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ABSTRACT Perceptual stereoscopic image quality assessment (SIQA) has become a challenge research

problem due to the poor understanding of human binocular visual characteristics. For the task of SIQA,

an intuitive idea is to develop effective models on the basis of the image content and depth perception.

In this paper, we propose a full-reference objective quality evaluator for stereoscopic images by simulating

binocular behaviors of the human visual system (HVS): Binocular interaction and depth perception. This

model is based on a cyclopean image from a novel binocular combination model as image content quality

description and a depth binocular combinationmodel from a depth synthesized procedure as depth perception

description. The final quality score of the distorted stereoscopic images is calculated by integrating the above

two perception indicators. The experimental results on two stereoscopic image quality databases demonstrate

that our proposed metric works efficiently for both symmetric and asymmetric distortions and achieves high

consistent alignment with subjective observations.

INDEX TERMS Binocular combination, cyclopean image, depth perception, stereoscopic images.

I. INTRODUCTION

Image quality assessment (IQA) is an important and challeng-

ing research problem. During the past few decades, a raising

number of IQA methods have been studied to predict the

image quality via mathematical models [1]–[4]. Compared

with two-dimensional (2D) image, three-dimensional (3D)

image provides the cues of depth perception, which makes

3D IQA difficult. According to the availability of per-

fect image as the reference information, three categories of

stereoscopic images quality assessment (SIQA) methods are

classified: no reference (NR), reduced reference (RR), and

full reference (FR) SIQA. Without considering any refer-

ence information, NR SIQA models are proposed [5]–[10].

Besides, based on part of reference information, RR SIQA

methods [11]–[15] are built for stereoscopic image quality

prediction. Different from RR and NR methods, FR meth-

ods, requiring the complete reference information, are widely

developed during the last decade due to their efficient

results [16], [17].

The associate editor coordinating the review of this manuscript and
approving it for publication was Jiachen Yang.

In this paper, we mainly focus on FR SIQA method

which can be divided into three categories. Since stereoscopic

images consist of two views, the first category is to apply the

2D IQA algorithm to each view directly to get the final eval-

uation score [18], [19]. However, since the depth information

exists in stereoscopic images, the above methods are not val-

idated. By combining the depth information, the second cat-

egory of SIQA model is extensively studied in the literature.

Benoit et al. [20] and Campisi et al. [21] applied a straightfor-

ward way to evaluate the image quality based on 2D quality

index and depth map, which shows a good performance.

Other similar works also have been conducted in [22], [23].

However, even with the depth information considered in the

above SIQA models, they cannot obtain higher accuracy

in prediction performance based on 2D metrics. The third

category of SIQA metric is then proposed by considering

binocular perception properties [24]–[26]. Binocular percep-

tion properties are the cyclopean mechanisms to percept the

‘‘cyclopean image’’ created from two eyes. Chen et al. [27]

created a ‘‘cyclopean image’’ to model human binocular

rivalry behavior and then proposed a FR stereoscopic images

quality estimator. Bensalma and Larabi [28] proposed a
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binocular energy quality metric to obtain the perceived image

quality by using the Complex Wavelet Transform (CWT).

Lin and Wu [29] constructed an effective evaluation model

by the frequency binocular integrated model. Focus on the

characteristics of receptive fields, Shao et al. [30] applied the

phase energy and complexity of the binocular information to

calculate the quality score of the stereoscopic images. Later,

they [31] proposed a novel perceptual quality assessment

approach for stereoscopic images by modeling visual prop-

erties of the primary visual cortex. Besides, Yao et al. [32]

proposed a bivariate-based model to capture image quality

by extracting features from binocular and monocular percep-

tion regions, respectively. By considering the important of

the color information in human visual binocular perception,

Xu et al. [25] proposed a parts-based SIQA method by learn-

ing manifold color visual properties.

For SIQA, various factors should be considered, since

symmetric or asymmetric distortions will involve binocular

confusion, depth perception discomfort, and so on. Therefore,

SIQA should at least account for binocular perception and

depth perception. As mentioned above, previous works

indicated that human binocular characteristics are the key

component in stereoscopic images quality assessment. How-

ever, these models didn’t consider the disparity issue and

couldn’t explain how the depth perception is formed in human

brain for the binocular combination behavior. In this work,

we both address the image quality perception and depth

perception based on the cyclopean mechanism and depth

binocular property to simulate 3D scene understanding to get

a more accurate quality assessment metric. Firstly, based on

human binocular characteristics, we apply the bank of Gabor

filter to obtain the local energies of response for the cyclopean

image, and build a combined depth perception index based on

the contrast energy and signal strength from the two eyes. The

binocular image and the depth perception model are obtained

respectively based on the above two quality indexes, which

can achieve high consistent alignment with subjective assess-

ment and improve the prediction accuracy of the model. The

main advantages of our paper are as follows: 1) The binocular

combination model we applied in this paper is easy to imple-

ment and replaceable. 2) A combined depth perception index

is proposed for stereoscopic images quality evaluation based

on binocular contrast gain-control model, which presents a

promising way to compute the depth perception quality with

low computational complexity.

The remainder of the paper is organized as follows: in

Section II, we briefly introduce the related background.

Section III provides the proposed metric step by step.

In section IV, we discuss the experimental results. Finally,

Section V summarizes this paper.

II. BACKGROUND

Since human beings are the final receiver to judge image

quality, human visual system (HVS) characteristics, such

as binocular perceptual mechanism, have aroused lots of

FIGURE 1. The flowchart of the single-channel model.

FIGURE 2. The flowchart of the double-channel model.

focus [33], [34]. To investigate how human eyes process the

image information and get the 3D scene in human brain,

it needs to clearly understand the properties and limitations

of HVS. In the past years, various HVS property models have

been discussed, but how human eyes send visual information

from the two views of the stereoscopic images to human brain

and how human get the depth perception are still confused in

vision science, which has aroused lots of psychophysical and

physiological researchers to investigate. In recent years, two

popular types of human binocular visual perceptionmodel are

described to analysis human visual process: single-channel

and double-channel models. Many plausible models have

been proposed to explain how human eyes combine two

views information together to generate the depth perception

in human brain. Here we briefly describe the existing findings

about human brain vision models, as follows.

A. SINGLE-CHANNEL MODEL

HVS is self-adapted and sensitive to the stimulation of the

external light signal [35]. Left (L) and right (R) eyes monoc-

ular (mon) neurons firstly detect the information of each view

simultaneously and then combine them together to obtain the

stereopsis [36], as illustrated in Fig.1. In general, human eyes

collect the visual signals through the photoreceptors in the

retina or each eye separately, and feed the response into the

disparity sensitive neurons to generate the unique perspective

in human brain.

B. DOUBLE-CHANNEL MODEL

An alternative view, however, suggests that there exist two

separate pathways in binocular combination used for stere-

opsis. Silva and Bartley [37] investigated the summation and

subtraction of brightness in binocular perception and demon-

strated the existence of double channel mechanism. Besides,

Li and Atick [38] explained how the double channel works

(shown in Fig.2) with two view signals after gain control.

They indicated that the visual gain information is needed to

optimize the interocular correlation.
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FIGURE 3. The flowchart of the binocular combination model. TCE means
the total visually weighted contrast energy.

Compared with the single-channel model, the double chan-

nel model plays an important role in determining the rea-

sonable human combination process and can well explain

human binocular behaviors. There are many effective visual

models that can successfully reflect how a cyclopean image

fused based on the monocular image [39]–[41]. In [42],

Ding and Sperling conducted a binocular vision experiment

to study the appearance of the binocular image and developed

a gain-control (GC) model by using sine-wave gratings with

different phases and contrasts, which can well model human

binocular phase perception. Meanwhile, a binocular combi-

nation model, shown in Fig.3, was developed to investigate

human double channel mechanism [43]. Motivated by the

interaction between visual properties and quality assessment,

in this paper, we apply the double channel model to build the

cyclopean perception in SIQA model to show the binocular

interaction.

C. STEREO DEPTH PERCEPTION

Depth perception is the ability of human to perceive the object

in 3D space and help our brain to judge its space distance.

Stereo depth perception involves a complicated visual process

and hard to interpret how human eye works. Many depth

perception works have been conducted using the monocular

vision cues [44], [45]. In work [46], a cross-correlation model

was proposed to predict the depth perception qualitatively.

This model gives an introduction of the interocular corre-

lation and stereoacuity by using the signal strength in the

cyclopean domain. Later, Cormack et al. [47] investigated

the relationship among stereo paradox, contrast, and spatial

frequency, and proposed a hybrid model to explain how the

stereoscopic system works:

D ∝

√

1

wLCL
+

1

wRCR
−

2ρ
√
wLCLwRCR

. (1)

where D is the depth threshold. CL and CR are contrasts of

the left and right images, respectively. ρ is the correlation

parameter in the two eyes. wL = CP
L /CP

L + KCP
R and wR =

CP
R/CP

R + KCP
L . p is the exponent of the power function.

Hou et al. [48] proposed a multipathway contrast gain-

control model to account for stereo depth, which gives a more

plausible way to explain how human eyes to generate the

depth perception. By using the above combination perception

model, we build the other component of the quality index in

our proposed model.

III. THE PROPOSED METRIC

As discussed in previous sections, human binocular behaviors

reflect how our brain perceives image information, whereas

depth combination process enables us to perceive the dispar-

ity information. Therefore, it is valid to combine the cyclo-

pean image process and depth model together to conduct the

quality assessment. With this inspiration, an efficient cyclo-

pean perception algorithm for stereoscopic images quality

assessment is proposed, as shown in Fig.4.

A. CYCLOPEAN IMAGE MODEL

Our previous study [49] has shown that the binocular model

can simulate the procedure of visual perception by using the

above physiological discoveries in Section II.B. Since GC

model proposed in [42] can well model human binocular

phase perception, such as binocular fusion and rivalry, so in

this paper we adopt the GC model to obtain the cyclopean

image, as follows:

C =
1 + EL

1 + EL + ER
IL +

1 + ER

1 + EL + ER
IR. (2)

where C is the cyclopean image. IL and EL are the left view

and the left visually weighted energy response. IR and ER are

the right view and the right visually weighted energy

response.

It needs to mention that the above cyclopean image model

is defined based on sine-wave gratings, in which the rela-

tive amplitudes play an important role in the procedure of

binocular combination. Therefore, we focus on the amplitude

information during proposing the cyclopean image index.

Firstly, we extract the amplitude information for further pro-

cessing by transforming the reference stereoscopic images

and the distorted stereoscopic images to LAB color space,

respectively. Then the cyclopean image can be obtained based

on the GC model proposed in work [42].

B. COMBINED DEPTH PERCEPTION MODEL

In work [48], Hou et al. gave us a plausible way to measure

the disparity threshold for depth perception. They found that

the depth threshold shows the binocular contrast GC prop-

erties, and has the same front-end gain control procedure as

the binocular contrast perception. The extended MCMmodel

in [48] provided a good mathematic model to calculate the

depth perception D based on the signal strength and the

GC model:

D =
1

(

L 1

1+ ER
1+EL

)(

R 1

1+ EL
1+ER

) . (3)

where L and EL are the contrast of the left image and the left

visually weighted contrast energy, respectively. R and ER are
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FIGURE 4. The framework of the proposed metric.

the contrast of the right image and the right visually weighted

contrast energy, respectively.

In work [50], the depth perception mechanism was inves-

tigated based on monocular images with different contrast

and phases. The experimental results indicated the existence

of contrast GC model in direct and indirect interocular inhi-

bition, and concluded a contrast GC cyclopean mechanism

based on the binocular interaction. Therefore, we take the

depth combination model as the factor of depth perception

information instead of calculating depth map, which has the

advantage of efficient computing time.

Hibbard [51] indicated that Gabor filter can well model

human eye’s receptive field, and log-Gabor can be con-

structed with arbitrary bandwidth [52]. Thus, we adopt the

log-Gabor filter to extract monocular responses, and obtain

the energy responses of two eyes like our previous paper [49].

More details can refer to [53]. Define the spatial scale as s,

and the orientation index is o, then the log-Gabor filter with

the radial frequency ω and orientation angle θ0 can be formu-

lated as follows:

Gs,o(ω, θ)=exp[−
(log(ω/ωs))

2

2σ 2
s

]×exp[−
(θ − θ0)

2

2σ 2
o

]. (4)

where σ s and σ 0 determine the filter’s strengths. ωs is the

center frequency. It’s out of the scope to study the impacts of

these parameters on the Gabor filter in this paper, so we sets

these parameters by strictly following reference [27].

Denote the responses of log-Gabor on scale s and along

orientation o as [ηs,o, ζ s,o], then the final local energy of

log-Gabor filter responses at location X can be computed as

follows:

E = sum

√

(
∑

s

ηs,o(X ))2 + (
∑

s

ζs,o(X ))2. (5)

Hence, the log-Gabor filter response combined with the

above cyclopean model can synthesize the cyclopean images,

and that combined with Hou’s [48] depth perception model

can synthesize the corresponding combined depth perception

model. The final quality of the stereoscopic image can be

obtained by integrating the qualities of the cyclopean image

and the combined depth perception model together with a

pooling strategy.

C. POOLING STRATEGY

Based on the above steps, we denote the cyclopean image

of the reference stereoscopic images as Cr , and that of

the distorted stereoscopic images as Cd . We denote the

combined depth perception model of reference stereoscopic

images as Dr , and that of the distorted stereoscopic images

as Dd . A pooling strategy is then applied to Cr and Cd to

calculate the quality index of the cyclopean image. There

are many pooling strategies, such as PSNR, SSIM [54],

MS-SSIM [55], and ADD-GSIM [56]. In this section, we val-

idate the MS-SSIM pooling strategy. Denote QC as the

quality of the cyclopean image, it can be calculated based on

the similarity between Cr and Cd , shown as follows:

Qc = MS − SSIM (Cr ,Cd ) . (6)
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TABLE 1. Performances of the proposed SIQA method and other eleven methods in terms of PLCC, SROCC, and RMSE on LIVE 3D Database Phase I and
Phase II (cases in bold denote best performance).

Likewise, the depth perception quality index Qd can be

measured based on the combined depth perception model Dr

and Dd , shows as follows:

Qd = MS − SSIM (Dr ,Dd ) . (7)

The final quality index of the stereoscopic images Q can

be derived by combing QC and Qd these two quality scores

together. A linear weighting model is applied to integrate the

above two quality scores to obtain the final score, shown as

follows:

Q = ω1 × Qc + ω2 × Qd . (8)

where ω1 and ω2 are the weights of each synthesized map,

respectively, and ω1 + ω2 = 1.

IV. EXPERIMENTAL RESULTS

A. DATABASE DESCRIPTION

The comparison experiments are conducted on two databases

from University of Texas at Austin [57]: LIVE 3D Database

Phase I and LIVE 3DDatabase Phase II. The database Phase I

consists of 365 reference images generated from 20 natural

content 3D images, and 365 distorted images by introduc-

ing five types of distortions to the reference images sym-

metrically at various levels (80 for JP2K, JPEG, WN, and

FF respectively; 45 for Blur). For the database Phase II, it con-

sists of 360 reference images generated from 8 natural content

3D images, and 360 distorted images (240 asymmetrically

distorted and 120 symmetrically distorted). The distortion

types are the same as that in Phase I.

B. EXPERIMENTAL PROTOCOLS

For the non-liner regression, we apply a logistic function with

five parameters (β1, β2, β3, β4, andβ5) to map The Differ-

ence Mean Opinion Score (DMOS) based on the recommen-

dation from VQEG [58]:

f (x) = β1 ×
[

1

2
−

1

1 + exp (β2 (x − β3))

]

+ β4x + β5.

(9)

where x is the predicted score. f (x) is the mapped score.

To estimate the performance of the proposed SIQA

method, three correlation coefficients are adopted to estimate

the linear correlation between the objective score and the sub-

jective score: PLCC (Pearson linear correlation coefficient)

in (10), SROCC (Spearman rank order correlation coeffi-

cient) in (11), and RMSE (root mean squared error) in (12).

When PLCC and SROCC are close to 1, and RMSE is close

to 0, it indicates better fit to the data, which means the better

assessment method.

PLCC(X ,Y ) =

N
∑

i=1

(oi − o) (si − s)

√

N
∑

i=1

(oi − o)2
N
∑

i=1

(si − s)2

. (10)

SROCC = 1 −

6
N
∑

i=1

e2i

N
(

N 2 − 1
) . (11)

RMSE =

√

√

√

√

√

N
∑

i=1

(oi − si)
2

N
. (12)

whereN is the total number of the images.Oi (i = 1, 2, . . .N )

is the ith X value, and o is the mean value of X . Si (i =
1, 2, . . .N ) is the ith Y value, and s is the mean value of Y .

To get the values of the parameters in (8), a small set of

database Phase I are selected as the train database to optimiz-

ing PLCC and RMSE. We find that when ω1 = 0.69 and

ω2 = 0.31 , the proposed model yields the best performance.

Sowe take these two parameters to conduct the further experi-

ment. It should be noted that theweight of the combined depth

image is smaller than that of the cyclopean image, which

means the combined depth information is critical for SIQA.

C. OVERALL ASSESSMENT PERFORMANCE

In this section, we compare the proposed model with ten

existing models: three SQIA models based on 2D IQAmodel

(SSIM, MS-SSIM, and ADD-GSIM), You’s scheme [19],

Benoit’s method [20], Chen’s scheme [27], Bensalma’s

scheme [28], Lin’s method [29], Shao’s method [30] in 2015,

and Shao’s method [31] in 2017. The experimental results are

listed in Table 1, where the best metric has been highlighted

in boldface. Table 1 indicates that the 2D IQA- based models
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TABLE 2. Performance comparison of nine metrics on each distortion type in terms of PLCC.

TABLE 3. Performance comparison of nine metrics on each distortion type in terms of SROCC.

are simply combined the quality indexes of two images with-

out considering HVS characteristics, so they have limited

performances on both two databases. Shao’s scheme [31]

achieves the best performance for database Phase II, since

the model of monocular and binocular visual information

can well simulate human primary visual cortex (V1) which

correlates well with subjective perception for the asymmetric

distortions. It should be noted that the binocular combination

properties are also taken into consideration in Chen’s scheme,

but the combined depth perception is missing. The proposed

framework, considering both binocular interaction and depth

perception, obtains the best performance on database Phase I

and a competitive performance on database Phase II based

on these three criteria, which demonstrates the necessity and

rationality of the combination of two components: cyclopean

image and combined depth perception. Overall, our proposed

model is an effective predictor to evaluate the stereoscopic

images quality on these two databases.

D. DISTORTION SENSITIVE

To evaluate the predictive performance of our proposed SIQA

model in predicting different types of distortion, we compare

it with the following seven SIQA models: You’s scheme,

Benoit’s scheme, Chen’s scheme, Bensalma’s scheme [28],

Lin’s method [29], Shao’s method [30] in 2015, and Shao’s

method [31] in 2017. Table 2 and Table 3 are present the

results of PLCC and SROCC on different types of distortions,

where the top two metrics have been highlighted in boldface.

Based on the results shown in Table 2 and Table 3,

the proposed model is between the top two metrics 15 times

compared with You’s scheme (5 times), Chen’s scheme

(4 times), Bensalma’s scheme [28] (2 times), Shao’s

scheme [30] (6 times), Lin’s scheme (1 time), and Shao’s

scheme in [31] (8 times), which explains that the proposed

SIQA method can well reflect human perception. Besides,

for the LIVE 3D Phase I, the proposed SIQA algorithm yields

perfect performance on JPEG, JP2K,WN, and FF distortions,

respectively, which indicates the distortion sensitivity of our

model. Although the overall performance of our model is not

very prominent for the LIVE 3D Phase II, the values of PLCC

and SROCC of the proposed model are close to the highest

values, which indicates that the proposed model can achieve

great consistent performance for these two databases.

Fig.5 shows the scatter plots of DMOS versus the objective

scores based on our proposed model and three SIQA metrics

(Benoit’s, Chen’s, and Lin’s schemes) on Phase I, in which

the proposed model achieves a better convergence than other

models. In general, we can conclude that the SIQA metric

proposed in this paper can be effectively applied to evaluate

the quality of stereoscopic images contaminated by different

types of distortion.

E. COMPONENT EVALUATION

Since the proposed model is composed by two quality

indexes: the cyclopean image quality (CIQ) and the combined

depth perception quality (CDQ), it is necessary to testify

the necessity of the combination of two components. To this

end, we test the performances of the methods separately

using CIQ and CDQ on Phase I and Phase II. The exper-

imental results are listed in Table 4. It can be concluded
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FIGURE 5. Scatter plots of predicted objective scores versus DMOS for the SIOA schemes. (a) Scheme in [20]. (b) Scheme in [27].
(c) Scheme in [29]. (d) Proposed scheme.

TABLE 4. Comparison of PLCC, SROCC, and RMSE for different schemes (the case in bold: the best performance).

that the metric integrating both components achieves best

performance on both symmetric distortion and asymmetric

distortion. This indicates the necessity and rationality of

the combination of two components, which reflect different

aspects of human visual perception. Moreover, the method

only using CIQ performs better than that only using CDQ,

which indicates that CIQ make more contribution to SQIA

than CDQ. This also explain why ω1 is bigger than ω2 in

(8). Although the weight of the combined depth quality CDQ

is weaker than that of the cyclopean image quality CIQ,

it reveals that the combined depth perception is very critical

for stereoscopic image quality assessment.

Fig.6 lists the experimental results of PLCC and SROCC

of CIQ and CDQ models on each type of distortion on

Phase I, which shows that the proposed model yields the best

performance across the five types of distortion. In summary,

the cyclopean perception and combined depth perception

both play an important role in quality assessment. The most

effective way to conduct the image quality is combing them

together as the proposed model, which has proved to be an

effective and accuracy tool in SIQA across both symmetric

and asymmetric distortions.

F. INFLUENCE OF THE CYCLOPEAN MODEL

The proposed model in this paper adopts the Gain-Control

(GC) model to obtain the cyclopean image. In order to study

the influence of the cyclopean model on the overall perfor-

mance, we replace the GC model in our proposed model

with other three cyclopean models: Eye-Weighting (EW)

model [39], Vector Summation (VS) model [40], and Neural

Network (NN) model [41]. Denote the corresponding SIQA

model as Q-EW, Q-VS and Q-NN, respectively, the overall

performances of each SIQA model are listed in Table 5.

The results indicate that the performance is very close to the

proposed model, which proves that the above three cyclopean

models can also effectively applied to conduct the quality

evaluation, and the proposed model is not sensitive to the

form of the cyclopean model.

VOLUME 7, 2019 69289



Y. Liu et al.: Toward a Quality Predictor for Stereoscopic Images via Analysis of Human Binocular Visual Perception

FIGURE 6. Performances of CIQ, CDQ, and the proposed model in terms of PLCC and SROCC on LIVE 3D Phase I. (a) Performance comparison in terms of
PLCC. (b) Performance comparison in terms of SROCC.

TABLE 5. Comparison of different cyclopean models(the case in bold: the
best performance).

V. CONCLUSION

In this paper, we have introduced a full-reference SIQA eval-

uator by considering human binocular interaction and com-

bined depth perception. The main contributions of this work

are: 1) we derive a quality prediction model based on image

content quality and combined depth perception to account for

human binocular characteristics; 2) a combined depth image

is extracted by using the signal strengths after gain control

to quantify the depth perception; 3) as the final quality index

only contains binocular combination operations, our metric

holds a low computational complexity. Experimental results

indicate that the proposed model has high consistency with

subjective assessment across the symmetric and asymmetric

databases. In the future, other binocular visual mechanism

should be explored and considered in SIQA method.
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