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large-scale tight-binding simulations
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We provide a tight-binding model parametrization for black phosphorus (BP) with an arbitrary number of layers.

The model is derived from partially self-consistent GW0 approach, where the screened Coulomb interaction W0

is calculated within the random phase approximation on the basis of density functional theory. We thoroughly

validate the model by performing a series of benchmark calculations, and determine the limits of its applicability.

The application of the model to the calculations of electronic and optical properties of multilayer BP demonstrates

good quantitative agreement with ab initio results in a wide energy range. We also show that the proposed model

can be easily extended for the case of external fields, yielding the results consistent with those obtained from

first principles. The model is expected to be suitable for a variety of realistic problems related to the electronic

properties of multilayer BP including different kinds of disorder, external fields, and many-body effects.
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I. INTRODUCTION

A few-layer black phosphorus (BP) is a novel two-
dimensional (2D) semiconductor with a number of remarkable
properties such as strong anisotropy and pronounced thickness
dependence of its electronic characteristics, which, along with
high current on-off ratios and high carrier mobilities, make
this material a promising candidate for diverse electronic
and optical applications [1–7]. Apart from the practical
aspect, there is a growing fundamental interest in BP ranging
from attempts to provide insight into the origin of its band
properties [8] to more exotic and speculative aspects including
superconductivity [9] and topologically nontrivial phases [10].

From the theoretical perspective, one can distinguish
between the two main approaches for studying electronic
properties in material science. The first one is parameter-free
first-principles calculations, commonly based on density func-
tional theory (DFT) and its many-body extensions (e.g., GW

approximation). Although such methods generally provide
accurate results with respect to the ground state properties,
their applicability to large systems is very limited due to high
computational cost and poor scalability. At the same time,
realistic modeling in many cases requires large-scale simu-
lations in order to, for example, describe finite-size effects,
the presence of interfaces, or different kinds of disorder. In
this respect, tight-binding (TB) Hamiltonian models act as
an alternative approach to the electronic structure problem,
providing a way to perform simulations with millions of atoms
involved. Apart from being computationally more tractable,
TB models also serve as a playground for exploring rich
many-body physics.

Unlike graphene [11], whose electronic properties in the
low-energy limit are determined by a simple TB Hamiltonian,
involving only one nonequivalent parameter (intersite hopping
integral, t), a reliable theoretical description of a single-layer
BP (known as phosphorene) is considerably more challenging.
A number of low-energy electronic properties of pristine
phosphorene can be efficiently described in terms of the (2 ×
2) k · p Hamiltonian [8,12–17] with parameters determined
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to reproduce first-principles calculations. Being determined
in reciprocal space and designed to describe the valence
band (VB) and conduction band (CB) edges only, the k · p

Hamiltonians are not well suited for studying real-space
problems. Moreover, such models basically rely upon the
effective mass approximation, whose applicability is not well
justified for BP even in the low-energy range due to the
presence of flat bands. Last but not least, although the extension
of the k · p model appears straightforward to the multilayer
case [13,14,17], it becomes dependent on thickness-dependent
parameters, which are a priori not known.

Early attempts to provide a real-space model to the elec-
tronic structure of BP were based on molecular orbital theory
[18], whose simplified nature and complex orbital character of
BP prevent a quantitatively accurate description [19]. Recently,
two of us have proposed a more rigorous real-space model
for single- and double-layer BP, which was constructed by
downfolding the full G0W0 Hamiltonian to the minimal (one
interaction site per phosphorus atom) low-energy effective
Hamiltonian [20]. The latter involves two main parameters of
unlike signs corresponding to two nearest-neighbor hopping
integrals, and a number of less-relevant long-range parameters
needed to accurately reproduce the quasiparticle VB and CB
edges of monolayer and bilayer BP. The model has been
successfully applied in a number of studies including those
related to phosphorene nanoribbons [21,22], electric [21,23]
and magnetic fields [16,24], different kinds of disorder [24],
and realistic modeling of field-effect electronic devices [25].
However, the applicability of that model is limited to single-
and bilayer BP, whereas thicker (experimentally available)
samples cannot be considered.

In this paper, we report on a revision of the above mentioned
model [20]. Particularly, we focus on its modification to
describe BP samples with arbitrary thickness, ranging from
monolayer to bulk. We also improve the quantitative validity
of the model, which allows us to achieve consistency with
experimental results in the bulk limit. The proposed model is
derived on the basis of accurate first-principles calculations
within the partially self-consistent GW0 approximation and
systematically validated by performing a series of benchmark
tests. The model is suitable for studying large-scale problems
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and applicable in a wide energy range. As a study case, we
examine the energy gap dependence on the number of layers
and also consider the influence of a perpendicular electric
field onto the electronic structure of BP. Particularly, we study
the role of BP thickness in the transition from a normal to
topological insulator driven by external electric field recently
predicted for a few-layer BP [10].

The rest of the paper is organized as follows. In Sec. II, we
start with an overview of previous first-principles studies of
the electronic structure of BP (Sec. II A), provide calculation
details (Sec. II B), and present the results of the GW0 calcula-
tions, accompanied by the analysis of the quasiparticle band
structure of a few-layer and bulk BP (Sec. II C). In Sec. III, we
propose the TB model, describe the parametrization procedure
(Sec. III A), and perform a series of calculations in order to
assess its performance (Secs. III B and III C). In Sec. IV, we
extend the model by adding an electric field and apply it to
multilayer BP. In Sec. V, we briefly summarize our results.

II. ELECTRONIC STRUCTURE OF A FEW-LAYER BP

FROM FIRST PRINCIPLES

A. Overview of previous studies

After a few-layer BP became available experimentally, a
considerable number of theoretical studies of its band structure
have been reported. The calculations showed that commonly
used DFT in conjunction with local and semilocal exchange-
correlation approximations does not describe semiconducting
properties of bulk BP correctly. Contrary to experimental
observations, yielding a narrow gap of 0.31 –0.35 eV [26–28]
for bulk BP, the local density approximation or generalized
gradient approximation (GGA) predict significantly smaller
or even zero values, depending on a particular computational
scheme and lattice parameters [20,29–34]. The utilization of
hybrid functionals [such as Heyd-Scuseria-Ernzerhof (HSE)
[35,36]], incorporating a nonlocal contribution to the exact
exchange, has been shown to partially solve the band gap
problem of bulk BP [29–31,33,34]. However, the performance

of such methods depends strongly on a number of empirical
parameters determining, for example, the screening range and
fraction of the exact exchange contribution, which are gener-
ally system specific and cannot be systematically determined.
This ambiguity results in a broad variation of band gaps in a
few-layer and bulk BP (see Table I for an overview).

More consistent results with respect to the band properties
can be obtained using the GW approximation [37], which
has been applied to BP in Refs. [20,32,34,38]. The authors
of Ref. [32] adopt a non-self-consistent G0W0 scheme, where
the screened Coulomb interaction W0 is calculated within the
general plasmon pole model [39] and report a band gap of
0.3 eV for bulk BP, which is within the range of available
experimental data. However, the use of a more reliable random
phase approximation (RPA) [40] within the G0W0 scheme
yields a smaller value of 0.1 eV [20]. More accurate band
gap values are supposed to be obtained within the RPA
in terms of a partially self-consistent GW0 scheme. Such
calculations have been recently performed in Ref. [34], where
the evaluation of W0 was based on hybrid functionals and
resulted in significantly higher band gap values for bulk BP
(0.58 eV) compared to the experimental ones. Therefore, the
hybrid functionals do not seem to be an optimal starting point
for GW calculations of BP. Physically, this can be attributed
to excessively contracted wave functions, which suppress the
screening of the Coulomb repulsion and eventually leads to the
band gap overestimation. The closest results to experiment are
obtained by means of the GW0 approach with W0 calculated
on top of the GGA wave functions within the RPA (denoted
as GW0@GGA thereafter) [38], which yields the gaps of 0.43
and 1.94 eV for bulk and monolayer BP, respectively. The
latter value is also consistent with recent scanning tunneling
spectroscopy measurements of the gap in the spectrum of
surface states of cleaved BP (2.05 eV) [38].

B. Calculation details

Here, we first apply the GW0@GGA scheme to calcu-
late the quasiparticle electronic band structures for n-layer

TABLE I. Band gaps (in eV) for monolayer (n = 1), multilayer (n = 2,3), and bulk BP (n = ∞) calculated at different levels of theory.

In the notation of different methods, G0 and W0 imply that the Green’s function and screened Coulomb repulsion in the GW approach are

calculated non-self-consistently on the basis of wave functions derived from density functional (GGA) or hybrid functional (HSE) calculations,

whereas G means a self-consistent calculation of the Green’s function. W ′
0 and W0 denote that the screened Coulomb interaction is calculated

by using the general plasmon pole model [39] and RPA [40], respectively.

GW0@GGAa TB Modela GW0@GGAb GW0@HSEc G0W0@GGAd G0W
′
0@GGAe HSEf GGAg Expt.

n = 1 1.85 1.84 1.94 2.41 1.60 2.00 1.00–1.91 0.80–0.91 2.05h

n = 2 1.16 1.15 ∼1.65 1.66 1.01 ∼1.30 1.01–1.23 0.45–0.60 —

n = 3 0.84 0.85 ∼1.35 1.20 0.68 ∼1.05 0.73–0.98 0.20–0.40 —

n = ∞ 0.35 0.40 0.43 0.58 0.10 0.30 0.18–0.39 0.00–0.15 0.31–0.35i

aThis work.
bReference [38].
cReference [34].
dReference [20].
eReference [32].
fReferences [29–31,33,34].
gReferences [12,20,29–34].
hThis value corresponds to a gap in the spectrum of surface states of bulk BP (Ref. [38]).
iReferences [26–28].
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(n = 1 − 3) and bulk BP, which provide reference data for the
subsequent TB model parametrization. The calculations were
performed within the projected augmented wave formalism
[41] as implemented in the Vienna ab-initio simulation

package (VASP) [42,43]. The Green’s functions (G) were
first calculated by using the Kohn-Sham eigenvalues and
eigenstates and then iterated four times, which proved to be
sufficient to achieve numerical convergence [44]. The screened
Coulomb interaction (W0) is calculated on the basis of the
frequency-dependent dielectric function, W0 = ǫ−1

0 v, which,
in turn, is computed at the RPA level [40] as ǫ0 = 1 − vχ0,
where v is the bare Coulomb interaction and χ0 is the
independent particle polarizability. The latter is evaluated
by using the DFT-GGA [45] eigenvalues and eigenstates
in the spectral representation. To this end, a numerical
integration along the frequency axis containing 70 grid points
is performed. In the calculation of the quasiparticle energies,
both diagonal and off-diagonal elements of the self-energy
matrix � = iGW were included. The total energy in the DFT
part was converged to within 10−8 eV. In all calculations, we
use an energy cutoff of 250 eV for the plane-wave expansion
of the wave functions. The number of unoccupied states in
GW calculations were set to 90 per atom. In most cases, a
k-point mesh of (10 × 12 × 1) and (10 × 12 × 4) was used
for the Brillouin zone sampling of a few-layer and bulk BP,
respectively. To examine the fine structure of the electronic
spectrum of monolayer BP, a denser mesh was considered. To
obtain smooth band structures, densities of states, and optical
conductivities, we use an interpolation procedure by making
use of the maximally localized Wannier functions [46–48],

which are constructed by projecting the GW0 Hamiltonian
onto the entire manifold of the 3s and 3p states of phosphorus.
For all the structures, we adopt experimental crystal structures
of bulk BP [49] and introduce a vacuum layer of ∼15 Å in
order to minimize spurious effects due to the periodic boundary
conditions in slab calculations. The chosen set of parameters
ensures that the quasiparticle gaps are accurate to within a
few hundredths of eV. Although some variations in structural
parameters have been reported between monolayer and bulk
BP [30,34], we intentionally do not consider such effects in
our work due to the following reasons: (i) to minimize the
complexity of the TB model for multilayer BP associated
with atomic degrees of freedom, and (ii) to avoid ambiguity
in the determination of structural parameters for a few-layer
BP at the DFT level arising from the variety of different
exchange-correlation functionals.

C. Quasiparticle electronic properties from partially

self-consistent GW0 approximation

In Fig. 1, we show the densities of states (DOS) calculated
for a few-layer (n = 1–3) and bulk BP within the GW0@GGA
scheme. One can see that the calculated value of a band
gap of bulk BP is 0.35 eV, which is within the bounds
of experimental variability (0.31–0.35 eV [26–28]). Such
an agreement justifies the computational approach employed
and allows us to expect accurate results for a few-layer BP.
Qualitatively, the GW0 results for a few-layer BP shown in
Fig. 1 are similar to those reported previously [20,30,32–34].
In cases of a few-layer BP, DOS exhibits a steplike behavior,
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FIG. 1. (Color online) Orbitally resolved densities of states (DOS) calculated for a few-layer (n = 1–3) and bulk (n = ∞) BP by projecting

the GW0 Hamiltonian onto the atom-centered Wannier orbitals, corresponding to s and pi (i = x,y,z) symmetries. The total DOS is shown in

the inset within the energy range of −8 to 8 eV relative to the band gap center indicated by the vertical dashed line.
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FIG. 2. (Color online) Left: Fine structure of the VB of mono-

layer BP calculated along the Ŵ-Y direction in the vicinity of

the Ŵ point by means of the DFT-GGA and GW0 approaches.

Points correspond to the original calculations at a (24 × 32 × 1)

k-point mesh, whereas lines represent Wannier-interpolated bands.

Right: Wannier-interpolated DFT-GGA and GW0 densities of states

calculated for the same energy range. Zero energy corresponds to the

position of the VB at the Ŵ point.

which is typical for systems with reduced dimensionality. For
the following, it is also worth mentioning that in all cases
considered, the major contribution to the states close to the
band gap comes from the pz states of phosphorus, whereas py

states have zero contribution at the VB and CB edges.
In the case of monolayer BP, the fine structure of the

electronic states near the edge of the VB requires special
attention. As has been noticed in previous DFT studies [12],
the VB maximum is slightly shifted from the Ŵ point in the
Ŵ-Y direction, which apparently results in an indirect gap in
monolayer BP. The deviation of the VB maximum from the
zone center might result in nontrivial physical properties of BP
such as superconducting and ferromagnetic instabilities [50]
due to the appearance of the van Hove singularity close to
the VB edge. At the level of the k · p perturbation theory, a
transition from a direct to an indirect band gap in monolayer
BP is governed by the magnitudes of the matrix elements of the
momentum operator, corresponding to transitions between the
VB and CB [8]. At the same time, well-known inaccuracies of
DFT with respect to the VB and CB positions cannot support
the prediction of an indirect gap in monolayer BP. Therefore,
it appears appropriate to examine the fine structure of the
monolayer VB at the more accurate GW0 level. To this end,
we perform a comparison between the electronic structures
of monolayer BP calculated within the DFT-GGA and GW0

approaches by using a dense (24 × 32 × 1) k-point mesh. The
results are shown in Fig. 2. We do reproduce the previously
reported shift of the VB maximum from the Ŵ point as well as
the van Hove singularity in DOS calculated at the DFT-GGA
level. However, the GW0 results show no indications of such
a behavior and support for a direct band gap in monolayer BP.

III. TIGHT-BINDING MODEL FOR MULTILAYER BP AND

ITS VALIDATION

A. Parametrization procedure

The effective TB model considered in this work is given by
the effective four-band Hamiltonian, describing one electron

per lattice site,

H =
∑

i �=j

t
‖
ijc

†
i cj +

∑

i �=j

t⊥ij c
†
i cj , (1)

where i and j run over the lattice sites, t
‖
ij (t⊥ij ) is the intralayer

(interlayer) hopping parameter between the i and j sites, and

c
†
i (cj ) is the creation (annihilation) operator of electrons at

site i (j ). We note that in contrast to the model used in our
previous works [20,24], the Hamiltonian given by Eq. (1) does
not contain on-site terms, meaning that electrons at all sites
have equivalent energies even for multilayer BP.

To parametrize the model given by Eq. (1), we use a
procedure similar to Ref. [20], which is as follows. We first
map the entire manifold of valence and conduction states of
phosphorus monolayer onto the subspace of effective pz-like
orbitals (four orbitals per unit cell) being relevant for the
low-energy part of the VB and CB. To this end, we first use the
original Bloch states |ψnk〉 obtained from the GW0 calculations
and construct a new subspace of Bloch-like states |ψ̃nk〉,

|ψ̃nk〉 =
P∑

m=1

Uk
mn|ψmk〉, (2)

where P is the total number of states included into the GW0

calculations and Uk
mn is a rectangular matrix obtained by

projecting the |pz〉 states onto the Bloch states |ψnk〉 and using
the disentanglement procedure proposed in Ref. [51]. Having
obtained |ψ̃nk〉, we construct an effective (4 × 4) Hamiltonian
in reciprocal space H̃mn(k), which is achieved by performing
a unitary transformation of the original GW0 Hamiltonian
H k

mn in the Bloch subspace. The resulting reciprocal-space
Hamiltonian

H̃ k
mn = 〈ψ̃mk|H k|ψ̃nk〉 (3)

is then transformed into the real space, H R
mn =

∑
k e−ik·RH̃ k

mn.
The resulting real-space Hamiltonian H R

mn is determined
in the basis of Wannier functions |wR

n 〉 =
∑

k e−ik·R|ψ̃nk〉,
corresponding to the pz-like orbitals.

Despite low dimensionality of H R
mn, its matrix elements

(hopping parameters) decay slowly with distance, resulting
in a large number of small parameters. In order to make
the resulting model more tractable, we ignore the parameters
beyond the cutoff radius of ∼5.5 Å, which are typically
smaller than 0.01 eV. To restore the quality of the truncated
Hamiltonian, we reoptimize the remaining parameters in
such a way that they provide an accurate description of the
band structure in the low-energy region. To this end, we
minimize the following least squares functional, F ({ti}) =∑

n,k[ε
GW0

n,k ({ti})2 − εTB
n,k({ti})2], where {ti} are hopping param-

eters and ε
GW0

n,k (εTB
n,k) is an eigenvalue of the corresponding

(GW0 or TB model) Hamiltonian H k({ti}). n and k are the
band index and momentum vector, respectively, which run
over the relevant region in the vicinity of the band gap. In
the case of monolayer, this region involves the valence and
conduction bands only. To parametrize the TB Hamiltonian for
bilayer, we adopt a similar strategy. In this case, we introduce
interlayer hopping parameters, while the intralayer parameters
remain fixed. Also, we take into account the splitting of the
valence and conduction bands upon the optimization of the
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FIG. 3. (Color online) Schematic representation of the hopping

parameters for the TB model [Eq. (1)] parametrized in this work for

multilayer BP. The corresponding values are given in Table II.

hoppings, which is crucially important for the applicability
of the model to multilayer BP. The obtained set of intralayer

({t‖i }) and interlayer ({t⊥i }) hoppings are then applied without
any corrections to BP with a larger number of layers.

B. Electronic structure

The resulting hopping parameters are schematically shown
in Fig. 3 and listed in Table II. Overall, our model involves ten
intralayer and four interlayer hoppings. As has been previously
noticed [20,21], the main features of the band structure of
monolayer BP can be qualitatively described by only two

largest hopping parameters (t
‖
1 and t

‖
2 ). The band gap at the

Ŵ point is determined in this case by a simple expression,

E(1)
g (Ŵ) ≈ 2|t‖2 | − 4|t‖1 |. For bilayer BP, the degeneracy of the

VB and CB is lifted if a nearest-neighbor interlayer hopping
(t⊥1 ) is introduced. This results in a reduction of the band gap,

TABLE II. Intralayer (t‖) and interlayer (t⊥) hopping parameters

(in eV) obtained in terms of the TB Hamiltonian [Eq. (1)] for

multilayer BP. d and Nc denote the distances between the corre-

sponding interacting lattice sites and coordination numbers for the

given distance, respectively. The hoppings are schematically shown

in Fig. 3.

Intralayer Intralayer Interlayer

No. t‖ (eV) d (Å) Nc No. t‖ (eV) d (Å) Nc No. t⊥ (eV) d (Å) Nc

1 −1.486 2.22 2 6 0.186 4.23 1 1 0.524 3.60 2

2 3.729 2.24 1 7 −0.063 4.37 2 2 0.180 3.81 2

3 −0.252 3.31 2 8 0.101 5.18 2 3 −0.123 5.05 4

4 −0.071 3.34 2 9 −0.042 5.37 2 4 −0.168 5.08 2

5 −0.019 3.47 4 10 0.073 5.49 4 5 0.000 5.44 1

given now by E(2)
g (Ŵ) ≈ 2|t‖2 |

√
1 + (t⊥1 /t

‖
2 )2 − 4|t‖1 | − 2|t⊥1 |.

In order to quantitatively reproduce the quasiparticle spectrum
of BP including accurate k dependence of the VB and CB as
well as their splitting in the multilayer case, a larger number
of hopping parameters is required.

In Fig. 4, we show the band structures calculated within
the derived TB model in comparison with the full bands
obtained from GW0 calculations. One can see that the TB
model accurately describes the results of GW0 calculations
in the low-energy region not only for monolayer and bilayer
BP, but also for trilayer and bulk structures. Since the band
properties of trilayer and bulk BP have not been used as a
reference during the model parametrization, it is natural to
expect the applicability of the presented model to BP with an
arbitrary number of layers.

To explicitly demonstrate that the obtained TB Hamiltonian
is represented in a physically meaningful orbital subspace
corresponding to the pz-like states, we consider the case
of monolayer BP, for which we project the full GW0 band
structure onto the pz states [see Fig. 5(a)] and compare it with
the model bands [Fig. 5(b)]. From the projected GW0 bands
shown in Fig. 5(a) one can clearly recognize four distinct bands
having predominantly pz symmetry, whose contribution is
shown by color. By comparing those with Fig. 5(b) it becomes
evident that the model provides an effective representation
of the pz-like states. As can be inferred from Fig. 5(a) and
will be shown below, the states of the other symmetries do
not contribute to direct interband transitions within an energy
range of up to several eV, which basically determines the limits
of the applicability of the presented TB model.

Having obtained a TB model applicable for multilayer BP,
it is instructive to analyze the the band gap dependence on
the number of layers. In Fig. 6, we show the corresponding
dependence calculated within the TB model, which can be
accurately fitted by the expression E(n)

g =A exp(−nB)/nC +
D with parameters A, B, C, and D given in the inset of
Fig. 6. One can see that along with a power law decay, being
important at small n, there is a pronounced exponential decay,
becoming dominant at large n. Our result is thus different from
the previously proposed power law expected from a simple
quantum confinement picture [32].

C. Optical properties

To further validate our model, we calculate the frequency-
dependent optical conductivity σαβ(ω) calculated for the
undoped case by means of the GW0 approach and TB
model for n = 1–3 layer and bulk BP. Within the GW0, we
evaluate σαβ(ω) through the Brillouin zone integration using
the following form of the Kubo-Greenwood formula in the
independent-particle approximation [52]

σαβ(ω) =
i�

Nk�

∑

k

∑

mn

fmk − fnk

εmk − εnk

〈nk|jα|mk〉〈mk|jβ |nk〉
εmk − εnk − (�ω + iη)

,

(4)
where � is the unit cell area, Nk is the number of k

points used for the Brillouin zone sampling, |mk〉 is the
Wannier-interpolated Bloch state [46], corresponding to the

mth eigenvalue εmk of the GW0 Hamiltonian H
GW0

k , fnk =
exp(βεnk + 1)−1 is the Fermi-Dirac occupation factor involv-
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FIG. 4. (Color online) Electronic band structures calculated for a few-layer (n = 1–3) and bulk BP by using the GW0 approximation (light

lines) and within the TB model given by Eq. (1) with parameters listed in Table II (dark lines). Zero energy corresponds to the center of the

gap. High-symmetry points of the Brillouin zone are shown in the insets.

ing the inverse temperature β, jα is the α component of the
current operator, and η is a smearing parameter. The Brillouin
zone was sampled by ∼107 and 108 k points for 2D (a few
layer) and 3D (bulk) calculations, respectively. To demonstrate
the advantage of the derived TB model for studying realistic
samples, we apply the TB Hamiltonian [Eq. (1)] to calculate
σαβ(ω) for a few-layer (n = 1–3) and many-layer (n = 100)

FIG. 5. (Color online) Band structure and density of states (DOS)

calculated for monolayer BP by using (a) GW0 approach and (b) TB

model of this work. In (a), the DOS are projected onto the pz states,

whereas in the band structure their contribution is shown by color.

High-symmetry points of the Brillouin zone are shown in the insets.

BP in real space. To this end, we use the tight-binding
propagation method [24,53], in which σαβ(ω) is calculated
conceptually similar to Eq. (4) but by considering explicit
evolution of the current operator in time [e.g., see Eq. (30)
of Ref. [53]] instead of diagonalization of large matrices.
The sample size was taken to contain ∼107 atoms in each
case considered with periodic boundary conditions applied in
lateral (xy) directions. In both methods, we restrict ourselves to
the diagonal components of σαβ(ω) only. We stress that σαβ(ω)
is calculated within a single-particle approximation, meaning
that the excitonic effects are neglected. Such effects are proven
to be relevant for a reliable description of the optical spectra of
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FIG. 6. (Color online) Layer dependence of a band gap in BP

calculated by using the GW0 approximation, TB model presented in

this work and by an empirical expression E(n)
g = A exp(−nB)/nC +

D with parameters A, B, C, and D fitted to the TB model.
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FIG. 7. (Color online) Optical conductivities for a few-layer

(n = 1–3) and bulk BP calculated along the armchair (σxx) and zigzag

(σyy) directions using the Kubo formula [Eq. (4)] on the basis of the

GW0 approach and TB model presented in this work. σxx(yy) are given

per layer in terms of the universal optical conductivity of graphene

(σ0 = e2/4�). Within the TB model, bulk BP is approximated by 2D

BP with a large number of layers (n = 100). In all cases, we set the

temperature to 300 K.

monolayer and a few-layer BP, but they become insignificant
in the bulk limit [32].

The results of our calculations are shown in Fig. 7. In line
with previous studies [13,24], we observe strong anisotropy
between the conductivities in different directions and well-
pronounced peaks along the armchair direction of a few-layer
BP, associated with the discrete character of the band structure
close to the VB and CB edges. As can be seen from Fig. 7,
the optical conductivities obtained with the use of the TB
model are in very good agreement with the results of GW0

calculations in a wide frequency range up to 2.0 eV. The
agreement in the range of 2.0–2.5 eV can be considered as
satisfactory but it is becoming worse for structures with a
large number of layers. At larger frequencies (ω > 2.5 eV),
the TB model still shows reasonable agreement with the GW0

results for a few-layer BP, but becomes apparently inapplicable
to many-layer systems (including bulk), which is due to the
decreased gap, allowing for transitions between the states not
included in the construction of the TB model. Despite being
relatively close to the band gap, those states do not contribute
to the optical conductivity at the lower frequencies since the
expression for σαβ(ω) [Eq. (4)] involves only direct transitions
between the VB and CB. We note that for transport and optical
properties involving indirect transitions between the VB and
CB (e.g., in scattering processes) a reliable frequency range
for the TB model will be more limited and determined entirely
by the consistency between the quasiparticle and model bands
shown in Fig. 4.

IV. EFFECT OF ELECTRIC FIELD ON THE BAND

STRUCTURE OF MULTILAYER BP

We now consider an extension of our model to the case of an
electric field Ez perpendicular to the surface. For simplicity,
we restrict ourselves to bilayer BP, for which the extended
Hamiltonian reads

H = H
(2)
0 + eEzz, (5)

where the first term in the right-hand side corresponds to the
unperturbed Hamiltonian for bilayer given by Eq. (1) and the
second term plays the role of a layer-dependent on-site poten-
tial. We note that in what follows, we consider an unscreened

electric field only, that is, we neglect explicit treatment of
polarization and local-field effects. In other words, Ez can be
regarded as a local electric field assumed to be constant inside
the sample. Ez can be related to real external electric field
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FIG. 8. (Color online) Band structures of bilayer BP calculated in the vicinity of the Ŵ point for different magnitudes of the electric field

Ez = Ec
z + �Ez, where Ec

z = 341 mV/Å is a critical field at which the band gap closes, and �Ez takes the values of −2, 0, and +2 mV/Å.

Top (bottom) panels correspond to the bands calculated along the X-Ŵ-X (Y -Ŵ-Y ) directions. Valence and conduction bands are indicated by

blue and orange, respectively. Zero energy corresponds to the center of the gap at the Ŵ point.
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BP samples neglecting the screening effects. Points correspond to the

TB calculations, whereas lines correspond to the fitting via �V c(n) =
A/nC + D.

Eext
z upon taking into account thickness-dependent transverse

dielectric permittivity εz(d) and finite-size effects. In a first
approximation, one can take Eext

z = εzEz, where εz is the
transverse dielectric permittivity of bulk BP (εz ∼ 8.3 [54]).

In Fig. 8, we show the low-energy part of the band
structure calculated for three representative electric fields. In
the presence of an electric field, the electronic bands shift
due to the difference of the interlayer potential which is a
manifestation of the Stark effect. From Fig. 8 one can see
that the VB and CB shift in different directions toward the
band gap center. This causes a decrease of the band gap with
increasing field, which reaches zero at Ez = 341 mV/Å. At
higher field the band inversion is observed, as can be seen
from Fig. 8(f). Our results obtained using the TB model are
thus consistent with previous DFT calculations for a few-layer
BP and phosphorene nanoribbons [10,23,55–57].

It is interesting to note the existence of a Dirac-like linear
dispersion along the armchair direction (X-Ŵ-X) at the critical
electric field, Ec

z [Fig. 8(c)], which appears around the Ŵ

point. A qualitatively different situation is observed in the
zigzag direction (Y -Ŵ-Y ), where the dispersion turns out to
be quadratic [Fig. 8(d)]. At higher fields (Ez > Ec

z) the Dirac
point disappears in the armchair direction, whereas two band
crossings appear along the zigzag direction as a result of the
band inversion.

Finally, we calculate the evolution of the critical bias
potential, �V c = eEc

zd with the number of BP layers n, which
is applied between the top and bottom planes of an n-layer

sample separated by the distance d. In Fig. 9, the corresponding
dependence is shown. Since �V c is related to the original band
gap at zero field, it is natural to expect that the same form
of the functional dependence as in Fig. 6 (i.e., a power law
with exponential cutoff) can be used to parametrize �V c(n).
We find, however, that in the present case the prefactor B

in the argument of the exponential is significantly smaller
(B < 0.01). This allows us to fit the critical bias potential as
�V c(n) = A/nC + D, where A,C,D are fitting parameters
given in the inset of Fig. 9. We conclude, therefore, that
�V c(n) (Fig. 9) exhibit a significantly weaker dependence
on the number of BP layers than the band gap, E(n)

g (Fig. 6).

V. CONCLUSIONS

We have proposed an effective TB model for multilayer
BP with arbitrary thickness, which is parametrized on the
basis of partially self-consistent GW0 approximation. The
model shows good performance with respect to static band
properties as well as transport characteristics of multilayer
BP compared to the GW0 results. In contrast to previously
proposed k · p Hamiltonians for BP, our model (i) directly
applicable in real space; (ii) goes beyond the effective mass
approximation; and (iii) accurately reproduces low-energy
electronic properties of multilayer BP without the need for
additional scaling parameters. On the other hand, the proposed
model is substantially less computationally demanding than
any first-principles calculations, which makes calculations
with millions of atoms possible. This allows us to expect
its suitability for use in investigations of a wide range of
phenomena, particularly in large-scale simulations of realistic
BP (e.g., with disorder or in the presence of external fields)
and as a starting point for studying many-body effects in BP.
As an example of the model extension, we considered the case
of an electric field applied to multilayer BP, which allowed
us to determine the thickness dependence of the critical bias
potential required to reach the regime of the band inversion
previously predicted by first-principles calculations. We also
found that the critical bias potential decays significantly slowly
with the number of BP layers than does the corresponding band
gap.

ACKNOWLEDGMENTS

This research has received funding from the European
Union Seventh Framework Programme under Grant Agree-
ment No. 604391 Graphene Flagship and from the European
Research Council Advanced Grant program (Contract No.
338957). Computational time provided by the Netherlands
National Computing Facilities (NCF) is acknowledged.

[1] X. Ling, H. Wang, S. Huang, F. Xia, and M. S. Dresselhaus,

Proc. Natl. Acad. Sci. USA 112, 4523 (2015).

[2] H. Liu, Y. Du, Y. Deng, and P. D. Ye, Chem. Soc. Rev. 44, 2732

(2015).

[3] S. Balendhran, S. Walia, H. Nili, S. Sriram, and M. Bhaskaran,

Small 11, 640 (2015).

[4] L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H.

Chen, and Y. Zhang, Nat. Nanotechnol. 9, 372 (2014).

[5] F. Xia, H. Wang, and Y. Jia, Nat. Commun. 5, 4458 (2014).

[6] S. P. Koenig, R. A. Doganov, H. Schmidt, A. H. Castro

Neto, and B. Oezyilmaz, Appl. Phys. Lett. 104, 103106

(2014).

085419-8

http://dx.doi.org/10.1073/pnas.1416581112
http://dx.doi.org/10.1073/pnas.1416581112
http://dx.doi.org/10.1073/pnas.1416581112
http://dx.doi.org/10.1073/pnas.1416581112
http://dx.doi.org/10.1039/C4CS00257A
http://dx.doi.org/10.1039/C4CS00257A
http://dx.doi.org/10.1039/C4CS00257A
http://dx.doi.org/10.1039/C4CS00257A
http://dx.doi.org/10.1002/smll.201402041
http://dx.doi.org/10.1002/smll.201402041
http://dx.doi.org/10.1002/smll.201402041
http://dx.doi.org/10.1002/smll.201402041
http://dx.doi.org/10.1038/nnano.2014.35
http://dx.doi.org/10.1038/nnano.2014.35
http://dx.doi.org/10.1038/nnano.2014.35
http://dx.doi.org/10.1038/nnano.2014.35
http://dx.doi.org/10.1038/ncomms5458
http://dx.doi.org/10.1038/ncomms5458
http://dx.doi.org/10.1038/ncomms5458
http://dx.doi.org/10.1038/ncomms5458
http://dx.doi.org/10.1063/1.4868132
http://dx.doi.org/10.1063/1.4868132
http://dx.doi.org/10.1063/1.4868132
http://dx.doi.org/10.1063/1.4868132


TOWARD A REALISTIC DESCRIPTION OF MULTILAYER . . . PHYSICAL REVIEW B 92, 085419 (2015)

[7] M. Buscema, D. J. Groenendijk, S. I. Blanter, G. A. Steele, H.

S. J. van der Zant, and A. Castellanos-Gomez, Nano Lett. 14,

3347 (2014).

[8] P. Li and I. Appelbaum, Phys. Rev. B 90, 115439 (2014).

[9] D. D. Shao, W. J. Lu, H. Y. Lv, and Y. P. Sun, Eur. Phys. Lett.

108, 67004 (2014).

[10] Q. Liu, X. Zhang, L. B. Abdalla, A. Fazzio, and A. Zunger,

Nano Lett. 15, 1222 (2015).

[11] M. I. Katsnelson, Graphene: Carbon in Two Dimensions

(Cambridge University Press, Cambridge, UK, 2012).

[12] A. S. Rodin, A. Carvalho, and A. H. Castro Neto, Phys. Rev.

Lett. 112, 176801 (2014).

[13] T. Low, A. S. Rodin, A. Carvalho, Y. Jiang, H. Wang, F. Xia,

and A. H. Castro Neto, Phys. Rev. B 90, 075434 (2014).

[14] T. Low, R. Roldán, H. Wang, F. Xia, P. Avouris, L. M. Moreno,

and F. Guinea, Phys. Rev. Lett. 113, 106802 (2014).

[15] L. C. Low Yan Voon, A. Lopez-Bezanilla, J. Wang, Y. Zhang,

and M. Willatzen, New J. Phys. 17, 025004 (2015).

[16] J. M. Pereira, Jr. and M. I. Katsnelson, arXiv:1504.02452.

[17] Y. Jiang, R. Roldán, F. Guinea, and T. Low, arXiv:1505.00175.

[18] Y. Takao and A. Morita, Physica B+C 105, 93 (1981); Y. Takao,

H. Asahina, and A. Morita, J. Phys. Soc. Jpn. 50, 3362 (1981).

[19] T. Osada, J. Phys. Soc. Jpn. 84, 013703 (2015).

[20] A. N. Rudenko and M. I. Katsnelson, Phys. Rev. B 89, 201408

(2014).

[21] M. Ezawa, New J. Phys. 16, 115004 (2014).

[22] E. Taghizadeh Sisakht, M. H. Zare, and F. Fazileh, Phys. Rev. B

91, 085409 (2015).

[23] K. Dolui and S. Y. Quek, Sci. Rep. 5, 11699 (2015).

[24] S. Yuan, A. N. Rudenko, and M. I. Katsnelson, Phys. Rev. B 91,

115436 (2015).

[25] F. Liu, Y. Wang, X. Liu, J. Wang, and H. Guo, IEEE Trans.

Electron Dev. 61, 3871 (2014).

[26] R. W. Keyes, Phys. Rev. 92, 580 (1953).

[27] D. Warschauer, J. Appl. Phys. 34, 1853 (1963).

[28] Y. Maruyama, S. Suzuki, K. Kobayashi, and S. Tanuma, Physica

B+C 105, 99 (1981).

[29] Ø. Prytz and E. Flage-Larsen, J. Phys.: Condens. Matter 22,

015502 (2010).

[30] J. Qiao, X. Kong, Z.-X. Hu, F. Yang, and W. Ji, Nat. Commun.

5, 4475 (2014).

[31] H. Liu, A. T. Neal, Z. Zhu, D. Tomanek, and P. D. Ye, ACS

Nano 8, 4033 (2014).

[32] V. Tran, R. Soklaski, Y. Liang, and L. Yang, Phys. Rev. B 89,

235319 (2014).

[33] Y. Cai, G. Zhang, and Y.-W. Zhang, Sci. Rep. 4, 6677 (2014).

[34] V. Wang, Y. Kawazoe, and W. T. Geng, Phys. Rev. B 91, 045433

(2015).

[35] J. Heyd, G. E. Scuseria, and M. Ernzerhof, J. Chem. Phys. 118,

8207 (2003).

[36] A. V. Krukau, O. A. Vydrov, A. F. Izmaylov, and G. E. Scuseria,

J. Chem. Phys. 125, 224106 (2006).

[37] L. Hedin, Phys. Rev. 139, A796 (1965).

[38] L. Liang, J. Wang, W. Lin, B. G. Sumpter, V. Meunier, and

M. Pan, Nano Lett. 14, 6400 (2014).

[39] M. S. Hybertsen and S. G. Louie, Phys. Rev. B 34, 5390 (1986).

[40] M. Shishkin and G. Kresse, Phys. Rev. B 74, 035101 (2006).

[41] P. E. Blochl, Phys. Rev. B 50, 17953 (1994).

[42] G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).

[43] G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).

[44] M. Shishkin and G. Kresse, Phys. Rev. B 75, 235102 (2007).

[45] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77,

3865 (1996).

[46] J. R. Yates, X. Wang, D. Vanderbilt, and I. Souza, Phys. Rev. B

75, 195121 (2007).

[47] N. Marzari, A. A. Mostofi, J. R. Yates, I. Souza, and

D. Vanderbilt, Rev. Mod. Phys. 84, 1419 (2012).

[48] A. A. Mostofi, J. R. Yates, Y.-S. Lee, I. Souza, D. Vanderbilt,

and N. Marzari, Comput. Phys. Commun. 178, 685 (2008).

[49] A. Brown and S. Rundqvist, Acta Crystallogr. 19, 684 (1965).

[50] A. Ziletti, S. M. Huang, D. F. Coker, and H. Lin,

arXiv:1503.08649.

[51] I. Souza, N. Marzari, and D. Vanderbilt, Phys. Rev. B 65, 035109

(2001).

[52] P. B. Allen, Comtemp. Concepts Condens. Matter Sci. 2, 165

(2006).

[53] S. Yuan, H. De Raedt, and M. I. Katsnelson, Phys. Rev. B 82,

115448 (2010).

[54] T. Nagahama, M. Kobayashi, Y. Akahama, S. Endo, and

S. Narita, J. Phys. Soc. Jpn. 54, 2096 (1985).

[55] H. Guo, N. Lu, J. Dai, X. Wu, and X. C. Zeng, J. Phys. Chem.

C 118, 14051 (2014).

[56] Y. Li, S. Yang, and J. Li, J. Phys. Chem. C 118, 23970

(2014).

[57] Q. Wu, L. Shen, M. Yang, Y. Cai, Z. Huang, and Y. P. Feng,

Phys. Rev. B 92, 035436 (2015).

085419-9

http://dx.doi.org/10.1021/nl5008085
http://dx.doi.org/10.1021/nl5008085
http://dx.doi.org/10.1021/nl5008085
http://dx.doi.org/10.1021/nl5008085
http://dx.doi.org/10.1103/PhysRevB.90.115439
http://dx.doi.org/10.1103/PhysRevB.90.115439
http://dx.doi.org/10.1103/PhysRevB.90.115439
http://dx.doi.org/10.1103/PhysRevB.90.115439
http://dx.doi.org/10.1209/0295-5075/108/67004
http://dx.doi.org/10.1209/0295-5075/108/67004
http://dx.doi.org/10.1209/0295-5075/108/67004
http://dx.doi.org/10.1209/0295-5075/108/67004
http://dx.doi.org/10.1021/nl5043769
http://dx.doi.org/10.1021/nl5043769
http://dx.doi.org/10.1021/nl5043769
http://dx.doi.org/10.1021/nl5043769
http://dx.doi.org/10.1103/PhysRevLett.112.176801
http://dx.doi.org/10.1103/PhysRevLett.112.176801
http://dx.doi.org/10.1103/PhysRevLett.112.176801
http://dx.doi.org/10.1103/PhysRevLett.112.176801
http://dx.doi.org/10.1103/PhysRevB.90.075434
http://dx.doi.org/10.1103/PhysRevB.90.075434
http://dx.doi.org/10.1103/PhysRevB.90.075434
http://dx.doi.org/10.1103/PhysRevB.90.075434
http://dx.doi.org/10.1103/PhysRevLett.113.106802
http://dx.doi.org/10.1103/PhysRevLett.113.106802
http://dx.doi.org/10.1103/PhysRevLett.113.106802
http://dx.doi.org/10.1103/PhysRevLett.113.106802
http://dx.doi.org/10.1088/1367-2630/17/2/025004
http://dx.doi.org/10.1088/1367-2630/17/2/025004
http://dx.doi.org/10.1088/1367-2630/17/2/025004
http://dx.doi.org/10.1088/1367-2630/17/2/025004
http://arxiv.org/abs/arXiv:1504.02452
http://arxiv.org/abs/arXiv:1505.00175
http://dx.doi.org/10.1016/0378-4363(81)90222-9
http://dx.doi.org/10.1016/0378-4363(81)90222-9
http://dx.doi.org/10.1016/0378-4363(81)90222-9
http://dx.doi.org/10.1016/0378-4363(81)90222-9
http://dx.doi.org/10.1143/JPSJ.50.3362
http://dx.doi.org/10.1143/JPSJ.50.3362
http://dx.doi.org/10.1143/JPSJ.50.3362
http://dx.doi.org/10.1143/JPSJ.50.3362
http://dx.doi.org/10.7566/JPSJ.84.013703
http://dx.doi.org/10.7566/JPSJ.84.013703
http://dx.doi.org/10.7566/JPSJ.84.013703
http://dx.doi.org/10.7566/JPSJ.84.013703
http://dx.doi.org/10.1103/PhysRevB.89.201408
http://dx.doi.org/10.1103/PhysRevB.89.201408
http://dx.doi.org/10.1103/PhysRevB.89.201408
http://dx.doi.org/10.1103/PhysRevB.89.201408
http://dx.doi.org/10.1088/1367-2630/16/11/115004
http://dx.doi.org/10.1088/1367-2630/16/11/115004
http://dx.doi.org/10.1088/1367-2630/16/11/115004
http://dx.doi.org/10.1088/1367-2630/16/11/115004
http://dx.doi.org/10.1103/PhysRevB.91.085409
http://dx.doi.org/10.1103/PhysRevB.91.085409
http://dx.doi.org/10.1103/PhysRevB.91.085409
http://dx.doi.org/10.1103/PhysRevB.91.085409
http://dx.doi.org/10.1038/srep11699
http://dx.doi.org/10.1038/srep11699
http://dx.doi.org/10.1038/srep11699
http://dx.doi.org/10.1038/srep11699
http://dx.doi.org/10.1103/PhysRevB.91.115436
http://dx.doi.org/10.1103/PhysRevB.91.115436
http://dx.doi.org/10.1103/PhysRevB.91.115436
http://dx.doi.org/10.1103/PhysRevB.91.115436
http://dx.doi.org/10.1109/TED.2014.2353213
http://dx.doi.org/10.1109/TED.2014.2353213
http://dx.doi.org/10.1109/TED.2014.2353213
http://dx.doi.org/10.1109/TED.2014.2353213
http://dx.doi.org/10.1103/PhysRev.92.580
http://dx.doi.org/10.1103/PhysRev.92.580
http://dx.doi.org/10.1103/PhysRev.92.580
http://dx.doi.org/10.1103/PhysRev.92.580
http://dx.doi.org/10.1063/1.1729699
http://dx.doi.org/10.1063/1.1729699
http://dx.doi.org/10.1063/1.1729699
http://dx.doi.org/10.1063/1.1729699
http://dx.doi.org/10.1016/0378-4363(81)90223-0
http://dx.doi.org/10.1016/0378-4363(81)90223-0
http://dx.doi.org/10.1016/0378-4363(81)90223-0
http://dx.doi.org/10.1016/0378-4363(81)90223-0
http://dx.doi.org/10.1088/0953-8984/22/1/015502
http://dx.doi.org/10.1088/0953-8984/22/1/015502
http://dx.doi.org/10.1088/0953-8984/22/1/015502
http://dx.doi.org/10.1088/0953-8984/22/1/015502
http://dx.doi.org/10.1038/ncomms5475
http://dx.doi.org/10.1038/ncomms5475
http://dx.doi.org/10.1038/ncomms5475
http://dx.doi.org/10.1038/ncomms5475
http://dx.doi.org/10.1021/nn501226z
http://dx.doi.org/10.1021/nn501226z
http://dx.doi.org/10.1021/nn501226z
http://dx.doi.org/10.1021/nn501226z
http://dx.doi.org/10.1103/PhysRevB.89.235319
http://dx.doi.org/10.1103/PhysRevB.89.235319
http://dx.doi.org/10.1103/PhysRevB.89.235319
http://dx.doi.org/10.1103/PhysRevB.89.235319
http://dx.doi.org/10.1038/srep06677
http://dx.doi.org/10.1038/srep06677
http://dx.doi.org/10.1038/srep06677
http://dx.doi.org/10.1038/srep06677
http://dx.doi.org/10.1103/PhysRevB.91.045433
http://dx.doi.org/10.1103/PhysRevB.91.045433
http://dx.doi.org/10.1103/PhysRevB.91.045433
http://dx.doi.org/10.1103/PhysRevB.91.045433
http://dx.doi.org/10.1063/1.1564060
http://dx.doi.org/10.1063/1.1564060
http://dx.doi.org/10.1063/1.1564060
http://dx.doi.org/10.1063/1.1564060
http://dx.doi.org/10.1063/1.2404663
http://dx.doi.org/10.1063/1.2404663
http://dx.doi.org/10.1063/1.2404663
http://dx.doi.org/10.1063/1.2404663
http://dx.doi.org/10.1103/PhysRev.139.A796
http://dx.doi.org/10.1103/PhysRev.139.A796
http://dx.doi.org/10.1103/PhysRev.139.A796
http://dx.doi.org/10.1103/PhysRev.139.A796
http://dx.doi.org/10.1021/nl502892t
http://dx.doi.org/10.1021/nl502892t
http://dx.doi.org/10.1021/nl502892t
http://dx.doi.org/10.1021/nl502892t
http://dx.doi.org/10.1103/PhysRevB.34.5390
http://dx.doi.org/10.1103/PhysRevB.34.5390
http://dx.doi.org/10.1103/PhysRevB.34.5390
http://dx.doi.org/10.1103/PhysRevB.34.5390
http://dx.doi.org/10.1103/PhysRevB.74.035101
http://dx.doi.org/10.1103/PhysRevB.74.035101
http://dx.doi.org/10.1103/PhysRevB.74.035101
http://dx.doi.org/10.1103/PhysRevB.74.035101
http://dx.doi.org/10.1103/PhysRevB.50.17953
http://dx.doi.org/10.1103/PhysRevB.50.17953
http://dx.doi.org/10.1103/PhysRevB.50.17953
http://dx.doi.org/10.1103/PhysRevB.50.17953
http://dx.doi.org/10.1103/PhysRevB.54.11169
http://dx.doi.org/10.1103/PhysRevB.54.11169
http://dx.doi.org/10.1103/PhysRevB.54.11169
http://dx.doi.org/10.1103/PhysRevB.54.11169
http://dx.doi.org/10.1103/PhysRevB.59.1758
http://dx.doi.org/10.1103/PhysRevB.59.1758
http://dx.doi.org/10.1103/PhysRevB.59.1758
http://dx.doi.org/10.1103/PhysRevB.59.1758
http://dx.doi.org/10.1103/PhysRevB.75.235102
http://dx.doi.org/10.1103/PhysRevB.75.235102
http://dx.doi.org/10.1103/PhysRevB.75.235102
http://dx.doi.org/10.1103/PhysRevB.75.235102
http://dx.doi.org/10.1103/PhysRevLett.77.3865
http://dx.doi.org/10.1103/PhysRevLett.77.3865
http://dx.doi.org/10.1103/PhysRevLett.77.3865
http://dx.doi.org/10.1103/PhysRevLett.77.3865
http://dx.doi.org/10.1103/PhysRevB.75.195121
http://dx.doi.org/10.1103/PhysRevB.75.195121
http://dx.doi.org/10.1103/PhysRevB.75.195121
http://dx.doi.org/10.1103/PhysRevB.75.195121
http://dx.doi.org/10.1103/RevModPhys.84.1419
http://dx.doi.org/10.1103/RevModPhys.84.1419
http://dx.doi.org/10.1103/RevModPhys.84.1419
http://dx.doi.org/10.1103/RevModPhys.84.1419
http://dx.doi.org/10.1016/j.cpc.2007.11.016
http://dx.doi.org/10.1016/j.cpc.2007.11.016
http://dx.doi.org/10.1016/j.cpc.2007.11.016
http://dx.doi.org/10.1016/j.cpc.2007.11.016
http://dx.doi.org/10.1107/S0365110X65004140
http://dx.doi.org/10.1107/S0365110X65004140
http://dx.doi.org/10.1107/S0365110X65004140
http://dx.doi.org/10.1107/S0365110X65004140
http://arxiv.org/abs/arXiv:1503.08649
http://dx.doi.org/10.1103/PhysRevB.65.035109
http://dx.doi.org/10.1103/PhysRevB.65.035109
http://dx.doi.org/10.1103/PhysRevB.65.035109
http://dx.doi.org/10.1103/PhysRevB.65.035109
http://dx.doi.org/10.1016/S1572-0934(06)02006-3
http://dx.doi.org/10.1016/S1572-0934(06)02006-3
http://dx.doi.org/10.1016/S1572-0934(06)02006-3
http://dx.doi.org/10.1016/S1572-0934(06)02006-3
http://dx.doi.org/10.1103/PhysRevB.82.115448
http://dx.doi.org/10.1103/PhysRevB.82.115448
http://dx.doi.org/10.1103/PhysRevB.82.115448
http://dx.doi.org/10.1103/PhysRevB.82.115448
http://dx.doi.org/10.1143/JPSJ.54.2096
http://dx.doi.org/10.1143/JPSJ.54.2096
http://dx.doi.org/10.1143/JPSJ.54.2096
http://dx.doi.org/10.1143/JPSJ.54.2096
http://dx.doi.org/10.1021/jp505257g
http://dx.doi.org/10.1021/jp505257g
http://dx.doi.org/10.1021/jp505257g
http://dx.doi.org/10.1021/jp505257g
http://dx.doi.org/10.1021/jp506881v
http://dx.doi.org/10.1021/jp506881v
http://dx.doi.org/10.1021/jp506881v
http://dx.doi.org/10.1021/jp506881v
http://dx.doi.org/10.1103/PhysRevB.92.035436
http://dx.doi.org/10.1103/PhysRevB.92.035436
http://dx.doi.org/10.1103/PhysRevB.92.035436
http://dx.doi.org/10.1103/PhysRevB.92.035436

