
Toward a Non-Atomic Era :

&Exclusion as a Test Case

Danny Dolev* Eli Ga.fnit Nir Shavit*

Ahst ract

Most of the research in concurrency control has

been based on the existence of strong syr.chro-

nization primitives suc:h as test and set. Fol-

lowing Lamport, recent research promoting the

use of weaker primitives, “safe” rather than

“atom.ic,” has resulted in construction of atomic

registers from safe ones, in the belief that they

would be useful tools for process synchroniza-

tion. We argue that the properties provided by

atomic operations may ‘be too powerful, masking
core difficulties of problems and leading to incf-

ficicncy. We thcrcforo advocate a difrercnt ap-

proach, to skip the intc~r~ncdiatc step of arhicv-

i~lg atomicity, and solve problems directly from

safe registers. Though it has been shown that

“test and set” cannot be implemented from safe
registers, we show how to achieve a fair solu-

*IBM ARC and Computer Science Department, He-
brew University, Jerusalem.

‘Computer Science Depa,rtment, University of Califor-

nia, Los Angeles. Supported by NSF Presidential Young

Investigator Award under grant DCR84-51396 and match-
ing funds from IBM Faculty Development Awarl under

grant D840622.

*Computer Science Department., Hebrew University,

Jerusalem. Supported by Graduate Student Award-

Israeli Ministry of Communication, and by 1)eibnitz
Fellowship-Hebrew University.

I’ermksion to copy without fee all or part of this material is grantcJ

provided that the copies are not made or distributed for direct

commercial advantage, the ACM copyright notice and the title of

the publication and its date appear, and notice is given that copying

is by permission of the Association for Computing Machiwry. ‘1’)

copy olhcrwise. or to republish, requires a fee and/or specfic

permission.

0 1988 ACM-O-89791-264-O/88/0005/0078 $1.50

tion to &-c:xcl usion, a classical c‘oncurrcncy con-

trol problcn~ proviorisly solvA assuming a v(‘ry

powerful form of atomic “test and set”. We do

so using safe registers alone and without intro-

ducing atomicity. The solution is based on the

construction of a simple novel non-atomic syn-

chronization primitive.

1 Introduction

Understanding the fundamental complexities of

synchronizing concurrent operations of processes
that sha7.re resources has been a constant rc-

sea.rch topic in multi-process computing. RIost

of the past research was based on the assump-

tion tha.t even t.hough processes access shared
memory concurrently, they preform their oper-

aCons atomically, or even worse, they have ac-
cess to powerful constructs like atomic memory

operations or “test-and-set.” This assumption

introduces the possibility of circularity in design

- what value is there in breaking pro-

cesses’ collision using a primitive oper-

ation that itself requires breaking the

same collision?

I’owerful operations ran mask the “core” dif-

ficulties in coordinating concIIrrcnt processes.

Larnport has maclc an important sl.cp in avoidirlg
the USC of powerful operations by introducing a

very weak shared memory communication mt*ch-
anism, the Single-Writer-Sillgle-R.cstlcr Safe 13it
(subsequently referred to as a %fc Bit). Read

a.nd Write operations on a Safe llit are a.ssumcd

to take up a non-zero interval of time whose ac-

tual length depends solely on the speed of the

process performing the operation. A read inter-

val that does not overlap a write interval, returns
tlrc last value that was written, otherwise it a.r-

I)itrarily returns zero or one. l’hc~ question wc

face is: what is the power of safe bits, and how

ma.ny sak bits itre used to solve a problcri~?

March research has been directed towards con-

structing atomic registers from safe bits. That

is, shared memory communication mechanisms

in which, though performed concurrently, each

operation can be considered to have been per-

formed at an instance of time. These con-

structions [B87,BP87,N87,PB87,VA86,IL87] are

costly (in the number of safe bits used), quite

complex, and their correctness difficult to verify.

Moreover, it has been shown by Herlihy [H87],

that no “powerful” concurrency control element
can be constructed using atomic registers, unless

one process waits for aiiot.hcr to romplctc its op-

cr;dion. (i .(b. f:l.sl.cr proc~ssc3 il.rc forc*cd t.0 wa7.i t
f;)r a slowc~r one 1.0 ~mpl~~l,~ its op~~r;r.f,ioiIs). llis

~oncl~ision is. that. sin(,(t t.hc> wai t-I’rc~c~ncss prop-
cbr1.y of a.t.oiilic rc&tcrs is of no sigiiificanccb, one
might, as well crnploy a universal &mC~nt 1.lla.t is

“sf.rongcr” t.1la.n t&-and-set, even though it has

the drawback of introducing waiting.

Our approach here, in contrast, is to tailor spe-

cial waitfree data-structures to various classes of

problems, in the belief that the special seman-

tics and features of each class will allow one to

manage with data-structures that are much less

complex than atomic registers.

1.1 Our Results

l’hc nlain result. of the paper is the const,rric:tion

of il. fi1.i r tlct.c~rliliiiisl.ic solulion 1.0 the I-ICwl~usio~i

~,r~oblc~~. from safe bits directly, bypassing the

construction of atomic registers. ‘1’0 this end,

we introduce it simple new dstu-type irrrplerncntcrl

from .!!& Bits. The cost of the solution (mea-
sured in number of safe bits used) is equivalent

to the lowest cost [PB87, IL871 of constructing

only a constant number of atomic registers.

The 4?-cxclusior~ problem, a classic cxamplc in
concurrency control, was first introduced a.nd

solved by Fischer, Lynch, Hums, and Borodin

in [FLBB79]. The problem arises when a group

of processes are spontaneously invoked, possibly

needing private access to one of ! identical re-
sources. ‘The ability of Lhc solul,ion to withstand

tlrc! slow-down or even the crash of few procPssc3

(e - 1 of then~), as well its the absence of col-

laboration of process not requesting a rcsoIircc,

a.rc inherent to the problem. Previous solutions

([FLBB79,FLI)B85]) to this problem, assumed

existence of an atomic memory operation much

more powerful than test-and-set, and were fo-

cused on achieving strong fairness properties. It

was assumed that processes do not fail while per-

forming this atomic operation.

A test-and-set operation is itself much more

powerful than any operation that is imple-

menta.ble by safe bits. Its definition implies the

mutual exclusion of the processes that concur-

rent.ly access it. It can be used to serialize con-
crrrr~nt events hy “I.ilne-stil.ntping” them. Orrc

rail c~asily rc*ii.ch a consensus arrtorlg I~itrl,icipii.l.-

ing I)rocossf3, in spil,tr of il. single crash, using il.

tc!sf.-a.nd-sctt. IJy ii. diroc:t rcbtl rrcl,ion to ‘I’hcorerf~

1,” in [DI)S87], one can prove that there is no im-

plementation of test-and-set by atomic registers

(by safe bits as well), even if only a single fault

can occur. This result was previously proved in

[LA87,CIL87] using a direct proof along the lines

of [FLP85]. Thus, a solution to the !-exclusion

problem that does not employ “test-and-set”, is

of interest (let alone not using “atomic” registers,

with their complex and costly implementation).

1.2 Properties of the Solution

In or(lcr to elinlirra~t,c~ solrrtions that. “Jlid~~” the
wa.it,ing for a slow or f;r.rrII.y process to corri~A~t,c!

execution of concurrent operations, the faililrf~

model assumed is one in which a process may un-

detectably stop functioning while executing a.ny

operation in its protocol (this is the failure model

of [FLBB79]). In fact, a process may fail while

writing a single bit. Since processes can not dis-

tinguish between a failed process and a very slow

79

one, a process cannot “wait” on less than e other

processes.

Lamport [L86dj ~01~~2s the mutual exclusion

problem using safe registers, but in his solu-tion a

slow process can slow down (or block) every other

process. He assumes it weak failure model in

which a failed process eventua,lly resumes its op-

erations and ends up stopping gracefully. Thus,

he avoids the problem that may be associated

with a process “never” terminating its wri.;e op-

eration.

‘1%~ fairness we actiicvc in this paper is that

any process that indicates its wish to utilize a rc-

source, will eventually obtain it. Achieving fair-

ness is the crux of the difficulty. Because there

are e resources, and because no process ma:, wait

for any other process since it might be faulty, re-

solving the contention among the processes in a

fair manner becomes more complicated than in

mutual exclusion, making a novel approacn nec-

essary for fair &exclusion.

pects of synchronization problems, and may sub-

stitute atomicity in these applications.

The organization of our solution lends itself

to a simple clear and modularly structured cor-

rectness proof. The problem is separated into

its different elements. The interface between the

elements is such that when one element is con-

sidered, the effect of the other elements can be

abstracted via “black-boxes” whose intcrfa.cc is

concise enough as not to increase the complesity

of the solution of each element. All the sepa.rate
solutions put t.ogcthcr solve the original proh-

Icrn. A by-product of the ability of our solu-

tion to withstand !! - I possible failures is tha.t
only the “slow-down” of e processes or more can

slow-down the progress of a process wanting a. re-

source. Another implication is tha.t the reading

and writing of our data-structures, ea.& in isola-

tion, are waitfree and bounded, since no process

needs to wait for any other.

In the following sections the e-exclusion prob-

lem and its solution are presented. For clarity,

some of the proofs are left to the appendix.
1.3 A New Synchronization ‘Data

Structure

2 The Problem
The basic entity required is a data-structure that
implies some precedence relation between pairs

of processes. Roth processes have to by able

to manipulate it, and all processes should be

able to read it. The problem is, that il’ both

processes may failstop while writing the data-

structure, no single read outcome is ever possi-

ble without communication among all readers.

What is crucial for the purpose of synchroniza-

tion is that if only one process in a pair is faulty,

the other process can still unambiguously ma-

nipulate the data structure to give precedence to

the one that failed. This is accomplished with

a data-structure that is implemented by a pair

of symmetrical sub-structures, each consisting of

three safe bits and manipulated by a single pro-

cess. Our solution to the &exclusion problem

utilizes three instances of the data structure per
pair of processes, each in a different role. Em-

ploying the same data structure in differer t roles

may indicate its usefulness in solving other as-

A concurrcut system is composed of r~ processes
communicating via a shared memory consist-

ing of of safe rcg&sters ([L86b]), the operations

on which a.re reads and writes. Since single-

writer-mvlti-reader (SWMR) boolean safe regis-

ters can easily be constructed from single-reader-

single-ulriter boolean safe registers [L86b], it will

be assumed that the shared memory consists of

SWMR safe registers.

In the ~-Exclusion Problem, the program of ev-

ery process consists of two distinguished sections:

a Remainder Section and a Critical Section. Pro-

cesses alternate between executing the remainder

and the critical sections. A jailstoppcd process

may stop at any operation, or may never com-

plete executing its current operation. The exe-
cution of any operation by a non-faulty process

takes unbounded but finite time. It is assumed
that faiIure is undctctecta.hlc by other processes.

80

To solve the e-Exclusion Probknz, one is required

to design erzlry and exit progriam scctious to bc
performed before cntcring and nftcr txiting the

Critical Section, such that wheu adtlccl to the
original progra,m of every process, will assure

that the following properties hold:

I-Exclusion - no more than f? process are con-

currently executing the critical section at any

time.

C-Deadlock Avoidance - if there always exists

some non-faulty process outside the remainder,

and less than f2 processes failed outside the re-

mainder, then, there always exists a non-faulty

process that alternates between executing the

R.emainder and the Critical Sections infinitely
often*.

LocEout Freedom -- if less than e processes fail

outside the Remainder, then any non-fa.ulty pro-

cess outside the Remainder will eventually cxc-

cute the Critical Section.

In the pa.per definitions follow the basic sys-

tem formalism of Lamport ([L86a]). A global

time model of such a system is assumed. An ab-

stract data type will be defined and proved to be

implementable in the system. The protocols for

solving the &exclution problem will be given in

terms of the abstract data type.

3 The Solution

In [L86d], Lamport shows how fair solutions to

mutual exclusion problems can be created, by su-
perimposing a fukrrless construct on a completely

unfair deadlock-free mutual-exclusion construct.

Many such unfair deadlock-faze mutual-exclusion

constructs appear in the literature, where pro-

cesses having greater ids or ones that are fast

enough, may cause others to starve. To provide

fairness, a two part fairness construct is added,

one part of it to be performed before entering

the unfair deadlock free exclusion construct, and

the other after exiting the Critical Section. One

is able to construct a solution based on such a

‘This definition is equivalent to the definition of A

Deadlock in [FLBB79].

superimposition, because the fairness construct

can be allowed to prevent processes leaving the

Rcmaindcr, from entering the unfair exclusion
section, as tong as some process is already in it (if

there is no process already in it, all those entering

have equal precedence, and favoring any of them

will not impair the fairness). This possibility is

unique to the mutual exclusion problem, since if

some process is in the unfair exclusion construct

when others enter the fairness construct, it has

priority, and they can delay entering the Critical

Section (via the unfair construct) without caus-

ing deadlock or violating fairness.

Unfortunately, the above type of modularity, is

impossible for !-exclusion, the reason being that

there is more than one slot in the critical sec-

tion. Having the fairness construct prevent all

processes from entering the unfair exclusion con-

struct because there is a process there, would

cause e-deadlock. Having it prevent only a nec-

essary number would mean that it is not only a

fairness construct but a solution to the probIem.

On the other, hand if it will allow processes to

enter the unfair exclusion construct, then lock-

out may occur. A novel type of construction is

therefore needed.

The solution presented in the sequel is of such

a novel type, providing a different form of modu-

larity than that described above. It decomposes

(and is therefore presented) as follows: In Subsec-

lion 3.2, an .&exclusion construct that is unfair

and deadlock prone is presented. This construct
is rellncd in Subsection 3.3 to provide decdtock-

free &exclusion. Though unfair, it will prevent
the starvation of the non-faulty processes, out-

side the Remainder, that have the highest ids.

In Subsection 3.4, a construct providing consis-

tent dynamic ids is presented. This construct

is embedded in the above constructions, so that

any starved process will eventually obtain a dy-

namic id higher than any non-starved process,

making itself eligible to pass through the unfair

deadlock-free exclusion construct.

In a pictorial manner, the core of the above

constructions may be viewed as a form of a

“blackboard” in shared memory, where each pro-

cess writes down its relations with others, for

81

all to see. The board consi:&s of a collection

of abstract data-structures, each written by two

processes, readable by all, and denoting a I?rece-

dence relation between them. In the following

section, a detailed definition of these abstract el-

ements and their imple:mentaltion is provided.

3.1 The Abstract Data-Types

In this section a novel abstract data type ,forE is

defined and implemented, resembling the “fork”

in Chandy and Misra’s [CMS4] solution to 611e

C~c!neralizcd Dining I’liilosophcrs problem. As irl

[CM84], it is used to establish prccedcnca be-
tween the two processes lhat operate on ii,. The

solution to the e-Exclrlsion problem will employ

three instances of the data-type per each pair

of processes. In two of these instances, t:xe full

power of the fork will not be utilized, and a sim-

pler data-type arrow is thus defined, by coalesc-

ing groups of states and groups of operations of

the fork.

An instance of fork, FOIiTh’;j, is assclciated

with two processes i .and j. Logically, it can

be thought of as an actual “fork” that is shared
by i and j. At all times the “fork” is “in the

hand” of one of the processes. The fork cy-

cles through four states in,usei, offer&;, i?l,UStTj,

and o$eredj, in that order. The transitions to

iltAMC; or o&rc(i; may happen as a rc3ult of
the operations I&e; or offer; (respectively), cx-

ccuted by i, and likewise for j. An important

characteristic of the f;ork is that it is “observ-

able” by all processes (not only the two n-anipu-

lating it)2. A readk operation ma.y thus lx pcr-

formed by any process in the system, rcl urning

one of the four possittle fork states (rha.ra.ck~r-

izcd by a collccEion of properties defined in the

sequel). Formally:

‘A major diffcrcncc froru the forks in [CM&l], and

the core difficulty in implement.ing it aud proving its

correctness.

Figure 1: sequential fork manipulations

by an arbitrary k, and an oJrerk(FORK;j) or

takek(FORl(ij), by a mutator k E {i,j}.

The first property of the fork is tha,t ea.ch rea.d
rrt,nrns just one of the four allowable st,atcs3

P 1 “sa.fc\Ilcss”: The value returned by a.

rrad,,.(1’0 RA-\‘;j) opcra.tion is one of in-use;,

O~ere(li, ill-?lPCj or OfScrctlj.

The second property formalizes the indepen-
dence between processes manipulating the fork,

that is, that no operation requires the coopera-

tion of other process.

P2 “wait-freeness”: the read and mutation op-

erations (by a. process that does not fail be-

fore their completion) are completed within

a finite time independent, of the relative ex-

ecu tion speeds of other p roccsses.

From Chc above dcscript.ion, it might seem tha.t
opcbrations 011 the fork arc romplc~tdy serial in

t.imc (as ill Ficprc I, where timt runs from left to

right, and the int,ervals reprcscn t the dura.tion of

take and ogler operations). Following Lamport,

one could provide seriCalizability, i.e., the illusion

that the operations a.re serial in time, by creating

a fork that is a,tomic. It turns out thollgh, that

atomicity is Ilot, nc?ccssary. The reason for t.llc

simplicity of the fork’s construction is tl1a.t un-
like atomicity, which is a. claim about all points

in time, tlw main claims nldc i\.l10111. the fork a.rc
rcstric1,cd to specific poilibs, or ra.t,licr, to int.cr-

vnls of a. litt~it.c!tl type. ‘I’lrc on ty cln.iIn that, nccd

bc Illid(? ;hc)uI, l.hc fork at every poitrl. in ((ime, is

that it bc sa.fe! All other claims will be limited

3Nof,c: (.hat. f.his property in it.sdl docks 1106 imply that

t,he fork is “s&:” [I,S~b], tl1011g11 l.liis will follow whrn

otlirr properties arc added.

82

to spwid types of intervals, such as those begin-

ning at the end of the most recently started la&
or ogler mutation, and ending before the start of

the following mutation. As an example, given a

situation as in Figure 2, claims about tj (a takej

operation) are limited to the interval c, bounded

by the beginning of the next operation (oflerj).

Dche [Rl..R2] to be the interval from the

start of RI to the end of 112, where 82 started
after Rl. Continuing in the description of the

fork’s properties, the following property states

that the forks do not “change hands sponta-

neously.” This is formalized by:

P3 “stability”:

a. Two reads RI and R2 such that no muta-

tion overlaps the interval [Rl..R2], re-

turn the same result.

b. If a read Rl by mutator i returns either

oflcrj or in-use;, then any read R2 by
mutat,or i tha,t follows RI such that the

int.erval [Rl ..R2] cont.,ains no mutation
by d, will return the same result as Rl.

A fourth property states tha.t if some process saw

a. fork offered to j, j will also see this.

P4 “consistency”: Let Rl be a rend by a process

I; and R2 a read by mutator j that strictly

follows Rl. If Rl returned ofleredi and no

mutation by joccur in the interval [Rl..R2],

then R2 will return the same result.

Finally, the following fifth property enforces the
power of the mutators to actually mutate the

d&a-type.

P5 “ltllll.il.l)ilil~.~“:

a. A ~CVZ~ .R2 st,ricbly following a scq~~cncc

of a wad RI followed by Julie’;, where

Rl returns oflimdj or i?~-~~sei, will re-
turn in-usei if no of3hri started in the

interval [Rl..R2].

b, A read R2 strictly following a se-
quence of a read RI followed by

& 0; ti

’ tjI I Oj

I I

I I

’ c ’

Figure 2: concurrent fork manipulations

oflcri (resp. tnkei), where Rl rc-

turns in-use; (oflcredj), will not re-

turn in-use; (ofleredj) if one or more

of take; (ofleT;), takej and offerj does

not occur in the interval [Rl,.R2].

c. A read R2 strictly following a sequence

of a read Rl followed by ogler;, where

Rl returns in-usei, will return o&red;

if no mutation, other than ofiewdi, by

either i or j occurs in the interval

[Rl..R2].

Jlascd on the above definitions of the fork data
type, a possible approach one might take in im-

plementing it would be as a mutual exclusion

algorithm between i and j. ‘l’hc process gain-

ing control of the critical section, would have the

fork, rclcasing it only when it leaves the critical

section. A problem though is that this solution

is not safe (Where is the fork when both i and

j are outside their critical sections?). One can

overcome this problem easily if processes ha.ve

access to some ordinary shared memory, that is,

multi-reader multi-writer memory where a pro-

cess can overwrite what others wrote (with the

assumption of course, that it is safe, and that the

user is responsible for providing mutually exclu-
sive writing access to it). The improved implc-

mcntation therefore uses a, single safe bit F of

this sha.1~~1 memory to rcbprcsent the fork. I?OI

any two proccssc~s i sad j, where without loss of
gcucrality i > j, Is’ = 1 will mean that i has the

fork, and 17 = 0 will mean that j has it. An

additional SWMR safe bit wi is used in every

process i to provide mutual exclusion while pro-

cesses access the shared memory bit F (since no

such “ordinary” shared memory is available, F

itself will later be constructed from safe bits). A

83

correctness proof of the construction appeass in

the Appendix.

Construction 1 Let FORKij be composed of a

bit of shared memory, F, and two SWMA safe

bits wi,wj, written by i and j respectively, where

n rendk(FOllK;j) is performed as4

ifF = 1 then

if W; then return in-use;

else return uflered; fi

else

if Wj then :return in-usej

else return offeredj fi

5;

and takei(F0 RK;j) and ofer;(FORKij’) by a

mutator i (those for mutator j are similar) are

take;: if read(FORK;j) = ofleredj theta

w; := true;

F := 1;

fi;
offer; : if read(FO RK;j) = in-use; then

Wi .*-= f”.lSe;
fi;

then

Construction Lemma 1 Construclion 1 is a

fork with properties [Pl] . . . [P3].

To implement F by safe registers notice that

since F is written only by the mutators *i and j,

it can be constructed from safe bits in a simple

manner5 (proof omitted).

Construction 2 Let F be composed of two

SWMR sajc bits ji and j’j, wrillen by i nd j

rcspeclivcly, where a read oj F is

if f; = fj then return 1

else return 0 fi;

‘The order of the reads of F and Wi, wJ is crucial!

“This use of “xor” bits appeared before in [f’83],[L87d]

and a write of F (say of the value 1) is

if f; # fj then f; := not f;
else fi;

thrn

Construction Lemma 2 Construction 1 with

F as in construction 2 is a fork with properties

[Pl] . *. [P3].

How can one achieve “consistency” (property

[P4] which is implied also by the stronger prop-

erty [P5])? G iven any variable vi, and two dis-

joint subsets of processes p, q CC { 1 . . . n}, consis-
tency would mean that if processes in q see the

new value written to vi, processes in p reading

vi following the read of those in q, will also read

the new value (unless a following write begins).

A variable vi consistent with respect to q is con-

structed in a simple manner (proof omitted):

Construction 3 Let 2’; be constructed of two

variables ZlJj)i (llld Vqi, IUI1CI.C CI 7WitC Oj Vi is per-

jo1*9ncd ns

aitd a trad Of ‘lli is a read Of IJpi for processes in

p and of vqi for processes in q, then’

Construction Lemma 3 The variable vi is

consistent with respect to q.

Based on the above, the following theorem can

be proved (the proof a.ppears in the Appendix).

Theorem 1 Cotrslrurlion I I&II. F as i9i Chz-

struclion 2 and with w; (and ‘UJj) consislenl with

respect to { 1 . . . n,} - {i} ({ 1 . . . n) - {j]) is u fork

satisfying properties [Pl] . . . [P5].

‘Note that if one c0nstruct.s a SWMR safe or regular

register as in construction 1 of [L86b], then consislency

can be achieved using a single register by simply changing
the ordering of the writes.

84

To simplify the presentation, the forkis further

abstracted to create an arrow abstract data type.

The arrow is actually a fork in which the states
OfJcr~ aud i?f.mcj arc coallcscc?rl to form the state

i -+ j, and the same holds with the exchange of

the roles of i imcl j. In a similar ma.nncr, the
operations rCdiTCCli and TcdirfYlj arc considered

to be takei followed by o~eri, and takej followed

by o#erj respectively. Properties of the arrow

will follow from those of the fork by way of its

construction.

Construction 4 The duta structure ARROW;j

is constructed from Q FORI’c’;j data structure

mutable by i and j, where a readk(ARROW+)

operation for a process k is defined as

case Tendk(FORIi;j) of

OflCFedj OP ill-Use;: return j t i;

O~~el’e(li OP Zn-?Isc;: ret urn i -4 j;

end case;

a.nd a Tedirccti(ARR014~ij) as a sequence of a

take;(FORIi;j) followed by an ofler;(E’ORK;j).

The following two claims about the abstract

data types are made in order to simplify the

proofs of the algorithms in following sections.

The first claim characterizes a processes ability

to manipulate the fork though the other process

sharing it has failed. This includes for example

the ability of a process to “pull an offered fork

out of the other’s hand”.

Claim 1 “Infinite mutation” - If a mutation by

j lasts infinitely long, then

0 if i performs Oflt2ri (wdiwctj) infinitely Of-

ten, then ez~cnlually all rca,ds will never re-

turn i?l-USe; (j -+ i);

l if i performs take; infinitely often and even-

tually does not perform any ofleri, then

eventually all reads either always return

in-use; or never return in-&Se;.

Proof By [PZ], j must have failed during its

current infinitely long mutation, which is either

oflerj or takej.

85

l Assume that i performs o&r; infinitely of-
ten. Assume that following the failure of j

there exists a time at which a processor per-
fornls a wad Rl that returns in-U.Wi. I,ct,

R2 he any read strictly following an OfleT;

that follows .Rl. fly [1’5b] and because j

performs at most one of its operation dur-

ing the interval [Rl..R2], R2 will not return

in-use;. (The claim for redirecti follows di-

rectly from the above).

l The proof follows directly by letting Rl of

[P5a] be a read that returns in-use; follow-

ing the failure of j. m

The second claim deals with the conditions un-

der which a a process that continuously tries to

take the fork, will eventually obtain it.

Claim 2 If (111 mutations apart from OJW; are

rxccuted infinitely ojten while eventually no

oflcr; is executed, then eventually all reads will

return i7LUSC.i.

Proof Consider the following cases:

1.

2.

3.

3.2

Eventually a process reads offered;, then by

[P5b], since no offer; will ever be performed,

following the next takej no process will ever

read ofiered; again.

Eventually a process reads in-usej, then by

[P5b], by exactly the same arguments no

process will ever read in-usej again.

Eventually a process reads ofleredj or
in-Usei, then by [P5a], following the next

take; all reads will always return in-use;. a

t-Exclusion

To obtain .&exclusion, a GRAPH data structure

is constructed. It consists of one instance of

ARROWij (d enoted C-ARROWij) between ev-

ery pair of processes i, j E (1. . . n}. In addition

to GRAPH, each process k maintains a SWMR

safe bit xk, which it sets to true upon leaving the

remainder, and to false just before returning to

it. The collection of all such xk, k E (1.. . n} is

denoted as X.

Every process wishing to execute the zritical

section, reads X and GRA.PH. The o::der in

which arrows in GRAPH and xk variables are

read is unimportant ‘7. By reading the GRAPH,

a process obtains a tournament graph G(ij on n

nodes. Each edge (j, k:) in the graph is directed

in the direction read for GARROWjk. Ii; is im-

portant to note that ‘G(i) is a graph th:tt tnn?~

mucr have cxisted8, silncc even the rca.tling of a

sin& edge (.j,k) involves reading the six bits of

a GA RROWjk, concurrently with possible rcdi-

rcction operations by ,i and j.

LCt R;(C) dcllote Ihr! set of all llotlcs Icit.Cha.blC

via a directed path from a node i (including i

itself) in a directed graph G. The result of the

procedure $?(i, GRAP.II, X) is defined as J’ollows:

Definition 2 S(i,GRAPH, X): Read X and

GRAPH. Let G’(i) be the subgmph of G(i) in-

duced by all nodes k for which i read Xk = true.

Return R;(G’(i)).

If the cardinality of the reachability set

W(i, G RAPIf, X) r(\ urned At to i is less l.han or

oclna.1 to f?, node i may enter the critical :;cxtion.

‘I’hc rcasm for choosi tlg reachihilily is that, a

tmnsitive precetlen02 rclalion is ncctlotl. ‘I’aki~lg

‘5 is reachable from j” to mean ‘5 is bcbre j”,

if a process j is reachable from i, and a process
k is reachable from j, lthen the transitivit;q of the

reachability relation assures that both j and k

will be before i. In general, transitivity assures

that in any group of e-t 1 processes, some process

will have all others before itg. Since GR.4PH is

a dynamically changing structure, it remains to

be shown that the reachability condition indeed

suffices for f?-exclusion.

Observe that the reachability condition is to a

large extent independent of the rules governing a

process’s mutat,iorl of arrows. Tn th t7msLr~ttction

Idow, this inclcpcntlcncc is abstra.c:tctl by tllc

‘Although as mentioned before, the order 01’ reads of

single bits of each arrow is important.
‘It is not even a snapshot [C1,85], that is, one l.hat

could have existed.
gUnfortunately, the reachability relation is nl>t a totd

order (which can be u~~dl to break deadlo(rince it is

not antisymmetric.

procedure oracZe(GRAPH), whose arbitrary be-
havior will later be replaced by that of a deadlock

prevention mechanism. Thus, oracle(GRAPH)

when called by i arbitrarily chooses some subset

of arrows 01 which i is a mutator, and performs

redirect on them. Let redirect(i, j, GRAPH) be

redirecti(G4RROT~~j) and let every process i

E { 1 . . . n } perform the a,lgoridhn~ tha.t fol-

lows, then, even in fit.C@? of tllc a.hil.ra.ry Mli\.vior

of ordr(GI~f1 PHI), tire following construction

provides &exclusion:

Construction 5

do forever

remainder

xi := true;

for all j in { 1 . . . n) do

redirect(i,j, GR=1PH)

od;

L: omcle(GRAPH);

if /9?(i,GRAPH,X)I > ! then goto L fi:

critical section

xi := f&c;

od;

lflCl1

Construction Lemma 5 No wore flwn P p7’0-

cesses will ever be in file critical section sinaulta-

neously.

Proof Assume by a way of contradiction that

a set C of more than & processes is in the criti-

cal section between to and tIL. Since no process

in the critical section is in the middle of exe-

cuting a mutation of GRAPH, then by [Pl]-

[P3], any readk(i, j) that started after to and
ended before t’, for i,j E C, will return a

uniqllc rc5lllt hr itlly k. ‘I’IIIIS, ItIc! gral)Il Ct =

(C, {G-ArroU7(i,j) : i,j E C}), a.9 would have

been &fined by the above rea.ds, is well defined.
A contrxliction will be obt;Glled lby showing that

there rxish a node ?: E 6’t wl~ose last execution

of $?(i, GflA PIZ, X) before entering the Critical
Section satisfies ~$?(;,CR,\PIl, X)1 2 1 R;(G,)l >_

e+1.

86

Observe that Gt is a tournament and con-

sider the strongly-conncctcd-component dccom-
position of Gt. There exists a “root” strongly

conncctcd component R c Cl, whcrc for all

i E R and j 4 R, i --t j. Let i be the last

process in R to call ?3?(i,GRAPH,X) before en-

tering the critical section, and let t* < to be the

operation start time. From time t” to t’, no pro-

cess in R executed any mutation, and therefore

by [P3] the induced graphs of R in G’(i) and Gt

are isomorphic. Moreover, since any read; of an

G-ARROW;j, j E C - R between to and t* re-

turns i --t j, a.nd since i performed uo mutation
aft(~r I*, it follows by [1’3b] that the last, rcla,tl of

CRAPI L)y 1: rc~t.ur~wtl i- j.

Though this assures that i saw Il;((l’(i)) 2 l+l,
it still remains to be shown that Ri(G’(i)) 2 4!+1.

III its last read of xj,j E C- n, i must have rca.d

zj = true, since otherwise j would have redi-

rected its arrow to i following its last setting of

pi to true before entering the Critical Section.

By [P&J, since i does not perform mutations

after t’, any read after to would have returned
3 - 2. ’ This would have contradicted the fact

that the edge points from i to j E C - R in Gt.

It thus follows that an edge (;,j),j E C - R
in Gt implies an edge (;,j) in G’(i). Thus,

Ri(G’(i)) 2 R;(Gt) 2 C+l. A contradiction.

I

3.3 DeadIock Avoidance

In construction 5, deadlock may occur because

many processes may repeatedly have reachability

greater than C, never entering the critical section.

To overcome this problem, the arbitrary behav-

ior of oracle(GRAPH) is replaced by the rule

that processes redirect arrows towards those with

higher ids. If there were no faulty processes, it

is easy to see that deadlock would be prevented,
since in a group of blocked processes, the one

with highest id would eventually have all arrows

directed towaads it, a.nd therefore its reachability
set would be of size less tha.n P.

e+1

--?f

2

3
y : .

e

Figure 3: One Faulty Process

e+1
T

2

v-*---y
3

. . .

e

process y has a.n id less than all the other e pro-

cesses 2 . . . d+ 1 (say 1). If y fails with arrows

directed as in the figure, even though the pro-

cess e+l with highest id will eventually have all

arrows directed towards it by all non-faulty pro-

cesses, its reachability will remain greater than

1. The reason for this is that processes 2. , . ! will

never redirect edges towards the smaller y, and y

will never redirect the edge toward E+ 1 because

it failed.

To overcome this problem, one can introduce
the idea of redirecting arrows according to in-

tirrccrl ids. The indrlcccl id of a process j as WCII
I>y i is the id of the process with highest, id (<lx-

clucling i) from whit+ j is ~~~~ha.l~lc~ in C’(i). ‘l’hfk

problcrn occurring iu t,hc oxa.rnpla of I<‘@~rr 9 is

solved, since the induced id of y is e+l, and all

processes will thus redirect their arrows towards

it.

Yet, this modification does not suffice. In the

example of Figure 4, the two processes 2: and y

may have both failed in the middle of a redirect

mutation. Thus, none of the properties assuring

that all processes will read the same arrow sta.te

for GARRO WzQ will ever hold. The largest live

process with id e+l may see the arrow pointed

from 3: to y, a.ntl have rea.chability greater tl1a.n
I, while aJ1 processes 2.. . e+ I see the arrow di-
rcrlcd from y to z, thus hot, seeing y as having

ait ilitl\iwcl icl elf 4+ 1.

87

The problem arises because the induced id

“flows” from the indumcing node through inter-

mediate nodes that may be fiaulty. To overcome

this problem, a secondl data structure R.$NGE

is added, constructed from a.rrows in a manner

equivalent to GRAPH, allow.ing the induc.ed ids

to “fiow” directly. The induced id of j as seen

by i is the id of the process with the I,ighcst

id (excluding i) who points an arrow toward j

in RANGE. Processes will indicate which pro-

cesses are in their reachkability sets by redirecting

arrows in RANGE toward them. The following

is a construction of a deadlock free !-exclusion

algorithm based on the above scheme.

Construction 6

do forever

remainder

Xi := true;

for all j in { 1 , . . n } do

redirect(i,j, GRAPH)

od;

L: updale(GRAPH j;

update(RAN GE);

if J!Q(i,GRAPH,X)(> 4Y then goto L fi;
critical-section

Xi := false;

od ;

where the update procedures are

update(GRAPH):
for all j do

if not xj then.

redirect(i, j, GRAPH) fi;

C: if j > i and z!j then

redirect(i, j, GRAPH);

for all k do

if j + kin RANGE then

retLi:vcl(i, k, GRA P II)

f-4.
od

fi;
od;

update(RANCE):

for all j do

if (j in %(i,GRAPH,X))

or (not xj) then

redirect(i, j, RA,YGE);

fi

od ;

Construction Lemma 6 ‘Tlw ~otulruction is

jrce of P-dcadiock.

I
In the next section the “sl.atic” ids used in

line C of construction 6 will be replaced by “dy-

namic” ones, therefore weaker requirements than

the ones met by the static ids in construction 6

are used in the proof below.

Proof Assume by a way of contradiction that
the system is deadlocked. Let L be the set of

live processes outside the remainder, and F be

the set of faulty processes outside the remainder.

There exists a time after which all live processes
outside the remainder cea.se entering the Critical

Section, and no new processes join L. Assume

that eventually there esists a unique process with

a maximal id rnax in L (for simp1icit.y denote

this process as VUZX). A maYuima3 id is such that

all processes in L see themselves as having ids

smaller than max, a.nd UI.OX Sees its id as la.rger
than all other ids in L. (There alwa.ys exists such

a “static” id max). Since all processes i E L

call %(i, GRAPH, X) infinitely oft,en, obtaining

(S(i,GRAPH,X)(>_ t+ 1, and since by assump-

tion IFI 5 L - 1, it must be the case that there

exists a process q E L apart from ~UX that ap-

pears in ?fi(max,GRAPH, X) of max infinitely

often.

Without loss of generality, assume that there

exists a fixed path of edges starting in ~a2 and
leading to q, in which all the intermediate nodes

(if they exist) belong to F, and that path ap-

pears infinitely often in G’(mnz). Let qF E F

be the process that directly prrccdcs q in path.
l&h time qf2 appca,rs ill X(nJn:l:, C:I<A 1’11, .‘i)

when called by mnx, process TTWX performs
rcdirect(max, qF, llrl N GE). Since qF is falllty
and thcrrcfore does not start ally new mutation,
thc>n by &irn 1, evc?ntrra.lly the* RANGI;,’ a.rrow

brtwecn ~IML:I: a.nd q/*3 is tlircctcd toward QF. Also

by CLaim I, every other live process rea.ds it so.

88

~Tence, eventually q will direct its GRA PIZ arrow

toward I@, and again because qF is faulty, Claim

1 implies the arrow will eventually stay that way

in all reads. This contradicts the fact that maa:

reads this arrow from qF to q infinitely often. i

Corollary 2 Construction 6 prevents Iockout of

the process with the highest id among the non-

faulty processes outside the Remainder.

Proof Notice that in the proof of construclion

Claim 6, one uses only the assumption that mu5

does not enter the Critical Section. The proof

proceeds verbatim even if the other non-fauIty

processes do enter the Critical Section infinitely

often.

3.4 Avoiding Lockout

In this section a mechanism for creating dy-

namically increasing ids is presented. Using
this meclmnism, the ids of locked out processes

can be made to increase, until they ha.ve an id
higher thn.n 1.ha.t of ;\.i~y process that. is not. lockctl

out. Lly corvllnry r?) the dyna.tnic id assignment
grafted into the algorithm of the previous sub-

section will establish a lockout free !-exclusion
algorithm.

To create a dynavnic id mechanism, an addi-

tional new data-structure ID is introduced, con-

sisting of a collection of FORK;j data-types (de-

noted ID-F0 RKij), one for each pair processes

i,j E {l... n}, in a manner similar to that

of GRAPH, Every process wishing to enter the

Critical Section, will repeatedly attempt to col-

lect all forks offered to it. The number of forks a

process has in-use will constitute its dynamic id.

The process will offer the forks it has in-use only

after leaving the Critical Section. Thus, a pro-

cess that is blocked and is repeatedly collecting

forks, will have a monotonically increasing id.

To prove correctness of the mechanism, whiIe

abstracting the details of the previous construc-

tions, define oracle1 to be a procedure that arbi-
trarily generates a. value of loop or not-loop, mim-

icking entrance to the Critical Section or failure

to do so.

Construction 7 Let ID be as defined below,

and let every process i E { 1. . . n} perform the

following algorithm

do forever
L: increment-your(ID);

observe(ID);

if oracle1 = Zoop then goto L fi ;

initialize-your@);

end;

od;

where increment,your(ID), observe(ID) and ini-

tialize,your(ID) are defined as

increment-your(ID):

for all j in { 1 . . . n } do

take(i,j, ID) A

od;

initialize-your(ID):

for all j in { 1 . . . n > do

ofsr(i,j, ID)

od;

observe(ID):

for all j in { 1 , . . n } do

count := 0

for all Ic in (1 . . . n } do

if read(j, k, ID) = in-usej then

count := count + 1

fi

od;

idJ’ := (count, j);

od;

Construction Lemma 7 If there exists a non-

faulty process i, that in an infinite run has ceased

performing initializc,your operutions, then

1. All live processes will eventually have id”

greater than all idj for processes that ini-

tialize-your infinitely often.

2. All live prxxesses will eventually have the

same value for id”.

89

Proof Let Lz be the set of “blocked” live pro-

cesses which from some time on do not per-

form initialize-your, U the set of “unblocked”

live processes which perform it infinitely often,

and F the set of faulty processes. Eventually

every process in j E U performs take followed

by ofier infinitely often, and every process in

i E B performs t&e infinitely often and never

performs ofler. Thus, by Claim 2, eventually

all ID-F’ORKs between processes in B and pro-

cesses in U must be read as in-use at B. In

addition, since every process in U performs u#ep

infinitely often and every process in F is either

forever in the midst of the same mutation or not

mutating forever, then again by Claim 1, eventu-

ally no read of an ID..FORK between a process

in U and a process in F returns in-USck, k E U.
It follows that eventually each id in B will be

read as being greater or equal to [U], and each

id in U will be less than IUI, which establishes

the first part of the lemma.

The second part of the lemma follows directly

from the first part and Claim 1. m

Combining the above constructions, the fol-

lowing is a solution to the L-Exclusion Problem.

Construction 8

do forever

remainder

2; := true;
for all j in (1 . . . II } do

rcclirect(i, j, G.rL4P II)

od;

L: increment-your(ID);

observe(ID);

update(GRAPH);

update(RANGE);

if J%(i,GRAPH,.X)J > e then goto L fi;
critical-section

initialize-your(ID);

x; := false;

od ;

Construction Lemma 8 The construction

provides lockout jrw tl-exclusion.

Proof Follows from (:onstructioa Lctumas 6 and
7 and corolI;wy 2. m

90

4 Acknowledgements

We wish to thank Mike Merrit and Larry

Rudolph for important conversations during the

course of our work.

5 References

[B87] 13. Bloom, “Constructing two-writer

atomic registers,” PTOC. 6th ACM Symp.

on Principles of Distributed Computation,

1987, pp. 249-259.

[BP871 J. E. B urns, and G. L. Peterson, “Con-

structing two-writer at.ornic registers,” Prac.

6th ACM Symp. on Principles of Dis-

tribulcd Computation, 1987, p13. 222-231.

[CIL87] B. Chor, A. Israeli, and M. Li,

“On Processor Coordination Using Aspn-

chronous Hardware”, Proc. 6th ACM Symp.

on Principles of Distributed Computation,

1987, pp. 86-97.

[CL851 K. M. Chandy, and L. La.mport, “Dis-
tributed Snapshot: Determining Global

States of Distributed Systems,”
Trans. on Prog. Lang. and Sys. 1, 6

pp. 63-75.

[CM841 K. M. Chandy, and J. Misra,

ijrinking Philosophers Problem,”

Trans. on Prog. 2Lan.g. and Sys. 6, 4

pp. 632-646.

A CM

1985,

“l’llt?

A CA4

1984,

[DDS87] D. Dolev, C. Dwork, and L. Stock-

meyer, “On the Minimal Synchronism

Needed for Distributed Consensus,” J. ACM
34, 1987, pp. 77-97.

[FLBB79] M. J. Fischer, N. A. Lynch, J. E.

Burns, and A. Borodin., “Resource Alloca-
tion with Immunity to Limited Process Fail-

II l-f?,” PIVC. 20th IDl?E Symp. on Founda-

tiorls oj Computer ,S&YMYC’, .1979, pp. 234-

254.

[FLBB85] M. J. Fischer, N. A. Lynch, J.

E. Burns, and A. Borodin, “Distributed
Fifo Allocation of Identical Resources Using

Small Shared Space,” MIT/LCS/TM-290,
1985.

[FLP85] M. J. Fischer, N. A. Lynch, and M.

S. Paterson, “Impossibility of Distributed

Consensus with One Faulty Processor,” J.

ACM 32, 1985, pp. 374-382.

[H87] M. P. Herlihy, “WaitFree Implementa-

tions of Concurrent Objects,” Technical Re-

port, Dept. of CS, CMU, 1987.

[IL871 A. Israeli, and M. Li, “Bounded Time-

Stamps,” Proceedings of the 28th Annual

Symposium on Foundations of Computer

Science, 1987, pp. 371-382.

[L86a] L. Lamport, “On In terprocess Commu-
nica.tion. Paat I: Basic Formalism,” Dis-

tributed Computing I, 2 1986, 77-85.

[L86b] L. La.mport, “On Interprocess Comtnu-

nica.tion. Part II: Algorithms,” Distributed

Computing 1, 2 1986, pp. 86-101.

[L86c] L. Lamport, “The Mutual Exclusion

Problem. Part I: A Theory of Interprocess

Communication,“ J. ACM 33, 2 1986, pp.

313-326.

[L86d] L. Lamport, “The Mutual Exclusion

Problem. Part II: Statement and Solu-
tions, “ J. ACM 33, 2 1986, pp. 327-348.

[LA871 M. G. L oui, and H. Abu-Amara, “Mem-

ory Requirements for Agreement Among

1Jnreliablc Asynchronous Procesws”, Ad-

c~anres in Computing llcscarcfi, vol. 4, 1987,

pp. 163- 183.

(N87] R. Newman-Wolfe, “A Protocol for Wait-

free Atomic, Multi Reader Shared Vari-

ables,” Proc. 6th ACM Symp. on Princi-
ples of Distributed Computation, 1987, pp.

232-248.

[P-83] G. L. Peterson, “Concurrent Reading

While Writing,” ACM TOPLAS 5, 1 1983,

pp. 46-55.

[PR87] (i. I,. I’cAerson, il.lltI ;I. I;‘,. Ihrus, “(h-

cu rrcn t Read in g W II i lc Wri ling,” I’rocfrff-

ings of the 28th Annual Symposium on

Foundations of Computer Science, 1987, pp.

383-392.

[VA861 P. Vitanyi, and B. Awerbuch, Atomic

shared register access by asynchronous

hardware, Proceedings of the 27th Annual

Symposium on Foundations of Computer

Science, 1986, pp. 233-243.

6 Appendix

In this appendix, an informal proof of the valid-

ity of constructions 1-3 is presented. A formal

proof based on Lamport formalism ([L86a]) will

be given in a later version of the paper.

For the proof consider a given FORK;j. It

will be argued that the set of lower level sys-

tem executions defined by constructions l-3 are

implementations of a set of higher level system

executions defined by the abstract data type. It

is assumed that no system execution begins in

the middle of a mutation. A global time model

of system executions is assumed.

Assume that initially any read returns F = 0

and W; = wj = false.”

Consider the following pre-conditions and post-
conditions for mutation operations. A condition

SIICII its { F = 0 A tuj = true } is irrtcrprctcd to

nwan that a read by any process would return
I;’ = 0 and wj = drne. These conditions will

be required to hold ody for reads performed in

intervals of the designated type described in sec-

tion 3.1, They constrain possible alternative ex-
ecutions of the prefixes of sequences of the lower

“This assumption is not necessary but simplifies the
proob.

91

level operations as i,mplied. by the implementa

tion. Thus, if a read is performed in. an interval

as designated, the alppropriate value will be re-

turned. The conditions are written in. short form,

where for a program istatement S and some pred-

icate P, {condition}S{post-condition} means

that {condition A P)S(postxondition A P} and

(xondition A P}S{ -condition A P} (where

condition and post-condition are different).

take;:

{F = 0 A wj = false}
if read(FORZi;j) = ‘ofleredj then

Wi := true;

{F = 0 A w; = true}

F := 1;

{F = 1 A w; = true}

fi;

one ri :

{F = 1 A w; = true}

if read(FORK;j) = ,in-usei then

w; := false;

{F = 1 A 20; = false}

fi;

takej:
{F = 1 A Wi = fake}

if read(FORli’;j) = ,oflered; then

Wj := true;

{F = 1 A Wj = tTt.E}

F := 0;

(F = 0 A Wj = true}

fi;

OfltYj:

{F = 0 A wj = true}

if read(FORKij) = in-usej then

Wj := false;

{F = 0 A Wj = false)

fi;

Given the initial (conditions, the only muta-
tion whose pre-condition is met is take;. Since

the precondition of :any mutation that could be
concurrent with take,; will not hold until the com-
pletion of take;, the post conditions of take; will

hold upon its completion.

After the completion of the take; mutation,

the precondition for ogler;, and only for it, holds.

Until the execution of the iassignment to w; in

ofleq, the pre-conditions of none of the other

mutations hold. Only once this assignment oper-

ation is started, the pre-condition of takej, and

only takej, may hold. Thus 11 might be writing w;

while j performs takej, yet, this does uot impair
the correctness of the post-condition of fakci,

given that its pre-condition wa.s true. ‘l’1~011gh

the post condition of % might not hold following

the a tabej (and only it), it will not matter since

anyhow it is a pm-condition only for takej. The

pre-condition of any mutation by i will not hold

prior to the assignment of wj in offerj. This will
only happen after the completion of the current

takej, after which only the pre-condition of an

oflcrj can hold, and SO on.

The above arguments in-formally imply that

once a pre-condition of a mutation holds, it will

continue to hold until the mutation takes pla.ce,

and as long as it doesn’t take place the pre-

conditions for all other mut,ations do not hold.

Proof of Construction Lemma 1 Properties
PI, 1’2, and P3a clearly hold. The above ar-
guments imply that when the pre-condit,ion for

a mutation holds, it will hold until the process

performs the mutation, therefore Property P3b

holds. m

Proof of Theorem 1 Construction Lemma 3

implies that if any process reads offered;, then

j also will also read it. Thus, the pre-condition

to takej holds and by the above arguments will

still hold as long as j will not perform takej.

Therefore, P4 holds.

Property P4 further implies that once a pro-

cess has read ofleredj following which a takei

was performed, every process will read in-use;

as long as an offer; will not start.

Proofs of all other properties follow by similar

arguments. 1

92

