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Abstract. Today, the routine assimilation of satellite data

into operational models of ocean circulation is mature

enough to enable the production of global reanalyses de-

scribing the ocean circulation variability during the past

decades. The expansion of the “reanalysis” concept from

ocean physics to biogeochemistry is a timely challenge

that motivates the present study. The objective of this pa-

per is to investigate the potential benefits of assimilating

satellite-estimated chlorophyll data into a basin-scale three-

dimensional coupled physical–biogeochemical model of the

North Atlantic. The aim is on the one hand to improve fore-

casts of ocean biogeochemical properties and on the other

hand to define a methodology for producing data-driven cli-

matologies based on coupled physical–biogeochemical mod-

eling. A simplified variant of the Kalman filter is used to

assimilate ocean color data during a 9-year period. In this

frame, two experiments are carried out, with and without

anamorphic transformations of the state vector variables.

Data assimilation efficiency is assessed with respect to the as-

similated data set, nitrate of the World Ocean Atlas database

and a derived climatology. Along the simulation period, the

non-linear assimilation scheme clearly improves the surface

analysis and forecast chlorophyll concentrations, especially

in the North Atlantic bloom region. Nitrate concentration

forecasts are also improved thanks to the assimilation of

ocean color data while this improvement is limited to the

upper layer of the water column, in agreement with recent

related literature. This feature is explained by the weak cor-

relation taken into account by the assimilation between sur-

face phytoplankton and nitrate concentrations deeper than 50

meters. The assessment of the non-linear assimilation exper-

iments indicates that the proposed methodology provides the

skeleton of an assimilative system suitable for reanalyzing

the ocean biogeochemistry based on ocean color data.

1 Introduction

Monitoring the evolution of the marine biogeochemistry

with relevant accuracy and resolution is a key require-

ment to better understand the ocean response to accelerat-

ing global climate change and the consequent effects on the

carbon cycle and living resources. Unfortunately, the sig-

nature of the oceanic biogeochemical functioning, such as

the regional patterns, vertical extension and timing of pri-

mary production at basin-scale, is still poorly known as a

result of sparse historical data (Garcia et al., 2010) and

the incomplete deployment of dedicated observing systems

(Claustre et al., 2010a, b).

While it is conceivable to characterize the biogeochem-

ical properties of a limited zone in the coastal domain

through field measurements only (oceanographic cruises, au-

tonomous sensors, etc.), it seems unrealistic to obtain spa-

tially and temporally synoptic descriptions of vast ocean

basins using similar approaches in the foreseeable future.

Spatial ocean color sensors are the main source of global

biogeochemical data available today. These sensors enable

the observation of optical properties of the upper ocean such

as the water leaving radiance in the visible spectrum, which

can be related to the sea surface chlorophyll concentration.
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Today, more than one decade of global ocean color data have

been collected (Wilson, 2010), starting with the “proof-of-

concept” Coastal Zone Color Scanner mission and more re-

cently with several missions such as MEdium Resolution

Imaging Spectrometer (MERIS), Moderate Resolution Imag-

ing Spectrometer (MODIS), and Sea-viewing Wide Field-of-

View (SeaWiFS). In spite of the invaluable merit of ocean

color data, these sensors do not measure (directly or indi-

rectly) other biogeochemical components such as nutrients

(e.g., nitrates, ammonium) or trophic species. In addition,

measurements are limited to the ocean surface, while the only

source for deep observations is through the deployment of in

situ sensors (Johnson et al., 2009).

An alternative approach to obtain depictions of the biogeo-

chemical oceanic state is to use large-scale coupled physical–

biogeochemical models (CPBM). The concept behind these

models is to advect and diffuse biogeochemical tracers con-

sistently with the ocean circulation as simulated by a numer-

ical model solving the Navier–Stokes equations. A variety of

biological formulations (either empirical or mechanistic) are

used to update biogeochemical concentrations in the coupled

model. One of the key assets of CPBMs is their ability to pro-

vide information on the coupled system with a high tempo-

ral and spatial resolution in three dimensions. A recognized

weakness of CPBMs, however, is the approximate modeling

of processes governing exchanges between the biogeochem-

ical compartments. These processes are mostly dependent on

the level of complexity of the model formulation, while in

reality these interactions are time- and space-dependent as a

lot of local factors may interfere in it (Doney et al., 1999).

This is an obvious source of errors in the parameterization of

the biogeochemical model and resulting model simulations.

The present study aims to combine ocean color satel-

lite measurements with a CPBM to improve the representa-

tion of the biogeochemistry and its variability, extracting the

best features from the model and the observations while re-

ducing their respective weaknesses. Since satellite data are

thought to describe the near-surface biogeochemistry with

some faith, it is assumed here that the CPBM has enough skill

to extrapolate the surface observations onto non-observed

biogeochemical properties (especially at depth), in agree-

ment with the underlying ocean physics and the biogeochem-

ical principles of the model. Essentially, this is achieved by

assimilating satellite chlorophyll data into a CPBM to in-

crease the realism of the biogeochemical state variables. This

approach has many similarities with the philosophy of al-

timeter data assimilation into dynamical models, which aims

at inverting the signature of the surface dynamic topography

into estimates of its internal dynamics (e.g., Fukumori et al.,

1995; Brasseur et al., 1999).

Today, the routine assimilation of satellite data (e.g., al-

timetry, sea surface temperature) into operational forecasting

models of ocean physics is mature enough to provide rele-

vant information on non-observed parameters such as salin-

ity, temperature and velocity fields (Cummings et al., 2009).

This capacity has been demonstrated by the production of

global reanalyses of ocean physics to reconstruct the vari-

ability of its circulation during the past decades (Stammer et

al., 2010).

The expansion of the “reanalysis” concept from physics

to biogeochemistry is a timely challenge that motivates the

present study. The sequential assimilation of a biogeochem-

ical data set into CPBMs has, however, not yet reached the

same level of maturity as for the physics, in spite of a number

of successful studies on the subject (Carmillet et al., 2001;

Natvik et al., 2003; Ford et al., 2012). A comprehensive re-

view of biological data assimilation experiments, both se-

quential and variational, can be found in Gregg et al. (2009).

Several specific difficulties appear when considering the

assimilation problem into CPBMs. Firstly, the measurement

of top-of-atmosphere water-leaving radiance usually exhibits

large differences with above-sea-surface equivalent values,

as a result of strong interactions between visible light and

the atmosphere (Lavender et al., 2005); this issue partly ex-

plains why most of the pioneer studies dealing with ocean

color data assimilation were first carried out using pseudo-

data (extracted from a model) rather than real data (Carmillet

et al., 2001; Natvik et al., 2001). Secondly, it is often difficult

to use the ocean color information to control the effect of er-

rors in the ocean physics that cascade onto the biogeochem-

istry (Béal et al., 2010). Thirdly, in general the response of

three-dimensional biogeochemical models to external forc-

ings and parameterizations is highly non-linear, making the

traditional assimilation framework inappropriate to develop

these applications (Bertino et al., 2003; Doron et al., 2011).

In the context of multivariate state estimation, where not

only the observed variables are impacted by the assimila-

tion process, these non-linearities can lead to failure of the

method where corrections applied to the non-observed vari-

ables are unrealistic (Nerger and Gregg, 2007; Gregg 2008).

Finally, global ocean circulation models require important

numerical resources and are generally designed to be run on

the most powerful computers dedicated to oceanographic re-

search or operational systems. The coupling of global and

biogeochemical models requires the advection and diffusion

of supplementary state variables which increase the numeri-

cal needs such that the CPBM becomes hard to handle from a

practical point of view. This is especially true for ensemble-

based methods where the model needs to be run ∼O(100)

times to obtain statistically consistent ensembles of simula-

tions.

Considering recent advances made in the field of non-

linear data assimilation (e.g., Bertino et al., 2003; Simon and

Bertino, 2009; Bocquet et al., 2010; Brankart et al., 2012),

and the need to develop the next generation of operational

ocean monitoring systems within the framework of the My-

Ocean project (http://www.myocean.eu.org/), the aims of the

present study are (i) to implement a multivariate, ocean color

assimilative system based on state-of-the-art methods and

to assess its performance in a pre-operational configuration,
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(ii) to produce a multi-year reanalysis of the North Atlantic

biogeochemistry using SeaWiFS satellite chlorophyll data

from the period 1998–2006, which could eventually super-

sede the biogeochemical climatologies available today, and

(iii) to investigate more specifically how information on su-

perficial chlorophyll concentration can be projected onto

non-observed variables. Here, non-observed variables mean

both chlorophyll where no satellite data are available and

other unmeasured biogeochemical components (e.g., nutri-

ents).

The strategy adopted for this work relies on assimilation

of the SeaWiFS data set because this mission consists of the

longest time series of ocean color data to date (September

1997 to December 2010). The model domain is the North

Atlantic, which exhibits highly contrasted seasonal and spa-

tial biogeochemical behavior as well as many ocean cir-

culation features found in other ocean basins. In order to

make the assimilation tractable from a computational point

of view, a simplified version of the Singular Evolutive Ex-

tended Kalman (SEEK) filter (Pham et al., 1998) has been

chosen while anamorphic transformations as developed by

Béal et al. (2010) are used to deal with the non-linear and

non-Gaussian behavior of the CPBMs. Validation of the re-

analysis is performed using independent data gathered from

the World Ocean Atlas 2009 (WOA09) nitrate data set (Gar-

cia et al., 2010).

The paper is organized as follows: Sect. 2 describes the

model setup, observations and the assimilation method im-

plemented in the assimilative system; Sect. 3 presents the

experimental setup of the reanalysis system; and Sect. 4 dis-

cusses the results of the 1998–2006 reanalysis, showing the

impact of the assimilation on a selection of observed and

non-observed variables. Finally, an assessment of the results

is presented in Sect. 5 before drawing conclusions.

2 Data, models and assimilation method

The coupled physical–biogeochemical model and assimila-

tion framework considered in this paper is inherited from

previous modeling studies of the North Atlantic biogeochem-

istry (Berline et al., 2007; Ourmières et al., 2009) and related

assimilation developments (Béal et al., 2010; Doron et al.,

2011). In the next section the main features of the model-

ing system developed for ocean color assimilation are briefly

described.

2.1 The coupled physical–biogeochemical model and

associated modeling errors

The physical component of the coupled model is simulated

using the Nucleus for European Modelling of the Ocean

(NEMO) code (Barnier et al., 2006) implemented in the

North Atlantic basin at 1/4° horizontal resolution, which is

considered as “eddy-permitting” in the mid-latitudes. NEMO

Fig. 1. Model domain and biogeochemical regions (left); LOB-

STER biogeochemical model components and fluxes (right).

is a primitive equation model based on the free surface for-

mulation. The prognostic variables are the three-dimensional

velocity fields, temperature and salinity. The model domain

covers the North Atlantic basin from 20° S to 80° N and from

98° W to 23° E (Fig. 1, left). Buffer zones are specified at the

southern, northern and eastern (Mediterranean) boundaries

(Treguier et al., 2001). Vertical discretization involves 45

geopotential levels, with grid spacing that increases from 6 m

at the surface to 250 m at the bottom. The model is forced by

ERA-INTERIM atmospheric fields (Dee et al., 2011) from

the European Centre for Medium-Range Weather Forecasts

(ECMWF), using bulk formulations as proposed by Large

and Yeager (2004).

The biogeochemical component of the coupled model is

the LOBSTER model (Levy et al., 2005) in the North At-

lantic setup described by Ourmières et al. (2009). The LOB-

STER formulation is nitrogen-based and contains six prog-

nostic variables: nitrate, ammonium, phytoplankton, zoo-

plankton, detritus and semilabile dissolved organic matter

(Fig. 1, right). All biogeochemical variables are advected and

diffused in three-dimensional space following the oceanic

circulation computed by the physical model. The LOBSTER

model considers closed boundaries at model grid frontiers.

The chlorophyll concentration is a diagnostic variable, com-

puted according to the phytoplankton concentration through

a space- and time-dependent chlorophyll-to-nitrogen (Chl/N)

ratio. The LOBSTER model updates biogeochemical con-

centrations with the same time step as the circulation model,

i.e., every 40 minutes.

As in every simulation, the numerical modeling system has

many imperfections so that the simulations exhibit a variety

of errors compared to the “true” system evolution. This may

be due to the atmospheric input data which are themselves

derived from a model and therefore cascade into physical and

biogeochemical modeling errors. Another possible source of

errors lies in the parameterizations used to represent the ef-

fect of physical and biological processes that are not resolved

explicitly by the model. This includes, among others, the ef-

fects of the sub-grid scale physical processes as well as the

overly simplified structure of the ecosystem model, which

is unable to represent the behavior of the actual ecosystem

in nature. Furthermore, spatial and temporal discretizations

used in numerical algorithms are another source of errors
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that necessarily impact the model solutions. Finally, the ini-

tialization of physical and biogeochemical oceanic fields is

generally done using approximate values (climatology or ho-

mogenous assumptions), and in spite of a necessary spin-up

period the resulting simulation always keeps the signature

of the chosen initialization method including its unrealistic

features. The main goal of data assimilation is to reduce the

adverse impacts of the modeling errors on the representation

of the biogeochemistry by combining the model information

with observations.

2.2 The ocean color data set and associated errors

The satellite chlorophyll concentrations that are assimilated

in the coupled model are derived from SeaWiFS using the

OC4 algorithm applied to the remotely-sensed water leav-

ing radiance (Feldman and McCain, 2010). To simplify the

assimilation process, satellite products are systematically

remapped onto the model grid prior to their assimilation. The

use of a composite data set (i.e., obtained by merging scenes

from different sensors such as MODIS, MERIS and Sea-

WiFS) is not essential within the framework of the present

study since the number of sensors available during the pe-

riod of interest varies between 1 and 3 in one given location,

and composite data would therefore make the diagnostics of

the assimilation experiments rather complex.

Limited accuracy of ocean color products is another source

of errors that must be taken into account in the assimilation

process. The fraction of water leaving radiance measured at

top-of-atmosphere by satellite sensors such as SeaWiFS is

typically only 5–20 % of the total measured signal (Lavender

et al., 2005). The remainder of the signal is due to interac-

tions between light and the Earth atmosphere (e.g., Rayleigh

reflectance, aerosol reflectance). Thus, in order to obtain re-

liable satellite-derived data in the visible spectrum, the ap-

plication of atmospheric corrections is required to estimate

the original above-sea-surface water leaving radiance. These

corrections, however, are a major source of errors in retriev-

ing the meaningful physical parameters from the water leav-

ing radiance. More specifically, the OC4 algorithm used here

is an empirical function conveying uncertainties in the cho-

sen parameterizations. Other biogeochemical features (e.g.,

different assemblages of phytoplankton communities, pres-

ence of chromophoric dissolved organic matter, etc.) are also

responsible for imperfections in the retrieval process of the

chlorophyll concentration. All things considered, it will be

admitted in our experiments that the error of the SeaWiFS

chlorophyll products is on average 30 % of the measured sig-

nal amplitude in open oceans (Gregg and Casey, 2004).

2.3 The assimilation method

The assimilation method chosen to develop the reanalysis

system is a sequential algorithm derived from optimal esti-

mation theory: the model state trajectory is corrected inter-

mittently by computing statistical updates of the state vector

using a combination of available data and model predictions

weighted according to their respective uncertainties.

The ocean color data are assimilated using a Singular Evo-

lutive Extended Kalman (SEEK) filter (Pham et al., 1998)

implemented in the coupled model using the System of Se-

quential Assimilation Modules (SESAM) assimilation plat-

form (Brankart et al., 2012). This tool is used to perform

all matrix operations required by the assimilation scheme,

such as the computation of empirical orthogonal functions

(EOF) of the reduced-order filter, the innovation vector and

the analysis update. A reduced-rank Kalman filter with static

error sub-space (Brasseur and Verron, 2006) is chosen here

because its comparatively low computational burden enables

making extended experiments vs. ensemble-based methods

(e.g., ensemble Kalman filter) which require the explicit

computation of ensemble evolution. Nevertheless, the up-

grade of the assimilation scheme toward a fully explicit en-

semble scheme will be straightforward in forthcoming appli-

cations.

The state vector entering the assimilation procedure is

composed of all prognostic biogeochemical state variables

of the three-dimensional model grid. This means that a mul-

tivariate analysis update is computed, where all observed and

non-observed components of the biogeochemical model are

modified. In addition, the SEEK filter is implemented us-

ing two different versions of the analysis step: in the first

version, the analysis is performed using the original model

state variables; in the second version, anamorphosis trans-

formations are applied to each separate variable of the state

vector prior to the analysis step, and the corresponding in-

verse transformation is applied after analysis to restart the

model integration in the original model space. This aspect

is identified as a key ingredient of the assimilation scheme

that contributes to the efficiency of the procedure. When the

analysis includes anamorphic transformations, the marginal

probability density functions (PDFs) of the forecast variables

are transformed into PDFs that are close to Gaussian. We

will not enter into the mathematical details here, as this as-

pect is already fully documented elsewhere (e.g., Bertino et

al., 2003; Béal et al., 2010; Brankart et al., 2012; Simon

and Bertino, 2012). The parameterization of the anamor-

phic transformation is equivalent to the one used in Doron

et al. (2011). The anamorphosis transformation presents sev-

eral advantages that are expected to improve the assimilation

efficiency. Firstly, as the final marginal PDFs are more Gaus-

sian than the original ones, the assimilation process should be

more respectful of the assumptions underlying the Kalman

filter optimality. This ensures a better description of the cor-

relations between observed and non-observed variables, as

discussed in Brankart et al. (2012). Secondly, it is possible to

parameterize the error statistics (more specifically the tails of

the marginal probability distributions) in such a way that any

”extrapolation” outside the range of values described by the

ensemble is avoided. In essence, it means that it becomes
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impossible to obtain negative values for the concentration

variables of the state vector after the analysis update. In the

linear case, negative concentrations obtained after an assim-

ilation step were systematically set to a concentration value

of 1 e−6 mmol m−3.

3 Experimental setup of the reanalysis system

3.1 Initialization of the coupled model and simulation

strategy

The simulations described in this paper were performed on a

9-year period from 1 January 1998 to 1 January 2007. Physi-

cal variables were initialized following a 16-year spin-up pe-

riod starting from the Levitus monthly climatology (Levitus

et al., 1998) for temperature and salinity fields, while veloc-

ity fields were null. Biogeochemical variables were initial-

ized following a 2-year spin-up period. This short spin-up

was initialized using nitrate concentrations from the World

Ocean Atlas climatology (Garcia et al., 2010), while homo-

geneous values were assigned to the other biogeochemical

variables (see Ourmières et al., 2009).

The coupled model is subsequently run without data as-

similation; this simulation will be referred hereafter as the

“free” run. Two simulations using the data assimilation sys-

tem are performed in parallel. These two reanalysis runs as-

similate a set of temporally-binned satellite chlorophyll maps

every 8 days. The assimilated maps are a binning of satellite

data for the 8 days preceding the assimilation date, allowing

to stay in an operational framework where future observa-

tions are not known.

In the first run, the analysis update is performed with no

non-linear transformation of the state vector in the assimi-

lation scheme. This experiment is referred hereafter as the

“linear” run. For the second run, the anamorphosis transfor-

mation is applied to the state vector, the observation vector

and the error covariance matrix. This second experiment will

be referred hereafter as the “anamorphosis” or “non-linear”

run.

Considering the assimilation increment procedure, the

model is stopped every time an observation is available, then

an analysis is computed. The model is then restarted from

this analysis on the first time step and evolves freely until the

next available observation.

Time-averaged data shown in this manuscript are obtained

by computing the mean state of the considered data for each

time step on a given period.

3.2 Specific setup of the assimilation system

The practical setup of the assimilation method is a critical

step of the present reanalysis system. Numerous parameters

enter the analysis computation, influencing the performance

of the reanalysis experiments. However, as discussed previ-

ously, large-scale CPBMs require important computational

resources, preventing an exhaustive exploration of the sensi-

tivity of the assimilation process on each parameter (includ-

ing their mutual interplay). We describe below the strategy

chosen to prescribe the key parameters of the reanalysis sys-

tem.

The EOF basis entering the computation of the SEEK

analysis is obtained from the free run variability. For each

analysis date, a specific set of EOFs is computed using a tem-

poral ensemble of state vectors sampled from the free model

trajectory with a 2-day frequency. This “deterministic” en-

semble is constructed as follows: for a given day of the year,

all model states falling into the 2-month period surrounding

the assimilation date are selected in the period 1999 to 2005

covered by the free simulation. Thus, every temporal ensem-

ble contains 210 members that are used to compute the EOF

basis and finally the error covariance matrix. The EOF ba-

sis is then truncated to the 20 dominant modes to perform

the state vector update. The same ensemble of 210 members

is also used in the non-linear run to build the anamorpho-

sis transformation locally in space and time. More precisely,

each time observations are assimilated, a specific non-linear

transformation is computed for each model grid cell and for

each model variable from the histogram of 210 values that

are associated with this day of the year.

Concerning the parameterization of the tails of the

anamorphic transformations (outside the range of the avail-

able ensemble), we make the simple assumption of a zero

forecast probability in these regions of the state space. The

direct consequence is that, even if an observation falls in

these peripheric regions, our estimation of the observed vari-

able cannot get close to the observation because it is bound

to stay inside the range defined by the ensemble. However,

in our application, this is not expected to occur very often,

because the ensemble is built using the seasonal and interan-

nual variability of the free model simulation (which is large

during the bloom event), so that the dispersion of the ensem-

ble could easily be tuned to be large enough to include most

of the assimilated observations (except in some regions of

the subtropical gyre). We thus preferred safety by avoiding

any kind of extrapolation outside the range of values effec-

tively explored by the model simulation. More sophisticated

assumptions about the tails of the distribution (e.g., Gaussian

tails) can be found in the works of Bertino et al. (2003) and

Simon and Bertino (2009).

Regarding the observations, the SeaWiFS chlorophyll con-

centration maps are converted into phytoplankton concentra-

tion maps using the Chl/N ratio computed by the coupled

model. These phytoplankton distributions are then assimi-

lated in the coupled model and considered as representa-

tive of phytoplankton concentration in the upper first layer

of the water column. The error associated with each distinct

observation pixel is set to 30 % of the considered data, in

agreement with the commonly used SeaWiFS error estimates

for case 1 waters. In the non-linear run (with anamorphic

transformations), uncertainties in the observations cannot be

www.ocean-sci.net/9/37/2013/ Ocean Sci., 9, 37–56, 2013
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specified exactly in the same way since they must be assumed

Gaussian for the non-linearly transformed variables rather

than for the original variables. Nevertheless, to give a similar

importance to each observation in the two assimilation runs,

we compute the observation error standard deviation for the

transformed variable by multiplying the original observation

error standard deviation (i.e., the 30 % of the observed chla

concentration) by the local slope of the non-linear transfor-

mation (which we approximate in practice by a finite differ-

ence over one standard deviation).

Spatial coverage of the data is an issue that raises the ques-

tion of spatial correlations of the signal in assimilation sys-

tems. As an example, some high-latitude regions may not be

visible by satellite ocean color sensors during several months

of the year (in winter of the corresponding hemispheres). For

these conditions, performing a global analysis is an issue as

it is evident that the mesoscale system state at mid-latitudes

is not correlated to the system state at high latitudes. Con-

sidering this, it was decided to implement a local analysis

scheme with a short influence radius for every distinct data

available. The horizontal e-folding radius of influence is set

to 2 grid points and the cut off radius to 5 grid points. This

value was chosen as it is equivalent to meso-scale features

for mid-latitude regions.

It is noteworthy that Hu et al. (2012) recently proposed

equivalent parametrization of observation error and local in-

fluence radius within the framework of an ocean color data

experiment.

3.3 Validation strategy

A data assimilation experiment involves at least three sets

of information: the free simulation, the data to be assimi-

lated, and the simulation with data assimilation. While in-

tercomparisons between these three information sets is nec-

essary to assess the method efficiency, it will never be totally

conclusive since the three information sets are intertwined

(Gregg et al., 2009). An independent data set of unassim-

ilated variables is required for an objective determination.

We use here the nitrate database extracted from the historical

World Ocean Atlas 2009 (WOA09) as an independent data

set to validate the assimilation process. The historical nutri-

ent measurements available in this atlas were obtained from

the National Oceanographic Data Center and World Data

Center archive, including all data gathered as a result of the

Global Oceanographic Data Archeology and Rescue (GO-

DAR) and the World Ocean Database (WOD) project (Boyer

et al., 2006). This large-scale data set is to our knowledge the

one containing the largest number of in situ nitrate concen-

trations. The temporal and spatial coverage of this data set

allows a systematic and objective comparison with the simu-

lation outputs.

4 Results

In this section, we examine the effects of the assimilation on

the variability of the biogeochemical properties in space and

time, comparing the linear and anamorphosis runs with the

free model simulation. The performances of the assimilative

system are first evaluated in terms of ocean surface prop-

erties, before investigating how the assimilated ocean color

data modify the distribution of nutrients in the sub-surface

layers.

4.1 Surface patterns of chlorophyll and nitrate

concentrations

Figure 2 shows the surface chlorophyll maps obtained after

time-averaging the simulation results over successive 60-day

periods during the year 2006 (first row: days 1 to 60; second

row: days 61 to 120; etc.). Figure 3 is organized the same

way but for the surface nitrate distributions. These maps are

shown for (a) the free run, (b) the SeaWiFS data or clima-

tology, (c) the linear run and (d) the anamorphosis run. The

free run shows some significant differences with the SeaW-

iFS data (Fig. 2). The chlorophyll bloom starts slightly later

in the free run than observed (second row, corresponding

to March–April). An elongated structure centered at ∼35° N

appears along the southern flank of the Gulf Stream, while it

is not present in the data (third row, corresponding to May–

June). Inversely, SeaWiFS data show for the same period an

increase of chlorophyll concentration at latitudes greater than

45° N, corresponding to the beginning of the spring bloom,

while concentration values are much lower in the free simu-

lation. The available nutrients are rapidly consumed (Fig. 3,

third and fourth rows, i.e., May–August), inducing a strong

increase of the chlorophyll concentration. During the peak of

the chlorophyll bloom in the free run, concentrations seem to

be overestimated at high latitudes although the order of mag-

nitude remains correct. When all nitrates are consumed, the

chlorophyll concentration decreases quickly (Fig. 2), while

the SeaWiFS data exhibit larger values that persist later until

the summer season, and to a lower extent until the end of the

year.

To summarize the comparison between the free simula-

tion and satellite chlorophyll data, the modeled chlorophyll

bloom starts too late and chlorophyll concentrations increase

quickly to reach values overestimating data before decreas-

ing rapidly. It is important to note here that, in spite of these

differences, the main features of the annual biogeochemi-

cal cycle are well described (chlorophyll spring bloom, olig-

otrophic subtropical gyre, upwelling along the Mauritanian

coast). This is a crucial point since the free run is actually

sampled to compute the EOF basis and the local anamorpho-

sis transformations that are used in the assimilation scheme.

Considering the runs with data assimilation, the bloom

starts almost in phase with the observations, while the elon-

gated pattern mentioned above in the Gulf Stream area is not
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Fig. 2. Surface chlorophyll concentration binned on 60-day period (from top to bottom) for year 2006 for (a) free run; (b) SeaWiFS data; (c)

linear run; (d) non-linear run. Concentrations are given in mg(Chl) m−3.

present anymore (Fig. 2; columns c and d; third row). During

the bloom, the model values are in the order of magnitude of

the observations both in the linear and anamorphosis situa-

tions (third and fourth row), while strong spatial differences

are visible (e.g., subpolar gyre). However, the model values

are still underestimated on average by the end of the year, as

shown above for the free run. To understand why the assim-

ilation efficiency is weaker on chlorophyll concentrations by
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Fig. 3. Surface nitrate concentration binned on 60-day period (from top to bottom) for year 2006 for (a) free run; (b) WOA09 climatology;

(c) linear run; (d) non-linear run. Concentrations are given in mmol(NO3) m−3.

the end of the year, one should consider the way the error

covariance matrix is specified. The error covariance matrix

is computed using free run model outputs on a 2-month pe-

riod running window over the year. As the free run variabil-

ity is weaker than the variability revealed by observations

on a 2-month period, the EOF basis is not able to capture

the actual variability of the ecosystem in an efficient manner.

This issue is related to the fixed-based variant of the SEEK
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filter chosen to assimilate data and could be attenuated by

increasing the temporal windows during which the EOF are

computed. However, one must be aware that it could lead to

erroneous state corrections as it will include in the EOF com-

putation numerous states having an extremely low probabil-

ity to happen. This seasonal variation in the spreading of the

non-stochastic ensemble used here is illustrated by Fig. 13 of

Brankart et al. (2012).

The spreading of the ensemble obtained after the compu-

tational setup of the EOF basis as described above raises

the question of the performance of anamorphosis transfor-

mations in such a situation. In the non-linear assimilation

procedure, the analysis is constrained to be in the range of

values defined by the historical ensemble. As a result, the

transformation back to the original space may induce by it-

self a truncation of the analyzed values. To assess whether

the truncations play an important role in the non-linear pro-

cedure, it is relevant to check how every assimilated ob-

servation compares to the maximum of the historical en-

semble used to compute the anamorphosis transformation

for the phytoplankton variable (assimilated variable in the

CPBM). However, computing strictly how many observa-

tions are above the ensemble maximum does not account for

observation errors, as the observations are characterized by a

probability distribution rather than by an absolute value. We

therefore computed the number of assimilated data for which

the 95 % confident interval of the observation PDF does not

overlap the concerned local ensemble. We previously defined

the observation error as 30 % of the considered data, so the

minimum bound of this 95 % confident interval corresponds

to 40 % of the considered data (observation minus 2 times

the standard deviation). Thus, when 40 % of the observation

value is above the ensemble maximum, we consider that the

observation PDF does not overlap the local ensemble, indi-

cating that the ensemble spread resulting from the EOF com-

putation within 2-month periods is possibly too small.

Figure 4 shows the percentage of model grid points where

the observation PDF does not overlap the local ensemble

used to compute the anamorphosis transformation. This per-

centage is shown for the eight regions considered with re-

spect to time. The percentage of observations for which 40 %

of the value exceeds the local ensemble is generally weak

(below 10 %) for regions 1, 4, 5, 6, 7, and 8. It should be

noted, however, that the actual percentage of observations

discarded by anamorphosis truncations is evidently larger

than the numbers shown in Fig. 4. The seasonal distribution

of this percentage is centered around the bloom period, es-

pecially for high latitude regions (1 and 2). regions 2 (North

Sea) and 3 (Gulf of St. Lawrence) show inversely high per-

centages, up to 40 % of the whole assimilated data. In addi-

tion, the mean averaged percentage of observations exceed-

ing the local ensemble for regions 2 and 3 are 16 % and

32 %, respectively. These regions are also the ones showing

the most contrasted differences between the linear and non-

linear run (see Figs. 2 and 3), indicating that the truncations

of the assimilated observation are, at least partly, responsible

for these divergences. While this link is clear for regions 2

and 3, it is less clear for region 8 but cannot be totally dis-

criminated. Indeed, in this region the percentage of observa-

tions out of the ensemble remains low along the simulation

period but the region is spatially extended. In that configura-

tion, even a low percentage could nevertheless hide the same

process as highlighted for regions 2 and 3.

It is likely from Fig. 4 that the spead of the ensemble ob-

tained for regions 2 and 3 is too small to capture the ob-

servation information available over these regions. By in-

creasing the time window for computing the EOFs above

two months, the spread of the ensemble could become larger

but, at the same time, spurious correlations might occur more

frequently, e.g., between phytoplankton and nitrate concen-

tration values. From a global point of view, surface nitrate

concentrations as modeled by the linear run (Fig. 3c) clearly

differ from the climatology, the free run and the anamorpho-

sis simulations along a seasonal cycle. The minimum sur-

face nitrate concentrations reached after the bloom remain

significantly higher than the climatology, suggesting that the

multivariate linear analysis fails to estimate coherent surface

nitrate patterns. Same conclusions (as for chlorophyll vari-

able) about observations truncation can be drawn for nitrates

regarding regions 2, 3 and 8.

Nevertheless, Fig. 3 shows a global drift in nitrate concen-

trations toward unrealistic values, for high latitude regions

(1–4) along the whole seasonal cycle. However, as already

discussed above, the amount of surface chlorophyll observa-

tions discarded by the anamorphosis transformation for re-

gions 1 and 4 are relatively low and localized in space and

time. So these truncations are not sufficient to explain the bet-

ter performance of the non-linear scheme in terms of nitrate

estimations on the whole domain for a complete seasonal cy-

cle.

Another interesting point is that the higher percentages

of observations exceeding the local ensemble distribution

are found for continental waters (North Sea, Gulf of St.

Lawrence and also probably Senegal upwelling). The CPBM

used in this paper is clearly not designed to produce real-

istic results in coastal waters. As an example, river plumes

are simply considered as “pure water” runoffs without extra

nutrient inputs. However, these specific processes are most

relevant in the context of coastal ocean color data assimi-

lation experiments (Fontana et al., 2009, 2010; Ciavatta et

al., 2011; Hu et al., 2012). Thus, the ensemble used to com-

pute the anamorphosis transformation does not overlap the

real biogeochemical state of ocean in these areas. In that

sense, the truncation of the observational information avoids

any kind extrapolation outside of the range of the ensemble

which may lead to incoherent multivariate correlation struc-

ture in the peripheral regions of the state space that have not

been explored by the ensemble (see, e.g., Fig. 3c, fourth and

fifth rows). And finally, prior to the definitinon of a complex

parametrization of the tails of the anamorphosis function, a
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Fig. 4. Percentage of grid cells for which 40 % of the assimilated data exceed the upper bound of the historical ensemble for each biogeo-

chemical region with respect to time.

more realistic simulation of these areas (and thus an ensem-

ble overlapping the real system state) will naturally lower the

number of observations truncated.

4.2 Seasonal and interannual variability of the surface

chlorophyll

After having investigated the annual cycle of the surface bio-

geochemical properties of a particular year (2006), we extend

the diagnostics to focus on the seasonal-to-interannual vari-

ability of the primary production between 1998 and 2007.

Figure 5 shows the temporal evolution of the horizontally av-

eraged chlorophyll concentration in the first layer of the cou-

pled model during the simulation period. The data and the

model outputs are plotted after time-averaging over 16-day

periods. The temporal evolution is shown for 8 biogeochem-

ical provinces adapted from the Longhurst (1995) classifica-

tion, as defined in Fig. 1.

The green fringe under the SeaWiFS curve is an indica-

tor of the satellite data spatial coverage in the considered re-

gion. The fringe thickness vanishes when the considered re-

gion is fully covered by satellite data. Conversely, the fringe

thickness increases linearly with respect to the number of

Ocean Sci., 9, 37–56, 2013 www.ocean-sci.net/9/37/2013/



C. Fontana et al.: Toward a multivariate reanalysis of the North Atlantic Ocean 47

missing observations, approaching 100 % of the observation

value when almost no data are available. When no data at all

are present, no dots and no fringe are drawn. The thickness

of the green fringe can thus be interpreted as an observation

error index associated with the lack of data.

In region 1, the free run almost systematically overesti-

mates the maximum peak of chlorophyll that occurs during

the bloom period (late spring/early summer). This bias is ef-

ficiently corrected by the assimilation system, both in the lin-

ear and non-linear experiments. Unfortunately, during other

seasons the number of chlorophyll observations is sometimes

too low (as shown by the large green fringe) to enable effi-

cient corrections of the model estimates. As an example, in

2000 the satellite was not able to collect any ocean color mea-

surement in region 1 during several months in winter. Similar

conclusions can be drawn in other high latitude regions, e.g.,

in region 2 that includes the Baltic and North Seas where the

seasonal signal looks very weak. A first conclusion that can

be drawn for these regions is that the maximum chlorophyll

concentrations during the bloom are efficiently constrained

in the range defined by the satellite data. Another point to be

underlined is the difference between the linear and non-linear

runs, which is generally small, suggesting that the multivari-

ate corrections have similar effects in both experiments.

Region 3 exhibits a seasonal cycle in the SeaWiFS data,

with well-marked peaks of chlorophyll in the early spring pe-

riod. This cycle is reproduced by the free run, but with maxi-

mum chlorophyll values that remain much below the mea-

surements. Nevertheless, an overestimation of the chloro-

phyll content by the SeaWiFS data set cannot be excluded

in these coastal waters, notwithstanding the rather poor per-

formance of the CPBM for such coastal areas as discussed

previously. The non-linear run slightly increases the chloro-

phyll concentrations toward the measured values. This is not

the case for the linear run, probably because the temporal

dynamics are completely modified as a result of strong incre-

ments on nitrate concentrations (see Fig. 3c, third and fourth

row).

Considering region 4 in the open ocean, it appears that the

bloom in the free run starts slightly too late, does not last

as long as it should when compared to the data, and reaches

values that overestimate the observed peak. The free run and

the data are satisfyingly reconciled by the assimilation proce-

dure during the bloom period. The corrections applied during

winter are very modest, once again due to a lack of data in

this zone. However, the absolute values of chlorophyll con-

centration are consistently improved all along the simulation

period thanks to the assimilation process.

In the mid-latitude region 5, the bloom period is well re-

produced by the free run, however with values that are over-

estimated during the peak of the bloom. This flaw is likely

due to the presence of the Gulf Stream pattern discussed

above. For this region, the linear as well as anamorphosis

runs help to constrain the chlorophyll evolution with a good

accuracy. Interestingly, a drift of the chlorophyll concentra-

tions appears after several years in the free simulation, while

this trend is removed when applying the assimilation scheme.

In the mid-latitude region 6, the free run performs well in

terms of both timing and maximum values of the bloom. The

anamorphosis run outstandingly increases the accuracy of the

chlorophyll description all along the simulation period. The

results are different when considering the linear run. Indeed,

after the first year of simulation, the estimated chlorophyll

becomes very different from the data and the other simula-

tions. It is a consequence of the high chlorophyll spots that

occur in that region after several years of simulation (as dis-

cussed in the previous paragraph). The unrealistic corrections

applied to non-observed variables in the case of the linear

run induce secondary effects on the biogeochemical dynam-

ics that eventually lead to the failure of the method.

In the Gulf of Mexico (region 7), all simulations under-

estimate the satellite-estimated chlorophyll content while the

temporal variability differs from the observations, for similar

reasons as in the coastal region 3. This bias remains stable all

along the experiment and the corrections applied to chloro-

phyll are modest.

The subtropical gyre is defined as region 8, for which the

free run performs well and the non-linear run slightly better.

Corrections applied directly to chlorophyll concentrations

are low as a consequence of the low seasonal variability of

phytoplankton content in that region and the correspondingly

low variability contained in the EOFs. A chlorophyll peak is

visible by the end of year 1998; it is actually the signature of

an exceptionally extended Northwest African upwelling (not

shown) probably linked to the 1997–1998 El Niño changes

that may intensify this process (Demarcq, 1998), implying

a biogeochemical response of the system (Ohde and Siegel,

2010). Once again, spots of strong nitrate concentrations ap-

pear in that region as a consequence of the inappropriate

multivariate linear analysis, inducing unrealistic chlorophyll

concentrations by the end of the simulation period (see also

Fig. 3c; third and fourth row).

Overall, the assessment of the data assimilation experi-

ments shows satisfactory results on the chlorophyll represen-

tation along the simulation period. The realism of the tempo-

ral evolution of chlorophyll concentrations is improved by

the assimilation of chlorophyll SeaWiFS data in the open

ocean regions considered here. Moreover, the non-linear as-

similation scheme performs better than the linear one. The

results are less convincing in coastal regions, a statement that

is not surprising since the numerical system (both model and

assimilation components) was not specifically set up to per-

form well in these regions.

4.3 Surface chlorophyll concentration forecast

Additional diagnostics of surface chrorophyll estimates are

performed to assess the prediction capacity of the assim-

ilative system, investigating how the model is able to pre-

serve after 8 days some benefit of the assimilation increments
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Fig. 5. Surface chlorophyll temporal evolution spatially binned on biogeochemical regions as defined on Fig. 1. Concentrations are given in

mg(Chl) m−3.

injected in initial conditions. This forecast diagnostic is a

first indication of the relevance of the multivariate correction

scheme, as it is frequently observed that initial conditions

poorly balanced with respect to the model governing equa-

tions tend to reject the assimilation increments very quickly

(Hemmings et al., 2008; Ford et al., 2012).

In order to derive a statistical measure of the forecast skill,

every individual observation pixel assimilated in the model

was compared to its equivalent 8-day forecast computed in

the free, linear and anamorphosis runs. The comparison is

based on 410 model snapshots and more than 1.9 107 Sea-

WiFS individual pixel data. Figure 6 shows the probability

density function (PDF) of the log(CSeaWiFS/Cmodel) function,

where CSeaWiFS and Cmodel are the SeaWiFS and model con-

centration, respectively. It appears that the 8-day forecast of

the free run is slightly biased, with an overestimation of the

chlorophyll content by the model. This general behavior is

mainly due to the overestimation of primary production at

high latitudes during the spring bloom. The linear run shows

an improvement of these diagnostics by reducing the PDF

dispersion, while a strong bias remains visible. The assimi-

lation impact is further improved when considering the non-

linear run. Indeed, while the non-linear PDF is equivalent to

the linear PDF for extreme values (log error lower than –2

and higher than 2), the PDF maximum is now centered close

to 0.

Ocean Sci., 9, 37–56, 2013 www.ocean-sci.net/9/37/2013/



C. Fontana et al.: Toward a multivariate reanalysis of the North Atlantic Ocean 49

Fig. 6. Normalized histogram of log(CSeaWiFS/Cmodel) function

where CSeaWiFS and Cmodel stand for the SeaWiFS and the mod-

eled concentration of chlorophyll, respectively.

We show here that the prediction capacity of the model

over a period of 8 days is improved with the assimilation

system. In the case where the CPBM would have completely

“forgotten” the increment from the previous assimilation

step, the PDF as defined above would be slightly modified

between the free and assimilation run. Conversely, the per-

sistence of the analysis increment between two assimilation

steps is an indication that the forecast skill of the system is

improved in the assimilation run. More generally, Fig. 6 il-

lustrates the benefit that can be expected in terms of fore-

cast skill by assimilating ocean color data into a basin-scale

CPBM.

4.4 Comparison with independent in situ nitrate

measurements

In this section, we investigate how the assimilation is able to

propagate the observed information to non-observed quan-

tities (surface and sub-surface nutrients). The nitrate model

compartment is chosen here because in situ nitrate observa-

tions have been collected with a good coverage in the North

Atlantic during the period of reanalysis. These diagnostics

will provide further indications that the multivariate scheme

is well suited for combining ocean color observations with

CPBM predictions.

The WOA09 data set was used to objectively evaluate

the reanalysis of nutrient distributions. For comparison, only

data measured in deep sea waters (i.e., bottom model topog-

raphy deeper than 500 meters) were kept in the process. This

selection was made to ensure an objective determination of

the method efficiency since the CPBM used here is not well

designed for shallow waters. Figure 7 shows the in situ data

available in the WOA09 data set during the simulation pe-

riod (depth less than 10 meters). It is apparent that the data

set covers the North Atlantic area well, permitting a valuable

assessment of the method efficiency within the framework

of this realistic experiment. The number of data per years in-

side of the modeled domain and for a bathymetry higher than

500 m for the period 1998 to 2006 is 1901, 1228, 530, 108,

758, 1405, 619, 0, 0.

A histogram of the log(Cin situ/Cmodel) function where

Cin situ and Cmodel are the in situ and colocalized model con-

centrations is shown in Fig. 8 for the surface data (depth less

than 10 meters) represented in Fig. 7. It is important to note

that the nitrate model concentrations used for the comparison

correspond to model forecasts from day 1 to day 8 (actually

between two assimilation steps). This histogram, based on

1759 measurements, is shown for the free run, the linear run,

the non-linear run and the WOA09 climatology. The free run

shows a centered function while some extreme mismatches

of both over- and under-estimations appear, resulting in a

logarithmic root mean square error (RMS) of 0.82. The his-

togram of the linear run shows that the number of instances

where the model underestimates the measured concentration

is reduced by the assimilation process. By contrast, the num-

ber of instances where the model overestimates the obser-

vations is increased. In this configuration, the RMS of the

linear run is 0.87, attesting that the assimilation of satellite

chlorophyll did not help to improve the nitrate representation.

The result is objectively different when considering the non-

linear assimilation scheme, as overestimations remain more

or less unchanged compared to the free run while strong un-

derestimations are reduced, yielding an RMS value of 0.72.

This result demonstrates that, in terms of nitrate, the fore-

cast was improved by the assimilation of satellite chlorophyll

data.

A more interesting point to be underlined is that the his-

togram of the climatology is very similar to the non-linear

one, with a RMS of 0.66. The difference between the clima-

tology and the data from which the climatology was com-

puted may appear surprising. There are several reasons that

could explain this difference. Firstly, only a limited number

of data included in the WOA09 data set were used to compute

the WOA09 climatology as a result of numerous data qual-

ity control tests (e.g., range and gradient check; statistical

check; subjective flagging; see Garcia et al., 2010) to elim-

inate questionable data from the climatology computation.

Secondly, the temporal binning of data used to compute the

climatology at monthly timescale intrinsically induces tem-

poral representativeness errors. The fact that the histogram

of the non-linear run looks very similar to the climatology

histogram indicates that the differences that may occur be-

tween the non-linear run and the in situ data are mainly due

to questionable data. Therefore, this comparison should be

more significant when considering only confident data.

Following the same methodology, an identical RMS index

was computed for several running depth intervals in the eu-

photic layer. Considered intervals are 0–5, 5–10, 10–50, 30–

70, 50–90, 70–110, 90–130, 110–150 and 130–170 meters.

Figure 9 shows the mean of the considered depth interval

with respect to the corresponding RMS where all data en-

tered the computation (a), and where only data higher than

1 mmol(NO3) m−3 entered the computation (b). A total of

1198 distinct data entered the computation for Fig. 9a while

only 646 were kept for Fig. 9b.
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Fig. 7. Nitrate measurements contained in the World Ocean data set for the period 1998–2006 for depths lower than 10 m.

It appears that the assimilation reduces the error of the

free run in the 0–5 and 5–10 intervals for the non-linear run

and only in the first 0–5 m for the linear run (Fig. 9a). For

the deeper part of the euphotic layer, the results are more

contrasted and the non-linear assimilation process even in-

creases the error at some depth intervals. Results are im-

proved when considering only measured data greater than

1 mmol(NO3) m−3 (Fig. 9b). In this case, the RMS pro-

file in the non-linear situation is close to the climatology

throughout the water column up to the 130–170 m interval.

In the 0–5 m interval, the RMS is outstandingly reduced

from 0.75 to 0.31 thanks to the assimilation process. The

linear run reduces the error of the free run in the first two

depth intervals, but increases it almost everywhere in the

euphotic layer. There are several reasons to explain why

the assimilation process performs better for observed values

greater than 1 mmol(NO3) m−3. Indeed, these data are gen-

erally measured outside the oligotrophic sub-tropical gyre,

where the low temporal variability of biogeochemical con-

centrations for the free run (used to compute the EOFs) does

not allow the assimilation system to correct strong differ-

ences between model and data. Secondly, data lower than

1 mmol(NO3) m−3 are also measured in strong nutrient con-

centration gradients (around 45° N) where a well-reproduced

ocean circulation is essential to obtain satisfying biogeo-

chemical modeling. As the physics was not constrained by

data assimilation, these transition zones may not be located

at their exact position, explaining the poor performance of

the assimilation system.

Figure 10 shows the spatial distribution of the

log(Cin situ/Cmodel) function computed for all data of

the WOA09 data set included in the 0–10 m depths interval.

Here, white dots indicate a weak difference between the

model (or climatology) and the observations, blue dots

indicate overestimation by the model, and red dots indicate

underestimation by the model.

Maps are plotted for the free run (a), the linear run (b),

the non-linear run (c) and the climatology (d). Maps were

divided into 5 frames to make the discussion of the results

clearer. At high-latitude regions (frame 1), the nitrate con-

centration remains roughly unchanged in the different ex-

periments (a, b, c) as a consequence of the lack of ocean

color data in this part of the ocean. The nutrient-enriched area

(frame 2) shows the most significant differences between
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Fig. 8. Histogram of log(Cin situ/Cmodel) function where Cin situ

and Cmodel stand for the in situ and the modeled concentration of

nitrate, respectively.

Fig. 9. Nitrate logarithmic RMS between in situ data and model

with respect to the depth for: (a) all available data; (b) only data

higher than 1 mmol (NO3) m−3.

each experiment. While the nitrate concentrations are over-

estimated and underestimated by (resp.) the free (a) and the

linear run (b), the non-linear run (c) shows a clear improve-

ment. In this region, we can see that the non-linear run per-

foms as well as the climatology (d) both in terms of mag-

nitude and error bias. In the western part of the subtropical

gyre (frame 3), results remain unchanged for the various ex-

periments, as previously observed for the chlorophyll vari-

able. In the eastern part of the subtropical gyre (frame 4),

the situation is the same except in the region of the North-

west African upwelling (25° W – 15° N) where nutrient in-

puts into the superficial layers of the water column induce a

rather strong biogeochemical response captured by the EOF

decomposition. This explains the good behavior of the non-

linear run in that part of the ocean, performing even better

than the climatology (d). In the Gulf of Mexico (frame 5),

none of the modeled situations or climatology perform well,

showing that even the WOA climatology is not designed to

fit the biogeochemical ocean state in coastal regions.

4.5 Assimilation impact on sub-surface biogeochemical

description

To understand the assimilation impact on the biogeochemical

variables in the water column, it is interesting to consider a

zonal vertical section at 58° N from 60° W to 10° W. This

vertical section is plotted for chlorophyll (Fig. 11) and nitrate

concentrations (Fig. 12), showing the free (a), linear (b) and

non-linear (c) runs. These sections were produced during a

chlorophyll bloom (30 days temporal binning between 1 June

2006 and 1 July 2006). As previously stated, this period is the

one offering the best assimilation efficiency. It is apparent

that the vertical distributions of chlorophyll keep a similar

shape (high in the euphotic layer, low deeper) even after data

assimilation, whatever method used.

For each assimilation situation, chlorophyll concentrations

are also bound by realistic values, relatively close to those of

the free run. However, this is not the case when considering

nitrate concentrations in the same vertical section (Fig. 12).

Indeed, the linear run (b) does not follow the vertical distri-

bution obtained in the other situtations (a and c) and exhibits

larger values, as was already visible in Fig. 3 for the first layer

of the model. In order to understand the assimilation mecha-

nism responsible for this behavior, one must consider the cor-

relations specified in the analysis scheme between observed

and non-observed variables. Figure 13, for instance, shows

the correlation of the ensemble on the geographic location

40° W–58° N between the surface phytoplankton (proxy of

chlorophyll in our study) and the nitrate concentration along

the water column for 1 June 2006. The linear case is rep-

resented as black dots while the non-linear one is repre-

sented as red dots. The linear run shows extremely high neg-

ative correlations in the first two layers of the model, while

the correlation rapidly decreases as depth increases. In the

deeper part of the water column, the correlation remains sta-

ble around –0.2, attesting that the surface phytoplankton con-

centration is correlated to nitrate even below the euphotic

layers. Nervertheless, these correlations are not a sufficient

proof of the method efficiency, as we previously showed that

nitrate description was not improved in the deeper part of the

water column by the linear assimilation process. When look-

ing at the non-linear correlation profile, we see that a signifi-

cant correlation (between –0.6 and –0.8) up to 50 m depth is

visible while it rapidly decreases to approximately 0 below

this depth. This 50 m depth is the one for which the method

was proved to be efficient for nitrate data (Fig. 9) and is also

the typical depth of the euphotic layers, as visible in Figs. 11
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Fig. 10. Spatial distribution of log(Cin situ/Cmodel) function where Cin situ and Cmodel stand for the in situ and the modeled concentration of

nitrate (resp). Frames a, b, c and d correspond to the free run, the linear run, the non-linear and the climatology, respectively.

and 12. Therefore, mitigated performances of the data assim-

ilation system below the euphotic layer appear to be related

to weak correlations between surface phytoplankton and ni-

trate concentration deeper in the water column. We can thus

argue that the correlation profile showed here between sur-

face phytoplankton concentration and nitrate concentration

is more realistic when using an anamorphosis transforma-

tion. Indeed as expected intuitively, the correlation is high

in the euphotic layer and almost null below. This substantial

increase in the spatial correlations description is discussed

in Brankart et al. (2012) when considering several data as-

similation experiments using anamorphosis transformation,

including the present one. This analysis of vertical sections

and correlation profiles highlights a limitation of the method-

ology setup within the framework of the present study. In-

deed, results indicate that when using an efficiently defined

assimilation method (as previously shown by model to inde-

pendent data set comparison), the surface phytoplankton con-

centration is not correlated to the nitrate concentration below

the euphotic layers. And thus we could not expect to control

the three-dimensional CPBM using only superficial informa-

tion such as those brought by remote sensing of ocean color

without defining a priori information about biogeochemical

concentration vertical distributions.

5 Conclusions and perspectives

In this paper, a state-of-the-art assimilation system was de-

veloped to assimilate satellite-derived chlorophyll data into a

three-dimensional CPBM of the North Atlantic Ocean. Dif-

ferent simulations were conducted during a 9-year period

(1998–2006), allowing the assimilation of 410 SeaWiFS-

estimated maps of chlorophyll temporally binned every 8

days. The simulations were performed with a fixed variant

of the reduced-rank Kalman filter (SEEK) to limit the com-

putational burden of the assimilation process. Several key
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Fig. 11. Vertical section of chlorophyll concentration on 58◦ N between 60◦ W and 10◦ W temporally binned on 30 days between 1 June

2006 and 1 July 2006 for: (a) free run; (b) linear run ; (c) non-linear run. Concentrations are given in mg(Chl) m−3.

Fig. 12. Vertical section of nitrate concentration on 58° N between 60° W and 10° W temporally binned 30 days between 1 June 2006 and 1

July 2006 for (a) free run; (b) linear run; and(c) non-linear run. Concentrations are given in mmol(NO3) m−3.

parameters entering the analysis scheme (e.g., model and

observation error parameterizations, local influence radius)

were carefully tuned to maximize the benefit of the assimi-

lation process. Comparisons were made between a free run,

an assimilation run using a linear updating scheme, and an

assimilation run using a non-linear updating scheme with

anamorphic transformations.

These experiments show that the application of anamor-

phosis yields a non-linear analysis scheme which is identified

as a key element of the assimilation performance, without re-

quiring significant increase of computing resources. The as-

similation of chlorophyll data in the non-linear configuration

efficiently improves the description of the seasonal cycles of

surface chlorophyll along the simulation period. The skill of

the model to forecast surface chlorophyll concentrations after

8 days without assimilation was also improved by the assim-

ilation process. Temporal evolution of spatially-binned sur-

face chlorophyll concentration showed that the spatial cover-

age of ocean color data remains a critical point as no ocean

color data are available for high-latitude regions during sev-

eral months each year.

Comparisons between model outputs and an independent

set of in situ measurements showed that surface nitrate con-

centration is more accurately estimated by the assimilation of

satellite-derived chlorophyll concentration. Indeed, the mod-

eled surface nitrate concentration fields were closer to the

climatology generated from the WOA09. The model perfor-

mance was good in the chlorophyll bloom area (north of

45° N) while it was not systematically improved in the re-

gion of the sub-tropical gyre. The gain was limited to the

upper layers of the euphotic zone, while the deeper part of

the water column was not strongly affected by the assimila-

tion process. This is due to the weak correlations between

surface phytoplankton and nitrate below the euphotic layer.

Truncations resulting from the definition of the tails of the

anamorphosis was found to have a direct impact on the as-

similation results for specific regions of the domain. A high

rate of truncations was found in areas where the local ensem-

ble used to compute the anamorphosis transformation does

not overlap the real system state (as indicated by the obser-

vations versus model mismatch), so that truncations avoid ex-

trapolation of system state outside of the range explored by

the ensemble. In that sense, a better match between observa-

tion and model will naturally lower the number of truncated

observations. This dependency between anamorphosis trun-

cations and definition of the historical ensemble deserves to
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be more precisely assessed. Nevertheless, the global and per-

sistent difference between the linear and non-linear assimila-

tion system over the model domain cannot be explained only

by these truncations. This attests that the correlation between

observed and non-observed variables was improved thanks

to the anamorphosis transformation. A qualitative look to a

multivariate correlation profile between nitrate and phyto-

plankton along the water column also confirmed this state-

ment. While we have identified the anamorphosis tranforma-

tion as a key ingredient for the method’s success, some prag-

matic choices made here on its tuning (particularly the local

ensemble definition) deserve to be further investigated.

Overall, the assessment of the non-linear experiment

shows that the assimilation system can be seen as a first pro-

totype, opening perspectives toward reanalyses of the North

Atlantic Ocean biogeochemistry during the satellite ocean

color era. However, this study also highlights that the full

control of a three-dimensional CPBM trajectory is likely

to be hopeless with the assimilation of surface chlorophyll

data only. Equivalent conclusions regarding the mitigated im-

pact of the satellite chlorophyll assimilation below the sur-

face were recently drawn by Hu et al. (2012) and Ford et

al. (2012).

Several solutions can be envisaged to overcome this issue.

The first one could be to define a priori assumptions about

vertical profiles of biogeochemical variable concentrations.

This means that the observation vector would not be lim-

ited to the first layer of the model but integrated along the

water column. Efforts were recently undertaken to character-

ize relationships between spatially-sensed chlorophyll con-

centrations and vertical distribution of phytoplankton content

(see, e.g., Uitz et al., 2006). The use of such relationships to

propagate information brought by surface chlorophyll con-

centrations to deeper parts of the water column would require

further investigations. While this solution could improve the

assimilation performance in open sea waters, a universal a

priori assumption on biogeochemical vertical profiles can

hardly be defined consistently for coastal areas as various lo-

cal factors may influence directly the vertical distribution of

biogeochemical concentrations (river plumes, waves).

In the long-term, a more promising approach would be to

explicitly include deeper observations into the assimilation

process. In this way, no a priori assumption about the ver-

tical distribution of biogeochemical variable concentrations

would be required, while information would be assimilated

explicitly at depth. The critical point here is that it requires

a refined array of in situ sensors systematically measuring

biogeochemical properties at basin-scale; to some degree an

equivalent to the ARGO float dedicated to biogeochemical

measurements. Such a sampling array currently does not ex-

ist but efforts are ongoing to deploy autonomous biogeo-

chemical sensors in deep sea waters that are able to mea-

sure precisely chlorophyll and nitrate profiles (Claustre et al.,

2010a, b). Since such a large-scale data set is intended in

the foreseeable future, investigations to optimally combine

Fig. 13. Model correlation between surface phytoplankton and ni-

trate concentration with respect to the depth at location 58° N–

40° W on 1 June 2006.

satellite and in situ biogeochemical data through observing

system simulation experiments would be a straightforward

extension of the present study.

A large-scale data set is also required to better assess as-

similation efficiency with respect to other components of

the biogeochemical model (e.g., ammonium, zooplankton).

While one could reasonably hope that the assimilation of

satellite chlorophyll should have a positive impact on the rest

of the biogeochemical model, we were not able to prove it as

things stand today.

Upgrading the simplified assimilation scheme used here

to a more sophisticated one should also help in improving

the reanalysis presented in this paper. Indeed, we computed

uncertainties based on the free simulation without error prop-

agation along the simulation. As a consequence, assimilation

showed poor performance in areas where model variability

was lower than data variability. Specifying the uncertainties

in a more complex way (e.g., ensemble Kalman filter, error

propagation) will certainly lead to improving the assimilation

performance.
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