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Most of the research in concurrency control has 

been based on the existence of strong syr.chro- 

nization primitives suc:h as test and set. Fol- 

lowing Lamport, recent research promoting the 

use of weaker primitives, “safe” rather than 

“atom.ic,” has resulted in construction of atomic 

registers from safe ones, in the belief that they 

would be useful tools for process synchroniza- 

tion. We argue that the properties provided by 

atomic operations may ‘be too powerful, masking 
core difficulties of problems and leading to incf- 

ficicncy. We thcrcforo advocate a difrercnt ap- 

proach, to skip the intc~r~ncdiatc step of arhicv- 

i~lg atomicity, and solve problems directly from 

safe registers. Though it has been shown that 

“test and set” cannot be implemented from safe 
registers, we show how to achieve a fair solu- 
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tion to &-c:xcl usion, a classical c‘oncurrcncy con- 

trol problcn~ proviorisly solvA assuming a v(‘ry 

powerful form of atomic “test and set”. We do 

so using safe registers alone and without intro- 

ducing atomicity. The solution is based on the 

construction of a simple novel non-atomic syn- 

chronization primitive. 

1 Introduction 

Understanding the fundamental complexities of 

synchronizing concurrent operations of processes 
that sha7.re resources has been a constant rc- 

sea.rch topic in multi-process computing. RIost 

of the past research was based on the assump- 

tion tha.t even t.hough processes access shared 
memory concurrently, they preform their oper- 

aCons atomically, or even worse, they have ac- 
cess to powerful constructs like atomic memory 

operations or “test-and-set.” This assumption 

introduces the possibility of circularity in design 

- what value is there in breaking pro- 

cesses’ collision using a primitive oper- 

ation that itself requires breaking the 

same collision? 

I’owerful operations ran mask the “core” dif- 

ficulties in coordinating concIIrrcnt processes. 

Larnport has maclc an important sl.cp in avoidirlg 
the USC of powerful operations by introducing a 

very weak shared memory communication mt*ch- 
anism, the Single-Writer-Sillgle-R.cstlcr Safe 13it 
(subsequently referred to as a %fc Bit). Read 



a.nd Write operations on a Safe llit are a.ssumcd 

to take up a non-zero interval of time whose ac- 

tual length depends solely on the speed of the 

process performing the operation. A read inter- 

val that does not overlap a write interval, returns 
tlrc last value that was written, otherwise it a.r- 

I)itrarily returns zero or one. l’hc~ question wc 

face is: what is the power of safe bits, and how 

ma.ny sak bits itre used to solve a problcri~? 

March research has been directed towards con- 

structing atomic registers from safe bits. That 

is, shared memory communication mechanisms 

in which, though performed concurrently, each 

operation can be considered to have been per- 

formed at an instance of time. These con- 

structions [B87,BP87,N87,PB87,VA86,IL87] are 

costly (in the number of safe bits used), quite 

complex, and their correctness difficult to verify. 

Moreover, it has been shown by Herlihy [H87], 

that no “powerful” concurrency control element 
can be constructed using atomic registers, unless 

one process waits for aiiot.hcr to romplctc its op- 

cr;dion. (i .(b. f:l.sl.cr proc~ssc3 il.rc forc*cd t.0 wa7.i t 
f;)r a slowc~r one 1.0 ~mpl~~l,~ its op~~r;r.f,ioiIs). llis 

~oncl~ision is. that. sin(,(t t.hc> wai t-I’rc~c~ncss prop- 
cbr1.y of a.t.oiilic rc&tcrs is of no sigiiificanccb, one 
might, as well crnploy a universal &mC~nt 1.lla.t is 

“sf.rongcr” t.1la.n t&-and-set, even though it has 

the drawback of introducing waiting. 

Our approach here, in contrast, is to tailor spe- 

cial waitfree data-structures to various classes of 

problems, in the belief that the special seman- 

tics and features of each class will allow one to 

manage with data-structures that are much less 

complex than atomic registers. 

1.1 Our Results 

l’hc nlain result. of the paper is the const,rric:tion 

of il. fi1.i r tlct.c~rliliiiisl.ic solulion 1.0 the I-ICwl~usio~i 

~,r~oblc~~. from safe bits directly, bypassing the 

construction of atomic registers. ‘1’0 this end, 

we introduce it simple new dstu-type irrrplerncntcrl 

from .!!& Bits. The cost of the solution (mea- 
sured in number of safe bits used) is equivalent 

to the lowest cost [PB87, IL871 of constructing 

only a constant number of atomic registers. 

The 4?-cxclusior~ problem, a classic cxamplc in 
concurrency control, was first introduced a.nd 

solved by Fischer, Lynch, Hums, and Borodin 

in [FLBB79]. The problem arises when a group 

of processes are spontaneously invoked, possibly 

needing private access to one of ! identical re- 
sources. ‘The ability of Lhc solul,ion to withstand 

tlrc! slow-down or even the crash of few procPssc3 

(e - 1 of then~), as well its the absence of col- 

laboration of process not requesting a rcsoIircc, 

a.rc inherent to the problem. Previous solutions 

([FLBB79,FLI)B85]) to this problem, assumed 

existence of an atomic memory operation much 

more powerful than test-and-set, and were fo- 

cused on achieving strong fairness properties. It 

was assumed that processes do not fail while per- 

forming this atomic operation. 

A test-and-set operation is itself much more 

powerful than any operation that is imple- 

menta.ble by safe bits. Its definition implies the 

mutual exclusion of the processes that concur- 

rent.ly access it. It can be used to serialize con- 
crrrr~nt events hy “I.ilne-stil.ntping” them. Orrc 

rail c~asily rc*ii.ch a consensus arrtorlg I~itrl,icipii.l.- 

ing I)rocossf3, in spil,tr of il. single crash, using il. 

tc!sf.-a.nd-sctt. IJy ii. diroc:t rcbtl rrcl,ion to ‘I’hcorerf~ 

1,” in [DI)S87], one can prove that there is no im- 

plementation of test-and-set by atomic registers 

(by safe bits as well), even if only a single fault 

can occur. This result was previously proved in 

[LA87,CIL87] using a direct proof along the lines 

of [FLP85]. Thus, a solution to the !-exclusion 

problem that does not employ “test-and-set”, is 

of interest (let alone not using “atomic” registers, 

with their complex and costly implementation). 

1.2 Properties of the Solution 

In or(lcr to elinlirra~t,c~ solrrtions that. “Jlid~~” the 
wa.it,ing for a slow or f;r.rrII.y process to corri~A~t,c! 

execution of concurrent operations, the faililrf~ 

model assumed is one in which a process may un- 

detectably stop functioning while executing a.ny 

operation in its protocol (this is the failure model 

of [FLBB79]). In fact, a process may fail while 

writing a single bit. Since processes can not dis- 

tinguish between a failed process and a very slow 
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one, a process cannot “wait” on less than e other 

processes. 

Lamport [L86dj ~01~~2s the mutual exclusion 

problem using safe registers, but in his solu-tion a 

slow process can slow down (or block) every other 

process. He assumes it weak failure model in 

which a failed process eventua,lly resumes its op- 

erations and ends up stopping gracefully. Thus, 

he avoids the problem that may be associated 

with a process “never” terminating its wri.;e op- 

eration. 

‘1%~ fairness we actiicvc in this paper is that 

any process that indicates its wish to utilize a rc- 

source, will eventually obtain it. Achieving fair- 

ness is the crux of the difficulty. Because there 

are e resources, and because no process ma:, wait 

for any other process since it might be faulty, re- 

solving the contention among the processes in a 

fair manner becomes more complicated than in 

mutual exclusion, making a novel approacn nec- 

essary for fair &exclusion. 

pects of synchronization problems, and may sub- 

stitute atomicity in these applications. 

The organization of our solution lends itself 

to a simple clear and modularly structured cor- 

rectness proof. The problem is separated into 

its different elements. The interface between the 

elements is such that when one element is con- 

sidered, the effect of the other elements can be 

abstracted via “black-boxes” whose intcrfa.cc is 

concise enough as not to increase the complesity 

of the solution of each element. All the sepa.rate 
solutions put t.ogcthcr solve the original proh- 

Icrn. A by-product of the ability of our solu- 

tion to withstand !! - I possible failures is tha.t 
only the “slow-down” of e processes or more can 

slow-down the progress of a process wanting a. re- 

source. Another implication is tha.t the reading 

and writing of our data-structures, ea.& in isola- 

tion, are waitfree and bounded, since no process 

needs to wait for any other. 

In the following sections the e-exclusion prob- 

lem and its solution are presented. For clarity, 

some of the proofs are left to the appendix. 
1.3 A New Synchronization ‘Data 

Structure 

2 The Problem 
The basic entity required is a data-structure that 
implies some precedence relation between pairs 

of processes. Roth processes have to by able 

to manipulate it, and all processes should be 

able to read it. The problem is, that il’ both 

processes may failstop while writing the data- 

structure, no single read outcome is ever possi- 

ble without communication among all readers. 

What is crucial for the purpose of synchroniza- 

tion is that if only one process in a pair is faulty, 

the other process can still unambiguously ma- 

nipulate the data structure to give precedence to 

the one that failed. This is accomplished with 

a data-structure that is implemented by a pair 

of symmetrical sub-structures, each consisting of 

three safe bits and manipulated by a single pro- 

cess. Our solution to the &exclusion problem 

utilizes three instances of the data structure per 
pair of processes, each in a different role. Em- 

ploying the same data structure in differer t roles 

may indicate its usefulness in solving other as- 

A concurrcut system is composed of r~ processes 
communicating via a shared memory consist- 

ing of of safe rcg&sters ([L86b]), the operations 

on which a.re reads and writes. Since single- 

writer-mvlti-reader (SWMR) boolean safe regis- 

ters can easily be constructed from single-reader- 

single-ulriter boolean safe registers [L86b], it will 

be assumed that the shared memory consists of 

SWMR safe registers. 

In the ~-Exclusion Problem, the program of ev- 

ery process consists of two distinguished sections: 

a Remainder Section and a Critical Section. Pro- 

cesses alternate between executing the remainder 

and the critical sections. A jailstoppcd process 

may stop at any operation, or may never com- 

plete executing its current operation. The exe- 
cution of any operation by a non-faulty process 

takes unbounded but finite time. It is assumed 
that faiIure is undctctecta.hlc by other processes. 
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To solve the e-Exclusion Probknz, one is required 

to design erzlry and exit progriam scctious to bc 
performed before cntcring and nftcr txiting the 

Critical Section, such that wheu adtlccl to the 
original progra,m of every process, will assure 

that the following properties hold: 

I-Exclusion - no more than f? process are con- 

currently executing the critical section at any 

time. 

C-Deadlock Avoidance - if there always exists 

some non-faulty process outside the remainder, 

and less than f2 processes failed outside the re- 

mainder, then, there always exists a non-faulty 

process that alternates between executing the 

R.emainder and the Critical Sections infinitely 
often*. 

LocEout Freedom -- if less than e processes fail 

outside the Remainder, then any non-fa.ulty pro- 

cess outside the Remainder will eventually cxc- 

cute the Critical Section. 

In the pa.per definitions follow the basic sys- 

tem formalism of Lamport ([L86a]). A global 

time model of such a system is assumed. An ab- 

stract data type will be defined and proved to be 

implementable in the system. The protocols for 

solving the &exclution problem will be given in 

terms of the abstract data type. 

3 The Solution 

In [L86d], Lamport shows how fair solutions to 

mutual exclusion problems can be created, by su- 
perimposing a fukrrless construct on a completely 

unfair deadlock-free mutual-exclusion construct. 

Many such unfair deadlock-faze mutual-exclusion 

constructs appear in the literature, where pro- 

cesses having greater ids or ones that are fast 

enough, may cause others to starve. To provide 

fairness, a two part fairness construct is added, 

one part of it to be performed before entering 

the unfair deadlock free exclusion construct, and 

the other after exiting the Critical Section. One 

is able to construct a solution based on such a 

‘This definition is equivalent to the definition of A 

Deadlock in [FLBB79]. 

superimposition, because the fairness construct 

can be allowed to prevent processes leaving the 

Rcmaindcr, from entering the unfair exclusion 
section, as tong as some process is already in it (if 

there is no process already in it, all those entering 

have equal precedence, and favoring any of them 

will not impair the fairness). This possibility is 

unique to the mutual exclusion problem, since if 

some process is in the unfair exclusion construct 

when others enter the fairness construct, it has 

priority, and they can delay entering the Critical 

Section (via the unfair construct) without caus- 

ing deadlock or violating fairness. 

Unfortunately, the above type of modularity, is 

impossible for !-exclusion, the reason being that 

there is more than one slot in the critical sec- 

tion. Having the fairness construct prevent all 

processes from entering the unfair exclusion con- 

struct because there is a process there, would 

cause e-deadlock. Having it prevent only a nec- 

essary number would mean that it is not only a 

fairness construct but a solution to the probIem. 

On the other, hand if it will allow processes to 

enter the unfair exclusion construct, then lock- 

out may occur. A novel type of construction is 

therefore needed. 

The solution presented in the sequel is of such 

a novel type, providing a different form of modu- 

larity than that described above. It decomposes 

(and is therefore presented) as follows: In Subsec- 

lion 3.2, an .&exclusion construct that is unfair 

and deadlock prone is presented. This construct 
is rellncd in Subsection 3.3 to provide decdtock- 

free &exclusion. Though unfair, it will prevent 
the starvation of the non-faulty processes, out- 

side the Remainder, that have the highest ids. 

In Subsection 3.4, a construct providing consis- 

tent dynamic ids is presented. This construct 

is embedded in the above constructions, so that 

any starved process will eventually obtain a dy- 

namic id higher than any non-starved process, 

making itself eligible to pass through the unfair 

deadlock-free exclusion construct. 

In a pictorial manner, the core of the above 

constructions may be viewed as a form of a 

“blackboard” in shared memory, where each pro- 

cess writes down its relations with others, for 
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all to see. The board consi:&s of a collection 

of abstract data-structures, each written by two 

processes, readable by all, and denoting a I?rece- 

dence relation between them. In the following 

section, a detailed definition of these abstract el- 

ements and their imple:mentaltion is provided. 

3.1 The Abstract Data-Types 

In this section a novel abstract data type ,forE is 

defined and implemented, resembling the “fork” 

in Chandy and Misra’s [CMS4] solution to 611e 

C~c!neralizcd Dining I’liilosophcrs problem. As irl 

[CM84], it is used to establish prccedcnca be- 
tween the two processes lhat operate on ii,. The 

solution to the e-Exclrlsion problem will employ 

three instances of the data-type per each pair 

of processes. In two of these instances, t:xe full 

power of the fork will not be utilized, and a sim- 

pler data-type arrow is thus defined, by coalesc- 

ing groups of states and groups of operations of 

the fork. 

An instance of fork, FOIiTh’;j, is assclciated 

with two processes i .and j. Logically, it can 

be thought of as an actual “fork” that is shared 
by i and j. At all times the “fork” is “in the 

hand” of one of the processes. The fork cy- 

cles through four states in,usei, offer&;, i?l,UStTj, 

and o$eredj, in that order. The transitions to 

iltAMC; or o&rc(i; may happen as a rc3ult of 
the operations I&e; or offer; (respectively), cx- 

ccuted by i, and likewise for j. An important 

characteristic of the f;ork is that it is “observ- 

able” by all processes (not only the two n-anipu- 

lating it)2. A readk operation ma.y thus lx pcr- 

formed by any process in the system, rcl urning 

one of the four possittle fork states (rha.ra.ck~r- 

izcd by a collccEion of properties defined in the 

sequel). Formally: 

‘A major diffcrcncc froru the forks in [CM&l], and 

the core difficulty in implement.ing it aud proving its 

correctness. 

Figure 1: sequential fork manipulations 

by an arbitrary k, and an oJrerk(FORK;j) or 

takek(FORl(ij), by a mutator k E {i,j}. 

The first property of the fork is tha,t ea.ch rea.d 
rrt,nrns just one of the four allowable st,atcs3 

P 1 “sa.fc\Ilcss”: The value returned by a. 

rrad,,.( 1’0 RA-\‘;j) opcra.tion is one of in-use;, 

O~ere(li, ill-?lPCj or OfScrctlj. 

The second property formalizes the indepen- 
dence between processes manipulating the fork, 

that is, that no operation requires the coopera- 

tion of other process. 

P2 “wait-freeness”: the read and mutation op- 

erations (by a. process that does not fail be- 

fore their completion) are completed within 

a finite time independent, of the relative ex- 

ecu tion speeds of other p roccsses. 

From Chc above dcscript.ion, it might seem tha.t 
opcbrations 011 the fork arc romplc~tdy serial in 

t.imc (as ill Ficprc I, where timt runs from left to 

right, and the int,ervals reprcscn t the dura.tion of 

take and ogler operations). Following Lamport, 

one could provide seriCalizability, i.e., the illusion 

that the operations a.re serial in time, by creating 

a fork that is a,tomic. It turns out thollgh, that 

atomicity is Ilot, nc?ccssary. The reason for t.llc 

simplicity of the fork’s construction is tl1a.t un- 
like atomicity, which is a. claim about all points 

in time, tlw main claims nldc i\.l10111. the fork a.rc 
rcstric1,cd to specific poilibs, or ra.t,licr, to int.cr- 

vnls of a. litt~it.c!tl type. ‘I’lrc on ty cln.iIn that, nccd 

bc Illid(? ;hc)uI, l.hc fork at every poitrl. in ((ime, is 

that it bc sa.fe! All other claims will be limited 

3Nof,c: (.hat. f.his property in it.sdl docks 1106 imply that 

t,he fork is “s&:” [I,S~b], tl1011g11 l.liis will follow whrn 

otlirr properties arc added. 
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to spwid types of intervals, such as those begin- 

ning at the end of the most recently started la& 
or ogler mutation, and ending before the start of 

the following mutation. As an example, given a 

situation as in Figure 2, claims about tj (a takej 

operation) are limited to the interval c, bounded 

by the beginning of the next operation (oflerj). 

Dche [Rl..R2] to be the interval from the 

start of RI to the end of 112, where 82 started 
after Rl. Continuing in the description of the 

fork’s properties, the following property states 

that the forks do not “change hands sponta- 

neously.” This is formalized by: 

P3 “stability”: 

a. Two reads RI and R2 such that no muta- 

tion overlaps the interval [Rl..R2], re- 

turn the same result. 

b. If a read Rl by mutator i returns either 

oflcrj or in-use;, then any read R2 by 
mutat,or i tha,t follows RI such that the 

int.erval [Rl ..R2] cont.,ains no mutation 
by d, will return the same result as Rl. 

A fourth property states tha.t if some process saw 

a. fork offered to j, j will also see this. 

P4 “consistency”: Let Rl be a rend by a process 

I; and R2 a read by mutator j that strictly 

follows Rl. If Rl returned ofleredi and no 

mutation by joccur in the interval [Rl..R2], 

then R2 will return the same result. 

Finally, the following fifth property enforces the 
power of the mutators to actually mutate the 

d&a-type. 

P5 “ltllll.il.l)ilil~.~“: 

a. A ~CVZ~ .R2 st,ricbly following a scq~~cncc 

of a wad RI followed by Julie’;, where 

Rl returns oflimdj or i?~-~~sei, will re- 
turn in-usei if no of3hri started in the 

interval [Rl..R2]. 

b, A read R2 strictly following a se- 
quence of a read RI followed by 

& 0; ti 

’ tjI I Oj 

I I 

I I 

’ c ’ 

Figure 2: concurrent fork manipulations 

oflcri (resp. tnkei), where Rl rc- 

turns in-use; (oflcredj), will not re- 

turn in-use; (ofleredj) if one or more 

of take; (ofleT;), takej and offerj does 

not occur in the interval [Rl,.R2]. 

c. A read R2 strictly following a sequence 

of a read Rl followed by ogler;, where 

Rl returns in-usei, will return o&red; 

if no mutation, other than ofiewdi, by 

either i or j occurs in the interval 

[Rl..R2]. 

Jlascd on the above definitions of the fork data 
type, a possible approach one might take in im- 

plementing it would be as a mutual exclusion 

algorithm between i and j. ‘l’hc process gain- 

ing control of the critical section, would have the 

fork, rclcasing it only when it leaves the critical 

section. A problem though is that this solution 

is not safe (Where is the fork when both i and 

j are outside their critical sections?). One can 

overcome this problem easily if processes ha.ve 

access to some ordinary shared memory, that is, 

multi-reader multi-writer memory where a pro- 

cess can overwrite what others wrote (with the 

assumption of course, that it is safe, and that the 

user is responsible for providing mutually exclu- 
sive writing access to it). The improved implc- 

mcntation therefore uses a, single safe bit F of 

this sha.1~~1 memory to rcbprcsent the fork. I?OI 

any two proccssc~s i sad j, where without loss of 
gcucrality i > j, Is’ = 1 will mean that i has the 

fork, and 17 = 0 will mean that j has it. An 

additional SWMR safe bit wi is used in every 

process i to provide mutual exclusion while pro- 

cesses access the shared memory bit F (since no 

such “ordinary” shared memory is available, F 

itself will later be constructed from safe bits). A 
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correctness proof of the construction appeass in 

the Appendix. 

Construction 1 Let FORKij be composed of a 

bit of shared memory, F, and two SWMA safe 

bits wi,wj, written by i and j respectively, where 

n rendk(FOllK;j) is performed as4 

ifF = 1 then 

if W; then return in-use; 

else return uflered; fi 

else 

if Wj then :return in-usej 

else return offeredj fi 

5; 

and takei(F0 RK;j) and ofer;(FORKij’) by a 

mutator i (those for mutator j are similar) are 

take;: if read(FORK;j) = ofleredj theta 

w; := true; 

F := 1; 

fi; 
offer; : if read( FO RK;j) = in-use; then 

Wi .*-= f”.lSe; 
fi; 

then 

Construction Lemma 1 Construclion 1 is a 

fork with properties [Pl] . . . [P3]. 

To implement F by safe registers notice that 

since F is written only by the mutators *i and j, 

it can be constructed from safe bits in a simple 

manner5 (proof omitted). 

Construction 2 Let F be composed of two 

SWMR sajc bits ji and j’j, wrillen by i nd j 

rcspeclivcly, where a read oj F is 

if f; = fj then return 1 

else return 0 fi; 

‘The order of the reads of F and Wi, wJ is crucial! 

“This use of “xor” bits appeared before in [f’83],[L87d] 

and a write of F (say of the value 1) is 

if f; # fj then f; := not f; 
else fi; 

thrn 

Construction Lemma 2 Construction 1 with 

F as in construction 2 is a fork with properties 

[Pl] . *. [P3]. 

How can one achieve “consistency” (property 

[P4] which is implied also by the stronger prop- 

erty [P5])? G iven any variable vi, and two dis- 

joint subsets of processes p, q CC { 1 . . . n}, consis- 
tency would mean that if processes in q see the 

new value written to vi, processes in p reading 

vi following the read of those in q, will also read 

the new value (unless a following write begins). 

A variable vi consistent with respect to q is con- 

structed in a simple manner (proof omitted): 

Construction 3 Let 2’; be constructed of two 

variables ZlJj)i (llld Vqi, IUI1CI.C CI 7WitC Oj Vi is per- 

jo1*9ncd ns 

aitd a trad Of ‘lli is a read Of IJpi for processes in 

p and of vqi for processes in q, then’ 

Construction Lemma 3 The variable vi is 

consistent with respect to q. 

Based on the above, the following theorem can 

be proved (the proof a.ppears in the Appendix). 

Theorem 1 Cotrslrurlion I I&II. F as i9i Chz- 

struclion 2 and with w; (and ‘UJj) consislenl with 

respect to { 1 . . . n,} - {i} ({ 1 . . . n) - {j]) is u fork 

satisfying properties [Pl] . . . [P5]. 

‘Note that if one c0nstruct.s a SWMR safe or regular 

register as in construction 1 of [L86b], then consislency 

can be achieved using a single register by simply changing 
the ordering of the writes. 
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To simplify the presentation, the forkis further 

abstracted to create an arrow abstract data type. 

The arrow is actually a fork in which the states 
OfJcr~ aud i?f.mcj arc coallcscc?rl to form the state 

i -+ j, and the same holds with the exchange of 

the roles of i imcl j. In a similar ma.nncr, the 
operations rCdiTCCli and TcdirfYlj arc considered 

to be takei followed by o~eri, and takej followed 

by o#erj respectively. Properties of the arrow 

will follow from those of the fork by way of its 

construction. 

Construction 4 The duta structure ARROW;j 

is constructed from Q FORI’c’;j data structure 

mutable by i and j, where a readk(ARROW+) 

operation for a process k is defined as 

case Tendk( FORIi;j) of 

OflCFedj OP ill-Use;: return j t i; 

O~~el’e(li OP Zn-?Isc;: ret urn i -4 j; 

end case; 

a.nd a Tedirccti(ARR014~ij) as a sequence of a 

take;(FORIi;j) followed by an ofler;(E’ORK;j). 

The following two claims about the abstract 

data types are made in order to simplify the 

proofs of the algorithms in following sections. 

The first claim characterizes a processes ability 

to manipulate the fork though the other process 

sharing it has failed. This includes for example 

the ability of a process to “pull an offered fork 

out of the other’s hand”. 

Claim 1 “Infinite mutation” - If a mutation by 

j lasts infinitely long, then 

0 if i performs Oflt2ri (wdiwctj) infinitely Of- 

ten, then ez~cnlually all rca,ds will never re- 

turn i?l-USe; ( j -+ i ); 

l if i performs take; infinitely often and even- 

tually does not perform any ofleri, then 

eventually all reads either always return 

in-use; or never return in-&Se;. 

Proof By [PZ], j must have failed during its 

current infinitely long mutation, which is either 

oflerj or takej. 
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l Assume that i performs o&r; infinitely of- 
ten. Assume that following the failure of j 

there exists a time at which a processor per- 
fornls a wad Rl that returns in-U.Wi. I,ct, 

R2 he any read strictly following an OfleT; 

that follows .Rl. fly [1’5b] and because j 

performs at most one of its operation dur- 

ing the interval [Rl..R2], R2 will not return 

in-use;. (The claim for redirecti follows di- 

rectly from the above). 

l The proof follows directly by letting Rl of 

[P5a] be a read that returns in-use; follow- 

ing the failure of j. m 

The second claim deals with the conditions un- 

der which a a process that continuously tries to 

take the fork, will eventually obtain it. 

Claim 2 If (111 mutations apart from OJW; are 

rxccuted infinitely ojten while eventually no 

oflcr; is executed, then eventually all reads will 

return i7LUSC.i. 

Proof Consider the following cases: 

1. 

2. 

3. 

3.2 

Eventually a process reads offered;, then by 

[P5b], since no offer; will ever be performed, 

following the next takej no process will ever 

read ofiered; again. 

Eventually a process reads in-usej, then by 

[P5b], by exactly the same arguments no 

process will ever read in-usej again. 

Eventually a process reads ofleredj or 
in-Usei, then by [P5a], following the next 

take; all reads will always return in-use;. a 

t-Exclusion 

To obtain .&exclusion, a GRAPH data structure 

is constructed. It consists of one instance of 

ARROWij (d enoted C-ARROWij) between ev- 

ery pair of processes i, j E (1. . . n}. In addition 

to GRAPH, each process k maintains a SWMR 

safe bit xk, which it sets to true upon leaving the 

remainder, and to false just before returning to 

it. The collection of all such xk, k E (1.. . n} is 

denoted as X. 



Every process wishing to execute the zritical 

section, reads X and GRA.PH. The o::der in 

which arrows in GRAPH and xk variables are 

read is unimportant ‘7. By reading the GRAPH, 

a process obtains a tournament graph G(ij on n 

nodes. Each edge (j, k:) in the graph is directed 

in the direction read for GARROWjk. Ii; is im- 

portant to note that ‘G(i) is a graph th:tt tnn?~ 

mucr have cxisted8, silncc even the rca.tling of a 

sin& edge (.j,k) involves reading the six bits of 

a GA RROWjk, concurrently with possible rcdi- 

rcction operations by ,i and j. 

LCt R;(C) dcllote Ihr! set of all llotlcs Icit.Cha.blC 

via a directed path from a node i (including i 

itself) in a directed graph G. The result of the 

procedure $?(i, GRAP.II, X) is defined as J’ollows: 

Definition 2 S(i,GRAPH, X): Read X and 

GRAPH. Let G’(i) be the subgmph of G(i) in- 

duced by all nodes k for which i read Xk = true. 

Return R;(G’(i)). 

If the cardinality of the reachability set 

W(i, G RAPIf, X) r(\ urned At to i is less l.han or 

oclna.1 to f?, node i may enter the critical :;cxtion. 

‘I’hc rcasm for choosi tlg reachihilily is that, a 

tmnsitive precetlen02 rclalion is ncctlotl. ‘I’aki~lg 

‘5 is reachable from j” to mean ‘5 is bcbre j”, 

if a process j is reachable from i, and a process 
k is reachable from j, lthen the transitivit;q of the 

reachability relation assures that both j and k 

will be before i. In general, transitivity assures 

that in any group of e-t 1 processes, some process 

will have all others before itg. Since GR.4PH is 

a dynamically changing structure, it remains to 

be shown that the reachability condition indeed 

suffices for f?-exclusion. 

Observe that the reachability condition is to a 

large extent independent of the rules governing a 

process’s mutat,iorl of arrows. Tn th t7msLr~ttction 

Idow, this inclcpcntlcncc is abstra.c:tctl by tllc 

‘Although as mentioned before, the order 01’ reads of 

single bits of each arrow is important. 
‘It is not even a snapshot [C1,85], that is, one l.hat 

could have existed. 
gUnfortunately, the reachability relation is nl>t a totd 

order (which can be u~~dl to break deadlo( rince it is 

not antisymmetric. 

procedure oracZe(GRAPH), whose arbitrary be- 
havior will later be replaced by that of a deadlock 

prevention mechanism. Thus, oracle(GRAPH) 

when called by i arbitrarily chooses some subset 

of arrows 01 which i is a mutator, and performs 

redirect on them. Let redirect(i, j, GRAPH) be 

redirecti(G4RROT~~j) and let every process i 

E { 1 . . . n } perform the a,lgoridhn~ tha.t fol- 

lows, then, even in fit.C@? of tllc a.hil.ra.ry Mli\.vior 

of ordr(GI~f1 PHI), tire following construction 

provides &exclusion: 

Construction 5 

do forever 

remainder 

xi := true; 

for all j in { 1 . . . n ) do 

redirect(i,j, GR=1PH) 

od; 

L: omcle(GRAPH); 

if /9?(i,GRAPH,X)I > ! then goto L fi: 

critical section 

xi := f&c; 

od; 

lflCl1 

Construction Lemma 5 No wore flwn P p7’0- 

cesses will ever be in file critical section sinaulta- 

neously. 

Proof Assume by a way of contradiction that 

a set C of more than & processes is in the criti- 

cal section between to and tIL. Since no process 

in the critical section is in the middle of exe- 

cuting a mutation of GRAPH, then by [Pl]- 

[P3], any readk(i, j) that started after to and 
ended before t’, for i,j E C, will return a 

uniqllc rc5lllt hr itlly k. ‘I’IIIIS, ItIc! gral)Il Ct = 

(C, {G-ArroU7(i,j) : i,j E C}), a.9 would have 

been &fined by the above rea.ds, is well defined. 
A contrxliction will be obt;Glled lby showing that 

there rxish a node ?: E 6’t wl~ose last execution 

of $?(i, GflA PIZ, X) before entering the Critical 
Section satisfies ~$?(;,CR,\PIl, X)1 2 1 R;(G,)l >_ 

e+1. 
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Observe that Gt is a tournament and con- 

sider the strongly-conncctcd-component dccom- 
position of Gt. There exists a “root” strongly 

conncctcd component R c Cl, whcrc for all 

i E R and j 4 R, i --t j. Let i be the last 

process in R to call ?3?(i,GRAPH,X) before en- 

tering the critical section, and let t* < to be the 

operation start time. From time t” to t’, no pro- 

cess in R executed any mutation, and therefore 

by [P3] the induced graphs of R in G’(i) and Gt 

are isomorphic. Moreover, since any read; of an 

G-ARROW;j, j E C - R between to and t* re- 

turns i --t j, a.nd since i performed uo mutation 
aft(~r I*, it follows by [1’3b] that the last, rcla,tl of 

CRAPI L)y 1: rc~t.ur~wtl i- j. 

Though this assures that i saw Il;((l’(i)) 2 l+l, 
it still remains to be shown that Ri(G’(i)) 2 4!+1. 

III its last read of xj,j E C- n, i must have rca.d 

zj = true, since otherwise j would have redi- 

rected its arrow to i following its last setting of 

pi to true before entering the Critical Section. 

By [P&J, since i does not perform mutations 

after t’, any read after to would have returned 
3 - 2. ’ This would have contradicted the fact 

that the edge points from i to j E C - R in Gt. 

It thus follows that an edge (;,j),j E C - R 
in Gt implies an edge (;,j) in G’(i). Thus, 

Ri(G’(i)) 2 R;(Gt) 2 C+l. A contradiction. 

I 

3.3 DeadIock Avoidance 

In construction 5, deadlock may occur because 

many processes may repeatedly have reachability 

greater than C, never entering the critical section. 

To overcome this problem, the arbitrary behav- 

ior of oracle(GRAPH) is replaced by the rule 

that processes redirect arrows towards those with 

higher ids. If there were no faulty processes, it 

is easy to see that deadlock would be prevented, 
since in a group of blocked processes, the one 

with highest id would eventually have all arrows 

directed towaads it, a.nd therefore its reachability 
set would be of size less tha.n P. 

e+1 

--?f 

2 

3 
y : . 

e 

Figure 3: One Faulty Process 

e+1 
T 

2 

v-*---y 
3 

. . . 
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process y has a.n id less than all the other e pro- 

cesses 2 . . . d+ 1 (say 1). If y fails with arrows 

directed as in the figure, even though the pro- 

cess e+l with highest id will eventually have all 

arrows directed towards it by all non-faulty pro- 

cesses, its reachability will remain greater than 

1. The reason for this is that processes 2. , . ! will 

never redirect edges towards the smaller y, and y 

will never redirect the edge toward E+ 1 because 

it failed. 

To overcome this problem, one can introduce 
the idea of redirecting arrows according to in- 

tirrccrl ids. The indrlcccl id of a process j as WCII 
I>y i is the id of the process with highest, id (<lx- 

clucling i) from whit+ j is ~~~~ha.l~lc~ in C’(i). ‘l’hfk 

problcrn occurring iu t,hc oxa.rnpla of I<‘@~rr 9 is 

solved, since the induced id of y is e+l, and all 

processes will thus redirect their arrows towards 

it. 

Yet, this modification does not suffice. In the 

example of Figure 4, the two processes 2: and y 

may have both failed in the middle of a redirect 

mutation. Thus, none of the properties assuring 

that all processes will read the same arrow sta.te 

for GARRO WzQ will ever hold. The largest live 

process with id e+l may see the arrow pointed 

from 3: to y, a.ntl have rea.chability greater tl1a.n 
I, while aJ1 processes 2.. . e+ I see the arrow di- 
rcrlcd from y to z, thus hot, seeing y as having 

ait ilitl\iwcl icl elf 4+ 1. 
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The problem arises because the induced id 

“flows” from the indumcing node through inter- 

mediate nodes that may be fiaulty. To overcome 

this problem, a secondl data structure R.$NGE 

is added, constructed from a.rrows in a manner 

equivalent to GRAPH, allow.ing the induc.ed ids 

to “fiow” directly. The induced id of j as seen 

by i is the id of the process with the I,ighcst 

id (excluding i) who points an arrow toward j 

in RANGE. Processes will indicate which pro- 

cesses are in their reachkability sets by redirecting 

arrows in RANGE toward them. The following 

is a construction of a deadlock free !-exclusion 

algorithm based on the above scheme. 

Construction 6 

do forever 

remainder 

Xi := true; 

for all j in { 1 , . . n } do 

redirect(i,j, GRAPH) 

od; 

L: updale(GRAPH j; 

update( RAN GE); 

if J!Q(i,GRAPH,X)( > 4Y then goto L fi; 
critical-section 

Xi := false; 

od ; 

where the update procedures are 

update(GRAPH): 
for all j do 

if not xj then. 

redirect(i, j, GRAPH) fi; 

C: if j > i and z!j then 

redirect(i, j, GRAPH); 

for all k do 

if j + kin RANGE then 

retLi:vcl(i, k, GRA P II) 

f-4. 
od 

fi; 
od; 

update(RANCE): 

for all j do 

if (j in %(i,GRAPH,X)) 

or (not xj) then 

redirect(i, j, RA,YGE); 

fi 

od ; 

Construction Lemma 6 ‘Tlw ~otulruction is 

jrce of P-dcadiock. 

I 
In the next section the “sl.atic” ids used in 

line C of construction 6 will be replaced by “dy- 

namic” ones, therefore weaker requirements than 

the ones met by the static ids in construction 6 

are used in the proof below. 

Proof Assume by a way of contradiction that 
the system is deadlocked. Let L be the set of 

live processes outside the remainder, and F be 

the set of faulty processes outside the remainder. 

There exists a time after which all live processes 
outside the remainder cea.se entering the Critical 

Section, and no new processes join L. Assume 

that eventually there esists a unique process with 

a maximal id rnax in L (for simp1icit.y denote 

this process as VUZX). A maYuima3 id is such that 

all processes in L see themselves as having ids 

smaller than max, a.nd UI.OX Sees its id as la.rger 
than all other ids in L. (There alwa.ys exists such 

a “static” id max). Since all processes i E L 

call %(i, GRAPH, X) infinitely oft,en, obtaining 

(S(i,GRAPH,X)( >_ t+ 1, and since by assump- 

tion IFI 5 L - 1, it must be the case that there 

exists a process q E L apart from ~UX that ap- 

pears in ?fi(max,GRAPH, X) of max infinitely 

often. 

Without loss of generality, assume that there 

exists a fixed path of edges starting in ~a2 and 
leading to q, in which all the intermediate nodes 

(if they exist) belong to F, and that path ap- 

pears infinitely often in G’(mnz). Let qF E F 

be the process that directly prrccdcs q in path. 
l&h time qf2 appca,rs ill X(nJn:l:, C:I<A 1’11, .‘i) 

when called by mnx, process TTWX performs 
rcdirect(max, qF, llrl N GE). Since qF is falllty 
and thcrrcfore does not start ally new mutation, 
thc>n by &irn 1, evc?ntrra.lly the* RANGI;,’ a.rrow 

brtwecn ~IML:I: a.nd q/*3 is tlircctcd toward QF. Also 

by CLaim I, every other live process rea.ds it so. 

88 



~Tence, eventually q will direct its GRA PIZ arrow 

toward I@, and again because qF is faulty, Claim 

1 implies the arrow will eventually stay that way 

in all reads. This contradicts the fact that maa: 

reads this arrow from qF to q infinitely often. i 

Corollary 2 Construction 6 prevents Iockout of 

the process with the highest id among the non- 

faulty processes outside the Remainder. 

Proof Notice that in the proof of construclion 

Claim 6, one uses only the assumption that mu5 

does not enter the Critical Section. The proof 

proceeds verbatim even if the other non-fauIty 

processes do enter the Critical Section infinitely 

often. 

3.4 Avoiding Lockout 

In this section a mechanism for creating dy- 

namically increasing ids is presented. Using 
this meclmnism, the ids of locked out processes 

can be made to increase, until they ha.ve an id 
higher thn.n 1.ha.t of ;\.i~y process that. is not. lockctl 

out. Lly corvllnry r? ) the dyna.tnic id assignment 
grafted into the algorithm of the previous sub- 

section will establish a lockout free !-exclusion 
algorithm. 

To create a dynavnic id mechanism, an addi- 

tional new data-structure ID is introduced, con- 

sisting of a collection of FORK;j data-types (de- 

noted ID-F0 RKij), one for each pair processes 

i,j E {l... n}, in a manner similar to that 

of GRAPH, Every process wishing to enter the 

Critical Section, will repeatedly attempt to col- 

lect all forks offered to it. The number of forks a 

process has in-use will constitute its dynamic id. 

The process will offer the forks it has in-use only 

after leaving the Critical Section. Thus, a pro- 

cess that is blocked and is repeatedly collecting 

forks, will have a monotonically increasing id. 

To prove correctness of the mechanism, whiIe 

abstracting the details of the previous construc- 

tions, define oracle1 to be a procedure that arbi- 
trarily generates a. value of loop or not-loop, mim- 

icking entrance to the Critical Section or failure 

to do so. 

Construction 7 Let ID be as defined below, 

and let every process i E { 1. . . n} perform the 

following algorithm 

do forever 
L: increment-your(ID); 

observe(ID); 

if oracle1 = Zoop then goto L fi ; 

initialize-your@); 

end; 

od; 

where increment,your(ID), observe(ID) and ini- 

tialize,your(ID) are defined as 

increment-your(ID): 

for all j in { 1 . . . n } do 

take(i,j, ID) A 

od; 

initialize-your(ID): 

for all j in { 1 . . . n > do 

ofsr(i,j, ID) 

od; 

observe(ID): 

for all j in { 1 , . . n } do 

count := 0 

for all Ic in ( 1 . . . n } do 

if read(j, k, ID) = in-usej then 

count := count + 1 

fi 

od; 

idJ’ := (count, j); 

od; 

Construction Lemma 7 If there exists a non- 

faulty process i, that in an infinite run has ceased 

performing initializc,your operutions, then 

1. All live processes will eventually have id” 

greater than all idj for processes that ini- 

tialize-your infinitely often. 

2. All live prxxesses will eventually have the 

same value for id”. 
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Proof Let Lz be the set of “blocked” live pro- 

cesses which from some time on do not per- 

form initialize-your, U the set of “unblocked” 

live processes which perform it infinitely often, 

and F the set of faulty processes. Eventually 

every process in j E U performs take followed 

by ofier infinitely often, and every process in 

i E B performs t&e infinitely often and never 

performs ofler. Thus, by Claim 2, eventually 

all ID-F’ORKs between processes in B and pro- 

cesses in U must be read as in-use at B. In 

addition, since every process in U performs u#ep 

infinitely often and every process in F is either 

forever in the midst of the same mutation or not 

mutating forever, then again by Claim 1, eventu- 

ally no read of an ID..FORK between a process 

in U and a process in F returns in-USck, k E U. 
It follows that eventually each id in B will be 

read as being greater or equal to [U], and each 

id in U will be less than IUI, which establishes 

the first part of the lemma. 

The second part of the lemma follows directly 

from the first part and Claim 1. m 

Combining the above constructions, the fol- 

lowing is a solution to the L-Exclusion Problem. 

Construction 8 

do forever 

remainder 

2; := true; 
for all j in ( 1 . . . II } do 

rcclirect( i, j, G.rL4P II) 

od; 

L: increment-your(ID); 

observe(ID); 

update(GRAPH); 

update( RANGE); 

if J%(i,GRAPH,.X)J > e then goto L fi; 
critical-section 

initialize-your(ID); 

x; := false; 

od ; 

Construction Lemma 8 The construction 

provides lockout jrw tl-exclusion. 

Proof Follows from (:onstructioa Lctumas 6 and 
7 and corolI;wy 2. m 
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6 Appendix 

In this appendix, an informal proof of the valid- 

ity of constructions 1-3 is presented. A formal 

proof based on Lamport formalism ([L86a]) will 

be given in a later version of the paper. 

For the proof consider a given FORK;j. It 

will be argued that the set of lower level sys- 

tem executions defined by constructions l-3 are 

implementations of a set of higher level system 

executions defined by the abstract data type. It 

is assumed that no system execution begins in 

the middle of a mutation. A global time model 

of system executions is assumed. 

Assume that initially any read returns F = 0 

and W; = wj = false.” 

Consider the following pre-conditions and post- 
conditions for mutation operations. A condition 

SIICII its { F = 0 A tuj = true } is irrtcrprctcd to 

nwan that a read by any process would return 
I;’ = 0 and wj = drne. These conditions will 

be required to hold ody for reads performed in 

intervals of the designated type described in sec- 

tion 3.1, They constrain possible alternative ex- 
ecutions of the prefixes of sequences of the lower 

“This assumption is not necessary but simplifies the 
proob. 
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level operations as i,mplied. by the implementa 

tion. Thus, if a read is performed in. an interval 

as designated, the alppropriate value will be re- 

turned. The conditions are written in. short form, 

where for a program istatement S and some pred- 

icate P, {condition}S{post-condition} means 

that {condition A P)S(postxondition A P} and 

(xondition A P}S{ -condition A P} (where 

condition and post-condition are different). 

take;: 

{F = 0 A wj = false} 
if read( FORZi;j) = ‘ofleredj then 

Wi := true; 

{F = 0 A w; = true} 

F := 1; 

{F = 1 A w; = true} 

fi; 

one ri : 

{F = 1 A w; = true} 

if read(FORK;j) = ,in-usei then 

w; := false; 

{F = 1 A 20; = false} 

fi; 

takej: 
{F = 1 A Wi = fake} 

if read(FORli’;j) = ,oflered; then 

Wj := true; 

{F = 1 A Wj = tTt.E} 

F := 0; 

(F = 0 A Wj = true} 

fi; 

OfltYj: 

{F = 0 A wj = true} 

if read(FORKij) = in-usej then 

Wj := false; 

{F = 0 A Wj = false) 

fi; 

Given the initial (conditions, the only muta- 
tion whose pre-condition is met is take;. Since 

the precondition of :any mutation that could be 
concurrent with take,; will not hold until the com- 
pletion of take;, the post conditions of take; will 

hold upon its completion. 

After the completion of the take; mutation, 

the precondition for ogler;, and only for it, holds. 

Until the execution of the iassignment to w; in 

ofleq, the pre-conditions of none of the other 

mutations hold. Only once this assignment oper- 

ation is started, the pre-condition of takej, and 

only takej, may hold. Thus 11 might be writing w; 

while j performs takej, yet, this does uot impair 
the correctness of the post-condition of fakci, 

given that its pre-condition wa.s true. ‘l’1~011gh 

the post condition of % might not hold following 

the a tabej (and only it), it will not matter since 

anyhow it is a pm-condition only for takej. The 

pre-condition of any mutation by i will not hold 

prior to the assignment of wj in offerj. This will 
only happen after the completion of the current 

takej, after which only the pre-condition of an 

oflcrj can hold, and SO on. 

The above arguments in-formally imply that 

once a pre-condition of a mutation holds, it will 

continue to hold until the mutation takes pla.ce, 

and as long as it doesn’t take place the pre- 

conditions for all other mut,ations do not hold. 

Proof of Construction Lemma 1 Properties 
PI, 1’2, and P3a clearly hold. The above ar- 
guments imply that when the pre-condit,ion for 

a mutation holds, it will hold until the process 

performs the mutation, therefore Property P3b 

holds. m 

Proof of Theorem 1 Construction Lemma 3 

implies that if any process reads offered;, then 

j also will also read it. Thus, the pre-condition 

to takej holds and by the above arguments will 

still hold as long as j will not perform takej. 

Therefore, P4 holds. 

Property P4 further implies that once a pro- 

cess has read ofleredj following which a takei 

was performed, every process will read in-use; 

as long as an offer; will not start. 

Proofs of all other properties follow by similar 

arguments. 1 
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