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Abstract

In the US, the size of intangible investment is similar to that of physical investment.

The risk premium for holding physical capital over intangible capital is comparable to

the market equity premium. We present a quantitative general equilibrium asset pricing

model with intangible capital whose predictions are consistent with key features of both

macroeconomic quantity dynamics and stylized asset pricing facts. In particular, our

model produces: 1) a high spread between the returns of tangible capital and intangible

capital; 2) a high premium of the aggregate stock market over the risk-free interest

rate; 3) a low and smooth risk-free interest rate; and 4) dynamics for macroeconomic

quantities consistent with US data. Our model rationalizes about 75% of the observed

difference in the average return of book-to-market sorted portfolios.

1Hengjie Ai is an assistant professor at the Fuqua School of Business, Duke University. Mariano Massim-
iliano Croce is an assistant professor at the UNC Kenan-Flagler Business School. Kai Li is at the economics
department of Duke University.



Introduction

Investment in intangible capital is large. Focusing on post-war US data, Corrado, Hulten,

and Sichel (2005) and Corrado, Hulten, and Sichel (2006) show that investment in intangible

capital is similar in magnitude to physical investment. At the same time, the average return

of intangible capital is significantly lower than that of physical capital. Historically, stocks

with high book-to-market ratio (value stocks) earn a higher average return than those with

low book-to-market ratio (growth stocks) by about 5% per year (value premium). One of

the defining features of intangible capital is that its value should be embodied in the market

valuation even though it is typically excluded from the book value of the firm. Given this

consideration, value firms are tangible-capital intensive, while growth firms are intangible-

capital intensive. Interpreted in this way, the empirical evidence on value premium implies

that the average spread between the return of physical and intangible capital is comparable

the aggregate stock market equity premium.

The goal of this paper is to propose a quantitative general equilibrium asset pricing

model consistent with the key features of macroeconomic quantity dynamics and asset re-

turns, in particular, the difference in the returns to physical and intangible capital. Our

model generates a high equity premium (4.54% per year for the market return) with mod-

erate risk aversion (10), and a low and smooth risk-free interest rate. Our results are

comparable to those obtained by the standard real business cycle (RBC) models in term of

the second moments of aggregate consumption and investment growth rates. Furthermore,

the expected annual return on intangible capital is 4.29% lower than that on tangible assets,

about 75% of the observed value premium in the data.

We follow Ai (2009b) and model intangible capital as investment options. In particular,

physical capital must be produced by combining physical investment (equipment, machines,

hardwares) and intangible capital (ideas, blueprints, business plans, softwares). Investment

options differ by their quality, meaning that high quality investment options require a lower

amount of physical investment to create a unit of physical capital. In equilibrium, more

efficient investment options are implemented first. This implies that on the margin, an

additional unit of physical capital is produced using options with lower quality and costs

more physical investment goods. This mechanism endogenously generates variations in the

price of tangible capital similar to those obtained with capital adjustment cost, making

tangible capital more risky than intangible capital.

We make two important modifications to the Ai (2009b) model. First, we adopt recursive

preferences and an aggregate productivity process with long-run uncertainty as in Croce
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(2008). The predictions of our model are supported by empirical evidence on the cross-

section of equity returns. For example, Bansal, Dittmar, and Lundblad (2005), ?), and

Kiku (2006) document that value stocks have higher exposure to long-run consumption risk

than growth stocks. Our production-based model rationalizes these empirical findings, as in

the equilibrium tangible capital is more sensitive to variations in the predictable component

of consumption growth than intangible capital.

Second, our model features overlapping vintages of physical capital. Focusing on US

micro-data, we provide novel empirical evidence showing that new investment is less sensi-

tive to aggregate productivity shocks than physical assets of older vintages. We model this

fact by assuming that new investment units respond to aggregate shocks with a one-period

lag. By incorporating this feature, we generate a crucial asymmetry in the optimal response

of investment to unexpected contemporaneous productivity shocks (short-run shocks) and

news about future productivity (long-run shocks).

In our set-up, the elasticity of substitution between tangible investment and intangible

capital is high, implying that adjusting tangible capital is not costly. Consequently, in-

vestment responds strongly to short-run shocks as it does in standard real business cycle

models. The response of investment to long-run shocks, however, is sluggish for two rea-

sons. First, good long-run news do not immediately increase output, as they only anticipate

higher productivity in the future. Second, since the response of the productivity of new

vintages is lagged, the agent finds it optimal to delay investment. At the equilibrium, after

a long-run shock, asset prices respond immediately and sharply while quantities do not.

This feature of the model is novel and allows us to reproduce the high equity and value

premium observed in the data, while maintaining the appealing features of the real business

cycle models on the quantity side.

Our paper is closely related to the literature on asset pricing in production economies

that dates back at least to Brock and Mirman (1972). Rouwenhorst (1995) is among the first

ones to recognize the difficulty to resolve the equity premium puzzle (Mehra and Prescott

(1985)) in production economies even with extreme risk aversions. Recent attacks on this

issue can be broadly classified into three classes: habit based models (for example, Jermann

(1998) and Boldrin, Christiano, and Fisher (2001)), long-run risk based models (for exam-

ple Lochstoer and Kaltenbrunner (2008), Croce (2008), Campanale, Castro, and Clementi

(2008) and Ai (2009a)), and rare disaster based models (for example, Gourio (2009)). Our

work differs from the above papers in two significant ways. First, our model addresses both

the equity premium and the spread between tangible and intangible capital simultaneously,

while the aforementioned papers focus only on equity premium. Second, the papers listed
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above typically rely on capital adjustment costs or other frictions in investment as the only

channel to generate variations in the price of physical capital. There is typically substantial

tension among the intensity of the adjustment costs, the volatility of the price of capital and

the volatility of risk-free interest rate. Strong adjustment costs, while necessary to generate

a sizeable equity premium, are often associated with either a counterfactually low volatility

of investment or a counterfatucally high volatility of the risk-free interest rate. Our model

produces a low volatility of risk-free interest rate, a significant volatility of stock market

returns, and a high volatility of investment as in the data.

There is an extensive financial literature that emphasizes the importance of the riskiness

of options versus assets in place in understanding the cross section of equity returns (for

example, Berk, Green, and Naik (1999), Gomes, Kogan, and Zhang (2003), Carlson, Fisher,

and Giammarino (2004), Cooper (2006), and Panageas and Yu (2006)). Our model is more

related to recent studies suggesting that investment options are less risky than physical

capital, as in Zhang (2005), Ai and Kiku (2009), and Papanikolaou (2008). Kogan and

Papanikolaou (2009) develops a measure of option intensity of firms and provides a directly

empirical evidence on option being less risky than physical assets. Our work complements

this literature by interpreting investment options as intangible capital and studying its

implications in a fully specified macroeconomic general equilibrium model.

Adopting the empirical evidence on value premium as a discipline to study intangible

capital in quantitative general equilibrium models is relatively new. Jovanovic (2008) also

models intangible capital as investment options in general equilibrium. McGrattan and

Prescott (2005), McGrattan and Prescott (2009b) and McGrattan and Prescott (2009a)

also emphasize the importance of intangible capital in understanding economic fluctuation

in the 1990’s and the valuation of asset returns. The above models do not address the

difference in the return of tangible can intangible capital as we do in this paper.

The rest of the paper is organized as follows. We present the model and some analytical

results in Section I and II. In Section III of the paper, we document the empirical facts on

the differential exposure to aggregate risk of young and old firms. We provide our results

in Section IV of the paper. Section V concludes. Proofs of the theorems, and robustness

analysis of the empirical results can be found in the appendix of the paper.
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I Model Setup

A Preferences

Time is discrete and infinite, t = 1, 2, 3, · · · . The representative agent has Kreps-Porteus

preferences as in Epstein and Zin (1989):

Vt =

{
(1 − β)u (Ct, Nt)

1− 1

ψ + β
(
Et

[
V 1−γ
t+1

]) 1−1/ψ
1−γ

} 1

1−1/ψ

, (1)

where Ct and Nt denote, respectively, the total consumption and total hours worked at

date t. For simplicity, we assume an inelastic labor supply, normalize Nt = 1, and set

u (Ct, Nt) = Ct.

B Technology

Consumption goods are perishable and are produced by production units of overlapping

generations. Production units created at time τ are called generation-τ production units

and begin operation at time τ +1. Each generation-τ production unit uses labor, nτ , as the

only input of production. For t ≥ τ +1, let Aτt denote the time t productivity level common

to all the production units belonging to generation-τ . The total output of a generation-τ

production unit at time t, yτt , is given by:

yτt = (Aτt n
τ
t )

1−α , ∀t ≥ τ + 1.

In each period, a production unit dies with probability δK after its production activity

is completed. We assume that the death shocks are i.i.d. among all production units,

therefore a fraction 1 − δK of production units survives to the next period. Let Mt denote

the total measure of generation t production units created in period t, then for all j ≥ 1,

the total measure of generation t production units alive at period t + j is (1 − δK)j−1Mt.

Since all production units belonging to the same generation have identical output, total

output at time t, Yt, is given by:

Yt =
t−1∑

τ=0

(1 − δK)t−τ−1Mτy
τ
t .

Let It denote the total investment in physical capital, and Jt denote the total investment
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in intangible capital in the economy. The resource constraint of the economy is written as:

Ct + It + Jt = Yt. (2)

C Productivity

We first specify the economy-wide productivity process, denoted by At, whose growth rate

evolves as follows:

At+1

At
= eµ+xt+σaεa,t+1 , (3)

xt+1 = ρxt + σxεx,t+1,[
εa,t+1

εx,t+1

]
∼ i.i.d.N

([
0

0

]
,

[
1 0

0 1

])
, t = 0, 1, 2, · · · .

This specification follows Croce (2008) and captures long-run productivity risk. We further

assume that production units are not exposed to aggregate risk during the first period of

their lives. Specifically, the growth rate of the productivity of generation-t production units

is given by:
Att+j+1

Att+j
= eµ+φ(xt+σaεa,t+1), (4)

where φ = 1 for j = 1, 2, 3, ..., and for j = 0 we assume φ < 1. We also set Att = At in order

to ensure that new production units are on average as productive as older ones.2

Under the above specification, production units of all generations have the same uncon-

ditional expected growth rate. In the first period of its life, a new born production unit

is less exposed to aggregate shocks. From the second period on, its productivity grows at

the same rate of all other production units of older generations. This feature of our model

captures the empirical fact that exposure to aggregate productivity uncertainty is increasing

in firms’ age, as documented in Section III.

D Dynamics of Tangible and Intangible Capital

We model tangible capital as the stock of productive assets in the economy, i.e., the total

amount of production units in our setup. Although our model features overlapping genera-

tions of production units with different productivity levels, our specification of the produc-

tivity processes allows a simple aggregation result summarized by the following proposition.

2Generation-t production units are not active until period t + 1, therefore the level of At
t does not affect

the total production of the economy in period t.

5



Proposition 1 (Aggregation of Production Units):

The aggregate production is given by:

Yt = Kα
t (AtNt)

1−α , (5)

whereKt is the effective measure of production units in the economy, and can be constructed

in a recursive fashion:

Kt+1 = (1 − δK)Kt +̟t+1Mt, (6)

where

̟t+1 = e−
1−α
α

(xt+σaεa,t+1) (7)

Proof. See Appendix

Intuitively, Kt aggregates production units of different generations. The differences in

productivity across generations is taken into account by the sequence of weights {̟j+1}
t
j=0.

We model intangible capital by investment options. The total measure of investment

options at period t is denoted St. We assume that one investment option create exactly

one production unit if implemented; therefore, the total measure of investment options used

in period t is equal to the total measure of new production units constructed, Mt. If not

exercised, an investment option vanishes with probability δS at the end of the period. The

decision to exercise an investment option is irreversible. These assumptions imply that the

amount of unexercised investment options at the end of period t is (St −Mt) (1 − δS). We

assume that one unit of consumption good can be used to produce one unit of investment

option. Therefore, the total measure of new investment options created at time t is Jt.

Consequently, the law of motion of the total measure of investment options can be written

as

St+1 = (St −Mt) (1 − δS) + Jt.

E Technology for New Production Units

A new production unit can be created by exercising an investment option. Investment op-

tions differ by their quality. The quality of an investment option, denoted by θ, is drawn

from a continuous density φ at the beginning of each period. The random draw of θ is

i.i.d. among investment options and over time. The owner of an investment option decides

whether to implement it immediately after the revelation of its quality. If implemented, an

investment option with quality θ requires 1
θ

units of investment goods to create one produc-

tion unit. If not immediately implemented, the option vanishes with probability δS at the
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end of the period. Each surviving investment option obtains another independent draw of θ

in the next period from the same density φ. Given φ, hence, the total measure of production

units created in period t, Mt, depends only on the total amount of physical investment, It,

and the total amount of intangible capital stock, St. We denote this relationship with a

function G such that Mt = G (It, St). In efficient allocations, investment options of higher

quality are implemented first. Consequently, the function G can be written as the solution

to the following optimization problem:

G (I, S) = max
θ∗

{
S ×

∫

θ∗
φ (θ) dθ

}
(8)

subject to S ×

∫

θ∗
φ (θ) dθ ≤ I.

Using the G (I, S) function defined above, the law of motion of tangible and intangible

can be written as:

Kt+1 = (1 − δK)Kt +̟t+1G (It, St) (9)

St+1 = [St −G (It, St)] (1 − δS) + Jt.

II Model Solution

A The Social Planner’s Problem

We consider a competitive equilibrium with complete markets in which claims to production

units and investment options are traded. The competitive equilibrium prices and quantities

can be constructed from the solution to the social planner’s problem. Let z = [K,S, x,A]

be the vector of state variables, the social planner’s problem can be written as a dynamic
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programming problem:

V (z) =

{
(1 − β)C

1− 1

ψ + β
(
E
[
V
(
z′
)1−γ∣∣∣ z

]) 1−1/ψ
1−γ

}
, (10)

subject to : C + I + J = A1−αKα,

K ′ = K (1 − δK) +̟′G (I, S) ,

S′ = [S −G (I, S)] (1 − δS) + J,

C, I ≥ 0.

A′ = Aeµ+x+σaε′a

x′ = ρx+ σxε
′

x

̟′ = e−
1−α
α

[x+σaε′a][
ε′a

ε′x

]
∼ i.i.d.N

([
0

0

]
,

[
1 0

0 1

])
.

Although the constraint S′ = [S −G (I, S)] (1 − δS) + J is nonconvex, Ai (2009b) shows

that the second welfare theorem holds in this kind of environment as well.3 This allows

us to construct equilibrium prices from the optimal policy functions of the above problem

in a recursive fashion. In the next subsection, we derive the asset pricing implications of

the model by studying the first order conditions and the envelope conditions of the social

planner’s problem.

B Asset Prices

Let C (z) , I (z) , J (z) denote the policy functions of the dynamic programming problem.

The stochastic discount factor is:

Λ
(
z, z′

)
= β

(
C (z′)

C (z)

)
−

1

ψ




V (z′)

(
E
[
V (z′)1−γ

∣∣∣ z
]) 1

1−γ





1

ψ
−γ

.

3Although Ai (2009b) works with time additive preferences and does not have overlapping vintages of
capital, his proof can be extended to our set-up.
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Let qK (z) and qS (z) denote, respectively, the price of an additional unit of aggregate

physical and intangible capital. We can define qK (z) and qS (z) recursively as follows:

qK (z) = E

[
Λ
(
z, z′

)
{
α

(
A′

K ′

)1−α

+ (1 − δK) qK
(
z′
)
}∣∣∣∣∣ z

]
, (11)

and

qS (z) = E

[
Λ
(
z, z′

){GS (I (z′) , S′)

GI (I (z′) , S′)
+ (1 − δK) qS

(
z′
)}∣∣∣∣ z

]
. (12)

Note that the term α
(
A′

K′

)1−α
in equation (11) is the marginal product of physical capital.

One unit of physical capital pays α
(
A′

K′

)1−α
in the next period, and becomes (1 − δK) unit

of physical capital after depreciation. Similarly, the term GS(I,S)
GI(I,S) in Equation (12) is the

marginal product of intangible capital. To see this, note that GS (I, S) is the amount of

new production units that can be produced by an additional unit of investment option, and
1

GI(I,S) is the relative price of an additional unit of physical capital in terms of output. The

ratio GS(I,S)
GI(I,S) can also be interpreted as the option payoff.

It is also convenient to define pK (z) as the cum-dividend value of one unit of physical

capital, and pS (z) as the value of one unit of investment option before the quality of the

option is revealed and the option exercise decision is made:

pK (z) = α

(
A

K

)1−α

+ (1 − δK) qK (z) ,

pS (z) =
GS (I (z) , S)

GI (I (z) , S)
+ (1 − δK) qS (z) .

Using this notation, the first order conditions of the social planner’s problem allow us to

obtain the following proposition.

Proposition 2 (Equilibrium Conditions)

The optimal solution to the social planner’s problem satisfies the following conditions:

E
[
Λ
(
z, z′

)
̟′pK

(
z′
)∣∣ z
]

=
1

GI (I, S)
+ (1 − δS) qS (z) (13)

qS (z) = 1. (14)

Furthermore, an investment option is implemented if and only its quality is above θ∗ (z),
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where θ∗ (z) is given by:

θ∗ (z) = GI (I (z) , S) . (15)

Proof. See Ai (2009b).

To understand the conditions above, note that the left hand side of equation (13) is the

marginal benefit of one unit of newly created physical capital. The value of one unit of

physical capital in the next period is pK (z′); ̟′ adjusts for the difference in productivity

among newly created physical capital and existing production units. The right hand side

of equation (13) is the marginal cost of a new production unit. Since the creation of a

production unit requires 1
θ

investment goods if it involves an idea with quality θ, by equation

(15) at the margin an additional production unit costs 1
θ∗(z) = 1

GI(I(z),S) investment goods.

Note that a new production unit also requires implementation of an investment option. After

taking into account the mortality probability of non-implemented ideas, the opportunity of

cost of an investment option is (1 − δS) qS (z).

Equation (14) implies that the value of an unimplemented idea is always 1. This is due to

the production technology of new investment options. Since one unit of consumption good

can always be transformed into one unit of investment option (see equation (2) and (9)), the

relative price of intangible capital in terms of the current period consumption numeraire is

always 1. This is analogous to neoclassical growth model without capital adjustment cost.

Using the above proposition, the realized return on physical capital and intangible cap-

ital, denoted rK and rS , respectively, can be written as:

rK
(
z, z′

)
=
α
(
A′

K′

)1−α
+ (1 − δK) qK (z′)

qK (z)
, (16)

and

rS
(
z, z′

)
=

GS(I(z′),S′)
GI(I(z′),S′) + (1 − δS) qS (z′)

qS (z)
=
GS (I (z′) , S′)

GI (I (z′) , S′)
+ (1 − δS) .4 (17)

For later reference, we note that equation (11) and (12) can be iterated forward and

expressed as:

qK (zt) =
∞∑

j=1

(1 − δK)j Et

[(
j∏

s=0

Λ (zt+s, zt+s+1)

)
αAt+jK

α−1
t+j

]
, (18)

4Note rS(z, z′) is the realized return of an investment option before the quality of the investment option is
revealed. In other words, rS(z, z′) does not account for the random draw of the quality of the option. Since
the realization of the quality of an investment option is idiosyncratic, the risk premium of an investment
option is completely determined by rS(z, z′).
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qS (zt) =
∞∑

j=1

(1 − δS)j Et

[(
j∏

s=0

Λ (zt+s, zt+s+1)

)
GS (I (zt+j) , St+j)

GI (I (zt+j) , St+j)

]
. (19)

According to equation (18), the price of an average production unit is simply the present

value of the future stream of marginal product of physical capital. This implies that the

model needs to produce enough variations in the marginal product of tangible capital in

order to generate high risk exposure for physical capital.

Equation (19) implies that the price of intangibles has to equal the present value of all

its future option payoffs. Since the supply of new investment options is perfectly flexible,

the price of intangibles is constant, i.e. qS (z) = 1. At the equilibrium, hence, only the

quantity of intangible investment Jt responds to productivity shocks.

III Firms’ Exposure to Aggregate Risks

In our economy, new production units are less sensitive to aggregate productivity shocks.

In this section we provide empirical evidence that supports this feature of the model. A

production unit in our model should be interpreted as any investment project generating

cash flows. Because it is difficult to identify productivity of individual projects within firms,

we adopt an indirect approach. We hypothesize that younger firms have more new-vintage

projects than older firms, and show that the productivity growth rate of younger firms has

less exposure to aggregate productivity risk.

In particular, we assume that the production function at the firm level is Cobb-Douglas:

yit = ai,tk
α1

i,t n
α2

i,t , (20)

where ki,t and ni,t are, respectively, the capital and labor inputs of firm i, and ai,t is the firm-

specific productivity level at time t.5 In the empirical analysis, we allow for α1 + α2 6= 1.6

Consistent with the notation in our model, we denote aggregate productivity in the

economy by At. Our analysis shows that Cov [ln (ai,t+1) − ln (ai,t) , ln (At+1) − ln (At)] is

increasing with firms’ age.

Since it is also reasonable to conjecture that smaller firms have more new investment

5This specification is not inconsistent with our model even though we assume that production units use
labor as the only input. Under the assumption of constant return to scale, firm size is undetermined in our
model. In the data, a firm can be viewed as a collection of production units (projects), and the observed
capital stock, ki,t, can be interpreted as the measure of production units owned by the firm.

6Restricting the production technology to be constant return to scale at the firm level, that is α1+α2 = 1,
does not significantly affect our results.
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projects than larger firms, we present further empirical evidence suggesting that small firms

are indeed less exposed to aggregate productivity shocks than large firms. These results are

reported in Appendix B.

A Data

We consider all public traded companies on US and Canadian stock exchanges in the

COMPUSTAT North America database for the period of 1950 − 2006. Output, or value

added of a firm, yi,t, is calculated as sales minus the cost of goods sold and is deflated by

the aggregate GDP deflator from NIPA. We measure the capital stock ki,t as total value

of assets minus current assets. This allows us to exclude cash and other liquid assets that

may not be an appropriate component of physical capital. We use the number of employees

in a firm to proxy for ni,t as total hours worked are not available. Since the database does

not provide explicit indicators for firms’ age, we use the number of years for which a firm

appeared in COMPUSTAT as a proxy. This is consistent with previous literature. We use

the multifactor productivity index for the private non-farm business sector from the Bureau

of Labor Statistics (BLS) for the measure of aggregate productivity At.

Table 1 presents the summary statistics for firms of six age groups. As documented in

earlier literature, firm size and age are highly correlated. Although, young firms are small

in terms of total output, capital stock, and number of employees, overall they accounts for

a large fraction of our observations in the sample.

(INSERT TABLE 1 HERE)

B Empirical Strategy and Results

We follow a two step procedure. In the first step, we calculate the log-level firm productivity,

denoted by ln ai,t, as the residue of the regression implied by equation (20):

ln yi,t = α1 ln ki,t + α2 lnni,t + ln ai,t. (21)

In the second step, we regress individual firm’s productivity growth rates, ∆ ln ai,t, on

aggregate productivity growth, ∆ lnAt:
7

∆ ln ai,t = ξ0 + ξ0,i + ξ1∆ lnAt + ξ2AGEi,t + ξ3AGEi,t ∗ ∆ lnAt + εi,t. (22)

7In expression (22), ∆ ln ai,t = ln ai,t − ln ai,t−1 and ∆ ln At = ln At − ln At−1.
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We allow for a firm fixed effect in productivity growth rate ξ0,i. The coefficient ξ3 captures

the age effect on firms’ sensitivity to aggregate productivity growth.

Table 2 reports our results. The first stage refers to the estimation of equation (21).

We try two different specifications, i.e. with and without the fix effect in the first stage

regression, and obtain very similar estimation results. The capital share α1 ranges from 0.36

to 0.39, and is consistent with macro data. The sum of capital share α1 and labor share α2

is consistently smaller than 1, implying that the production function has decreasing return

to scale. This result is consistent with previous studies (see among others Dhawan (2001)).

In the second stage, the estimate of ξ3 on the cross term AGEit ∗ ∆ logAt is positive

and statistically significant, meaning that firms’ exposure to aggregate productivity risk is

increasing in firms’ age. We present several robustness checks in Appendix B, including a

different proxy for firms’ age, and corrections for sample selection bias based on Heckman’s

two-stage procedure. In all these experiments, we find that both younger and smaller firms

have significantly less exposure to the aggregate productivity risk.

(INSERT TABLE 2 HERE)

We consider the empirical evidence presented in this section as a solid motivation for our

parsimonious model specification.

IV Quantitative Implications of the Model

In this section, we calibrate our model and evaluate its ability to replicate key moments

of both macroeconomic quantities and asset returns. The model is calibrated at annual

frequency and all moments are annual.

A Parameter Values

There are three major ingredients in our model: overlapping generations of vintage capital,

long-run productivity risk, and intangible capital. In order to understand the importance of

each ingredient, we compare four different calibrations. Our Benchmark model has all three

ingredients according to our preferred calibration. Model 1 does not have vintage capital,

but maintains all other features of the Benchmark model, namely, long-run productivity

risk and intangible capital. In Model 2, we further switch off fluctuations in long-run

productivity growth. In particular, model 2 incorporates intangible capital, but imposes

that production units of all generations have the same productivity (by setting φ = 1),
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and assumes no long-run productivity risk (by setting σx = 0). Finally, we consider the

case without intangible capital in Model 3. Essentially, Model 3 is the neoclassical growth

model with recursive preferences and i.i.d productivity growth rates. The details of the four

models are summarized in the following table:

BENCHMARK Model 1 Model 2 Model 3

Vintage Capital Yes (φ = 0) No (φ = 1) No (φ = 1) No (φ = 1)

Long-run Productvity Risk Yes (σx 6= 0) Yes (σx 6= 0) No (σx = 0) No (σx = 0)

Intangible Capital Yes Yes Yes No

Recursive Preference Yes Yes Yes Yes

Parameters of the model can be divided into two groups. The first group of parameters is

chosen independently of the moments of macroeconomic quantities or asset returns that we

are interested in. They can be pinned down either from micro evidence, or point estimates

in the empirical literature, or by following well-established conventions in the previous

literature. These parameters are identical across all four calibrations. The second set of

parameters are calibrated to match the relevant steady-state moments in the data.

The first group of parameters include risk aversion, γ, intertemporal elasticity of substi-

tution, ψ, capital share, α, depreciation rates, δK and δS , average grow rate of the economy,

µ, and the first-order autocorrelation of the predictable component in productivity growth,

ρ. We choose risk aversion and intertemporal elasticity of substitution in line with the

long-run risk literature. In particular, we set γ = 10, and ψ = 2. We choose the capital

share α = 0.3, and the annual depreciation rate of physical capital δK = 10%, consistent

with the real business cycle literature (Kydland and Prescott (1982)). We choose the same

rate of depreciation for intangible capital: δS = 10% per year. We calibrate µ = 2% per

year, which is consistent with the average annual growth rate of the US economy in the

post war period. We set ρ = 0.93, which is the point estimate obtained in Croce (2008).

The second group of parameters includes the discount factor, β, the standard deviation

of the persistent component of productivity growth, σx, the short-run shock volatility, σa

and parameters of the aggregator G (I, S). In all calibrations, we set the discount factor

β to match the level of the risk-free interest rate in the data if possible. An exception is

Model 3, which does not have enough parameters to match both the level of the risk-free

rate and the consumption-tangible investment ratio. We choose β in Model 3 to match the

consumption-tangible investment ratio but not the level of the risk-free rate. We set σa

and σx in both the Benchmark model and Model 1 in order to approximately match the
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standard deviation and the first-order autocorrelation of the annual growth rate of measured

output. The definition of measured output can be found in Appendix C. In both Model 2

and Model 3, we impose σx = 0 and set σa in order to match the standard deviation of the

annual growth rate of measured output.

We choose the aggregator G (I, S) to be of the CES form:

G (I, S) =
(
νI1− 1

η + (1 − ν)S1− 1

η

) 1

1−1/η
. (23)

The aggregator G is described by two parameters, ν and η, chosen to approximately match

the steady-state consumption-tangible investment ratio and the consumption-intangible in-

vestment ratio across all models, if possible.8 The calibrated parameter values are sum-

marized in Table 3 and the steady-state moments used to calibrate the parameters are

displayed in Table 4.

(INSERT TABLE 3 HERE)

(INSERT TABLE 4 HERE)

We solve the model using a second-order local approximation around the stochastic

steady-state.9 We also numerically solved the models using a finite element-based global

approximation method to check the accuracy of the local approximation method. Overall,

the two numerical solutions produce very similar results.

B Quantity Dynamics

In this section, we show that all four models produce similar macroeconomic quantity

dynamics, and that our Benchmark model improves slightly upon the RBC model (Model

3) in several dimensions. In this sense, our model inherits the success of the RBC models

on the quantity side of the economy.

The quantity dynamics produced by our calibrations are shown in the first panel of

Table 5. All four calibrations produce a small volatility of consumption growth and a high

volatility of tangible investment growth, consistent with the data. Recall that Model 3 is

essentially the standard RBC model with recursive preferences. We know from Tallarini

8Model 3 does not have intangible capital, so E[I/J ] is not defined. In Model 2, the parameter η has just
minor effects on the stochastic steady state, therefore it is not possible to match both E[C/I] and E[I/J ]
simultaneously. In Model 2, we follow the RBC literature and set ν to match the consumption-physical
investment ratio observed in the data.

9We thank the authors of the dynare++ package for kindly providing us the updated source code.
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(2000) that the risk aversion parameter of the recursive preference has little effect on the

quantity dynamics. Therefore, on the quantity side, the model behaves just like the standard

RBC model with CRRA preference where γ = 1
ψ

= 0.5. Table 7 shows that the second

moments generated by Model 3 are consistent with those in Kydland and Prescott (1982).

In particular, the model produces a small standard deviation of consumption, 2.47% per

year, and a standard deviation of investment about five times larger: 12.61% per year.

By comparing Model 2 and 3, we see that adding intangible capital to the standard

RBC model reduces the volatility of physical investment growth. This is due to the fact

that the aggregator G affects the model similarly to an adjustment cost function. In order

to generate a high volatility of investment, hence, the curvature of G (I, S) needs to be low,

or, equivalently, the elasticity of substitution between I and S, η, needs to be sufficiently

high. This is exactly what we have across all our calibrations.

Adding long-run productivity risk provides an additional source of variations in the

expected return of physical capital. By comparing Model 1 and 2, we see that long-run

risk increases the volatility of the growth rate of physical investment. A similar positive

effect is also produced by the introduction of different vintages of capital. As a result,

our Benchmark model produces a 12.48% annual volatility of investment growth, similar to

Model 1.

Another interesting dimension to study is the persistence of the the quantities’ growth

rates. In Model 2 and 3, both output and consumption are autocorrelated, even if productiv-

ity growth is not. This result is generated by the persistent fluctuations of our endogenous

state variables, K and S (as in Lochstoer and Kaltenbrunner (2008)). The persistence

generated in these two models, however, is smaller than in the data. Adding long-run pro-

ductivity risk increases the autocorrelation of both consumption and output growth rate

(Croce (2008)). Since both the Benchmark model and Model 1 feature long-run produc-

tivity uncertainty, they produce a higher autocorrelation both in output growth (Table 4)

and consumption growth (Table 5) than Model 2 and 3. We consider this feature as an

improvement upon Model 3.

A well-known feature of standard RBC models is that they produce large correlations of

consumption and investment growth. As shown in Table 5, Model 2 and Model 3 share this

feature. This result is driven by the existence of only one source of uncertainty, the short-

run productivity shock. Since both consumption and investment co-move with this shock,

the correlation of their growth rates is quite high. In the data, instead, the correlation

of consumption and investment growth during the sample period 1929-2008 is 39%, much

lower value than that produced by Model 1 and Model 2. Both our Benchmark model and
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Model 1 are consistent with this feature of the data: the correlation between consumption

and investment growth is 28% in the Benchmark model and 47% in Model 1. These results

are driven by the introduction of long-run productivity uncertainty. Realizations of long-

run productivity shocks, in fact, affect the return of new investments but have little effect

on the total output in the current period. By resource constraint, therefore, consumption

and total investment must move in opposite directions in response to these shocks, reducing

their unconditional correlation.

(INSERT TABLE 5 HERE)

C Asset Price Dynamics

In this section we examine the asset pricing implications of our model. We show that

quantitatively, the lagged risk exposure of new vintage capital plays an essential rule in

accounting for the high market equity premium and the high spread between tangible and

intangible capital.

Campbell (2000) summarizes the challenge to general equilibrium asset pricing models

as three puzzles: the equity premium puzzle (Mehra and Prescott (1985)), the stock market

volatility puzzle (Campbell (1999)), and the risk-free rate puzzle (Weil (1989)). The above

three puzzles manifest themselves even stronger in production economies. In fact, the

production economy setting provides additional challenges: the economy must not only

have a pricing kernel that is volatile enough, but also endogenously produce a high volatility

of the stock market returns. We know several possible mechanisms that generate a highly

volatile stochastic discount factor, for example, the habit persistence model of Campbell and

Cochrane (1999), the long-run risk model of Bansal and Yaron (2004) and the rare disaster

model of Reitz (1988) and Barro (2006). On the return volatility puzzle, the literature has

relied primarily on adjustment cost, or other forms of rigidity in investment to generate

the variation in the price of physical capital. As we explain below, relying on rigidity in

investment as the only channel to generate variations in the price of physical capital is

problematic if the model is also asked to respect the empirical evidence on the low volatility

of the risk-free interest rate, and the high variance of the aggregate tangible investment.

Our calibration, however, shows that the heterogenous productivity of capital of different

vintages is important in understanding the coexistence of the high volatility of the stock

market return, the high volatility of aggregate investment, and the low volatility of the

risk-free interest rate.

The empirical evidence on value premium puts a strong discipline on general equilibrium
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asset pricing models with intangible capital. It is a well-documented empirical fact that

stocks with high book-to-market ratio earn higher returns over the long run. The difference

in the average return of the highest book-to-market ratio portfolio and the lowest book-

to-market ratio portfolio is about 5.92% per year for the period 1929-2003. This evidence

suggests that intangible capital earns a lower average return than physical capital since

book value measures the value of a firm’s physical asset, and the difference between market

value and book value can be attributed to the value of intangible capital owned by the firm.

Qualitatively, the Benchmark model and Model 1 and 2 are consistent with intangible capital

being less risky in equilibrium (Ai (2009b)). Quantitatively, however, only our Benchmark

model is capable to produce a significant value premium. The key to understand the high

value premium in the Benchmark model is the interaction between lagged risk exposure of

new vintage capital and long-run productivity risk.

The rest of the subsections is organized as follows. We first discuss the common fea-

ture of all four calibrations in Section C.1. We examine the models’ implications on the

volatility of returns rK and rS in Section C.2. Finally, we study the models’ implications

of value premium in Section C.3. The asset pricing implications of all four calibrations are

summarized in Table 5.

C.1 Common Features

In standard RBC models, there is always a tension in simultaneously producing a high

consumption-physical investment ratio and a low level of the risk-free rate through the

subjective discount factor β. This explains why in Model 3 we are not able to match

the level of the risk-free rate, as we set β to reproduce the consumption-investment ratio

observed in the data.

Introducing intangible investment reduces the steady state share of physical investment

and mitigates this tension. In all the other models, we are able to generate a low and

relatively smooth risk-free interest rate. The level of the risk-free interest rate is matched

through a higher discount factor β. The volatility of the risk-free interest rate is low because

we adopt an IES greater than one: since agents are very willing to substitute consumption

across time, fluctuations in expected consumption growth rate only produce small variations

in the equilibrium interest rate.

All four models produce a fairly high volatility of the stochastic discount factor. Since

the representative agent is endowed with recursive preferences, fluctuations in expected

consumption growth (long-run risk in the language of Bansal and Yaron (2004)) strongly

affect marginal utility. Model 2 and 3 feature predictability in consumption growth because
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of the endogenous fluctuations in K and S. Introducing intangible capital almost doubles

the volatility of the stochastic discount factor. As explained earlier, both in the Benchmark

model and Model 1, long-run productivity uncertainty produces substantial variations in

the predictable component of consumption growth, in turn increasing further the market

price of risk.

C.2 Volatility of Returns

As shown in Lochstoer and Kaltenbrunner (2008) and Croce (2008), an important chal-

lenge to long-run risk based asset pricing model with production is to account for the high

volatility of investment and stock returns simultaneously. Although recursive preferences

generate high volatility of the stochastic discount factor, the return to physical capital is

typically very smooth, unless one is willing to assume a large adjustment cost. High levels

of adjustment cost, however, are typically associated with counterfactually low levels of

volatility in investment growth.

This tension is present in Model 1, 2, and 3, but it is resolved in our Benchmark model

where the annual volatility of the returns on physical capital is 2.15%, and investment is

as volatile as in a RBC model. In order to explain our results, we find it convenient to

plot in Figure 1 and 2 the impulse response functions of, respectively, quantities and prices

with respect to both short-run (left panels) and long-run shocks (right panels). In both

figures, solid lines refer to Model 1, while dashed lines are generated from the Benchmark

model. Note that the impulse response functions with respect to short-run productivity

shocks are remarkably similar to each other, but they are significantly different when we

focus on long-run shocks.

Although the response of the stochastic discount factor to a long-run productivity shock

is almost identical in both models, those of the returns on physical capital are dramatically

different (Figure 2, third panel on the right column). With a one standard deviation change

in the long-run productivity shock, the return on physical capital, rK , in the Benchmark

model increases by about 1.5%, while the change of that in Model 1 is barely visible. This

implies that the exposure to long-run productivity risk of physical capital is very small in

Model 1, while that in the Benchmark model is larger by several orders of magnitude.

In order to explain the different behavior of rK across the Benchmark model and Model

1, we need to focus our attention on the price of physical capital, qK (Figure 2, fourth panel

on the right column). Equation (18) implies that the price of physical capital, qK is the

present value of the marginal product of physical capital in all future periods (This equation

holds in Model 1 as well). A positive innovation in the long-run productivity component xt
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has two effects on the future marginal product of physical capital. The first one is a direct

effect: keeping everything else constant, an increase in xt raises the marginal product of

physical by increasing all future At+j for j = 1, 2 · · · . The second effect comes from the

general equilibrium: an increase in the marginal productivity of capital also triggers more

investment, which augments Kt+j in all future periods. Due to decreasing return to scale

(α < 1), an increase in Kt+j mitigates the direct effect.

In Model 1, the elasticity of substitution between physical investment and intangible

capital, η, is set to 1.4. This implies that the supply of new capital is quite flexible,

explaining why the return on physical capital almost does not adjust after long-run shocks.

To better see this point, note that without overlapping generations of vintage capital, we

have ̟t = 1 ∀t, and Equation (13) can be written as:

qK (z) − (1 − δS) =
1

GI (I, S)
=

1

ν

(
I

G (I, S)

) 1

η

. (24)

By Equation (24), as η increases, I becomes more sensitive to changes in qK . Equation

(18) implies that if investment adjusts elastically to productivity shocks, then the effect of

long-run productivity shock on qK is small due to decreasing return to scale of physical

capital. This intuition is confirmed by our impulse response functions. In Figure 1, we see

that innovations in long-run productivity shock are accompanied by a nearly permanent

increase in the I/S ratio (third panel, right column, blue line). As a result, the changes in

qK after a long-run productivity shock is almost negligible (Figure 2, 4th panel of the right

column). Summarizing, in Model 1 the return of physical capital responds little to long-run

productivity shocks because the direct effect on the price of physical capital is mostly offset

by movements in investment (general equilibrium effect). Like with standard adjustment

costs, Model 1 finds it difficult to simultaneously produce a high volatility of investment

growth and returns on physical capital.

In the Benchmark model, instead, after a long-run productivity shock, investment rises

only with a long delay, while the return on physical capital increases immediately and

sharply. Figure 1 shows that the I/S ratio initially drops and then starts to rise, always

staying below the level obtained in Model 1 (fourth panel, right column). The last panel in

the same column plots the impulse response of physical capital stock normalized by produc-

tivity (kt = Kt/At) after a long-run shock. Because of the lagged response of investment,

the level of physical capital in the Benchmark model stays nearly permanently behind that

obtained in Model 1. These dynamics have a precise implication for the marginal product
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of physical capital, which is a decreasing function of normalized capital stock, k:

∂

∂K

[
A1−αKα

]
= α

(
A

K

)1−α

=
α

k1−α
.

In the Benchmark model, therefore, the marginal product of physical capital stays almost

permanently above that observed in Model 1, producing a strong increase in qK . In this case,

both the direct and the general equilibrium effect of long-run productivity shocks affect qK

in the same way, reinforcing each other. Basically, the marginal product of capital increases

both because a positive shock in xt increases At+j in all future periods, and because the

sluggish response of investment to long-run shocks results in a nearly permanent reduction

of physical capital stock relative to that in Model 1.

To understand the negative response of investment to long-run news in the Benchmark

model, note that a long-run shock increases the productivity of all existing vintages of

capital permanently, but affects the productivity of the new production units only with a

delay. This generates an incentive to post-pone the exercise of new investment options. As

a result, a long-run productivity shock immediately produces a strong income effect (the

agent anticipates a persistent increase in the productivity of all existing vintages of capital

and prefers to consume more) without generating a significant substitution effect, i.e. there

is no incentive to generate immediately new investment. At time 1, when a positive long-run

shock materializes, the net effect is an immediate increase in consumption and a decrease in

investment, exactly the opposite of what happens in Model 1, where the substitution effect

dominates the income effect and investment increases.

In the Benchmark model, it may be surprising to see that positive long-run shocks,

although small, have quite significant and prolonged negative effects on physical investment.

The sluggish response of investment is generated by the persistence of the long-run shocks:

after positive long-run news, the relative productivity of new investment remains behind

that of existing vintages for an extended period of time, therefore discouraging a fast and

full recovery of investment.

Our model explains the link between productivity shocks and stock market fluctuations,

but does not feature dividend-specific shocks. In the data, however, it is well known that

dividend-specific shocks explain a substantial share of the volatility of the market returns.

Consequently, our model cannot and should not account for the total volatility of the stock

market returns. In the rest of this section we evaluate how much productivity-related stock

market fluctuations our model can account for.

First of all, under the guidance of our model, we construct a measure of productivity-
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related return volatility by projecting returns onto the space of long-run and short-run

productivity shocks. For any return rt, we denote

r̂t = E [rt|∆xt,∆ lnAt] (25)

as the return projected onto the space of productivity shocks. Second, we define the

productivity-related volatility of the return rt as follows.

Definition 1 Productivity-related Volatility

The productivity-related volatility of a return rt, denoted as σ̂, is defined as the volatility

of the return projected onto the space of productivity shocks, that is,

σ̂ = Std [r̂t]

where r̂t is the projection of return rt onto the space of productivity shocks defined in (25).

In practice, we calculate the conditional expectation in (25) by the following regression:10

rM,t = ξ0 + ξ1∆xt + ξ2∆ lnAt + εt. (26)

A potential difficulty of calculating r̂t is that ∆xt is unobservable in the data and needs

to be substituted by an estimated proxy, ∆x̂t. A merit of our approach is that we do not

need to measure the latent variable ∆xt accurately in order to accurately compute σ̂. Since

we are only interested in the conditional expectation, as long as the couple (∆x̂t, ∆ lnAt)

spans the whole space of productivity shocks, we can obtain a perfect measure of σ̂. The

details of the construction of σ̂ in the data and the model can be found in the Appendix C

of the paper.11

According to our procedure, only 25% of the total observed volatility of the market

returns can be attributed to productivity shocks. Therefore, while in our sample the total

volatility of the returns is 19.42%, the volatility directly related to productivity is in the

order of 5.25%. After leveraging our returns, our model accounts for almost all productivity-

related volatility of the stock market, as shown in the last row of Table 5.12

10Here we are assuming that the conditional expectation is linear in the short-run and long-run shocks.
It turns out this is a very good approximation under the null of the model.

11Our empirical investigation confirms that our calculation of productivity-related volatility of the market
returns is robust to various methods of estimation both in the data and in the model simulations.

12We assume a leverage ratio (the ratio of debt-to-equity) of 2.
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We conclude this section by pointing out that the volatility puzzle is more severe in

economies with decreasing marginal returns of physical capital (see also Lochstoer and

Kaltenbrunner (2008) and Croce (2008)). In AK models, such as the one studied in Ai

(2009a), the response of investment to productivity shocks does not dampen the direct

effect of productivity shocks on returns, hence generating a volatile return on capital is

easier. While AK models are useful in studying economic growth in the long-run, empirical

studies (see, for example, Benhabib and Jovanovic (1991), Benhabib and Spiegel (1994),

Romer (1990), King and Levine (1994)) emphasize the importance of decreasing returns to

physical capital in understanding macroeconomic quantities. Given this empirical evidence,

our work suggests that different exposure of capital vintages to productivity risk is important

to explain productivity-related volatility of market returns.

C.3 Value Premium

To understand the difference in the expected return of tangible and intangible capital, we

can use the functional form of G (I, S) in Equation (23) and write the return of intangible

capital in Equation (17) as:

rS
(
z, z′

)
=

1 − ν

ν

(
I (z′)

S′

) 1

η

+ (1 − δS) . (27)

The term 1−ν
ν

(
I(z′)
S′

) 1

η
can be interpreted as the current-period option value of intangible

capital. After noticing that S is pre-determined, it is easy to see that this term is increasing

in I, as more physical investment allows more investment options to be exercised, and

therefore increases the “moneyness” of the options. Equation (27) implies that the riskiness

of intangible capital depends on the sensitivity of the I/S ratio to productivity shocks.

The implications of our model on the value premium are summarized in the last panel of

Table 5. We make the following observations. First, all models with intangible capital yield

a higher return for physical capital than for intangible capital. This result can be explained

by noticing that intangible is risky only because the “dividend” component of the return in

(27), that is 1−ν
ν

(
I(z′)
S′

) 1

η
is risky, while qS,t = 1 ∀t.

Second, comparing Model 1 and Model 2, we can see that adding long-run productiv-

ity shock raises the market risk premium only slightly, but eliminates most of the spread

between tangible and intangible capital produced by Model 1. On the one hand, without

overlapping generations of vintage capital, the response of qK to long-run productivity shock

is very small. On the other hand, because the I/S ratio increases quite strongly in response
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to a long-run productivity shock (see the third panel in the right column of Figure 1), and

because long-run productivity shock requires a large risk premium (see the second panel in

the right column of Figure 2), intangible capital is significantly more risky in Model 1 than

in Model 2.

Finally, compared to Model 1, our Benchmark model produces both a larger risk pre-

mium on physical capital and a smaller risk premium on intangible capital, thus improving

upon Model 1 on both dimensions of equity and value premium. Overlapping generations of

vintage capital dampen the response of physical investment to long-run productivity shocks

and increase the risk exposure of physical capital. At the same time, the I/S ratio responds

negatively to long-run productivity shocks in the first period, making intangible capital a

good insurance device against the long-run risk. This is evident in Figure 2 (last panel,

right-column): the return of intangible capital responds negatively to long-run productivity

shocks. Overall, the Benchmark model produces a market risk premium more than two

times larger than that in Model 1, and a spread between tangible and intangible capital

higher by an order of magnitude. When leverage is taken into account, the benchmark

model produces a value premium of 4.29% per year, more than 70% of the observed value

premium in the data.

V Conclusion

We present a general equilibrium asset pricing model with intangible capital to account for

some of the salient features of macroeconomic quantity and asset price dynamics. Incorpo-

rating intangible presents additional challenges to general equilibrium asset pricing models

with production. Due to the well known difficulty in generating a high equity premium

in production economies, one might be tempted to assume that intangible capital is much

more risky than physical capital and propose this as a resolution of the equity premium

puzzle. The empirical evidence on value premium, however, suggests the exact opposite. In

the US, portfolios of firms with low book-to-market ratios pay substantially lower returns

than firms with high book-to-market. This suggests intangible capital earns a much lower

risk premium than tangible capital, making it even harder to account for the overall market

equity premium.

We document a novel empirical evidence that is the key to understand the empirical

facts on equity returns, especially the spread between tangible and intangible capital. We

show that in the data new investment is less exposed to aggregate productivity shocks than

capital of older vintages. We build a general equilibrium model with intangible capital
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based on Ai (2009b) and incorporate long-run productivity risk as in Croce (2008). We

show that the lower exposure of new investment is quantitatively important in accounting

for the high equity premium, the high volatility of the stock market return, and the high

spread between book-to-market sorted portfolios in the data.

Several remarks are in order. First, our model is silent on why young firms are much less

exposed to aggregate risk than older firms, but this seems to be an important and interesting

future research question. Second, there are many other important issues that could be

studied in our framework. For example, the dynamics of hours worked, the predictability of

stock market returns, the term structure of interest rates. Based on the insights from Bansal

and Yaron (2004), and Bansal, Kiku, and Yaron (2007), we conjecture that building a time-

varying volatility in aggregate productivity is a promising direction. Finally, we believe

that our model provides a general equilibrium framework to measure intangible capital by

exploring the information from both the quantity and pricing side of the economy.
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Table 1: Summary Statistics by Firm’s Age

Age Groups (yrs) Avg. Age Avg. Y Avg. K Avg. N No. of Obs.

1 − 10 4.91 1.00 1.00 1.00 61.60%

11 − 20 14.72 2.48 2.92 2.59 22.69%

21 − 30 24.94 5.70 8.25 5.81 9.30%

31 − 40 34.87 13.20 26.05 11.94 4.27%

41 and above 46.75 33.78 104.58 23.57 2.15%

Total 6.81 1.90 2.16 1.93 479, 973

This table reports the summary statistics of the firms in our sample for five age groups, 1-10, 11-20,

21-30, 31-40 and 41 years and above. The abbreviation Avg. Y stands for the average output, Avg.

K for average capital stock, and Avg. N for average number of employees. We normalize average

output, average capital stock, and average number of employees of the age group 1-10 to 1. In the

last column we report the percentage number of observations in our sample for each age group.
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Table 2: Exposure to Aggregate Risk by Firms’ Age

Without Fixed Effect With Fixed Effect

First Stage Second Stage First Stage Second Stage

Capital Share (α1) 0.390∗∗∗ 0.359∗∗∗

(0.001) (0.005)

Labor Share (α2) 0.534∗∗∗ 0.519∗∗∗

(0.002) (0.008)

Age Effect (ξ3) 0.031∗∗∗ 0.031∗∗∗

(0.006) (0.006)

R2 0.859 0.036 0.618 0.037

No. of Firms 19, 639 18, 017 19, 639 18, 017

No. of Observations 220, 570 195, 343 220, 570 195, 343

This table reports firms’ risk exposure by age. The column “First Stage” reports the statistics of

the first stage regression. The column “Second Stage” reports the statistics of the second stage

regression. The statistics for the regression “With Fixed Effect” is based on regression (22). The

regression ”Without Fixed Effect” is based on the same regression without the fixed effect term ξ
0,i.

We use ∗ ∗ ∗ to indicate a p-value of less than 0.001.
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Table 3: Calibrated Parameter Values

MODEL: Benchmark 1 2 3

Preference Parameters

Discount Factor β 0.97 0.97 0.98 0.89

Risk Aversion γ 10 10 10 10

Intertemporal Elasticity of Substitution ψ 2.0 2.0 2.0 2.0

Production Function/Aggregator Parameters

Capital Share α 0.3 0.3 0.3 0.3

Depreciation Rate of Physical Capital δK 10% 10% 10% 10%

Depreciation Rate of Intangible Capital δS 10% 10% 10% –

Weight on Physical Investment ν 0.84 0.79 0.815 –

Elasticity of Substitution η 1.40 1.40 1.75 –

TFP Parameters

Average Growth Rate µ 2.0% 2.0% 2.0% 2.0%

Volatility of Short-run Risk σa 5.00% 6.30% 7.00% 5.00%

Volatility of Long-run Risk σx 0.85% 0.85% – –

Autocorrelation of Expected Growth ρ 0.93 0.93 – –

New investment’s risk exposure φ 0 1 1 1

This table reports the parameter values used for our calibrations. The risk aversion, γ, intertem-

poral elasticity of substitution, ψ, capital share, α, depreciation rates, δK and δS , and the average

productivity growth rate, µ, are common across all models. We choose the rest of the parameters to

match the moments reported in table 4 whenever possible. All models are calibrated at an annual

frequency.
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Table 4: Moments used for Model Calibration

DATA BENCHMARK MODEL 1 MODEL 2 MODEL 3

E [C/I] 5.62 5.60 5.62 5.62 5.64

E [I/J ] 1.00 1.01 0.98 (0.80) —

σ [∆ lnY ] 3.49 3.49 3.49 3.49 3.50

AC1 [∆ lnY ] 0.45 0.45 (0.49) (0.30) (0.27)

E [rf ] 0.86 0.86 0.87 0.86 (12.65)

This table reports the moments used to calibrate the parameters of the models evaluated in this

paper. All moments that cannot be matched are into parentheses. In Model 3, the discount factor β

is chosen to match the steady-state consumption-investment ratio, even though this makes the risk-

free interest rate too high. Both Model 2 and 3 cannot match the persistence of output growth, since

they have no long-run risk. In Model 2, the parameter ν is set to match the consumption-investment

ratio even though the implied I/J ratio is lower than in the data. In Model 1, the autocorrelation

of output cannot be matched, as we decide to keep the calibration of the long-run risk component

constant across models.
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Table 5: Quantities and Prices

MOMENTS DATA BENCHMARK MODEL 1 MODEL 2 MODEL 3

σ (∆ lnC) 02.93 02.87 02.95 02.83 02.47

σ (∆ ln I) 16.40 12.48 09.20 08.87 12.61

Corr (∆ lnC,∆ ln I) 00.39 00.26 00.62 00.76 00.82

AC1 (∆ lnC) 00.49 00.54 00.55 00.51 00.34

σ [SDF ] – 93.09 98.21 68.08 39.01

E[rK − rf ] – 02.00 00.80 00.72 00.28

σ[rK ] – 02.15 01.46 01.37 00.98

E[rS − rf ] – 00.55 00.65 00.44 –

σ[rS ] – 01.19 01.12 00.89 –

E[rf ] 00.86 00.86 00.86 00.86 12.65

σ[rf ] 00.97 01.18 01.10 00.75 00.68

E[rLM − rf ] 05.48 04.74 02.22 02.16 00.85

σ̂M 05.24 04.98 02.98 03.14 02.27

E[rLK − rLS ] 05.00 04.08 00.44 01.11 –

All figures are multiplied by 100, except correlations. Empirical moments are computed using US

annual data from 1930 to 2003. The entries for the models are obtained by simulations. rL
M indicates

levered market returns; σ̂M measures the volatility of market returns explained by productivity.

E
[
rL
K − rL

S

]
measures the average difference between the levered returns of tangible and intangible

capital. We use a leverage coefficient of 3. AC1 indicates first order auto-correlation. All the

parameters are calibrated as in table 3.
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Fig. 1 – Impulse Response Functions for Quantities

This figure shows annual log-deviations from the steady state. All the parameters are calibrated to
the values reported in Table 3. The solid lines refer to Model 1, while the dashed lines refer to the
Benchmark model.
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Fig. 2 – Impulse Response Functions for Prices

This figure shows annual log-deviations from the steady state. All the parameters are calibrated to
the values reported in Table 3. Returns are not levered. The solid lines refer to Model 1, while the
dashed lines refer to the Benchmark model.
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Appendix

Appendix A: Aggregation of Production Units

Lemma 1 Suppose there are m types of firms. For i = 1, 2, 3, · · ·m, the productivity of the type i

firm is denoted by A (i), and the total measure of type i firm is denoted by K (i). The production

technology of type i firm is given by

y (i) = [A (i)n (i)]
1−α

where n (i) denotes the labor hired at firm i. The total labor supply in the economy is N . Then the

aggregate production function is given by:

Y =

[
m∑

i=1

K (i)

[
A (i)

A (1)

] 1−α

α

]α

[A (1)N ]
1−α

Proof. Without loss of generality, we assume at the optimal production plan, firms of the same type

employ the same amount of labor. The total production in the economy is given by:

Y = max

m∑

i=1

K (i)A (i)
1−α

n (i)
1−α

(A.1)

subject to

m∑

i=1

K (i)n (i) = N

The first order condition of the above optimization problem implies that for all i

n (i)

n (1)
=

(
A (i)

A (1)

) 1−α

α

Using the resouce constraint, we determine the labor employed in firm 1:

m∑

i=1

K (i)

(
A (i)

A (1)

) 1−α

α

n (1) = N

This implies

n (1) =

[
m∑

i=1

K (i)

[
A (i)

A (1)

] 1−α

α

]−1

N (A.2)
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Therefore the total production is given by

Y =

m∑

i=1

K (i)A (i)
1−α

[(
A (i)

A (1)

) 1−α

α

n (1)

]1−α

=
[
A (1)

−
1−α

α n (1)
]1−α

m∑

i=1

K (i)A (i)
1−α

α

=

[
m∑

i=1

K (i)A (i)
1−α

α

]α

N1−α

= A (1)

[
m∑

i=1

K (i)

(
A (i)

A (1)

) 1

α

]α

N1−α

Plug in the expression for n (1) in Equation (A.2), we have:

Y =



A (1)
−

1−α

α

[
m∑

i=1

K (i)

[
A (i)

A (1)

] 1−α

α

]−1

N




1−α

m∑

i=1

K (i)A (i)
1−α

α

=

[
m∑

i=1

K (i)A (i)
1−α

α

]α

N1−α

=

[
m∑

i=1

K (i)

[
A (i)

A (1)

] 1−α

α

]α

A (1)
1−α

N1−α

as needed.

Proof of Proposition 1:

At time t, there are t+1 types of operating production units in the economy, namely, production

units of generation −1, 0, 1, · · · , t − 1. The measure of these production units are (1 − δK)
t
K0,

(1 − δK)
t−1

E0, (1 − δK)
t−2

E1, · · · , Et−1. Using the above lemma, at date t, the total production

in the economy is given by

Yt = At



(1 − δK)
t
K0 +

t−1∑

j=0

(1 − δK)
t−j−1

Ej

(
Aj

t

At

) 1−1

α




α

N1−α
t .

Clearly, if we define the {Kt}
∞

t=0
according to (6), the aggregate production function can be sum-

marized as in (5).

Appendix B: Robustness Analysis of Firms’ Risk Exposure

We present robustness analysis for the empirical results reported in Section III. We first address the

issue of sample selection bias. The addition of firms into the COMPUSTAT database universe is not

a random process, hence, there is a sample selection issue that may bias our estimation results. As
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a robustness check, we use Heckman 2-stage procedure (Heckman, 1979) to correct for the selection

bias. We report our results in table B1. Sample selection does not seem to affect our results.

(TABLE B1 HERE)

Second, we show that small firms have lower exposure to aggregate productivity risk than large

firms. It is reasonable to believe that small firm have higher weight on new investment projects

than larger firms; therefore our evidence on the lower risk exposure of small firms provides further

support to our model specification. We consider the following regression:

∆ log aj
i,t = ξj

0
+ ξj

0,i + φj∆logAt (B.1)

for j = {large, small}, and apply it to large and small firm subgroups formed by the top and bottom

20% quantiles of firm size. We allow for a firm fixed effect through the term ξj
0,i. The coefficient φj

denotes the exposure of individual firms’ productivity growth to aggregate productivity risk. The

regression results are presented in table B2. For large firms, φ is statistically significant and close

to one, consistent with our model. For small firms, instead, φ is statistically indistinguishable from

zero, again consistent with our model specification. These results also hold when we apply the

Heckman’s correction procedure (Panel B).

(TABLE B2 HERE)
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Table B 1: Exposure to Aggregate Risk by Firms’ Age (II)

With Fixed Effect

First Stage Second Stage

Capital Share (α1) 0.339∗∗∗

(0.005)

Labor Share (α2) 0.524∗∗∗

(0.008)

Age Effect (ξ
3
) 0.033∗∗∗

(0.006)

R2 0.59 0.035

No. of Firms 19, 616 17, 970

No. of Observations 207, 367 182, 206

This table reports firms’ risk exposure by age. The structure of this table is the same as Table 2.

We use Heckman (1979) two-stage procedure to correct for selection bias. We start by estimating a

probit model explaining the decision of firms to exit the market or not, then include the inverse mills

ratio (IMR) in the second stage regression. We use ∗ ∗ ∗ to indicate a p-value lower than 0.001.
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Table B 2: Exposure to Aggregate Risk by Firms’ Size

Panel A:

Small Firms Group Large Firms Group

First Stage Second Stage First Stage Second Stage

Capital Share (α1) 0.197∗∗∗ 0.502∗∗∗

(0.011) (0.011)

Labor Share (α2) 0.546∗∗∗ 0.366∗∗∗

(0.016) (0.016)

Aggregate Risk Exposure (φ) 0.348 1.150∗∗∗

(0.285) (0.087)

R2 0.284 0.031 0.626 0.027

No. of Firms 8, 052 5, 753 3, 092 2, 971

No. of Observations 37, 449 26, 300 41, 678 37, 667

Panel B: Correct for Selection Bias

Small Firms Group Large Firms Group

Capital Share (α1) 0.193∗∗∗ 0.481∗∗∗

(0.011) (0.011)

Labor Share (α2) 0.538∗∗∗ 0.368∗∗∗

(0.016) (0.016)

Aggregate Risk Exposure (φ) 0.434 0.918∗∗∗

(0.229) 0.092

R2 0.282 0.034 0.575 0.025

No. of Firms 7, 780 5, 457 3, 087 2, 785

No. of Observations 35, 293 24, 515 39, 071 35, 085

This table reports firms’ risk exposure by size. For each group, the column under “First Stage”

reports the statistics of the first stage regression. The column under “Second Stage” reports the

statistics of the second stage regression, based on the equation (B.1) in Appendix B. Panel A and

B report the results with/without correcting for selection bias through Heckman (1979) two-stage

procedure, respectively. We use ∗ ∗ ∗ to indicate a p-value lower than 0.001.
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Appendix C: Measurement of Quantities in the Data and their Construc-

tions in the Model

1. Consumption (Ct): Per capita consumption data is from the National Income and Product

Accounts (NIPA) annual data reported by the Bureau of Economic Analysis (BEA). It is

constructed as the sum of consumption expenditures on nondurable goods and services (Table

1.1.5 Line 5 and 6) deflated by corresponding price deflators (Table 1.1.9 Line 5 and 6).

2. Physical Investment (It): Physical investment data is also from the National Income and

Product Accounts (NIPA) annual data reported by the Bureau of Economic Analysis (BEA).

We measure physical investment by fixed investment (Table 1.1.5 Line 8) less information

processing equipment and software (Table 5.5.5 Line 3) deflated by its price deflator (Table

1.1.9 Line 8). Information processing equipment and software is interpreted as investment in

intangible capital and is therefore substracted from fixed investment.

3. Measured Output (YM,t): The sum of total consumption and physical investment, that is,

Ct + It. Note measured output differ from the actual output by Jt. In the data, we do not

have accurate measure of Jt for the long sample period (1929-2003) as we do for consumption

and physical investment data. We therefore compare our model’s implications on measured

output with that in the data.

4. Intangible Investment (Jt): We follow the procedure in Corrado, Hulten, and Sichel (2006) to

construct intangible investment in the post-war period in the data.

5. Projected Volatility of Market Return: We follow a two-step procedure. We use the multifactor

productivity index for the private non-farm business sector from the Bureau of Labor Statistics

(BLS) as a proxy for Total Factor Productivity, At in the model. We first construct the

estimates of the long-run components of productivity shocks xt using the Kalman filter. We

then construct the projection of the return on the S&P 500 index as in Equation (26) with

∆xt replaced by its empirical estimates. We then measure the productivity-related volatility

in the data according to the procedure described in Section C of the paper. Our results are

robust to alternative ways of estimating the long-run component of the productivity shocks,

since the measure of productivity-related volatility does not require accurate estimation of the

long-run component, as explained in Section C of the paper.

In the model simulations, xt is perfectly observable, and the R2 of the regression in (26)

is essentially 100%. We constructed estimates of xt using the realized productivity in the

simulated data as we did in the data. We obtain very similar results by using estimates of xt

instead of the true xt in the simulated data.
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