Toward a Moving Target Defense for Web Applications

(Invited Paper)

Marthony Taguinod, Adam Doupé, Ziming Zhao, and Gail-Joon Ahn
Arizona State University
{mtaguino, doupe, zmzhao, gahn} @asu.edu

Abstract—Web applications are a critical component of the
security ecosystem as they are often the “front door’” for many
companies; as such, vulnerabilities in web applications allow
hackers access to companies’ private data, which contains
consumers’ private financial information. Web applications
are, by their nature, available to everyone, at anytime, from
anywhere, and this includes attackers. Therefore, attackers
have the opportunity to perform reconnaissance at their leisure,
acquiring information on the layout and technologies of the web
application, before launching an attack. However, the defender
must be prepared for all possible attacks and does not have
the luxury of performing reconnaissance on the attacker.

The idea behind Moving Target Defense (MTD) is to
reduce the information asymmetry between the attacker and
defender, ultimately rendering the reconnaissance information
misleading or useless. In this paper we take the first steps of
applying MTD concepts to web applications in order to create
effective defensive layers. We first analyze the web application
stack to understand where and how MTD can be applied.
The key issue here is that an MTD application must prevent
or disrupt a vulnerability or exploit, while still providing
identical functionality. Then, we discuss our implementation
of two MTD approaches, which can mitigate several classes of
web application vulnerabilities or exploits. We hope that our
discussion will help guide future research in applying the MTD
concepts to the web application stack.

I. INTRODUCTION

Web applications remain the most popular way for busi-
nesses to provide services over the Internet. With more
web applications available, more sensitive business and
user data is managed and processed by web applications.
Consequently, vulnerabilities in web applications put both
businesses and end-users’ security and privacy at risk.

This is not an abstract risk, as the JPMorgan Chase breach
in 2014 affected 76 million US households [1]. Bloomberg
reported that the hackers “exploited an overlooked flaw in
one of the bank’s websites” [2]. Thus, web applications are
the “front door” for many companies, and therefore their
security is of paramount importance.

Many techniques and tools using static analysis (white-
box) or dynamic analysis (black-box) approaches have been
proposed and developed to discover the vulnerabilities of
web applications [3]-[7], so that the vulnerabilities can
be removed before attackers discover and exploit them.
However, the efforts of discovering and fixing vulnerabilities
are not enough to protect web applications for many reasons:
(1) the increasing complexity of modern web applications

brings inevitable risks that cannot be fully mitigated in the
process of web application development and deployment [8],
and (2) attackers can take their time, to understand the
web application’s functionality and technology stack, before
launching an attack.

We believe that a defense-in-depth approach is best to
securing web applications. Therefore, to complement the
aforementioned vulnerability analysis techniques, we pro-
pose to use the ideas of Moving Target Defense (MTD) to
create a novel and proactive approach that adds an additional
layer of defense to web applications. At a high level, a
moving target defense dynamically configures and shifts
systems over time to increase the uncertainty and complexity
for attackers to perform probing and attacking [9], [10].
While a system’s availability is preserved to legitimate users,
the system components are changed in unpredictable ways
to the attackers. Therefore, the attacker’s window of attack
opportunities decrease and the costs of attack increase. Even
if an attacker succeeds in finding a vulnerability at one point,
the vulnerability could be unavailable as the result of shifting
the underlying system, which makes the environment more
resilient against attacks.

To best apply the MTD ideas to protect web applica-
tions, there are two high-level decisions: (1) choose what
component to move in a web application, and (2) decide
the optimal time and how often to move components. To
assist in answering these questions, we dissect the modern
web application architecture, both client and server, and their
running environments to explore the possibilities of applying
MTD at different layers. We hope our analysis provides
insights into the trade-offs among the different places to
apply MTD to web applications.

We also discuss our first steps in applying MTD tech-
niques to protect web applications. The first technique
changes the server-side language used in a web applica-
tion by automatically translating server-side web application
code to another language in order to prevent Code Injection
exploits. The second technique shifts the database used in a
web application by transforming the backend SQL database
into different implementations that speak different dialects
in order to prevent SQL Injection exploits.

The main contributions of this paper are the following:

o We discuss the possibilities of applying moving target

defense to different layers of web applications.

e« We propose two novel approaches to changing the
implementation language of a web application and the
database implementation while keeping the functional-

1ty.
II. BACKGROUND

In order to properly understand how to apply the ideas
of moving target defense to web applications, we first
describe web application, then the ideas behind moving
target defense.

A. Web Applications

As shown in Figure 1, a web application follows a
distributed application structure, with components running
on the server and the client.

The client first uses the communication channels (typi-
cally the protocol HTTP and its derivative protocols, such
as HTTPS, SPDY, and HTTP/2) to issue a request to the
server-side component.

The server side typically includes the following layers
from top to bottom!:

o The server-side logic layer implements the applica-
tion business logic using high-level programming lan-
guages, such as Java, PHP, or Python.

o The web server layer receives the HTTP request from
then client, parses the HTTP request, and passes the re-
quest to the appropriate server-side program. Examples
include Apache web server, Windows IIS, or Nginx.

o The data storage layer that stores the web applica-
tion state and user data. Popular data storage systems
are traditional SQL databases, which include MySQL,
PostgreSQL, or MSSQL.

o The operating system layer that provides the running
environment for the web server layer and database
storage layer.

o The infrastructure layer that runs the operating systems.
An infrastructure could be a physical machine or a
virtualization platform which manages multiple virtual
machines.

The client receives the HTTP response from the server-
side code, and the job of the client is to convert the HTML
contained in the HTTP response into a graphical interface
for the user. The client includes:

o The client-side logic layer that is usually called the
presentation layer. This is written in a combination of
HTML, CSS, and JavaScript, with JavaScript providing
a way for the server-side code to execute application
logic on the client.

o The browser retrieves the presentation layer code from
the server, interprets it, and presents it as a graphical
interface to the user.

1Of course, modern web application stacks can become increasingly
complex, with caches, external requests, or other services, however in this
paper we restrict our discussion to this abstracted model.

o The storage layer that the presentation layer code
uses to store data. Available storage methods include
cookies, localStorage, IndexedDB, and File
APIs.

o The operating system layer, which the browser runs on.

If a layer in Figure 1 is compromised, its upper layers
are not trustworthy. For instance, if the server’s operating
system is compromised, then the data storage, web server,
and server-side logic are all compromised. Because the
presentation layer is created by the server and sent across
the communication channel, a compromise of the server or
the communication channel compromises the presentation
layer. Adversaries can attack a layer in Figure 1 through its
interfaces exposed to the upper layers.

For example, in a heap spraying attack on the client
browser layer [11], an attacker allocates malicious objects
using JavaScript in the presentation layer to coerce the
browser to spray objects in the heap, increasing the success
rate of an exploit that jumps to a location within the heap.
In this case, the attacker uses the presentation layer to
exploit a vulnerability in the browser layer that leads to
arbitrary code execution in the browser’s address space. The
injected arbitrary code can in turn exploit a vulnerability
in the client operating system to escalate its privilege and
further infect the client machine. Furthermore, the malicious
JavaScript code might be delivered by an attacker exploiting
a vulnerability in the server-side logic layer, using a reflected
or stored cross-site scripting (XSS) vulnerability.

B. Moving Target Defense

The basic idea of moving target defense (MTD) is to
continually shift and change system configurations over time
to increase complexity and cost for attackers. MTD does not
remove vulnerabilities directly but limits the exposure of
vulnerabilities, so opportunities for attack can be decreased.
In this way, MTD acts as part of a defense-in-depth strategy.
The effectiveness of an MTD approach depends on how
many components are moved (what-to-move) and the fre-
quency of movement (when-to-move).

The widely adopted address space layout randomization
(ASLR) [12] in modern operating systems is an instance
of MTD. Existing ASLR mechanisms randomly arrange the
address space positions of key data areas (what-to-move)
of a process when it is launched (when-to-move), including
the base of the executable and the positions of the stack,
heap, and libraries. In this way, even if attackers are able
to exploit a memory corruption vulnerability in a binary
(such as the classic buffer overflow), it is difficult for them
to transfer control flow to their injected shellcode, as they
cannot predict the memory layout of the process.

MTD mechanisms for programs can be categorized into
two classes depending on if a program is running (dynamic)
or not (static) at the time when moving happens. For
example, existing ASLR approaches are static, because the

Client side

Presentation Layer
HTML =

JavaSeript

Browser

ce@e¢

Server side

Logic Layer a
@ Perl % PGihon
Web Server Layer

Storage Layer pgeso

NGINX

Local Storage

Cookies, IndexedDB,

Communication

R ORACLE'
MQSQL, DATABASE

A

& 8

localStorage, File API Channel Operating System

Gperains e & 83

perating System Application R N A
Layer

HTTP/1.1, HTTP/2

Infrastructure
ARM Men =,

A

Figure 1.

positions of code and data areas are only moved at the launch
of a program but not when a program is running. A dynamic
MTD offers more choices for when-to-move, but may be
more difficult to implement.

III. MOVING TARGET DEFENSE FOR WEB
APPLICATIONS

The core idea of moving target defense (MTD) can be
applied to every layer of web applications and their running
environments. However, the key issue is that the “moving,”
when applied, must either prevent a vulnerability or exploit
while at the same time not alter the application functional-
ity. In this section, we discuss what components that are
available for moving at the web application layers. We
specifically focus on the layers specific to web applications:
the logic layer, storage layer, and presentation layer. For
other layers that are common to other applications, which
include the operating system layer and the infrastructure
layer, we refer the interested reader to research in these
areas [12]-[21].

A. Logic Layer

There are at least two ways to apply MTD at the logic
layer by changing a web application’s implementation. The
first approach uses the idea of software diversity [14], which
is widely used in lower-level languages, to change and
modify the code at the statement, function, or object levels.
This type of diversity is used to combat memory corruption
vulnerabilities, specifically return-oriented programming ex-
ploits, which take advantage of previously known code-
layouts. This automated diversity MTD technique can be

A Modern Web Application Architecture and Its Running Environments.

done statically or dynamically. However, many web ap-
plications are written in higher-level languages, such as
Java, Python, and Ruby, which are immune from memory
corruption vulnerabilities. In fact, most web application
vulnerabilities are inherent in the code itself, such as Cross-
Site Scripting (XSS), where the server-side web application
code creates HTML from unsanitized, untrusted attacker
input. Software diversity does not handle this case, as the
vulnerability is part of the web application’s logic.

Another MTD approach is to switch a web application’s
implementation from one language to another, which could
eliminate some language- or framework-specific vulnerabili-
ties, as some vulnerability classes are specific to certain pro-
gramming languages. For example, an application that is de-
veloped with Ruby on Rails 3.0.5 may introduce execution-
after-redirect vulnerabilities, while its counterpart developed
with Python and Django 1.2.5 is impervious to this class of
vulnerabilities due to the different implementations of the
underlying framework [22]. Changing the web application’s
implementation language could be either static or dynamic.
In a static switch, the web server simply launches another
language implementation of the application. To make the
process automated, web application developers only need
to develop the application once using the language they
prefer, and a translator program translates their code into
functionally equivalent code in the other language. The
translation is difficult when the input language has some
features that the output language can not offer. In a dynamic
switch, the states of the running web application would
need to be maintained or transformed for the program in

another language to understand. In Section IV we discuss
our implementation of this idea.

B. Storage Layer

The biggest challenge the storage layer faces are SQL
injection attacks in which data from the logic layer is
interpreted as SQL statements by the database management
systems. In order to perform successful SQL injection at-
tacks, attackers need to carefully craft their input by using
some reversed tokens in the targeted SQL syntax in order to
modify the logic layer developer’s intended SQL statement.

While SQL itself is standard, different SQL database
implementations use slightly different SQL syntaxes (also
called dialects). Taking advantage of the fact that different
databases use slightly different SQL syntaxes, switching the
database used in a web application may defeat some SQL
injection exploits that are targeted at a specific SQL dialect.
For example, both single ('') and double ("") quotes
are used for quoting values in MySQL—while PostgreSQL
uses only single quotes for values, instead reserving double
quotes for identifying field names, table names, etc.

Static MTD for the database can be realized by ex-
porting the data from one database implementation and
then importing it into a different database implementation.
Dynamic MTD for storage layer can also be achieved if
multiple, yet different, database instances are running and
being continually synchronized. In Section V we discuss
our implementation of this idea.

C. Presentation Layer

The presentation layer contains technologies that are
most directly accessible to the user. For instance, client-
side JavaScript code running some of the web application’s
logic, the HTML DOM containing form information, and
CSS that enables modification of the web layout. The most
direct threat of the presentation layer are Cross-Site Scripting
(XSS) attacks, where malicious scripts are injected into the
web application in order to steal information from users.

There are techniques related to MTD that have been
proposed to prevent against such attacks. One such technique
is to introduce a degree of randomness to the underlying
HTML form fields by adding tags to each field that hides
their real values [18]. Another approach, targeting a different
technology, is to introduce randomness to the JavaScript
code by mutating tokens in such a way that the attacker
cannot guess the correct token to inject in addition to running
multiple versions of the website that each utilizes varying
JavaScript versions [23].

D. Browsers

Modern web browsers have modularized architectures that
typically include rendering engines, JavaScript interpreters,
and XML parsers [24]. By moving and changing these
components, vulnerabilities in particular components can be

mitigated. In this way, the browser itself and the underlying
operating system can be protected. For example, the Cheetah
browser [25] and the 360 browser [26] can change their
rendering engines between WebKit and Trident.

Besides protecting browsers from exploits, changing
browser configurations can also protect the privacy of web
users. Every browser instance has its unique configura-
tions, therefore web applications can uniquely fingerprint a
browser in order to track users [27]. Diversifying a browser’s
font, plugins, and other configurations can prevent it from
being fingerprinted, hence protecting the privacy of web
users [28]-[30].

IV. SOURCE CODE LANGUAGE DIVERSIFICATION

To apply MTD ideas in the logic layer of the server-
side, we propose to change the underlying language imple-
mentation of the web application; taking care to retain the
main functionalities of the original application. In doing so,
we prevent certain categories of vulnerabilities from being
effectively exploited—remote code injection exploits would
cease to work as code an attacker manages to insert will
not match the web application’s language. In addition, any
unpatched or zero-day vulnerabilities present in the original
language would not be available for exploit during the time
frame of the randomization, as the language is completely
different from what the attacker original perceives it to be.

In this section, we describe our implementation of a
static MTD mechanism for the logic layer. As a first step,
we choose to convert between PHP, a web development
language used by approximately 82% of all web applica-
tions [31] and Python, which is used by popular companies
such as Google, YouTube, Pinterest, and Bing [32], [33]. Our
approach is to develop a translator to automatically convert a
Python web application to PHP. We first translate the source
code as-is, resulting in syntactically valid, but semantically
invalid output in the target language.

We approached the problem of translating from Python
to PHP by first exploring the available open source tools.
However, no such tool exists, and we believe that this is
due to the varying web application frameworks available for
Python. While PHP is a programming language that was
built for creating server-side web application logic, Python is
a general-purpose language that can be used to write server-
side web application logic. Therefore, there are many dif-
ferent frameworks for building server-side web applications
in Python. For this reason, we focus on Python applications
that utilize cgi—1ib, however the our translation concept
is general and can be implemented for other frameworks in
the future.

Our translator is essentially a compiler, and to speed
development we leverage existing functionality in Python
to initiate the first step in translating to PHP—specifically,
the use of Python’s ast module to build an Abstract Syntax
Tree (AST) of a Python program. Then, we use the Python

def _Print(self, t):
self. fill ("print.”)
do_comma = False
if t.dest:
self . write ("™>>")
self.dispatch(t.dest)

do_comma = True
for e in t.values:
if do_comma:self.write(”,.”)

else :do_comma=True

self.dispatch(e)
if not t.nl:

self.write(”,”)

class sys

{
<...constructor...>
<...other functions...>
public function exit($status)
exit($status)
}
}

Listing 1. Original _Print in unparse to generate Python code.

def _Print(self, t):

self. fill ("echo.”)

do_comma = False

if t.dest:
self . write (">>")
self.dispatch(t.dest)
do_comma = True

for e in t.values:
if do_comma:self.write(”,.”)
else :do_comma=True
self.dispatch(e)

if not t.nl:
self . write(”,”)

self.write(”;”)

Listing 2. Modified _Print in unparse to generate PHP code.

unparse module, which is a module that converts an
AST to Python code. We develop a new library based on
unparse that generates PHP code instead of Python code.

Specifically, we modify the unparse module code by
replacing the print-to-output function for a given
Python statement with the corresponding PHP-specific state-
ment. For instance, when translating a simple print state-
ment from Python to the PHP equivalent of echo, we
modify the _Print function in the unparse module as
shown in Listing 1.

We replace the print Python keyword with the echo
PHP keyword and ensure that the instruction is terminated
with a semicolon as shown in Listing 2.

Once this is done, we have a program that is syntactically
valid PHP, however it does not have the same semantics
as the original Python program. Therefore, the next step is
to make the translated program semantically equivalent to
the original program. This step is necessary because there
may not be a one-to-one translation for every feature in a
language to another. For example, a Python instruction to
terminate and exit the program is done using:

sys.exit(0)

After the translation is done and a PHP valid output is
generated:
sys—>exit (0)

However, PHP sees this as a new sys object with a
call to a function exit (0), which does not exist in PHP.

Listing 3. sys Object in PHP

The instruction does however have an equivalent function
call—exit (status) in PHP. Therefore, we implement
Python built-in functions as shims in order to match the
new function calls. To this end, we create a PHP library
that contains an object called sys with a function call to
exit (status) as shown in Listing 3. This PHP library
shim can be included in the translated application in order
for the function call to remain semantically valid.

Using this approach, we recursively run the tool on the
Python functions that the original program calls, and convert
them as well. If, for instance, the original program is written
in C, then we create a function shim for it.

However, in order to achieve the MTD goal, we must
also decide on how frequently to move or randomize the
component in order to be effective while considering the
cost to legitimate users. Furthermore, there may be risk in
the translated application missing critical function calls that
we have not yet created shims. Finally, we anticipate this
approach to be resource and time intensive as it is essentially
creating two implementations of one web application.

V. DATABASE DIALECT DIVERSIFICATION

To enable movement in the server-side storage layer, we
implemented an approach to change the underlying database
implementation, while preserving data and retaining func-
tionality. In doing so, we again protect against certain
categories of vulnerabilities and exploits—SQL injection
exploits would be rendered ineffective due to syntactical
differences between database implementations.

When performing the database translation, no alterations
must be made to the data content—that is, once the trans-
lation is completed, the users must see the same informa-
tion regardless of the underlying database implementation.
Access to the database must be guaranteed and kept trans-
parent to the user during and after the translation process.
Database translations may be costly as well, especially
regarding larger, more established databases—optimizations
in the original implementation may become invalid once
converted. Similar to our source to source approach, by
continuously changing database implementations, we expect
any database-specific exploits as well as unpatched or zero-
day vulnerabilities will be ineffective.

As a first step, we choose to convert between MySQL and
PostgreSQL, which are ranked 2" and 5% in db-engines.com
popularity ranking, respectively [34]. MySQL is used by
well known companies, such as Facebook, Google, Amazon
and Dropbox [35] and PostgreSQL is used by U.S. Dept of
labor, U.S. State Department, and Sun Microsystems [36].

Some differences between the MySQL and PostgreSQL
syntaxes include:

e The # or —— (A space after the —— is required) is
used to begin a comment in MySQL, while PostgreSQL
instead uses —— (the space is not required).

o Single (' ') quotes or double ("") quotes are used in
quoting values in MySQL, while PostgreSQL uses only
single quotes for values, reserving double quotes in
identifying field names, table names, etc.

o« MySQL is case-insensitive when doing string com-
parision while PostgreSQL is case-sensitive, i.e.
john != JOHN != John.

All of these differences affect the SQL injection exploits
written to take advantage of an SQL injection vulnerability.
If an attacker assumes that the web application is using a
particular database backend, specifically if the attacker is
searching the entire web for vulnerabilities, the exploit will
fail.

Similar to our source-to-source approach, we developed
a tool that can automate the conversion or migration be-
tween databases. In order to convert from PostgreSQL to
MySQL, we modifed an existing open-source tool created
by Lightbox that converts PostgreSQL to MySQL—although
we can simply create a database dump from PostgreSQL,
directly importing to MySQL will not work as there are
differences between syntax and data types, which must
be properly translated. In addition, certain flags need to
be enabled when creating a database dump to allow for
initial compatibility (PostgreSQL db dumps need to have
-—inserts enabled to properly include the data stored;
MySQL needs to have —--compatible=postgresql
flag to properly include PostgreSQL keywords). To remedy
this situation, our tool processes the original database dump
by parsing the file and replacing any PostgreSQL keywords
and data-types into corresponding MySQL keywords and
data types. Some considerations have to made regarding
conversions between data types, for instance PostgreSQL’s
BYTEA can be converted to any of the MySQL data types
shown in Table I.

The data type chosen needs to be generic enough that it
covers the possible data value that is in the original database,
while attempting to be as performant as possible. When
testing the original implementation of the converter, we ob-
served that the output did not generate a database dump that
is supported by the latest version of MySQL. In addition,
it did not correctly convert the raw database dump from
PostgreSQL, as the final output still contained PostgreSQL
keywords and data-types. To handle conversion in the reverse

MySQL PostgreSQL
BINARY (n) BYTEA
VARBINARY (n) BYTEA
TINYBLOB BYTEA
BLOB BYTEA
MEDIUMBLOB BYTEA
LONGBLOB BYTEA
Table 1

COMPARISON OF MYSQL AND POSTGRESQL DATA TYPES.

direction, from MySQL to PostgreSQL, we re-purposed the
code by reversing the process—that is, we parse through
the dump file looking for MySQL keywords and data-types
converting them to the corresponding PostgreSQL keywords
and data-types.

VI. RELATED WORK

The idea and philosophy of moving target defense, which
is to increase uncertainty and complexity for attackers, has
been proposed and studied for decades [37]-[40]. Okhravi et
al. surveyed techniques that applied the philosophy of mov-
ing target defense in different cyber research domains [41].
According to them, existing techniques can be categorized
into five classes based on what-to-move: (1) changing run-
time environment [12], [13], (2) changing application’s code
dynamically or diversifying software [14], [15], (3) changing
data representations [38], [42], (4) changing platforms [16],
[17], and (5) changing network configurations [43]-[45].

However, applying the moving target defense concept
to web applications is still new. Huang et al. proposed
to create and rotate among a set of virtual servers, each
of which is configured with a unique software mix, to
move attack surfaces for web surfaces [46]. Their work
also explored the various opportunities of diversification
in the web application software stack, providing a higher-
level overview of the attack surface. Our work builds on
this by further analyzing the components in each layer and
defining what randomization in each layer entails, in addition
to attempting an automated approach to diversification in
the logic and storage layer. Boyd et al. proposed to create
instances of unpredictable database query languages and
to translate them to standard SQL using an intermediary
proxy to prevent SQL injection attacks [47]. Although their
approach also aims to prevent SQL injections, we chose a
different approach in order to prevent a broader range of
vulnerabilities—specifically unpatched vulnerabilities, zero
day exploits, and mass-attacks targeting specific database
implementations. Portner et al. proposed to defend cross-
site scripting by mutating the symbols in JavaScript so
that maliciously injected code can be identified [23]. Their
work aims to prevent a different class of vulnerabilities,
specifically located at the presentation layer on the client
side. Our proposed approaches are aimed at applying MTD
ideas on the server side of the web application architecture.

However, we envision techniques such as these, that are in
each layer, to cooperate together to provide a defense-in-
depth approach to defending web applications.

VII. FUTURE WORK

As part of our future work, we plan to address the
remaining semantic issues after translating from a Python
application to a syntactically correct PHP application—one
such issue is the translation of Python data structures to their
equivalent in PHP; for instance, Python lists do not have a
direct equivalent in PHP. Another component that we plan
to explore is the possibility of automating the conversion
to other web development languages. Similarly, we plan
to explore the possibility of conversion to other database
implementations. In addition, we will further investigate the
other web application layers that can be moved.

At the heart of any MTD mechanism is the technique
to decide when to move the chosen components. As such,
we also plan to explore the various movement schemes
and its effect on web applications that use our MTD ap-
proach. Finally, we will create a modular framework that
can automatically apply our implemented MTD techniques
in each layer of the web application in order to create a vast
number of possible configurations. We will then evaluate
this framework using real web applications deployed on a
real-world network, in order to measure its effectiveness.

VIII. CONCLUSION

In this paper we explored the feasibility of applying
MTD concepts to web applications in order to create
defensive layers. We analyzed the web application stack
to understand where and how MTD can be applied, as
well as current techniques implemented in each layer. In
addition, we also discussed our implementation of two
MTD approaches, which can mitigate several classes of web
application vulnerabilities or exploits, wherein we change
the language implementation of the web application and the
database implementation while retaining functionality. We
believe that MTD offers an exciting new research area in
defending web applications, and we believe that the future
of web application defense lies in reducing the information
asymmetry inherent in the current web application security
environment.

ACKNOWLEDGMENT

This work was partially supported by the grant from
National Science Foundation (NSF-SFS-1129561).

REFERENCES

[1] J. Silver-Greenberg, M. Goldstein, and N. Perlroth, “JPMor-
gan Chase Hacking Affects 76 Million Households,” The New
York Times, Oct. 2014.

[2] J. Robertson and M. Riley, “JPMorgan Hack Said to Span
Months Via Multiple Flaws,” Aug. 2014.

(3]

(4]

(51

(6]

(71

(8]

(91

(10]

[11]

[12]

[13]

[14]

[15]

[16]

D. Balzarotti, M. Cova, V. Felmetsger, N. Jovanovic, E. Kirda,
C. Kruegel, and G. Vigna, “Saner: Composing static and
dynamic analysis to validate sanitization in web applications,”
in Security and Privacy, 2008. SP 2008. IEEE Symposium on.
IEEE, 2008, pp. 387-401.

V. Felmetsger, L. Cavedon, C. Kruegel, and G. Vigna, “To-
ward automated detection of logic vulnerabilities in web
applications,” in USENIX Security Symposium, 2010, pp. 143—
160.

N. Jovanovic, C. Kruegel, and E. Kirda, “Static analysis
for detecting taint-style vulnerabilities in web applications,”
Journal of Computer Security, vol. 18, no. 5, pp. 861-907,
2010.

A. Doupé, L. Cavedon, C. Kruegel, and G. Vigna, “En-
emy of the State: A State-Aware Black-Box Vulnerability
Scanner,” in Proceedings of the USENIX Security Symposium
(USENIX), Bellevue, WA, August 2012.

A. Doupé, W. Cui, M. H. Jakubowski, M. Peinado,
C. Kruegel, and G. Vigna, “deDacota: Toward Preventing
Server-Side XSS via Automatic Code and Data Separation,”
in Proceedings of the ACM Conference on Computer and
Communications Security (CCS), Berlin, Germany, November
2013.

D. Wichers, “Owasp top-10 2013, OWASP Foundation,
February, 2013.

A. Cui and S. J. Stolfo, “Symbiotes and defensive mutualism:
Moving target defense,” in Moving Target Defense. Springer,
2011, pp. 99-108.

R. Zhuang, S. A. DeLoach, and X. Ou, “Towards a theory
of moving target defense,” in Proceedings of the First ACM
Workshop on Moving Target Defense, ser. MTD °14. New
York, NY, USA: ACM, 2014, pp. 31-40. [Online]. Available:
http://doi.acm.org/10.1145/2663474.2663479

P. Ratanaworabhan, V. B. Livshits, and B. G. Zorn, “Nozzle:
A defense against heap-spraying code injection attacks.” in
USENIX Security Symposium, 2009, pp. 169-186.

P. Team, “Address space layout randomization,” Phrack, 2003.

E. G. Barrantes, D. H. Ackley, T. S. Palmer, D. Stefanovic,
and D. D. Zovi, “Randomized instruction set emulation to
disrupt binary code injection attacks,” in Proceedings of the
10th ACM conference on Computer and communications
security. ACM, 2003, pp. 281-289.

P. Larsen, A. Homescu, S. Brunthaler, and M. Franz, “Sok:
Automated software diversity,” in Security and Privacy (SP),
2014 IEEE Symposium on. 1EEE, 2014, pp. 276-291.

R. Wartell, V. Mohan, K. W. Hamlen, and Z. Lin, “Binary
stirring: Self-randomizing instruction addresses of legacy x86
binary code,” in Proceedings of the 2012 ACM conference on
Computer and communications security. ACM, 2012, pp.
157-168.

D. Williams, W. Hu, J. W. Davidson, J. D. Hiser, J. C.
Knight, and A. Nguyen-Tuong, “Security through diversity:
Leveraging virtual machine technology,” Security & Privacy,
IEEE, vol. 7, no. 1, pp. 26-33, 2009.

(17]

(18]

(19]

(20]

[21]

(22]

(23]

[24]

[25]
[26]

[27]

(28]

[29]

(30]

(31]

B. Salamat, T. Jackson, G. Wagner, C. Wimmer, and
M. Franz, “Runtime defense against code injection attacks
using replicated execution,” Dependable and Secure Comput-
ing, IEEE Transactions on, vol. 8, no. 4, pp. 588-601, 2011.

S. Vikram, C. Yang, and G. Gu, “Nomad: Towards non-
intrusive moving-target defense against web bots,” in Com-
munications and Network Security (CNS), 2013 IEEE Con-
ference on. 1EEE, 2013, pp. 55-63.

M. Dunlop, S. Groat, W. Urbanski, R. Marchany, and J. Tront,
“Mtod: A moving target ipv6 defense,” in MILITARY COM-
MUNICATIONS CONFERENCE, 2011 - MILCOM 2011,
Nov 2011, pp. 1321-1326.

M. Carvalho and R. Ford, “Moving-target defenses for com-
puter networks,” Security Privacy, IEEE, vol. 12, no. 2, pp.
73-76, Mar 2014.

Y. Li, R. Dai, and J. Zhang, “Morphing communications of
cyber-physical systems towards moving-target defense,” in
Communications (ICC), 2014 IEEE International Conference
on, June 2014, pp. 592-598.

A. Doupé, B. Boe, C. Kruegel, and G. Vigna, “Fear the ear:
discovering and mitigating execution after redirect vulner-
abilities,” in Proceedings of the 18th ACM conference on

Computer and communications security. ACM, 2011, pp.
251-262.

J. Portner, J. Kerr, and B. Chu, “Moving target defense against
cross-site scripting attacks (position paper),” in Foundations
and Practice of Security. Springer, 2014, pp. 85-91.

C. Reis, A. Barth, and C. Pizano, “Browser security: lessons
from google chrome,” Queue, vol. 7, no. 5, p. 3, 2009.

Liebao, “Cheetah browser. http://www.liebao.cn/index.html.”
Qihu, “360 browser. http://www.360safe.com/browser.html.”

P. Eckersley, “How unique is your web browser?” in Privacy
Enhancing Technologies. Springer, 2010, pp. 1-18.

P. Laperdrix, W. Rudametkin, and B. Baudry, “Mitigating
browser fingerprint tracking: multi-level reconfiguration and
diversification,” in Proceedings of the International Sym-
posium on Software Engineering for Adaptive and Self-
Managing Systems (SEAMS’15), 2015.

N. Nikiforakis, W. Joosen, and B. Livshits, “PriVaricator: De-
ceiving fingerprinters with Little White Lies,” in Proceedings
of the International World Wide Web Conference (WWW),
2015.

N. Nikiforakis, A. Kapravelos, W. Joosen, C. Kruegel,
F. Piessens, and G. Vigna, “Cookieless Monster: Exploring
the Ecosystem of Web-based Device Fingerprinting,” in Pro-
ceedings of the IEEE Symposium on Security and Privacy,
2013.

Ide, “Php just grows &
http://news.netcraft.com/archives/2013/01/31/php-just-
grows-grows.html.”

Srows.

(32]

(33]

(34]
(35]
[36]
[37]

(38]

(39]

[40]

[41]

(42]

[43]

[44]

[45]

[46]

[47]

Sangster, “Organizations using python.
https://wiki.python.org/moin/organizationsusingpython.”

Donohue, “Top 15 sites built with python.
http://coderfactory.com/posts/top-sites-built-with-python.”

“Db-engines ranking. http://db-engines.com/en/ranking.”
“Mysql users. https://www.mysql.com/customers/.”
“Postgresql users. http://www.postgresql.org/about/users/.”

A. Avizienis and L. Chen, “On the implementation of n-
version programming for software fault tolerance during
execution,” in Proc. IEEE COMPSAC, vol. 77, 1977, pp. 149—
155.

P. E. Ammann and J. C. Knight, “Data diversity: An approach
to software fault tolerance,” Computers, IEEE Transactions
on, vol. 37, no. 4, pp. 418425, 1988.

K. Pettis and R. C. Hansen, “Profile guided code positioning,”
in ACM SIGPLAN Notices, vol. 25, no. 6. ACM, 1990, pp.
16-27.

S. Forrest, A. Somayaji, and D. H. Ackley, “Building diverse
computer systems,” in Operating Systems, 1997., The Sixth
Workshop on Hot Topics in. 1EEE, 1997, pp. 67-72.

H. Okhravi, M. Rabe, T. Mayberry, W. Leonard, T. Hobson,
D. Bigelow, and W. Streilein, “Survey of cyber moving target
techniques,” DTIC Document, Tech. Rep., 2013.

A. Nguyen-Tuong, D. Evans, J. C. Knight, B. Cox, and
J. W. Davidson, “Security through redundant data diversity,”
in Dependable Systems and Networks With FTCS and DCC,
2008. DSN 2008. IEEE International Conference on. 1EEE,
2008, pp. 187-196.

R. Zhuang, S. Zhang, A. Bardas, S. DeLoach, X. Ou, and
A. Singhal, “Investigating the application of moving target
defenses to network security,” in Resilient Control Systems
(ISRCS), 2013 6th International Symposium on, Aug 2013,
pp. 162-169.

L. Ge, W. Yu, D. Shen, G. Chen, K. Pham, E. Blasch,
and C. Lu, “Toward effectiveness and agility of network
security situational awareness using moving target defense
(mtd),” vol. 9085, 2014, pp. 90 850Q-90 850Q-9. [Online].
Available: http://dx.doi.org/10.1117/12.2050782

J. H. Jafarian, E. Al-Shaer, and Q. Duan, “Openflow
random host mutation: Transparent moving target defense
using software defined networking,” in Proceedings
of the First Workshop on Hot Topics in Software
Defined Networks, ser. HotSDN ’12. New York, NY,
USA: ACM, 2012, pp. 127-132. [Online]. Available:
http://doi.acm.org/10.1145/2342441.2342467

Y. Huang and A. K. Ghosh, “Introducing diversity and
uncertainty to create moving attack surfaces for web services,”
in Moving Target Defense. Springer, 2011, pp. 131-151.

S. W. Boyd and A. D. Keromytis, “Sqlrand: Preventing sql
injection attacks,” in Applied Cryptography and Network
Security. Springer, 2004, pp. 292-302.

