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Toward a Multiple Clock/Voltage Island Design
Style for Power-Aware Processors

Emil Talpes and Diana Marculescu, Member, IEEE

Abstract—Enabled by the continuous advancement in fabrica-
tion technology, present-day synchronous microprocessors include
more than 100 million transistors and have clock speeds well in
excess of the 1-GHz mark. Distributing a low-skew clock signal
in this frequency range to all areas of a large chip is a task of
growing complexity. As a solution to this problem, designers have
recently suggested the use of frequency islands that are locally
clocked and externally communicate with each other using mixed
clock communication schemes. Such a design style fits nicely with
the recently proposed concept of voltage islands that, in addition,
can potentially enable fine-grain dynamic power management
by simultaneous voltage and frequency scaling. This paper pro-
poses a design exploration framework for application-adaptive
multiple-clock processors which provides the means for analyzing
and identifying the right interdomain communication scheme
and the proper granularity for the choice of voltage/frequency
islands in case of superscalar, out-of-order processors. In ad-
dition, the presented design exploration framework allows for
comparative analysis of newly proposed or already published
application-driven dynamic power management strategies. Such a
design exploration framework and accompanying results can help
designers and computer architects in choosing the right design
strategy for achieving better power–performance tradeoffs in
multiple-clock high-end processors.

Index Terms—Clocking strategies, low-power design, super-
scalar processor designs, simulation.

I. INTRODUCTION

T
HE LAST few decades have been dominated by Moore’s

Law, with performance being the primary driving force in

processor design. This trend has lead to a vast increase in the

number of transistors used in modern microprocessors, while

pushing the clock frequencies to higher values. Unfortunately,

such a trend has also resulted in a huge increase in power

dissipation as well, with current processors already dissipating

more than 100 W. The increase in power dissipation directly

impacts the CPU lifetime, the system power delivery costs and

the system thermal design needed for keeping the operating

temperature under specified limits.

In addition, one of the major design bottlenecks in today’s

high-performance VLSI systems is the clock distribution net-

work. Large clock nets perform like very long signal paths,

making it hard for designers to keep the clock skew within

tolerable limits. With clock frequencies in the multigigahertz
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range, the long wires needed for driving the clock signal

onto increasingly large processor dies become a significant

bottleneck, and more complex clocking and synchronization

schemes are needed [1]. Furthermore, the clock skew is getting

worse with each technology shrink due to the increasingly

high process and system parameter variation (up to 100% for a

100-nm technology).

As recent case studies show [2], [3], the circuitry needed for

driving such frequencies is already a dominant source for power

consumption. Adding more and more transistors on a single die

tends to worsen the problem—larger clock nets require more

and more power.

To address these problems, two approaches are possible. The

first option is to use fully asynchronous designs. While this has

been tried successfully in isolated cases [3]–[5], design method-

ologies for asynchronous design are far from being mature and

thus, far from widespread acceptance. Asynchronous designs

are usually hard to test and validate, since it is almost impos-

sible to generate any possible timing combinations. Further-

more, it would be impossible to reproduce the signal timings

that cause a particular error, so debugging such designs might

be very complicated.

Another alternative is to use globally asynchronous locally

synchronous (GALS) architectures [6]–[11], which attempt

to combine the benefits of both fully synchronous and asyn-

chronous systems. A GALS architecture is composed of

synchronous blocks that communicate with each other only on

demand, using an asynchronous or mixed-clock communication

scheme. Through the use of a locally generated clock signal

within each individual domain, such architectures make it pos-

sible to take advantage of the industry-standard synchronous

design methodology. Not requiring a global clock distribution

network and deskewing circuitry, such systems have important

advantages when compared to their fully synchronous coun-

terparts. However, the overhead introduced by communicating

data across clock domain boundaries may become a funda-

mental drawback, limiting the performance of these systems.

Thus, the choice of granularity for these synchronous blocks

or islands must be very carefully done in order to prevent

the interdomain communication from becoming a significant

bottleneck. At the same time, the choice of the interdomain

communication scheme, as well as of the on-the-fly mecha-

nisms for per-domain dynamic speed/voltage scaling (DVS)

become critical when analyzing overall power-performance

trends.

The contribution of the work proposed in this paper is

twofold.

1063-8210/$20.00 © 2005 IEEE
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• First, our approach allows for design space exploration

for application-adaptive multiple-clock high-end proces-

sors by analyzing the available power/performance trade-

offs. Parameters under consideration include: choice of

microarchitecture-level granularity for frequency islands;

choice of mixed-clock communication scheme; choice of

the application-adaptive mechanisms for fine-grain power

management.

• Second, this paper introduces a new type of dynamic con-

trol strategy for application-adaptive multiple-clock pro-

cessors that more closely matches the voltage/speed for

various frequency/voltage islands to the ones required by

the application workload. The newly proposed dynamic

control mechanism relies on better matching front-end and

back-end throughputs and using dependency information

across clock domains to take better global decisions.

Our analysis shows that baseline GALS processors are not

necessarily better in terms of power consumption than fully syn-

chronous designs. Moreover, they are characterized by a de-

crease in performance due to the asynchronous communication

overhead; this can also have adverse effects on overall energy

consumption. The energy savings obtained by eliminating the

global clock are, in many cases, offset by the additional power

consumed due to longer execution times. However, the use of

dynamic voltage scaling in GALS microprocessors makes them

more appealing for many applications by providing additional

power savings.

The paper is organized as follows. Section II details the mo-

tivation that lies behind our investigation of minimally clocked

processors. In Sections III–V, we present the design exploration

framework, the microarchitecture under consideration, and the

various design choices that we can make in designing a GALS

microprocessor. Section VI presents the theoretical aspects of

scaling the frequency and the clock voltage, as well as the algo-

rithms that we use. Section VII details our simulation frame-

work and the experimental setup, while the results of all the

tests are presented in Section VIII. Section IX presents previous

work related to the aspects addressed in this paper, including

the global clock distribution, asynchronous communication, and

dynamic control strategies. Finally, we conclude with an anal-

ysis of the trends observed in the experimental results, together

with our conclusions and directions for future research.

II. MOTIVATION

As the transistor minimum feature is scaled down below

130 nm and the clock speed enters the gigahertz range, more

problems related to distributing clock signals across an increas-

ingly complex die tend to surface. In [2], the designers of the

Alpha 21264 microprocessor present the problems encountered

when migrating the design to a 180-nm copper process and

how the nonscalability of wire delays is affecting this migration

process.

While the long wires required for driving logical signals

across the chip are affecting performance and must be shortened

as much as possible to allow for further frequency increases,

they also have a negative impact on the ability of driving

global clock signals. An example of a very complex clock

Fig. 1. Example of a hierarchical clock distribution network.

design can be found in another commercial processor, the Intel

Pentium IV. For delivering a clock signal in excess of 2 GHz to

the entire processor core, Intel has developed special circuitry

for programmable clock deskewing [1].

A. Clock Distribution

Generating a high-frequency clock signal and distributing it

across a large die with low skew is a challenging task demanding

a lot of design effort, die area, and power. In most cases, a

phase-lock loop (PLL) generates a high-frequency clock signal

from a slower external clock. A combination of metal grids and a

tree of buffers is used to distribute the clock throughout the chip.

Trees have low latency, dissipate less power, and use less wiring;

but they need to be rerouted whenever the logic is modified even

slightly, and in a custom-designed processor, this requires a lot

of effort. Trees work well if the clock load is uniform across

the chip area; unfortunately, most microprocessors have widely

varying clock loads. Metal grids provide a regular structure to

facilitate the early design and characterization of the clock net-

work. They also minimize local skew by providing more direct

interconnections between clock pins.

Moreover, clocking in most processors today is hierarchical.

Fig. 1 shows an example of a hierarchical distribution network;

several major clocks are derived from a global clock grid, and

local clocks are in turn derived from the major clocks. This ap-

proach serves to modularize the overall design and to minimize

the local skew inside a block. It also has the advantage that clock

drivers for each functional block can be customized to the skew

and drive requirements of that block; thus the drive on the global

clock grid need not be designed for the worst-case clock loading.

With high-clock frequencies driving an ever-increasing

number of transistor available on-chip, the power burned in the

clock distribution network starts to become another limitation.

For instance, the Alpha 21264 had a clock distribution network

which consumed 24 W out of the processor’s total power

budget of 72 W. High power is not only an issue for mobile

devices, but also for desktops or even servers; for instance in

the case of the first generation Alpha processor, the single-line

driver of the clock grid led to thermal management problems

since the continuous switching at the driver led to a very high

temperature at the chip’s center and hence a high-temperature

gradient [12]. Power has thus become a first-class constraint in

clock system design.

Apart from the power burned in large distribution networks,

they are also a problem for the quality of the clock signal. Restle

et al. have argued in [13] that clock skew arises mainly due to

process variations in the tree of buffers driving the clock. Since
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device geometries will continue to shrink and clock frequen-

cies and die sizes will continue to increase, global clock skew

induced by such process variations can only get worse. Hence,

we argue that we may not be far from the point where clock

skew will become a significant proportion of the cycle time and

thus, will directly affect performance. For instance, the first re-

lease of Intel’s Itanium core had a clock skew that was 9% of the

cycle time using traditional clock distribution techniques; using

a network of active deskewing elements [14], the clock skew

was reduced to 2% of the cycle time. While techniques like ac-

tive deskewing help to push the envelope for clocked systems

further, they come at additional cost in terms of die area and

power dissipation. At some point, pushing the limits of global

clock distribution networks will lead to diminishing marginal

returns.

Another aspect that makes local clocks more promising is the

increasing variation in process and operating parameters across

various regions of the core. All these variations affect the max-

imum sustainable clock speed. As Skadron et al. show in [26],

there can be variations of up to 15% in temperature between dif-

ferent microarchitecture components. While process variations

are difficult to quantify at the microarchitectural level, it is ob-

vious that some parts of the core will support a lower maximum

frequency than others. Thus, a GALS microarchitecture will be

able to take advantage of these variations, clocking some of the

domains faster than the fully synchronous counterpart.

B. Fine-Grain Dynamic Voltage Scaling

Most applications running on core processors (be it high-end,

embedded, or application specific) exhibit a wide range of

run-time profiles, both within and across applications. This

is mainly manifested via nonuniform resource usage, as well

as bursty communication patterns among various parts of the

pipeline. One such example is the fetch stage during which

the I-cache is accessed and instructions are brought into the

fetch queue. While an I-cache miss is being resolved, the issue

and execution stages of the pipeline may proceed at their own

pace until no more instructions advance in the pipeline due

to pending dependencies. A similar situation may appear in

case of nonblocking D-cache misses. In this case, multiple

outstanding D-cache misses are resolved, while instructions

may proceed normally through the pipeline. In addition, if there

are instructions noncritical to the overall performance (e.g.,

infrequent floating-point operations in integer applications),

their execution may proceed at a lower speed without signifi-

cantly affecting performance. While the use of multiple-clock

domains offers this flexibility, it also comes with additional po-

tential for power savings. Locally synchronous blocks, whose

speed may be gracefully scaled down, can also run at a lower

voltage, providing additional power savings.

III. DESIGN EXPLORATION FRAMEWORK

In this paper, we start with a fairly typical out-of-order,

superscalar architecture and analyze the impact of various

microarchitecture design decisions on the power-performance

tradeoffs available in a multiple-clock processor. To this end,

we assume a 16-stage pipeline that implements a four-way

Fig. 2. Baseline microarchitecture.

superscalar, out-of-order processor. While this pipeline is

significantly longer than the ones studied before [8]–[11],

we feel that this increased length resembles more accurately

the pipelines projected for the next generation of commercial

processors.

The underlying microarchitecture organization is shown in

Fig. 2. Groups of up to four aligned instructions are brought

from the Level 1 Instruction Cache in the Fetch stages at the

current program counter (PC) address, while the next PC is pre-

dicted using a G-share branch predictor [15]. The instructions

are then decoded in the next three pipeline stages (named here

Decode) while registers are renamed in the Rename stages.

After the Dispatch stages, instructions are steered according to

their type, toward the Integer, Floating Point, or Memory Clus-

ters of the pipeline. The ordering information that needs to be

preserved for in-order retirement is also added here. In Reg-

ister Read, the read operation completes and the source operand

values are sent to the execution core together with the instruc-

tion opcode.

Instructions are placed in a distributed Issue Buffer (similar to

the one used by Alpha 21264) and reordered according to their

data dependencies. Independent instructions are sent in parallel

to the out-of-order execution core. The execution can take one or

more clock cycles (depending on the type of functional unit that
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Fig. 3. Total clock skew for Alpha 21264 as function of interconnect
parameters T (interlevel dielectric thickness),H (interconnect thickness),
technology parameters V (threshold voltage), L (transistor channel length),
T (oxide thickness) and system parameters V (supply voltage), C (load
capacitance), and T (temperature) [19].

executes the instruction) and the results are written back to the

register file in the Write Back stages. Finally, the instructions

are reordered for in-order retirement, according to the tags re-

ceived during Dispatch. Branches are resolved in Write Back,

thus providing a minimum mispredict penalty of 14 cycles.

Of extreme importance for our design exploration is

the choice of various design knobs that impact the overall

power-performance tradeoffs in GALS processors. Since our

primary focus is at the microarchitecture level, we chose to

omit several lower-level issues in our study. Some areas which

have been dealt with in detail elsewhere are as follows.

• Local clock generation: Each clock domain in a GALS

system needs its own local clock generator; ring oscillators

have been proposed as a viable clock generation scheme

[16], [17]. We assume that we can use ring oscillators in

each synchronous block in the GALS processor.

• Failure modeling: A system with multiple-clock domains

is prone to synchronization failures; we do not attempt to

model these since their probabilities are rather small for

the communication mechanisms considered (but nonzero)

[17], [29] and our work does not target mission-critical

systems.

Instead, we are focusing on the following microarchitecture

design knobs:

• the choice of the communication scheme among fre-

quency islands;

• the granularity chosen for the frequency islands;

• the dynamic control strategy for adjusting voltage/speed

of clock domains so as to achieve better power efficiency.

We detail in the following how each of these microar-

chitecture-level design decisions may potentially impact the

overall power efficiency or performance profile for the GALS

architecture.

IV. CHOICE OF CLOCK DOMAIN GRANULARITY

To assess the impact of introducing a mixed-clock interface

on the overall performance of our baseline pipeline, we assume

that the pipeline is broken into several synchronous blocks. The

natural approach—minimize the communication over the syn-

chronous blocks boundaries—does not necessarily work here.

An instruction must pass through all the pipeline stages in order

to be completed. Thus, we have to find other criteria for deter-

mining these synchronous islands.

Fig. 4. Performance increase for 1% per-domain speedup.

One possible criterion for placing the asynchronous inter-

faces is to minimize clock skew, thus allowing for faster local

clocks. In [19], the authors propose a model for the skew of the

on-chip clock signal. By applying the model to an Alpha 21264

microprocessor, one can evaluate the contribution of different

microarchitectural and physical elements in increasing the skew

and thus in limiting the clock frequency.

As it can be seen in Fig. 3, the main components affecting

clock skew are system parameter variations (supply voltage

, load capacitance , and local temperature ), especially

the variations in . Since the microarchitecture described

in Fig. 2 exhibits a large variation in the number of pipeline

registers clocked, a possible placement of the asynchronous

interfaces is shown dotted. To evaluate which partitions would

enable higher performance if sped up independently, we show

in Fig. 4 the “speedup coefficient” that characterizes the amount

of overall speedup achieved by each domain when its local

clock frequency is increased by 1%. As it can be seen, across

our set of benchmarks, the most significant speedup can be

achieved by increasing the clock speed in the Fetch or Memory,

followed by Integer and FP partitions. Thus, these modules

should be placed in separate clock domains if possible, since in-

dividually they could provide significant performance increase

if sped up.

To break the execution core, we have used the same par-

titioning scheme that was proposed before [9], [11]. By

starting with a processor with separate clusters for integer,

floating-point and memory execution units (much like the

Alpha 21264 design) we can naturally separate these clusters

in three synchronous modules. The drawback of this scheme is

that it increases significantly the latency of forwarding a result

across the asynchronous interface toward another functional

unit. This effect can be seen mainly in load-use operations that

are executed in separate clock domains, imposing a significant

penalty on the overall performance in some programs.

To limit the latency of reading/writing data from the registers,

the Register Read and the Write Back stages must be placed to-

gether, in the same synchronous partition as the Register File.

Following the same rationale, the Rename and Retire stages

need both to access the Rename Table so they must be placed in

the same partition.

Following these design choices, we can now split the pipeline

into at least four clock regions. The first one is composed of the

Fetch stage, together with all the branch prediction and instruc-

tion cache logic. The two Decode stages can be included either
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Fig. 5. Timing diagram. (a) Synchronizers. (b) Plausible clocks. (c) Arbiters.

in the first clocking region or in the second one—all the instruc-

tions that pass from Fetch to Decode will be passed down the

pipeline to Rename.

Given that we intend to limit the clock skew as much as pos-

sible by limiting load capacitance variations and considering

the bitwidth increase of the pipeline after Decode, we intro-

duce here an asynchronous boundary. The second clocking re-

gion will be organized around the Renaming mechanism, and it

will also contain the Reorder Buffer and the Retire logic. Given

the variation in the register width for the rest of the pipeline, an

asynchronous boundary can be also introduced after Dispatch.

The third clocking region must be organized around the Reg-

ister File, including the Register Read and Write Back stages.

Finally, the out-of-order part of the pipeline (the Issue logic and

the execution units) is split into separate clusters that amount

for three different clock regions. The forwarding paths can thus

be internal—toward a unit with the same type and placed in the

same clock region—or external—toward other clock regions.

V. CHOICE OF INTERDOMAIN COMMUNICATION SCHEME

One of the most important aspects of implementing a GALS

microprocessor is choosing an asynchronous communication

protocol. For high-performance processors, the bandwidth and

latency of the internal communication are both important and

a tradeoff is harder to identify. Several mechanisms have been

proposed for asynchronous data communication between syn-

chronous modules in a larger design [17].

The conventional scheme to tackle such problems is the ex-

tensive use of synchronizers—a double latching mechanism that

conservatively delays a potential read, waiting for data signals

to stabilize as shown in Fig. 5(a). Even though data are pro-

duced before time step 2, the synchronizer enforces its avail-

ability at the consumer only at time step 4. This makes classical

synchronizers rather unattractive, as their use decreases perfor-

mance and the probability of failure for the whole system rises

with the number of synchronized signals.

Pausable clocks [Fig. 5(b)] have been proposed as a scheme

that relies on stretching the clock periods on the two communi-

cating blocks until the data are available or the receiver is ready

to accept it [7]. If is greater than an arbitrary threshold, then

the read can proceed; otherwise the active edge 2 of the con-

sumer clock is delayed. While the latency is better in this ap-

proach, it assumes that asynchronous communication is infre-

quent. Stretching the clock is reflected in the performance of

each synchronous block, and thus it is most effective when the

two blocks use a similar clock frequency. It can also be an effec-

tive mechanism when the whole block must wait anyway until

data are available.

Another approach is to use arbiters for detecting any timing

violation condition—Fig. 5(c). In this case, data produced at

time step 1 may be available at time step 2 if is larger than a

certain threshold. While the mechanism is conceptually similar

to that of synchronizers, it offers a smaller latency.

Asynchronous FIFO queues were proposed [20], using either

synchronizers or arbiters. Such an approach works well under

the assumption that the FIFO is neither completely full, nor

completely empty. The scheme retains the extra latency intro-

duced by the use of synchronizers, but improves the bandwidth

through pipelining. For the nominal operation of this structure

(when the FIFO is neither empty, nor full), a potential read is

serviced using a different cell than the one handling the next

write, so both can be performed without synchronization.

All these mechanisms reduce the error probability to very low

levels, but they cannot ensure that metastability will never occur.

However, as Ginosar showed recently [29], the error rate can be

reduced as much as it is desired. Typically, the mean time to

failure is on the order of hundreds of years, at least an order of

magnitude higher than the time between soft error occurrences

[31] or the expected life of the product.

VI. CHOICE OF DYNAMIC CONTROL STRATEGY

One of the main advantages offered by the GALS approach is

the ability to run each synchronous module at a different clock

frequency. If the original pipeline stages are not perfectly bal-

anced, the synchronous blocks that we obtain after the parti-

tioning can naturally be clocked at different frequencies. For

example, if the longest signal path belongs to the Register Re-

naming module, in the GALS approach we could potentially run

the Execution Core at a higher clock frequency than the fully

synchronous design.

Furthermore, even if we start with a perfectly balanced de-

sign (or we resize transistors in order to speed up the longer

signal paths), we can slow down synchronous blocks that are

off the critical path while keeping the others running at nom-

inal speed. The slower clock domains could also operate at a

lower supply voltage, thus producing additional power savings.

Since energy consumption is quadratically dependent on ,

reducing it can lead to significant energy benefits, while latency

is increased accordingly

(1)

where is a technology-dependent factor, which is 1.2 to 1.6

for current technologies [22] and is the threshold voltage.

To this end, we provide some theoretical results on the ef-

ficiency of using fine-grained dynamic voltage scaling in mul-

tiple-clock dynamic voltage cores. We assume that the following

hold.

• We consider the case of pipelined cores in which each

clock domain has pipe stages, with total load on

the critical path of the clock domain.
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• The switched capacitance for each clock domain is . The

voltage and clock speed associated with clock domain are

and

Lemma 1: Assuming a linear pipeline organization (without

feedback paths), a synchronous design achieves better energy

savings than a corresponding multiclock design under the same

slowdown factor per computation, if the switched capacitance

per clock domain is proportional to the total load on the crit-

ical path .

Proof: We assume that the base pipeline is run at a voltage

such that the latency per computation is the same as the

DVS-enabled, GALS pipeline with clock domains, each run-

ning at voltage . We also assume that be-

tween clock domains there exists a load overhead of

due to synchronization and voltage level conversion. To achieve

the same latency, the following has to hold:

or

(2)

Consider the function

which is convex. Thus

(3)

Function is also monotonically decreasing; thus, from (2)

and (3) and from the proportionality of with for all clock

domains , i.e.,

we get

which shows that the synchronous pipeline performs better en-

ergy-wise than the GALS version for the same slowdown factor

(or performance penalty) under the assumptions of Lemma 1.

This result is in fact a generalization of the optimal

voltage-scheduling problem for applications with hard real-time

constraints. Ishihara and Yasuura showed [23] that using a single

voltage level in a dynamic voltage-scheduling environment

achieves the best energy savings under given performance

constraints.

The general problem is, however, far from being that simple.

In fact, in most designs, there is no relationship between the

load on the critical path and the corresponding switched capac-

itance for that clock domain. We show in the following a neces-

sary condition for fine-grained dynamic voltage assignment to

different clock domains for achieving better energy savings for

GALS when compared to synchronous pipelines, in the special

case of a two-clock domain implementation.

Lemma 2: In the case of a two-clock domain pipeline, if the

ratio of the switched capacitance per clock domain and the

load on the critical path is different in each clock domain,

the GALS pipeline cannot achieve better energy savings than

the synchronous counterpart for the same slowdown factor, un-

less the lower voltage is applied to the stage which satisfies the

relation

Proof: As in Lemma 1, we have

if (2) is satisfied for . For GALS to be better in terms of

energy than the synchronous counterpart, we need

From the above, we get

This result confirms the intuition that in order to achieve

energy savings in GALS versus a DVS-enabled synchronous

design for the same slowdown factor, lower voltages should be

applied to the more power consuming clock domains if they

are also contributing the least to the end-to-end latency per

computation.

The above results can also be extended to linear pipelines with

feedback paths, by lumping strongly connected components in

the component graph into single nodes and applying the above

results on single, linear pipelines [30]. Based on the above theo-

retical results, if multiple computations are executed in parallel

(as in the case of high-end processors), computations off the crit-

ical path can be executed at a lower voltage, without affecting

the overall performance, for a given slowdown factor.

To exploit nonuniform program profiles and noncriticality of

various workloads, different schemes have been previously pro-

posed for selecting the optimal frequency and voltage supply in

a GALS processor. In [9], a simple threshold-based algorithm

is used for selecting the best operating point for modules that

have a normal and a low-power mode. The algorithm monitors

the average occupancy of each issue window and can decide to

switch the module to a low-power mode when this occupancy

drops below a predefined threshold, or ramp the voltage up when

a high-threshold is exceeded. For each issue window (integer,

floating point, and memory), the algorithm is as follows.

1. if (occupancy > MODULE UP THRESHOLD) &&

(module speed == LOW SPEED)

2. module speed = HIGH SPEED;

3. if (occupancy < MODULE DOWN THRESHOLD) &&

(module speed == HIGH SPEED)
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4. module speed = LOW SPEED;

A more complex model is proposed in [11]. Here, an at-

tack–decay algorithm is assumed for selecting the best operating

point for processors that offer a wide range of frequencies and

supply voltages. The algorithm monitors the instruction window

occupancy and, based on its variation, decides whether the fre-

quency should be increased or decreased. Any significant vari-

ation triggers a rapid change of the clock frequency in order to

counter it. For small or no variations, the clock frequency is de-

cayed continuously, while monitoring performance.

1. if ((prev occupancy� occupancy > THRESHOLD)

&& (old IPC�IPC < THRESHOLD))

2. module speed� = ATTACK;

3. else

4. if (occupancy�prev occupancy > THRESHOLD)

5. module speed+ = ATTACK;

6. else

7. if (module speed == HIGH SPEED) &&

(counter > MAX LIMIT)

8. module speed� = ATTACK;

9. else

10. if (module speed == LOW SPEED) &&

(counter > MAX LIMIT)

11. module speed+ = ATTACK;

12. else

13. module speed� = DECAY;

14. if (module speed <= LOW SPEED) f

15. module speed = LOW SPEED;

16. counter++;

17. g

18. if (module speed >= HIGH SPEED) f

19. module speed = HIGH SPEED;

20. counter++;

21. g

22. prev occupancy = occupancy

Looking at the superscalar, out-of-order microarchitecture,

we note that the instruction window occupancy is not the only

significant aspect that can be considered for deciding a switch.

Even though an instruction window could have high occupancy,

this could be due to a bottleneck in another cluster. If load op-

erations are delayed, it is very likely that instructions will ac-

cumulate in the integer cluster as well. However, speeding up

the clock in the integer domain will not improve performance.

In this case, taking decisions based only on local issue queue

occupancy will not help and the number of interdomain data

dependencies (i.e., the number of pending dependencies to or

from another clock domain) may be more significant than the

issue window occupancy.

Furthermore, both [9] and [11] allow dynamic voltage scaling

just for the execution core, assuming that the clock speed of the

front-end is critical for the overall performance, and thus should

not be reduced. However, there are large portions of the core

where the usable parallelism [defined here in terms of instruc-

tions committed per clock cycle (IPC)] is significantly smaller

than the theoretical pipeline throughput. In these cases, it makes

sense to reduce the speed of the front-end since it produces more

instructions that can be processed by the back-end.

In order to study the efficiency of these observations, we pro-

pose to modify the previously described methods to include

both information about the number of interdomain dependen-

cies and dynamic voltage-scaling algorithm for the front-end of

the pipeline.

Applying our modification on the threshold-based algorithm

for the execution modules, we obtain the following.

1. if ((inter domain dependencies+occupancy)

> MODULE UP THRESHOLD) &&

(module speed == LOW SPEED)

2. module speed = HIGH SPEED;

3. if ((inter domain dependencies+occupancy)

< (MODULE DOWN THRESHOLD) &&

(module speed == HIGH SPEED)

4. module speed = LOW SPEED;

For the front-end clock domain, the algorithm is as follows:

1. if (front end throughput/

back end throughput)

< FRONT END UP THRESHOLD

2. module speed = HIGH SPEED;

3. if (front end throughput/

back end throughput

> FRONT END DOWN THRESHOLD)

4. module speed = LOW SPEED;

A similarly modified algorithm was derived from the at-

tack–decay approach, using the same combined metric and

allowing for variations in the front-end frequency. In this study

we compare both the methods proposed in [9] and [11] and

their modified counterparts that take into consideration the

interdomain dependencies.

VII. SIMULATION FRAMEWORK

To measure the impact on performance, as well as on the

power required by our GALS microarchitecture, we have im-

plemented a cycle-accurate simulation model of the original

pipeline (presented in Fig. 2). Our simulator is based on Sim-

pleScalar [21], but reflects the target pipeline more accurately.

As opposed to SimpleScalar, it uses normal pipeline registers,

separate Instruction Windows for each of the three execution

clusters and a Retire Buffer. The register renaming mechanism

chosen is similar to the one used by the MIPS R10000 processor.

We have also moved the execution from Decode (as it is done in

SimpleScalar) to the Execute stage, to better reflect the behavior

of the pipeline.

In order to model a GALS environment without any global

synchronization point, we have developed an event-driven sim-

ulation engine. Events associated with each frequency island are

synchronized with a given clock signal, randomly started at the
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TABLE I
TEMPERATURE AND CLOCK SPEED VARIATIONS

beginning of the simulation. This event-driven simulation en-

gine allows for any mixture of clocks running at different speeds

and with different starting phases.

We have used the Wattch framework [18] to include power

models in our design exploration framework. These power

models (including the ones for the asynchronous communi-

cation) are integrated in our baseline and GALS simulator

versions to provide energy statistics. To this end, we have

assumed that each component not used can be clock-gated, on a

per-cycle basis, with an overhead given by the leakage current.

The leakage power is obtained using the methodology proposed

by Butts and Sohi [27]. This model is based on the estimation

of the total number of devices for the entire processor, as well

as their type. The normalized leakage current per device was

estimated as in [28].

In addition to modeling the switching capacitance of mem-

ories and buses inside the processor, we have also modeled

the switched capacitance of the clock grids. We have assumed

a clock distribution hierarchy resembling the one used by the

Alpha 21264 processor. We have modeled one global clock grid

and local clock grids corresponding to each of the synchronous

domains. The area and metal density for each clock grid are the

ones published for the Alpha 21264 processor.

Since it is very difficult to model process variations at the

microarchitectural level, we only model the effect of the die

temperature on the maximum clock frequency. For this, we use

the results from [26], which show a temperature variation of up

to 15% across different modules (Table I). For computing the

relative speeds of the various clock domains, we have used the

model proposed in [32]

where is the temperature and is the logic depth (that we

assume identical across the different pipeline stages (given that

the original was a balanced pipelined implementation).

While these are not the only effects that can impact the max-

imum clock speed, they provide a good idea about the usefulness

of having independent clock grids for each domain.

The parameters for the microarchitecture under considera-

tion are presented in Table II. In our experiments, we have used

integer and floating-point benchmarks from both SPEC95 and

SPEC2000 suites. For all experiments, we have skipped the first

500 million instructions and then continued simulation for an-

other 50 million instructions. For the GALS case, since the local

clock signals are randomly staggered, simulations in this case

were run three times, averaging the results. To compare the var-

ious dynamic control strategies, we have used an arbiter-based

TABLE II
MICROARCHITECTURE PARAMETERS

asynchronous FIFO communication. Similar to the synchronous

pipeline, we assume that the active clock edge in the producer

signals the moment when data are available for reading (a con-

sumer cycle can start). Thus, a subsequent active edge in the

consumer can be accepted as a valid request, the setup time

being already observed during the producer cycle.

VIII. EXPERIMENTAL RESULTS

Assuming that all modules will be clocked at the same fre-

quency as the synchronous design, we have analyzed the impact

of the granularity and asynchronous communication choice, as

well as the impact of the dynamic control strategy on the overall

performance and power. Using the arbiter-based asynchronous

FIFOs for interdomain communication, in the six-clock domain

case a performance penalty of up to 18% is observed. As shown

in Fig. 6, the performance hit increases with the number of asyn-

chronous interfaces—from an average of 5% for four clock do-

mains case to almost 10% for six-clock domains.

In terms of power consumption, the GALS processor is more

efficient due to its lack of global clock grid. However, due to

an increased execution time, even though the power per cycle

is significantly improved, the total energy per task required by

the GALS processor is only slightly decreased (Fig. 7). Since

the six-clock domain microarchitecture would only allow an in-

dependent speedup in the register file clock domain (that, ac-

cording to Fig. 4, does not have a significant impact in overall
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Fig. 6. Performance degradation for a GALS microarchitecture. In all cases,
the baseline is the fully synchronous microarchitecture, using the same clock
frequency as the GALS domains.

Fig. 7. Energy reduction for a GALS design for 4–6 partitions.

performance), it seems that the best choice is a five clock do-

main design which would allow the Fetch and Execution cores

to run at possibly different speeds. In this setup, the GALS pro-

cessor requires 7% less energy for completing the same task.

In order to evaluate the effectiveness of each asynchronous

communication scheme, we have considered arbiter-based and

synchronizer-based FIFOs, as well as pausable clocks.

Since the pausable clocks approach effectively delays an ac-

tive clock edge when the synchronization cannot be done, the

effective producer-to-consumer latency of this approach is min-

imal. For arbiters, however, a failed attempt to read data must be

followed by a normal consumer cycle whose active edge is com-

pletely asynchronous with respect to the producer clock. This

introduces an additional average delay of 0.5 cycles. Using the

same reasoning, the one cycle latency associated with the syn-

chronizers is actually observed as 1.5 cycles on average when

coupled with random starting phases for the producer and con-

sumer clocks.

As expected, the largest drop in performance is observed

when using synchronizer-based FIFOs. In this case, the perfor-

mance decrease observed by a five clock domain design can be

up to 26%, with an average of 18.4% (Fig. 8). The smallest hit

in performance is achieved when using pausable clocks, with

an average of 6.3%.

For a better understanding of these results, we looked at how

end-to-end instruction latency varies with the number of asyn-

chronous interfaces and with the communication mechanism.

While this latency increases by around 12% for both pausable

Fig. 8. Performance degradation using different mechanisms for the
asynchronous communication. In all cases, the baseline is the fully synchronous
microarchitecture, using the same clock frequency as the GALS domains.

Fig. 9. End-to-end latency increase for various GALS configurations.

Fig. 10. Energy reduction for a GALS design using different asynchronous
communication mechanisms.

clocks and arbiters, instructions can spend up to 50% more time

between Fetch and Retire when the communication is based on

synchronizers (Fig. 9). This additional latency increases both

the mispredict penalty and the bypass latency, affecting the

overall performance.

In terms of the overall energy requirement, none of the three

mechanisms brings a very significant improvement. While a

small improvement can be noticed for pausable clocks and ar-

biters (6% and 6.5% on average), the case of synchronizer-based

FIFOs leads to an increase of 1% in the energy demands. The

energy results for our experiments are presented in Fig. 10.

As expected, our results show that the mechanisms intro-

ducing the smallest additional latency (pausable clocks and
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Fig. 11. Performance of the DVS-enabled GALS design (five clock domains,
arbiter-based FIFOs). In all cases, the baseline is the fully synchronous
microarchitecture, using the maximum clock frequency supported by the
GALS modules.

synchronizer-based FIFOs) are performing very well, both

in terms of performance and power consumption. The ar-

biter-based FIFO behaves very close, as it offers much better

bandwidth at the expense of a slightly increased latency. All

the FIFO-based mechanisms introduce an additional load on

the clock generation network, by increasing the number of

interstage latches. However, the effect is very limited, our tests

showing an average of 8% increase in clock power, which

translates into less than 2% increase for the entire core.

By essentially blocking the clock signal in the consumer to

observe the synchronization latency, pausable clocks make it

more difficult to use of different speeds across domains. Thus,

for implementing dynamic control of local speeds/voltages we

chose to use arbiter-based FIFOs.

The first important advantages of a GALS microarchitecture

is its ability to independently scale the voltage and clock

frequency (DVS) for each of its synchronous partitions. We

evaluate both the performance and the power requirements of

such a processor using two previously proposed algorithms: the

threshold based one that can select the best out of two operating

points [9] and the attack–decay algorithm that assumes a much

larger set of operating points [10]. For both of them, we test

the efficiency of focusing on the average Instruction Window

occupancy (threshold and attack–decay) or on the number

of interdomain dependency (Threshold dependency and

attack-decay dependency).

All the dynamic control mechanisms evaluated introduce an

average drop in performance of 9% to 12% when compared to

the synchronous baseline architecture (Fig. 11). A very inter-

esting aspect is that introducing the interdomain dependency

information does not automatically improve the performance.

In both cases, performance was slightly worse when using de-

pendency information. This behavior was mostly caused by our

decision to allow dynamic voltage scaling in the front-end as

well. However, this additional drop in performance (up to 4%)

is offset by better energy efficiency (Fig. 12).

In terms of energy requirement, the DVS-enabled GALS

design saves between 8% and almost 45% when compared

to the baseline synchronous case. On average, the four DVS

algorithms that we study offer energy savings between 25% and

33%, at the expense of about 10% drop in overall performance.

Fig. 12. Energy consumption of the DVS-enabled design (five clock domains,
arbiter-based FIFOs).

Fig. 13. Performance degradation for the GALS microarchitecture. In all
cases, the GALS domains use a faster clock speed (Table II), and the baseline
is the fully synchronous microarchitecture.

A second advantage of a GALS microarchitecture is that each

clock domain comes with its independent clock distribution net-

work, being able to take advantage of higher frequencies than

the fully synchronous processor. A GALS microarchitecture can

take advantage of any slight unbalances in the design, but it can

also adapt to different operating conditions.

To evaluate the response of a GALS microarchitecture to such

conditions, we consider on-die temperature variation [26] as a

rationale for correlating clock speeds with operating temper-

atures. As shown before [26] (Table I), there exists a signifi-

cant temperature variation across different modules, variation

that translates into different maximum clock frequencies. This

is probably a pessimistic assumption, since it does not take into

consideration potential process variation as well as other system

parameter factors that may affect local clocking speeds. How-

ever, it offers a good idea about the effects of the faster clock

domains.

When allowing each clock domain to run at its own max-

imum frequency (as in Table I), the overall performance in-

creases significantly. The effect of the asynchronous communi-

cation is offset and the GALS microarchitecture performs within

2%–3% of the fully synchronous baseline. In some cases (e.g.,

parser, bzip2), the performance of the GALS microarchitecture

can actually be better (Fig. 13).

Another interesting aspect is that the results do not show the

same regular pattern any more. In some cases, a version with

more clock domains can be faster than one with less. This effect
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Fig. 14. Performance degradation for a GALS microarchitecture. In all cases,
the GALS domains use a faster clock speed (Table II), and the baseline is the
fully synchronous microarchitecture.

Fig. 15. Performance of the DVS-enabled GALS design (five clock domains,
arbiter-based FIFOs). In all cases, the GALS domains use a faster clock speed
(Table II), and the baseline is the fully synchronous microarchitecture.

is caused by the fact that when two clock domains are combined,

the resulting one has to work at the speed of the slowest one.

For example, for obtaining the five-clock domain version we

combine the Rename/Dispatch with the Register File, and the

resulting domain works at the speed of the Register File (the

hottest and thus, the slowest one in our tests).

We see a similar picture when looking at different com-

munication mechanisms. The performance reduction is much

smaller, but it maintains a similar trend, the lower latency

mechanisms performing better. These results are presented in

Fig. 14.

When enabling dynamic voltage scaling, we assumed that all

clock frequency levels are scaled by the same ratio as in Table I.

Thus, the performance gap narrows, the DVS-enabled GALS

microarchitecture performing within 4%–7% of the fully syn-

chronous baseline (Fig. 15).

In our tests, we assume that clock speed improvements for

any domain can be obtained without resorting to increases in

the corresponding voltage level. Thus, the energy level remains

fairly similar, with reductions within the 25%–31% range.

These results are presented in Fig. 16.

The final analysis includes the breakdown of the overall

energy budget for both the baseline and the DVS-enabled

GALS cores. As it can be seen in Fig. 17, significant savings in

the clock distribution network lead to better energy efficiency.

The second most important source of energy reduction is the

leakage, which is linearly dependent of the voltage supply.

Additional savings can be obtained in the Issue Queues and the

Fig. 16. Energy consumption of the DVS-enabled design (five clock domains,
arbiter-based FIFOs). In all cases, the GALS domains use a faster clock speed
(Table II), and the baseline is the fully synchronous microarchitecture.

Fig. 17. Energy breakdown for the DVS-enabled design, with five clock
domains and arbiter-based FIFOs. Benchmarks included are (left) gcc and
(right) mesa. The breakdown starts with the energy values for Rename and
Branch predictor (bottom of each vertical bar) and ends with the values for
Clock energy and Leakage (top of the bars).

ALUs if one of the execution clusters remains unused or the

application does not offer enough parallelism (gcc). In the case

of mesa (right bars in Fig. 13), the processor utilizes better both

the integer and the floating-point execution clusters. As the

front-end clock speed is only very infrequently scaled down,

the energy savings in other modules are only marginal.

IX. RELATED WORK

To address the problems introduced by the need of global

clocking in a large, fast circuit, two approaches have been

proposed in recent years. The first option is to use fully asyn-

chronous designs. This has been tried successfully in isolated

cases [3]–[5], but the design methodology for asynchronous

design is far from widespread acceptance. While asynchronous

systems eliminate the clock altogether, industry is not yet ready

to switch to a completely asynchronous design style, mostly

because design tools in this area are not as mature as those for

synchronous design.

Another approach that exploits the trend toward making

functional blocks more autonomous while maintaining the syn-

chronous design methodology is the Globally Asynchronous,

Locally Synchronous clocking style [6]. Several case studies

that have been shown to benefit from such a technique were
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proposed [24], [25]. All of them are based on the observation

that in these specific cases the communication performance

across different building blocks is not critical. This technique

is mentioned in some studies as a possible solution for dealing

with the global clock problems in future high-performance

processors [16].

Other studies have focused on assessing the viability of a

GALS clocking strategy to a superscalar, out-of-order pro-

cessor. The performance and power consumption of such a

processor are evaluated in [8] and [9]. While performance is

worse than in the fully synchronous case by an average of 10%,

the paper identifies the ability of the GALS processor to use

different clock frequencies and supply voltages for each of

the synchronous islands. By using a simple threshold-based

algorithm that can select the best out of two possible voltage

levels, the paper shows that a GALS processor can actually

provide power benefits at the expense of some performance

loss.

The same idea of scaling the clock frequency and the supply

voltage on a per-block basis is studied in [10] and [11]. While

acknowledging a drop in performance, the authors find that such

processors can be more power efficient than their fully syn-

chronous counterparts. They propose a more complicated al-

gorithm (based on the attack–decay strategy) that can select an

optimum voltage and clock frequency out of a large number of

possible levels.

Another related area of research addresses mixed-clock and

asynchronous interface design for robust, speed-independent

communication among frequency islands. A number of mech-

anisms for avoiding potential race conditions are evaluated in

[17]: asynchronous wrappers, stretchable clock generators, de-

mand ports, poll ports. While these designs can ensure a proper

behavior of the system, they provide worse communication

characteristics than their synchronous counterparts. To address

this issue, asynchronous queues were proposed in [20]. This

mechanism does not improve the latency, but it increases the

communication bandwidth, allowing data transfers during each

clock cycle for both clock domains.

X. CONCLUSION

In this paper, we propose a simulation framework that allows

for rapid evaluation of the different design choices available

when implementing a GALS processor microarchitecture.

By using this framework, we can evaluate the power and

performance achieved by several GALS implementations of

a superscalar, out-of-order processor. Our results show that

asynchronous interfaces introduced between the several syn-

chronous modules can have a very significant effect, varying

from 5% when using pausable clocks to almost 18% when

using synchronizers. However, even though pausable clocks

seem to be a better choice, they do not allow communicating

modules to run at different clock frequencies.

The GALS design becomes more attractive when we take into

consideration process and system parameter variations. It makes

sense to assume that at least some of the resulting partitions can

work faster than the original, fully synchronous pipeline, and

our results show that the GALS microarchitecture can take ad-

vantage of this. Even when considering the temperature varia-

tions alone, the performance drop can be significantly limited.

In terms of power consumption, the GALS design paradigm

does not offer a significant benefit when dynamic voltage

scaling is not implemented. The reduced clock power can be

offset in some cases by the additional runtime needed to finish

the same computation.

The significant advantage offered by the GALS methodology

is that it allows the frequency and voltage levels to be changed

independently for each module. When using DVS, an average

energy reduction of up to 30% can be achieved at the expense

of around 10% reduction in performance. This performance gap

can be significantly narrowed by independently setting the max-

imum speed for each domain, without significant effects for the

power consumption. In this case, our results show a reduction of

25%–30% at the expense of 5%–7% reduction in performance.
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