
6 0 I E E E S O F T W A R E M a y / J u n e 2 0 0 2 0 7 4 0 - 7 4 5 9 / 0 2 / $ 1 7 . 0 0 © 2 0 0 2 I E E E

In the context of software engineering, we
define knowledge management as a set of ac-
tivities, techniques, and tools supporting the
creation and transfer of SE knowledge
throughout the organization. One use of KM
is to support software process improvement
(SPI) activities. This support is important be-
cause both software engineering and quality
management techniques fail if they are not
based on a thorough knowledge of what is
needed and what has been done in a software
development organization.

So, how can the existing knowledge in a
software organization be captured efficiently?
To try to answer this question, we conducted
a case study in an independent business unit
of a global corporation developing software-
intensive electronic products. The company
wanted to improve the capture and reuse of

software development knowledge for a par-
ticular project. It had made several attempts
to improve knowledge reuse, but all these at-
tempts had failed. Why did the earlier at-
tempts not succeed? What would be a work-
ing solution? We set out to study those
questions to learn from the previous difficul-
ties and build on the previous successes.

Analyzing the status of KM-based SPI
Employee interviews and relevant docu-

ments revealed that both the managers and
designers felt that a lot of knowledge was
being wasted. Existing knowledge was diffi-
cult to find, and when found it was not
reusable. The practices implemented earlier
had obviously not been successful.

The underlying goal had been to reduce
software defects by increasing the knowledge

focus
Toward a Practical
Solution for Capturing
Knowledge for Software
Projects

Seija Komi-Sirviö and Annukka Mäntyniemi, VTT Electronics

Veikko Seppänen, University of Oulu

A needs-based
approach to reusing
software
development-
related knowledge
can overcome past
failures at
knowledge reuse.

R
arely has a professional field evolved as quickly as software devel-
opment. Software organizations are continuously struggling to
keep abreast of new technologies frequently changing customer re-
quirements; and increasingly complex software architectures,

methods, and tools. Recently, many organizations have come to understand
that to succeed in the future, they must manage and use knowledge more ef-
fectively at individual, team, and organizational levels.1,2 Efficient creation,
distribution, and reuse of up-to-date knowledge are critical success factors
that unfortunately remain difficult to achieve in practice.3–5

knowledge management

transfer between different projects. The infor-
mation to be shared was stored in a Lessons to
Learn database. Interviews clearly indicated
that many project managers were not aware of
the database and few used it. An analysis of
the database revealed that a number of entries
were incomplete and only one of the four the-
matic sections was in active use. According to
the database concept owner, this was because
preparing database entries was time-consum-
ing and administering the data was difficult.
Moreover, the data’s accuracy and relevancy
were not obvious, because most of the data
was provided without structure.

Another way to share knowledge between
projects was Data Transfer Days. These meet-
ings focused on analyzing past problems and
success stories. The participants captured and
shared important knowledge during the meet-
ings, even though they had trouble remem-
bering past successes and pitfalls once their
projects had ended. The intention was to an-
alyze, package, and save the results of these
meetings as a reference for new projects. Un-
fortunately, the enthusiasm usually disap-
peared at this point. The meetings were useful
mainly for those who were able to attend.
Nevertheless, free face-to-face conversation
between group members turned out to be a
better way of sharing knowledge than the
database (compare this to Thomas Davenport
and Laurence Prusak’s idea that the human
network is a highly efficient knowledge-shar-
ing mechanism1).

As you can see, neither Data Transfer
Days nor, particularly, the Lessons to Learn
Database were working as initially intended.
An obvious reason for the latter was that the
project management processes did not incor-
porate guidelines for the storing or searching
of knowledge. Efficient use of the database
would have required more disciplined
processes and much more effort at captur-
ing, packaging, searching, maintaining, and
reusing the knowledge. Furthermore, most
project managers were too busy coping with
their everyday problems and were unwilling
to undertake any further duties. Our inter-
views also indicated that software designers
tended to trust anyone nearby, rather than
any specific experts or the shared database.

Researchers who have investigated these
problems elsewhere have found problems
similar to ours and give these reasons for
reuse failures: the knowledge capturing

process is too informal, is not incorporated
into the engineering processes, or is not sup-
ported by the structures of the organization.6

Davenport and Prusak have stated that if you
start with technology-centered solutions (for
example, a database) and ignore behavioral,
cultural, and organizational change, the ex-
pected advantages never materialize.1

Looking for a new solution
The organization set a challenging re-

quirement: new solutions should have mini-
mal impact on the software development or-
ganization and processes and should not
require new technologies. Because the exist-
ing processes should not be touched, simple,
manual, and offline means were preferable,
removing the excessive burden of KM. This
SPI action aimed to create a process that
would help the company acquire experience
from existing sources—such as the com-
pany’s databases and individuals—that it
could apply to ongoing SE projects. One new
idea to define and test was to use the SPI ex-
perts as knowledge-capturing agents instead
of having software developers do it by them-
selves, on the fly. This method viewed proj-
ects as individual customers that required
specific knowledge. Efforts would focus on
the customer’s current knowledge require-
ments, as opposed to a large-scale acquisi-
tion, analysis, packaging, sharing, and up-
dating of knowledge for subsequent projects.

The company’s SPI persons and external
experts established a new approach for cap-
turing knowledge. This new approach con-
sisted of a knowledge-capturing project and
customer projects. The former gathered
knowledge from relevant sources and pack-
aged and provided it to a customer project for
reuse on demand. This solution neither
changed the organizational setting nor re-
quired any new tools. The knowledge would
come from existing sources such as project fi-
nal reports, error databases, discussion fo-
rums, and—most important—people. Later,
this assumption proved true. Figure 1 shows
a simplified capturing process.

Unlike other approaches,6,7 this one did not
expect ongoing software projects to supply
their experience. The knowledge-capturing
project is similar to the analysis organization
in the Experience Factory framework6 in that
it analyzes knowledge and packages it into
reusable assets. However, it does this for the

M a y / J u n e 2 0 0 2 I E E E S O F T W A R E 6 1

The underlying
goal had been

to reduce
software
defects by
increasing

the knowledge
transfer
between
different
projects.

customer projects’ immediate needs.
Together with the company, we tested this

approach on a project that urgently needed
interface-related knowledge. This special
knowledge was spread among various docu-
ments, memos, databases, and people. The
Lessons to Learn Database did not provide
this knowledge; Data Transfer Days hadn’t
helped. The customer project’s needs were
structured to indicate what specific knowl-
edge was required, what form of knowledge
was needed, and how the knowledge would
be reused. The needs were also divided into
process- and product-related knowledge.
The former included, for example, software
design and testing tasks, roles, organiza-
tions, skills, methods, and tools. The latter
included descriptions and interfaces of prod-
ucts and product family hierarchies.

As planned, we followed the knowledge-
capturing process, using semi-structured in-
terviews as the main technique to acquire
knowledge. The process took 300 hours; the
most laborious phase was experience packag-
ing, which took more than one-half of the

time. The delivered interface knowledge
package fully met all its requirements: the cus-
tomer project retrieved needed knowledge of
the existing interfaces. The selected approach
worked well, and the customer project was
served the required knowledge just in time.

A lthough we acknowledge the limita-
tions of a single case study, we do
not hesitate to call into question

technology-centered solutions as the main
means for managing software development
knowledge. We feel our study is a first step
toward a more comprehensive needs-based
KM approach. We will continue to expand
the use of the just in time KM process and
will work to make it a part of normal proj-
ect initiation procedures. Over time our ef-
forts should help provide structured and
packaged information that will have real
value for software projects.

References
1. T.H. Davenport and L. Prusak, Working Knowledge:

How Organizations Manage What They Know, Har-
vard College Business School Press, Boston, 1998,
p. 199.

2. I. Nonaka and H. Takeuchi, The Knowledge-Creating Com-
pany: How Japanese Companies Create the Dynamics of
Innovation, Oxford Univ. Press, New York, 1995, p. 284.

3. V. Basili et al., “Implementing the Experience Factory
Concepts as a Set of Experience Bases,” Proc. 13th Int’l
Conf. Software Eng. and Knowledge Eng. (SEKE 01),
Knowledge Systems Inst., Skokie, Ill., 2001, pp.
102–109.

4. T. Kucza et al., “Utilizing Knowledge Management
in Software Process Improvement: The Creation of a
Knowledge Management Process Model,” Proc. 7th
Int’l Conf. Concurrent Enterprising (ICE 2001), Univ.
of Nottingham, Center for Concurrent Enterprising,
Nottingham, UK, 2001, pp. 241–249.

5. K. Schneider, “Experience Magnets: Attracting Experi-
ences, Not Just Storing Them,” Proc. 3rd Int’l Conf.
Product Focused Software Process Improvement (PRO-
FES 2001), Lecture Notes in Computer Science, no.
2188, Springer-Verlag, Heidelberg, Germany, 2001, pp.
126–140.

6. V. Basili, “The Experience Factory,” Encyclopedia of
Software Eng., vol. 1, John Wiley & Sons, New York,
1994, pp. 469–476.

7. A. Birk and C. Tauz, “Knowledge Management of Soft-
ware Engineering: Lessons Learned,” Proc. 10th Conf.
Software Eng. and Knowledge Eng. (SEKE 98), Knowl-
edge Systems Inst., Skokie, Ill., 1998, pp. 24–31.

For more information on this or any other computing topic, please visit our
Digital Library at http://computer.org/publications/dlib.

Figure 1. The
knowledge-
capturing process.

6 2 I E E E S O F T W A R E M a y / J u n e 2 0 0 2

Need

1. Define scope
and requirements
for knowledge
capturing

2. Acquire
knowledge

3. Package
knowledge

Knowledge
package

About the Authors

Seija Komi-Sirviö is a research scientist at the Fraunhofer Center for Experimental
Software Engineering, Maryland. She is visiting from VTT Electronics, Finland, where she has
carried out research into software process improvement and metrics in applied research projects
from 1994 onwards. As a research group manager, she has been responsible for initiating and
managing both applied research projects and industrial development projects for a broad range
of clients in software engineering. Her current research interests include software process and
product improvement, measurement, and knowledge management. She received her MSc in in-
formation processing science from the University of Oulu, Finland. She is a member of the IEEE
Computer Society. Contact her at ssirvio@fc-md.umd.edu.

Annukka Mäntyniemi is a research scientist at VTT Electronics, Oulu, where she has
worked since 1998. She received her Master’s degree in Information Processing Science from
University of Oulu, Finland in 2001. Her thesis concerned the reuse of software development
experiences. Her current research interests involve utilizing knowledge management in soft-
ware process improvement and software reuse. Contact at Annukka.Mantyniemi@vtt.fi.

Veikko Seppänen is a software business research professor at the University of Oulu,
Finland with almost 20 year’s experience in software research and development. He finished
his engineering doctoral thesis on software reuse in 1990 and his second dissertation on eco-
nomic sciences in 2000. Seppänen has published about a hundred scientific and practical publi-
cations. He was an Asla Fulbright scholar at UC Irvine in 1986-87 and a JSPS Postdoctoral Fel-
low at Kyoto University in 1991-93. His present research involves software business strategies
and models, including value network based approaches to industrial marketing, acquisition and
use of commercial-off-the-shelf software components and products, and knowledge-driven soft-
ware product and business development methods. Contact him at veikko.seppanen@oulu.fi.

