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A new generation 

of applications 

offers insight into 

the Semantic Web’s 

current and future 

challenges—as well  

as the opportunities  

it might provide  

for users and 

developers alike. 

A
lthough research on integrating semantics with the Web started almost as soon 

as the Web was in place, a concrete Semantic Web—that is, a large-scale col-

lection of distributed semantic metadata—emerged only over the past four to five years. 

The Semantic Web’s embryonic nature is reflected in its existing applications. Most of

these applications tend to produce and consume 

their own data, much like traditional knowledge-

based applications, rather than actually exploit-

ing the Semantic Web as a large-scale informa-

tion source.1

These first-generation Semantic Web applica-

tions1 typically use a single ontology that supports 

integration of resources selected at design time. An 

early influential example from the academic world 

is CS Aktive Space (http://cs.aktivespace.org). This 

application combines data about UK computer sci-

ence research from multiple, heterogeneous sources 

(such as databases, Web pages, and RDF data) 

and lets users explore the data through an inter-

active portal. Not surprisingly, this paradigm also 

informs recently launched commercial solutions 

based on Semantic Web technology. For example, 

Garlik.com’s personal-information-management 

service uses ontologies to discover and integrate 

personal financial data from the Web. Similarly, 

corporate Semantic Webs—which Gartner Con-

sulting highlighted in 2006 as a key strategic tech-

nology trend—use a corporate ontology to drive 

the semantic annotation of organizational data and 

thus facilitate data retrieval, integration, and pro-

cessing. Corporate Semantic Web application areas 

include the car industry (such as Renault’s system 

for managing project history), the aeronautical in-

dustry (such as Boeing’s use of semantic technolo-

gies to gather corporate information), and the tele-

communication industry (such as British Telecom’s 

system for enhancing digital libraries).

Although corporate Semantic Webs often pro-

vide perfectly adequate solutions to a company’s 

needs, they actually fall short of fully exploiting 

the Semantic Web’s exciting potential as a large-

scale source of background knowledge. To address 

this, we began an ambitious research program 

two years ago dubbed “Next-Generation Seman-

tic Web Applications.” Our project’s objective was 

to experiment with a new class of applications that 

would go beyond classic corporate Semantic Webs 

and intelligently exploit the Semantic Web as a 

large-scale, heterogeneous semantic resource. Our 

research also highlighted some key achievements 

so far, as well as several obstacles that must be 

tackled if we’re to realize the vision of the Seman-

tic Web as a large-scale enabling infrastructure for 

both data integration and a new generation of in-

telligent applications. 
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AI and the Semantic Web
Although much early AI research focused 

on general methods for problem solving 

and efficient theorem proving, by the mid-

1970s, many AI researchers realized this 

essential point:

The fundamental problem of understanding 
intelligence is not the identification of a few 
powerful techniques, but rather the question 
of how to represent large amounts of knowl-
edge in a fashion that permits their effective 
use.2

Accordingly, these researchers advo-

cated a paradigm shift, moving away from 

“weak” reasoning and problem-solving tech-

niques and toward the creation of effective 

methods for acquiring, representing, and 

reasoning with large amounts of domain 

knowledge. A few years later, Brian Smith 

precisely formulated this knowledge-based 

paradigm when he defined the knowledge- 

representation hypothesis: 

Any mechanically embodied intelligent pro-
cess will be comprised of structural ingredi-
ents that we as external observers naturally 
take to represent a propositional account of 
the knowledge that the overall process ex-
hibits, and independent of such external se-
mantic attribution, play a formal but causal 
and essential role in engendering the behav-
iour that manifests that knowledge.3

Hence, the essential element of AI’s 

knowledge-based paradigm is this causal re-

lationship between a system’s explicit knowl-

edge representation and its (intelligent) be-

havior. Unfortunately, the paradigm has a 

key problem in its so-called knowledge ac-

quisition bottleneck.4 This KA bottleneck 

concerns the difficulty of acquiring, repre-

senting, and maintaining an intelligent sys-

tem’s knowledge base. 

Revisiting the KA bottleneck
Although many people (especially those 

critical of AI in general) focus on the KA 

bottleneck’s epistemological aspects—that 

is, the difficulty inherent in formalizing ex-

pertise for computer processing—in prac-

tice, the issue tends to be primarily eco-

nomic. If a knowledge-based system (KBS) 

is to be economically feasible, the cost of 

acquiring and maintaining its knowledge 

base must be significantly less than the 

economic benefits derived from the sys-

tem’s deployment. Hence, pragmatically, 

the KA bottleneck simply means that it’s 

often too expensive to acquire and encode 

the large amount of knowledge that an ap-

plication needs.

For these reasons, much of the key KBS 

research of the past 20 years has tackled the 

KA bottleneck and developed methods for 

knowledge sharing and reuse. The goal was 

to make the knowledge-engineering process 

more robust and cost-effective. This line of 

research has produced the key AI technol-

ogies for specifying reusable model com-

ponents (ontologies)5 and reasoning com-

ponents (problem-solving methods)6,7 and 

clearly bears a direct impact on current Se-

mantic Web technologies. Specifically, on-

tologies provide the core technology for the 

Semantic Web’s data interoperability, while 

emerging standards for Semantic Web Ser-

vices, such as the Web Service Modeling 

Ontology (www.wsmo.org), inherit their 

conceptual foundations from research in 

problem-solving methods.8

Despite its strong AI research connec-

tion, the Semantic Web isn’t AI—as its key 

advocates, such as Tim Berners-Lee, of-

ten emphasize. AI is about engineering in-

telligent machines; the Semantic Web is a 

technological infrastructure to enable large-

scale data interoperability (the so-called 

“Web of data”). Although this distinction 

is important, there’s another interesting 

hypothesis here. In addition to providing 

an infrastructure for large-scale publica-

tion, integration, and reuse of semantically 

characterized information—much like the 

network of semiautomated knowledge ser-

vices that Mark Stefik called “the new 

knowledge medium” in his extraordinarily 

visionary 1986 paper9—the Semantic Web 

could also provide a new context in which 

to address the KA bottleneck. Specifically, 

by providing the means for large-scale dis-

tributed knowledge publishing and access, 

the Semantic Web could open the way to a 

new generation of intelligent applications 

that go beyond the closed domains of tradi-

tional KBSs and exploit semantic informa-

tion on a large scale. (By “traditional KBS,” 

we mean a computer system that relies, on 

one hand, on the knowledge formalized in a 

knowledge representation language and, on 

the other hand, on reasoning mechanisms 

for problem solving.)

Semantic Web applications   
vs. the traditional KBS
Although the vision of powerful, nonbrittle 

intelligent systems is appealing, moving 

from the classic KBS to the Semantic Web 

implies a dramatic shift in context. Early at-

tempts at tackling the KA bottleneck, such 

as Cyc (www.cyc.com), did so by creating 

a very large, high-quality knowledge base. 

However, if we view the Semantic Web as 

a very large knowledge base, several key 

differences from classic KBSs become 

apparent:

Heterogeneity. Typically, developers con-

struct knowledge bases according to (at 

most) a few small sets of carefully de-

signed and integrated ontologies. The Se-

mantic Web is characterized by heteroge-

neity along several dimensions, such as 

ontology encoding, quality, complexity, 

modeling, and views. Hence, an applica-

tion using data from multiple sources in-

volves a nontrivial integration effort. 

Quality. To ensure quality, developers 

build classic knowledge bases in a cen-

tralized fashion, typically using a small 

team of knowledge engineers. As a re-

sult, trust isn’t an issue. On the Semantic 

Web, information originates from many 

different sources and varies considerably 

in quality. Trust is therefore a key issue 

on the Semantic Web.

Scale. With its millions of documents 

and billions of triples, the Semantic Web 

is already well beyond the size of a clas-

sic KBS. Although applications typically 

focus on specific Semantic Web subsets, 

efficient access and information process-

ing nonetheless require a quantum leap in 

applications’ ability to locate and process 

relevant information.

Reasoning. Traditional KBSs derive 

their power from sophisticated reasoning 

mechanisms that combine high-quality 

knowledge bases with powerful models of 

•

•

•

•

By providing the means for large-

scale distributed knowledge 

publishing and access,  

the Semantic Web could open  

the way to a new generation  

of intelligent applications.
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generic tasks such as planning, diagnosis, 

and scheduling.

Regarding the last distinction, because the 

Semantic Web combines heterogeneity, 

variable data quality, and scale, the appli-

cations we envision will exhibit intelligent 

behavior owing less to an ability to carry 

out complex inferencing than an ability to 

exploit the large amounts of available data. 

That is, as we move from classic KBSs to 

Semantic Web applications, intelligence be-

comes a side effect of scale, rather than of 

sophisticated logical reasoning. An impor-

tant corollary here is that, as logical rea-

soning becomes less important and scale 

and data integration become key issues, 

other types of reasoning—based on ma-

chine learning, linguistic, or statistical tech-

niques—become crucial, especially be-

cause they frequently need to integrate and 

use other, nonsemantic data. Indeed, as we 

describe later, all our applications integrate 

different forms of reasoning.

Although the hypothesis of using the 

Semantic Web as a large-scale knowledge 

source opens up many exciting opportuni-

ties, to realize it in practice, we must design 

applications that are quite different from 

classic KBSs. Such next-generation Seman-

tic Web applications must address signifi-

cant problems associated with the Seman-

tic Web’s scale and heterogeneity as well as 

with the widely varying quality of the infor-

mation it contains. 

Next-generation  
Semantic Web applications
Our research on next-generation Semantic 

Web applications originates from our obser-

vation—and anticipation—that intelligent-

application development will increasingly 

change owing to the availability of the Se-

mantic Web’s large-scale, distributed body 

of knowledge.1 Dynamically exploiting this 

knowledge introduces new possibilities 

and challenges requiring novel infrastruc-

tures to support the implementation of next- 

generation Semantic Web applications.

Key features and requirements 
Next-generation Semantic Web applications 

achieve their tasks by automatically retriev-

ing and exploiting knowledge from the Se-

mantic Web as a whole. Unlike early Se-

mantic Web applications, which gathered 

and engineered knowledge at design time, 

these new applications explore the Web to 

discover ontologies relevant to the task at 

hand. Because dynamic knowledge reuse re-

places the traditional knowledge-acquisition 

task, we can potentially reduce the applica-

tion development cost. In addition, because 

such applications can use any semantic in-

formation available online, they’re not nec-

essarily bound to a particular domain. 

Still, as we discussed earlier, next-gener-

ation Semantic Web applications face novel 

challenges related to scale, heterogeneity, 

and information quality. To tackle these 

challenges, the applications require new 

mechanisms and tools that aren’t needed 

in classic KBSs because their knowledge is 

manually selected and integrated. 

Any application that wishes to explore 

large-scale semantics must perform the fol-

lowing tasks:

Find relevant sources. The ability to dy-

namically locate sources with relevant 

semantic information is a prerequisite 

for applications that aim to leverage on-

line knowledge. This feature is important 

because developers might not be able to 

judge a particular resource’s relevance to 

the target problem at design time. 

Select appropriate knowledge. Applica-

tions must select the appropriate knowl-

edge from the set of previously located 

semantic documents on the basis of ap-

plication-dependent criteria, such as data 

quality and adequacy to the task at hand.

Exploit heterogeneous knowledge sources. 

When reusing online semantic informa-

tion, the application can’t make assump-

tions about the ontological nature of the 

target elements. Hence, the process must 

be generic enough to use any online se-

mantic resource. As with the two previous 

•

•

•

tasks, the application must carry out this 

activity at runtime.

Combine ontologies and resources. De-

velopers can’t expect one unique knowl-

edge source to provide all the required el-

ements for a given application. Therefore, 

a typical next-generation Semantic Web 

application must select and integrate par-

tial knowledge fragments from different 

sources and jointly exploit them. 

Although the envisaged applications must 

perform these tasks to leverage online se-

mantics, actually implementing the required 

mechanisms within individual applications 

is infeasible. What we need is a single ac-

cess point that applications can reference to 

obtain the appropriate semantic resources. 

We can realize this through an infrastruc-

ture that collects, analyzes, and indexes on-

line resources and thereby provides efficient 

services to support their exploitation—that 

is, a gateway to the Semantic Web. In prin-

ciple, such a tool plays the same role as a 

standard Web search engine. However, in 

this case, the focus is on enabling semantic 

applications to use online knowledge.

The idea of providing efficient and easy 

access to the Semantic Web isn’t new. In-

deed, several research efforts have either con-

sidered the task as a whole or concentrated 

on some of its subissues. The most influen-

tial example is probably Swoogle (http:// 

swoogle.umbc.edu), a search engine that 

crawls and indexes online Semantic Web doc-

uments. Swoogle claims to adopt a Web view 

on the Semantic Web, and, indeed, most of 

its techniques are inspired by traditional Web 

search engines. Relying on such well-studied 

techniques offers a range of advantages, but 

it also has a major limitation: by largely ig-

noring the semantic particularities of the in-

dexed data, Swoogle falls short of offering 

the functionalities required from a truly Se-

mantic Web gateway. Other recent Seman-

tic Web search engines—such as Sindice 

(http://sindice.com) and Falcon-S (http://iws. 

seu.edu.cn/services/falcons/objectsearch/

index.jsp)—adopt a viewpoint similar to 

Swoogle’s and therefore suffer from the same 

limitations:

They provide only weak access to seman-

tic information, because they don’t con-

sider the accessed document’s semantic 

content. Swoogle essentially treats seman-

tic resources in the same way that Google 

treats Web documents. For every retrieved 

•

•

Watson provides efficient 

services to support application 

developers in exploiting  

the Semantic Web’s  

voluminous distributed  

and heterogeneous data. 
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ontology, for example, Swoogle displays 

only a text snippet showing that the que-

ried terms occur somewhere in the ontol-

ogy. The user (or application) is then sup-

posed to download the ontology to access 

its content. For a human user searching the 

Semantic Web, this mechanism might be 

sufficient (although a bit inefficient); it cer-

tainly can’t support semantic applications, 

which must be able to efficiently locate 

and access relevant semantic information. 

They don’t consider the quality of the 

knowledge they collect. Among the Se-

mantic Web search engines mentioned 

earlier, only Swoogle employs a qual-

ity criterion—specifically, a PageRank-

like algorithm that provides information 

about a resource’s “popularity.” This is 

insufficient to support applications in as-

sessing a semantic document’s informa-

tion quality and adequacy. 

They typically pay limited attention to 

semantic relations between ontologies. 

Swoogle, for example, considers only 

those relations that are explicitly stated 

(such as import). This is a serious limi-

tation; as semantic resources, ontolo-

gies can be compared and related to each 

other through semantic relations (they 

might, for example, be versions of each 

other, mutually incompatible, and so on). 

This is particularly important for seman-

tic applications that must exploit several, 

interrelated ontologies. In looking at re-

sults from existing Semantic Web search 

engines, it appears that they don’t con-

sider even the simplest (syntactic) no-

tion of duplication (or copy), because the 

same documents often appear, at differ-

ent ranks, several times in the results.

Watson:   
A Semantic Web gateway
Motivated by the needs of next-generation 

applications, we developed the Watson Se-

mantic Web gateway (http://watson.kmi.

open.ac.uk). Watson offers a single access 

point to online semantic information and 

provides efficient services to support ap-

plication developers in exploiting this volu-

minous distributed and heterogeneous data. 

Although superficially similar to existing 

Semantic Web search engines, Watson over-

comes their limitations by providing sup-

port for finding, selecting, exploiting, and 

combining online semantic resources.

To collect online semantic documents, 

Watson uses a set of crawlers that explore 

•

•

various sources, including PingTheSeman-

ticWeb.com. Unlike standard Web crawlers, 

our crawlers consider both classical hyper-

links and semantic relations across docu-

ments. Also, when collecting online semantic 

content, they check for duplicates, copies, or 

prior versions of the discovered documents.

Once documents are collected, Watson 

analyzes and indexes them according to var-

ious information about each document’s con-

tent, complexity, quality, and relation to other 

resources. This analysis step is crucial; it en-

sures that Watson extracts the key informa-

tion, which in turn helps applications select, 

assess, exploit, and combine these resources.

Watson’s goal is to provide applications—

and, to some extent, human users—with ef-

ficient and adequate access to the informa-

tion it collects. A Web interface lets users 

search semantic content by keyword as well 

as inspect and explore semantic documents. 

Users can also query documents using the 

SPARQL Protocol and RDF Query Language. 

However, Watson’s strength is in provid-

ing the services and API needed to support 

the development of next-generation Seman-

tic Web applications (see figure 1). Indeed, 

Watson deploys several Web services and a 

corresponding API that let applications

find Semantic Web documents through a 

sophisticated, keyword-based search that 

•

lets applications specify queries accord-

ing to several parameters (including type 

of entity, level of keyword matching, and 

so on);

retrieve a document’s metadata such 

as size, language, label, and logical 

complexity;

find specific entities (classes, properties, 

individuals) within a document;

inspect a document’s content—that is, the 

semantic description of its entities; and

apply SPARQL queries to Semantic Web 

documents.

Watson’s API provides several advan-

tages. First, unlike Swoogle and Sindice, 

which limit a user’s number of queries per 

day or the number of query results, Watson 

doesn’t restrict the amount of data it provides 

through its API. In our view, any piece of in-

formation Watson collects should be made 

available, and we provide applications with 

as much information as possible. Second, 

our API exposes a comprehensive function-

alities set that lets any application use on-

line semantic data in a lightweight fashion 

without having to download the correspond-

ing semantic documents. Watson processes 

and indexes a semantic document’s content 

so that applications can access it at runtime 

without needing sophisticated mechanisms 

and large resources. 

•

•

•

•

Watson Web services

Watson API Watson API Watson API

The Semantic Web

Figure 1. A Watson-based architecture for next-generation Semantic Web 

applications. Developers can use the Watson API to build lightweight applications, 

relying on the Watson gateway to exploit the knowledge available on the Semantic 

Web.
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By providing mechanisms for searching 

semantic documents (keyword search), re-

trieving metadata about these documents, 

and querying their content (such as through 

SPARQL), Watson offers applications all the 

necessary elements to select and exploit on-

line semantic resources. Moreover, the Wat-

son Web Services and API are constantly 

evolving to support novel application re-

quirements. In particular, for ranking, we’re 

using an initial set of measures that evaluate 

ontology complexity and richness. We’re 

developing a more flexible framework that 

combines both automatic metrics for ontol-

ogy evaluation and user evaluation to allow 

for a more customizable selection mecha-

nism. Another important direction is in de-

tecting semantic relations between ontolo-

gies to support their combination. Indeed, 

while we have a simple duplicate detection 

mechanism in place, we must consider more 

advanced mechanisms to efficiently dis-

cover fine-grained relations, such as exten-

sion, version, or compatibility.

Exploiting   
large-scale semantics
Our research program was initially motivated 

by our development of two pioneering on-

tology-based applications: Aqualog (http://

kmi.open.ac.uk/technologies /aqualog) 

for ontology-based question answering  

and Magpie (http://kmi.open.ac.uk/projects/

magpie) for semantic browsing. Although 

these applications are portable from one do-

main to another, they subscribe to the early 

Semantic Web application model in that they 

exploit manually selected knowledge, ex-

ploring a single ontology at a time. Hence, 

their scope is limited by the topic domain 

and the selected ontology’s encoded knowl-

edge. To overcome this limitation, we envi-

sioned their extensions—PowerAqua (http://

kmi.open.ac.uk/technologies/poweraqua) 

and PowerMagpie (http://powermagpie.open. 

ac.uk)—working in an “open Web assump-

tion,” dynamically retrieving knowledge 

from the Semantic Web to answer questions 

or annotate Web pages.

Beyond PowerAqua and PowerMagpie, 

we’re investigating this new paradigm’s 

potential to exploit large-scale semantics 

through various applications, including Scar-

let (http://scarlet.open.ac.uk) for ontology 

matching and Flor for folksonomy tagspace 

enrichment (defined later). Moreover, a sys-

tem developed outside our research group 

builds on the Watson infrastructure to per-

form word sense disambiguation (WSD).10

In addition to providing concrete exam-

ples of successful next-generation Semantic 

Web applications, our tools and techniques 

offer insight into the Semantic Web’s cur-

rent status and its potential to support a va-

riety of tasks.

PowerMagpie:   
Semantic browsing
The PowerMagpie Semantic Web browser 

uses openly available semantic data to help 

users interpret arbitrary Web page content. 

Unlike Magpie, which relied on a single 

ontology selected at design time, PowerMa-

gpie automatically identifies and uses rel-

evant knowledge provided by multiple on-

line ontologies at runtime. 

From a user perspective, PowerMagpie 

is an extension of a classic Web browser: 

it appears as a vertical widget at the top 

of browsed Web pages (see Figure 2). The 

widget provides several functionalities that 

let users explore the current Web page’s se-

mantic information. In particular, it sum-

marizes conceptual entities relevant to the 

page, highlighting them in the text and 

letting users explore the information sur-

rounding them in different ways. In addi-

tion, when it finds semantic information 

that relates the text to online semantic re-

sources, PowerMagpie “injects” this in-

formation into the Web page as embedded 

annotations in RDFa. Users can then store 

these annotations into a local knowledge 

base and use them to mediate the interac-

tions of different semantic-based systems. 

Watson plays a central role in Power 

Magpie’s architecture, providing sophis-

ticated mechanisms for identifying and 

selecting ontologies relevant to the main 

terms extracted from a Web page. For ex-

ample, unlike other search engines, Wat-

son’s ontology selection mechanism can 

identify a set of ontologies that jointly 

cover a set of terms, rather than just a sin-

gle ontology that only partially covers the 

set of terms. Also, because the selection 

process relies on Watson’s ontology-rank-

ing mechanisms, it favors higher-quality 

ontologies. 

PowerAqua: Open-domain  
question answering 
PowerAqua’s predecessor, AquaLog, de-

rived answers to questions from a single 

ontology. In contrast, PowerAqua performs 

question answering (QA) on an unlimited 

number of ontologies and can automatically 

combine information from multiple ontolo-

gies at runtime. Users enter a question to 

PowerAqua in natural language; the system 

Figure 2. PowerMagpie’s Entities and Ontologies panels. The Entities panel lists 

ontology entities that are relevant for the current Web page; the Ontologies panel 

shows the main ontologies that cover the Web page’s text.
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then aims to return all the answers that it 

can find on the Semantic Web. For exam-

ple, given the query, “Which are the mem-

bers of the rock group Nirvana?” and two 

online ontologies covering the term “Nir-

vana”—one about spiritual stages, and one 

about musicians—PowerAqua can 

locate and select these two ontologies 

(through Watson),

choose the appropriate ontology after 

disambiguating the query using the avail-

able semantic information, and

extract an answer in the form of ontologi-

cal entities. 

In our example, it returns a set of individ-

ual names corresponding to the group’s 

members: Kurt Cobain, Krist Novoselic, 

and Dave Grohl as well as the names of the 

band’s earlier drummers.

We’ve evaluated PowerAqua’s ability to 

derive answers from multiple ontologies se-

lected and used on the fly during the QA 

process. Our evaluation showed that Power-

Aqua’s ontology search and matching mech-

anisms are powerful enough to successfully 

map most of the questions to appropriate 

ontologies (see www.cisa.informatics.ed.ac.

uk/OK/Deliverables/D8.5.pdf). However, 

our evaluation also revealed that the tool’s 

performance was heavily influenced by the 

Semantic Web’s data quality. For example, 

we submitted the query, “Which prizes 

have been won by Laura Linney?” Whereas 

the three first answers were correct, the last 

one was erroneous because the final ontol-

ogy modeled “Laura Linney” as an instance 

of the class “Award.” Our work was also 

hampered by the Semantic Web’s sparse-

ness in terms of the covered topic domains. 

In fact, when attempting to reuse the Text 

Retrieval Conference data (http://trec.nist.

gov) to build our query corpus, we found 

that online ontologies covered only 20 per-

cent of the topic domains described in the 

TREC (Text Retrieval Conference) WT10G 

test collection’s 100 queries. 

Scarlet: Relation discovery 
Scarlet automatically selects and explores 

online ontologies to discover relations be-

tween two given concepts. When relating 

these concepts, Scarlet 

identifies, at runtime, online ontologies 

that provide information about how the 

two concepts relate, and 

•

•

•

•

combines this information to infer their 

relation. 

We’ve investigated two increasingly so-

phisticated strategies to discover and ex-

ploit online ontologies for relation discov-

ery. As figure 3a shows, the first strategy, 

S1, derives a relation between two concepts 

if the relation is defined within a single on-

line ontology—a relation between Super-

market and Building is discovered if the 

ontology states that Supermarket ⊆ Build-

ing. In some cases, no single online ontol-

ogy states the concepts’ relation, as is the 

case with the concepts Cholesterol and 

OrganicCompound. To address this, the 

second strategy, S2, combines relevant in-

formation spread over two or more ontol-

ogies—for example, that Cholesterol ⊆  

Steroid in one ontology and that Steroid ⊆ 

OrganicCompound in another (see Figure 

3b). To support this functionality, Scar-

let needs a Semantic Web gateway to ac-

cess online ontologies. Although the first 

Scarlet prototype used Swoogle, its latest 

version leverages Watson’s functionalities, 

which are more sophisticated. Compared 

to Swoogle, Watson’s output contains fewer 

duplicate ontologies; it also ranks the on-

tologies it returns in terms of their seman-

tic quality rather than their popularity. 

Both factors directly affect Scarlet’s perfor-

mance: Scarlet doesn’t have to sort through 

• redundant information, and it can typically 

exploit the more useful ontologies first.

We developed Scarlet on the basis of 

an ontology matcher that exploits Seman-

tic Web information to discover semantic 

relations (mappings) between two ontolo-

gies’ elements. We evaluated this matcher 

by aligning two large, real-life thesauri: the 

United Nations’ 40,000-term AGROVOC the-

saurus and the US National Agricultural 

Library’s 65,000-term thesaurus.11 Using 

strategy S1, we obtained a total of 6,687 

mappings (2,330 subclass, 3,710 superclass, 

and 647 disjoint relations) by dynamically 

selecting, exploring, and combining 226 

online ontologies. To assess the online on-

tologies’ information quality, we manually 

evaluated 1,000 randomly selected map-

pings (about 15 percent of the alignment). 

Our evaluation led us to several inter-

esting insights about the online ontologies’ 

quality. On the one hand, we found that the 

obtained mappings’ precision was 70 per-

cent and that we could raise it to 87 percent 

given a more sophisticated anchoring mech-

anism for matching terms. This finding 

suggests that the online ontologies’ quality 

is good enough to produce highly precise 

alignments. On the other hand, our evalu-

ation highlighted a range of typical ontol-

ogy errors that can cause false mappings. 

One of the most common errors was the in-

correct use of subsumption. For example,  

Building

Semantic Web

PublicBuilding

Shop

Supermarket

BuildingSupermarket OrganicChemicalCholesterol

OrganicComponent

Lipid

Steroid

ScarletScarlet

Steroid

Cholesterol

(a) (b)

Figure 3. Scarlet’s two main relation-discovery strategies. (a) Strategy S1 returns 

relation information defined in a single ontology. (b) Strategy S2 combines relevant 

information spread over two or more ontologies. 
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ontologies might contain subsumptions in-

correctly modeling 

some type of relation between two  

concepts, such as Irrigation ⊆ Agricul-

ture or Biographies ⊆ People; 

part-whole relations, such as Branch ⊆ 

Tree; and

role relations, such as Garlic, Leek ⊆ In-

gredient (in fact, these are vegetables, 

but in some contexts they play the role of 

ingredient).

Inaccurate labeling led to further false map-

pings, such as coal ⊆ industry, where coal 

refers to the coal industry rather than the 

concept of coal itself.

Flor: Semantic enrichment   
of folksonomy tag spaces
Social-tagging systems such as Flickr and 

del.icio.us are at the forefront of the Web 

2.0 phenomenon, letting users tag, organize, 

and share a variety of information artifacts. 

The lightweight structures that emerge from 

these tag spaces—called folksonomies—

only weakly support content retrieval be-

cause they’re agnostic to tag relationships. 

A search for mammal, for example, ignores 

all resources not tagged with this specific 

word, even if they’re tagged with semanti-

cally related terms such as lion, cow, or cat. 

With Flor, our objective is to make seman-

tic tag relationships explicit—identifying, 

for example, that mammal is more generic 

than lion—using a semantic enrichment 

algorithm that derives relations among im-

plicitly interrelated tags from the Semantic 

Web. 

We’ve experimentally investigated this 

enrichment algorithm, which builds on 

Scarlet. That is, given a set of implicitly re-

lated tags, our prototype identifies subsump-

tion and disjointness relations among them 

and constructs a semantic structure accord-

ingly.12 Our experiments have furthered our 

understanding of Semantic Web ontologies 

and yielded at least two key insights. First, 

online ontologies have poor coverage of a 

variety of tag types, including those denot-

ing novel terminology (such as Ajax and 

CSS), scientific terms, multilingual terms, 

and domain-specific jargon. 

Second, online ontologies can reflect dif-

ferent views, and using them in combination 

can lead to inconsistencies in the derived 

structures. For example, deriving knowl-

edge from multiple online ontologies shows 

•

•

•

that they variously consider tomato as a 

fruit or a vegetable. The first statement is 

valid in a biological context: a tomato is the 

fruit of a tomato plant. Nonetheless, many 

systems classify tomatoes as vegetables. Al-

though such differing views can coexist, the 

fact that another ontology declares fruit and 

vegetable disjoint renders the derived se-

mantic structure logically inconsistent.

Word-sense disambiguation
Jorge Gracia and his colleagues exploit 

large-scale semantics to tackle the WSD 

task.10 They propose a novel, unsupervised, 

multiontology method that

relies on dynamically identified online 

ontologies as sources for candidate word 

senses and 

employs algorithms that combine infor-

mation available on both the Web and the 

Semantic Web to compute semantic mea-

sures among these senses and complete 

their disambiguation.

In its early implementation, the algorithm 

used Swoogle to find potentially useful 

ontologies and then downloaded them lo-

cally for analysis. A newer version of the 

algorithm uses Watson to access online 

ontologies. Given the rich Watson API, 

the algorithm can access all the impor-

tant information without having to down-

load the ontologies, providing much faster 

functionality. 

Development and use of the WSD algo-

rithm has shown that the Semantic Web 

is a good source of word senses that can 

complement traditional resources, such as 

WordNet. Also, it’s possible to use the ex-

tracted ontological information as a basis 

•

•

for relatedness computation, rather than ex-

ploit it through formal reasoning, as in on-

tology matching. As a result, this algorithm 

is less affected by formal modeling qual-

ity than Scarlet. One drawback of the WSD 

method, however, is that most ontologies 

have a weak structure; as such, they provide 

insufficient information to perform a satis-

factory disambiguation. 

So what?  
The Semantic Web today
Gathering and developing this range of Se-

mantic Web applications has led us to a set 

of conclusions about the Semantic Web’s 

current status.

How big? Measuring its size
The Semantic Web’s size is obviously a key 

consideration, yet various semantic search 

engines estimate this seemingly simple mea-

sure differently (Sindice reports the highest 

value at 26 million RDF documents). Esti-

mate variation is due to both

a lack of agreement about what consti-

tutes a Semantic Web document (some 

engines count RSS feeds, for example, 

and some consider each entity provided 

by large resources such as DBpedia as a 

separate document); and

the differences in various engines’ ability 

to identify duplicate documents. 

Given this, it’s difficult to give a precise es-

timate of the Semantic Web’s size. How-

ever, we can make an educated guess that it 

currently contains a few million documents 

describing millions of entities through bil-

lions of statements. Whatever the actual 

size, our applications show that the Seman-

tic Web is already big enough to make per-

forming real-life tasks—such as aligning 

two large agricultural thesauri—possible. 

In other words, contrary to popular myths, 

the Semantic Web is less a long-term aspi-

ration than a concrete reality.

How broad?   
Estimating its coverage
From an application perspective, the Se-

mantic Web’s topic domain coverage is an 

important issue. Indeed, our experience is 

that some domains—such as the agricul-

tural one—offer good results, but in other 

domains knowledge remains insufficient. 

We confirmed this observation by analyz-

ing the domains covered by the semantic 

•

•

Ontologies tend to be  

small and lightweight;  

the Semantic Web  

currently has relatively  

few big, dense, and  

large-scale ontologies.
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documents that Watson collected.13 As Fig-

ure 4 shows, topics such as “computers” are 

well covered but others, such as “home,” are 

almost nonexistent.

How good? Assessing its quality
The quality and richness of online knowl-

edge will either hamper or fuel development 

of next-generation Semantic Web applica-

tions. All the applications we’ve described 

here depend on such quality and are each 

affected differently by the semantic data’s 

quality characteristics. Indeed, Scarlet and 

Flor rely on exploiting formal relations and 

are therefore hampered by incorrect formal 

modeling. Such errors, however, aren’t prob-

lematic for the WSD algorithm. Inversely, 

the WSD algorithm is hampered by weak-

ness in online ontologies’ structure—a char-

acteristic that didn’t affect Scarlet and Flor. 

Analyzing a sample of the ontologies 

Watson collected shows that, in general, on-

tologies tend to be small and lightweight; 

the Semantic Web currently has relatively 

few big, dense, and large-scale ontologies.13

Outlook
Our experiences in developing concrete ap-

plications and analyzing Watson-retrieved 

documents give us concrete ideas about the 

Semantic Web’s status, size, coverage, rich-

ness, and quality. Such experiences also 

inform our assessments of the Semantic 

Web’s key issues, direction, and forthcom-

ing developments.

Dealing with conflict   
and contradiction
None of our applications have a clear strat-

egy for dealing with contradictory infor-

mation derived from multiple ontologies. 

This is an important topic to tackle because 

it targets applications that exploit hetero-

geneous semantic resources and therefore 

hasn’t been addressed in traditional KBS or 

first-generation Semantic Web applications. 

The notion of trust is essential here, sup-

porting applications in selecting resources 

and ontologies compatible with their view 

and with each other.

Increasing the domain coverage
Although our work shows that the Seman-

tic Web has a reasonable amount of avail-

able data, the sparseness phenomenon high-

lighted earlier indicates that we should 

continue the effort of encouraging and fa-

cilitating the publication of semantic data 

online. In particular, we should focus on 

providing incentive in domains where se-

mantic technologies’ added value is less 

apparent (that is, outside the academic and 

computer science worlds). Providing smart, 

next-generation applications that actually 

use this data is one way to encourage people 

to share their own data.

Targeting   
lightweight applications
As noted, most semantic documents avail-

able on the Web are small and contain light-

weight knowledge. Indeed, in analyzing 

Watson’s collection, we found that 95 percent 

of the online semantic documents use only a 

small subset of the primitives provided by 

ontology representation languages such as 

OWL—namely, the ALH(D) description 

logic. This doesn’t mean that there’s no room 

on the Semantic Web for applications that 

exploit complex logical formalisms and rea-

soning mechanisms. However, as our work 

shows, the prevalence of lightweight knowl-

edge certainly doesn’t prohibit the develop-

ment of interesting new applications, as rea-

soning on the Semantic Web goes beyond 

traditional logical inferences. In addition, in 

our applications, intelligence is more or less 

as much a function of the ability to exploit 

large-scale knowledge sources as a conse-

quence of sophisticated logical inferences.

A lthough the Semantic Web is still in 

its infancy, it already provides a sur-

prising amount of useful information that 

various next-generation Semantic Web ap-

plications can exploit. Obviously, the infra-

structure still needs further consolidation, 

and quality and trust are particularly severe 

obstacles to developing high-quality prob-

lem solvers. Nevertheless, in a short period, 

we’ve made considerable progress. Our ex-

pectation is that, as the Semantic Web in-

frastructure becomes more robust and more 

knowledge becomes available, large-scale 

access and exploitation of online knowledge 

will become the predominant paradigm for 

knowledge-based systems.
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