M. Bajracharya, R. Simmons, and T. Estlin,

“Claraty and challenges of developing interoperable robotic software,”
in International Conference on Intelligent Robots and Systems (IROS),
Nevada, Oct. 2003, invited paper.

[5] B. Gerkey, R. Vaughan, and A. Howard, “The player/stage project: Tools
for multi-robot and distributed sensor systems,” in Proceedings of the

Int. Conf. on Advanced Robotics (ICAR 2003), Coimbra, Portugal, 2003.

[6] A. Makarenko, A. Brooks, and T. Kaupp, “Orca: Components for
robotics,” in IROS’06 workshop on Robotic Standardization, Beijing,
China, 2006.

[7] M. Montemerlo, N. Roy, and S.Thrun, “Perspectives on standardization
in mobile robot programming: the carnegie mellon navigation (carmen)
toolkit,” in Proceedings of the Int. Conf. on Intelligent Robots and

Systems (IROS 2003) workshop on Robotic Standardization, Pittsburgh,
PA, USA, 2003.

[8] G. Metta, P. Fitzpatrick, and L. Natale, “Yarp: Yet another robot
platform,” International Journal of Advanced Robotics Systems, special

issue on Software Development and Integration in Robotics, vol. 3, no. 1,
2006.

[9] A. Shakhimardanov and E. Prassler, “Comparative evaluation of robotic
software integration systems: A case study,” Intelligent Robots and

Systems, Jan 2007.
[10] J. Kramer and M. Scheutz, “Development environments for autonomous

mobile robots: A survey,” Autonomous Robots, vol. 22, 2007.
[11] B. Espiau, K. Kapellos, and M. Jourdan, “Formal verification in robotics:

Why and how,” in The International Foundation for Robotics Research,

editor, The Seventh International Symposium of Robotics Research.
Munich, Germany: Cambridge Press, October 1995, pp. 201 – 213.

[12] E. M. Clarke and J. M. Wing, “Formal methods: State of the art and
future directions,” ACM Comput. Surv., vol. 28, no. 4, pp. 626–643,
1996.

[13] T. Henzinger and J. Sifakis, “The discipline of embedded systems
design,” IEEE Computer, vol. 40, no. 10, pp. 36–44, 2007.

[14] R. Alami, R. Chatila, S. Fleury, M. Ghallab, and F. Ingrand, “An archi-
tecture for autonomy,” IJRR, Special Issue on Integrated Architectures

for Robot Control and Programming, vol. 17, no. 4, 1998.
[15] F. Py and F. Ingrand, “Dependable execution control for autonomous

robots,” in IROS, Sendai, Japan, 2004.
[16] J. Sifakis, “A framework for component-based construction extended

abstract,” in SEFM, 2005, pp. 293–300.
[17] T. Henzinger and J. Sifakis, “The embedded systems design challenge,”

in FM: Formal Methods, ser. Lecture Notes in Computer Science 4085.
Springer, 2006, pp. 1–15.

[18] N. Halbwachs, Synchronous Programming of Reactive Systems. Kluwer
Academic Publishers, 1993.

[19] J. Ivar, G. Booch, and J. Rumbaugh, The Unified Software Development

Process. Addison Wesley Longman, 1998, no. ISBN 0-201-57169-2.
[20] P. H. Feiler, B. A. Lewis, and S. Vestal, “The sae architecture analysis &

design language (aadl) a standard for engineering performance critical
systems,” in IEEE International Symposium on Computer-Aided Control

Systems Design, 2006, pp. 1206 – 1211.
[21] A. Basu, M. Bozga, and J. Sifakis, “Modeling heterogeneous real-time

components in BIP,” in SEFM, Pune, India, 2006.
[22] A. Basu, P. Bidinger, M. Bozga, and J. Sifakis, “Distributed seman-

tics and implementation for systems with interaction and priority,” in
Proceedings of FORTE’08, ser. LNCS. Springer, June 2008.

[23] S. Bensalem, M. Bozga, J. Sifakis, and T.-H. Nguyen, “Compositional
verification for component-based systems and application,” in 6th In-

ternational Symposium on Automated Technology for Verification and

Analysis, Seoul, South Korea, October 2008.
[24] Y. Abdeddam, E. Asarin, M. Gallien, F. Ingrand, C. Lesire, and

M. Sighireanu, “A comparison between CBTP and TGA approaches,”
in ICAPS, Providence, RI, USA, 2007.

