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[1] This study explores the decomposition of predictive uncertainty in hydrological
modeling into its contributing sources. This is pursued by developing data-based probability
models describing uncertainties in rainfall and runoff data and incorporating them into the
Bayesian total error analysis methodology (BATEA). A case study based on the Yzeron
catchment (France) and the conceptual rainfall-runoff model GR4J is presented. It exploits a
calibration period where dense rain gauge data are available to characterize the uncertainty
in the catchment average rainfall using geostatistical conditional simulation. The inclusion
of information about rainfall and runoff data uncertainties overcomes ill-posedness
problems and enables simultaneous estimation of forcing and structural errors as part of the
Bayesian inference. This yields more reliable predictions than approaches that ignore or
lump different sources of uncertainty in a simplistic way (e.g., standard least squares). It is
shown that independently derived data quality estimates are needed to decompose the total
uncertainty in the runoff predictions into the individual contributions of rainfall, runoff, and
structural errors. In this case study, the total predictive uncertainty appears dominated by
structural errors. Although further research is needed to interpret and verify this
decomposition, it can provide strategic guidance for investments in environmental data
collection and/or modeling improvement. More generally, this study demonstrates the
power of the Bayesian paradigm to improve the reliability of environmental modeling using
independent estimates of sampling and instrumental data uncertainties.

Citation: Renard, B., D. Kavetski, E. Leblois, M. Thyer, G. Kuczera, and S. W. Franks (2011), Toward a reliable decomposition of

predictive uncertainty in hydrological modeling: Characterizing rainfall errors using conditional simulation, Water Resour. Res., 47,

W11516, doi:10.1029/2011WR010643.

1. Introduction

1.1. Hydrological Modeling in the Presence of Rainfall
and Runoff Errors

[2] Data and model errors conspire to make reliable and
robust calibration of hydrological models a difficult task.
Consequently, a multitude of paradigms for model estima-
tion and prediction have been proposed and used over the
last few decades, ranging from optimization approaches to
probabilistic inference schemes (e.g., see the review by
Moradkhani and Sorooshian [2008]).

[3] The use of rain gauges to estimate catchment average
precipitation is currently prevalent in hydrological modeling
[Moulin et al., 2009]. A major source of uncertainty is then
the poor representativeness of an often small set of gauges of
the entire areal rain field, which is highly variable in both

space and time [e.g., Severino and Alpuim, 2005; Villarini
et al., 2008]. The rain gauges themselves are subject to both
systematic and random measurement errors, including me-
chanical limitations, wind effects, and evaporation losses, all
of which are design specific and can vary substantially with
rainfall intensity [Molini et al., 2005]. Methods for quantify-
ing rainfall uncertainty include geostatistical approaches such
as kriging [e.g., Goovaerts, 2000; Kuczera and Williams,
1992] and conditional simulation [e.g., Clark and Slater,
2006; Gotzinger and Bardossy, 2008; Onibon et al., 2004;
Vischel et al., 2009] or approaches based on dense rain gauge
networks [e.g., Villarini et al., 2008; Willems, 2001].

[4] Similarly, runoff data also contain significant observa-
tional errors because of discharge gauging errors, extrapola-
tion of rating curves, unsteady flow conditions, flow regime
hysteresis, and temporal changes in the channel properties.
Several approaches have been proposed to quantify this
uncertainty [e.g., Di Baldassarre and Montanari, 2009;
Herschy, 1994; Lang et al., 2010; McMillan et al., 2010;
Reitan and Petersen-Overleir, 2009].

[5] Finally, the characterization of structural uncertainty
is a particularly challenging task, and the hydrological
community has yet to agree on suitable definitions and
approaches for handling structural model errors in the
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context of model calibration (e.g., see the conceptualiza-
tions proposed by Beven [2005], Doherty and Welter
[2010], and Kuczera et al. [2006]).

1.2. Decomposing Predictive Uncertainty

[6] The focus of this paper is on the decomposition of
the total uncertainty in hydrological predictions into its
contributing sources. This is important in several scientific
and operational contexts:

[7] 1. In operational prediction, separating data and
structural uncertainties is important when data of differing
quality are used in calibration and prediction.

[8] 2. Separating data and structural uncertainties also
enables a more meaningful model comparison because
structural errors are not obscured by data uncertainty.

[9] 3. Insights into the relative contributions of data and
model structural errors may be useful when a calibrated
model is transferred to a different catchment (prediction in
ungauged basins). In addition, potential relationships between
catchment characteristics and hydrological model parameters
may be hidden or biased by data errors.

[10] 4. Insights into the relative contributions of individual
sources of error suggest strategic guidance for reducing total
predictive uncertainty. It helps in more informed research
and experimental resource allocation, and, importantly, allow
a meaningful a posteriori evaluation of these efforts.

[11] Uncertainty decomposition has a considerable his-
tory in the hydrologic forecasting community. For example,
the Bayesian forecasting system (BFS) [Krzysztofowicz,
1999, 2002] distinguishes between two sources of uncertain-
ties in hydrologic forecasts: (1) ‘‘input uncertainty’’ refers
to the uncertainty in forecasting an unknown future rainfall,
and (2) ‘‘hydrologic uncertainty’’ collectively refers to all
other uncertainties, in particular structural errors of the
hydrologic model, parameter estimation errors, input-output
measurement and sampling errors [Krzysztofowicz, 1999].

[12] This description highlights a major difference
between the uncertainty decomposition in forecasting mode
versus the decomposition in prediction mode. In the for-
mer, input uncertainty is due to forecast errors, while in the
latter, input uncertainty is due to errors in the estimation of
areal rainfall using observations. Note that the word predic-
tion is used here to denote an application where the hydro-
logic model is forced with observed inputs (as opposed to
forecasted inputs).

[13] This paper focuses on decomposing uncertainty in
the prediction context. This can be viewed as an attempt to
further decompose what is termed ‘‘hydrologic uncertainty’’
in Krzysztofowicz’s [1999] BFS framework. Although Seo
et al. [2006] discussed the potential benefits of such an
additional decomposition, it is usually not viewed as a
major objective because at least for forecast lead times
exceeding the routing time of the catchment, rainfall fore-
cast uncertainty will usually dominate other sources of error
[Krzysztofowicz, 1999]. However, the situation is different
in a prediction context, where no rainfall forecast is
involved. In this case, the relative contributions of rainfall,
runoff, and structural errors to the total predictive uncer-
tainty are unclear and likely case specific.

[14] In a prediction context, attempts to decompose the
total uncertainty into its three main sources have been
made using several related methods. Multiple studies have

employed recursive data assimilation methods such as
extended and ensemble Kalman filters [Evensen, 1994;
Moradkhani et al., 2005b; Rajaram and Georgakakos,
1989; Reichle et al., 2002; Vrugt et al., 2005] or Bayesian
filtering [Moradkhani et al., 2005a, 2006; Salamon and
Feyen, 2009; Smith et al., 2008; Weerts and El Serafy,
2006]. In this paper, we consider Bayesian hierarchical
approaches [e.g., Huard and Mailhot, 2008; Kuczera et al.,
2006], which to date have been implemented in batch esti-
mation form (but can also be formulated recursively).
While the distinction between recursive versus batch proc-
essing strategies is important from the computational per-
spective, our focus here is on the fundamental issues of the
derivation of informative error models and their incorpora-
tion into the inference framework.

1.3. Specifying Data and Structural Error Models

[15] Although the importance of adequate descriptions of
input, output, and structural errors is well known, developing
quantitative error models is a considerable challenge in
hydrological applications. In particular, assigning reasonable
values to the variances of rainfall and runoff errors is notori-
ously difficult [e.g., Huard and Mailhot, 2008; Reichle,
2008; Weerts and El Serafy, 2006]. The characterization of
structural errors of hydrological models is also a major
research challenge (e.g., see the discussions by Beven [2005],
Doherty and Welter [2010], and Renard et al. [2010]).

[16] As a result, it is currently common to use rule-of-
thumb or literature values to fully specify the input, output,
and structural error models and keep their parameters fixed
during the hydrological model calibration. For example,
Huard and Mailhot [2008] used literature values for rainfall
errors and rule-of-thumb values for structural errors (�15%
standard error). Similarly, Salamon and Feyen [2010] used
literature values for runoff errors (�12.5% standard error
for large runoff) and rule-of-thumb values for rainfall and
structural errors (�15% standard error).

[17] However, recent empirical and theoretical evidence
reemphasizes the need for reliable descriptions of uncertain-
ties in both the forcing and response data if a meaningful
decomposition of predictive uncertainty is required [e.g.,
Huard and Mailhot, 2008; Renard et al., 2010]. Since the
inference can be sensitive to these specifications [Renard
et al., 2010; Weerts and El Serafy, 2006], using an unreli-
able error model will generally yield an unreliable uncer-
tainty decomposition. Hence, using literature values from
other studies may not always be adequate. For instance, rat-
ing curve errors depend on the hydraulic configuration of
the gauging section, the number of stage-discharge meas-
urements, the degree of extrapolation, etc., all of which are
site specific. Similarly, structural errors of a hydrological
model are likely to depend on the catchment, time period,
etc., and are difficult to estimate a priori.

[18] An alternative to fixing the error model parameters
a priori is to include them in the inference. For instance,
the variance of rainfall errors can be estimated during
hydrological model calibration, rather than being fixed a
priori. Although this distinction may appear a superficial
technicality, it is highly pertinent to the inference in the
presence of multiple sources of errors [Huard and Mailhot,
2008; Renard et al., 2010; Weerts and El Serafy, 2006]. In
particular, fixing the error model parameters to incorrect

W11516 RENARD ET AL.: DECOMPOSING PREDICTIVE UNCERTAINTY IN HYDROLOGICAL MODELING W11516

2 of 21



values may yield a computationally tractable, yet statisti-
cally unreliable inference. On the other hand, the informa-
tion content of the data may not be sufficient to support the
inference of the error model parameters.

[19] The approach of inferring the error model parame-
ters was used in the studies of Kavetski et al. [2006c],
Reichert and Mieleitner [2009], and Thyer et al. [2009].
However, these studies did not attempt to fully decompose
predictive uncertainty. Kuczera et al. [2006] attempted to
simultaneously infer rainfall and structural errors but lim-
ited themselves to point estimates of inferred quantities,
thus leaving open questions regarding parameter identifi-
ability and posterior well posedness. More recently, Renard
et al. [2010] and Kuczera et al. [2010b] quantitatively dem-
onstrated the difficulties of simultaneously identifying rain-
fall and structural errors from rainfall-runoff data when
only vague estimates of data uncertainty are known prior to
the hydrological model calibration. This result confirms the
earlier discussions by Beven [2005, 2006] of potential inter-
actions between multiple sources of error. However,
Renard et al. [2010] also illustrated that the use of more
precise (though still inexact) statistical descriptions of data
errors makes the posterior distribution well posed.

[20] It is therefore vital that priors on individual sources
of error reflect actual knowledge, rather than be used as
mere numerical tricks to achieve well posedness. Given the
difficulty of obtaining prior estimates of structural errors
(especially for highly conceptualized rainfall-runoff mod-
els), it may be more practical to first focus on the observatio-
nal uncertainty in the rainfall-runoff data. Provided the data
error models are reliable, they can achieve closure on the
total errors and can allow reliably estimating structural
errors as ‘‘what remains’’ once data errors are accounted for.

1.4. Study Aims

[21] The aims of this paper are the following: (1) dem-
onstrate the development and incorporation of uncertainty
models for forcing and response data into a Bayesian meth-
odology for hydrological calibration and prediction, (2)
examine the resulting improvements in the predictive per-
formance, (3) evaluate whether using informative models
for data errors enables inference of structural errors as part
of the model calibration process, and (4) evaluate the abil-
ity of the inference to provide quantitative insights into the
relative contributions of individual sources of uncertainty.
Point 3 is of primary importance because of the intrinsic
difficulty in defining structural error models a priori. This
constitutes a major contribution of this paper since previous
attempts at isolating the contribution of structural errors to
predictive uncertainty [Huard and Mailhot, 2008; Salamon
and Feyen, 2010] were based on assuming known parame-
ters of the structural error model.

[22] This paper uses the Bayesian total error analysis
(BATEA) [Kavetski et al., 2002, 2006b; Kuczera et al.,
2006]. The Bayesian foundation of BATEA, in particular,
its ability to exploit quantitative (though potentially vague)
probabilistic insights into individual sources of error, makes
it well suited for using independent knowledge to improve
parameter inference and predictions and to quantify indi-
vidual contributions to predictive uncertainties. However,
the development of realistic error models for rainfall and
runoff errors is of general interest for any method aiming at

decomposing the predictive uncertainty into its three main
contributive sources.

[23] Here the rainfall error model is developed using a geo-
statistical analysis of the rain gauge network coupled with
condition simulation (CS) [e.g., Vischel et al., 2009]. For the
runoff data, the rating curve data and stage-discharge meas-
urements are used to derive a heteroscedastic error model
[Thyer et al., 2009]. The BATEA framework is then used to
explore different calibration schemes for integrating observa-
tional uncertainty into the inference and to evaluate their influ-
ence on calibration and validation, focusing on objectives 2–4.

[24] This work is innovative in several aspects. First,
while the characterization of rainfall errors has received
considerable attention [e.g., Krajewski et al., 2003; Villarini
et al., 2008], a comprehensive integration of this knowledge
within a Bayesian statistical inference for hydrological mod-
els has yet to be demonstrated in a real catchment case study.
More generally, the integration of independently derived
data error models into a Bayesian framework for probabilis-
tic predictions and a stringent verification and refinement of
all error models are of increasing interest not just in hydrol-
ogy but elsewhere in environmental sciences [e.g., Cressie
et al., 2009]. Finally, a systematic disaggregation of predic-
tive uncertainty into its contributing components in realistic
case studies is only in its nascence. Previous studies in this
area [e.g., Huard and Mailhot, 2008; Salamon and Feyen,
2010] were based on assuming known fixed values for the
structural error parameters, which is hardly tenable, as dis-
cussed in section 1.3.

[25] Second, this study further develops the BATEA
approach. Previous applications of BATEA focused primar-
ily on rainfall errors and lacked a separate characterization
of structural errors [Kavetski et al., 2006a; Thyer et al.,
2009]. Kuczera et al. [2006] explored separate specifica-
tions of rainfall, runoff, and structural errors but did not use
informative priors on the parameters of their error models
nor carried out a full Bayesian treatment of the posterior
distribution (they limited themselves to finding the poste-
rior mode only). Renard et al. [2010] illustrated, on the ba-
sis of synthetic experiments, the necessity of deriving
reliable and precise prior descriptions of data errors to
achieve well-posed inferences. The present paper builds on
the latter work and proposes a practical strategy toward
these objectives. Moreover, it explicitly demonstrates the
utility of independent rainfall error analysis for improving
the predictive reliability and for gaining quantitative and
qualitative insights into the contribution of different sour-
ces of errors in hydrological prediction.

1.5. Outline of Presentation

[26] The Bayesian inference framework is outlined in
section 2. Section 3 describes the specific data and methods
used in this case study: the hydrological model and catch-
ment data are described in section 3.1; section 3.2
describes the geostatistical rain gauge analysis, the devel-
opment of an error model for the catchment average rainfall
data, and its incorporation into the Bayesian inference; sec-
tion 3.3 describes the runoff error model, and section 3.4
discusses the treatment of structural errors. Section 4
presents the results of a case study that evaluates the utility
of this information in improving the quantification and
decomposition of the runoff predictive uncertainty, with an
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emphasis on posterior scrutiny of the hypotheses made dur-
ing calibration. The results are discussed in section 5, fol-
lowed by a summary of key conclusions in section 6.

2. Theory: Bayesian Framework

2.1. General Setup: Data and Model

[27] In general, a rainfall-runoff (RR) model, H( )
hypothesizes a mapping between rainfall and runoff, given
a set of (usually time invariant) parameters h. Let R ¼
R1:Nt

¼ ðRtÞt¼1; ... ; Nt
and Q ¼ Q1:Nt

¼ ðQtÞt¼1; ... ; Nt
denote

the true rainfall and true runoff time series of length Nt,
respectively. Let Q̂ denote the runoff predicted by the RR
model, such that

Q̂ ¼ HðR; hÞ: ð1Þ

[28] Hydrological models are usually also forced with
potential evapotranspiration (PET). However, sensitivity to
PET random errors is minor, and the impact of PET sys-
tematic errors remains much smaller than that of rainfall
errors [e.g., Oudin et al., 2006]. We therefore exclude PET
uncertainty from the analysis and notation. The influence
of initial conditions is minimized using a warm-up.

2.2. Data Uncertainty

[29] The uncertainty in the rainfall-runoff data can be
characterized using statistical error models, which describe
what is known about the true values given the observations,

R � pðRj~R;HRÞ ð2Þ

Q � pðQjQ̂;HQÞ; ð3Þ

where HR and HQ are error model parameters describing
the statistical properties of the rainfall and runoff errors,
respectively (e.g., means, variances, and autocorrelations
of observation errors). The specification of these error mod-
els is a major focus of this paper. It will be described in
detail in sections 3.2 (rainfall) and 3.3 (runoff).

2.3. Structural Errors of Rainfall-Runoff Models

[30] Unlike data errors, which can be estimated inde-
pendently from the hydrological model by analyzing the
observational network, no widely accepted approaches
exist for characterizing structural uncertainty [e.g., see
Beven, 2005, 2006; Doherty and Welter, 2010; Kennedy
and O’Hagan, 2001; Kuczera et al., 2006]. The most com-
mon approach is to use an exogenous structural error term
[e.g., Huard and Mailhot, 2008; Kavetski et al., 2006b]

Q ¼ Q̂þ n ¼ HðR; hÞ þ n ð4Þ

n � pðnjH�Þ; ð5Þ

where n is an additive error. For instance, standard least
squares regression corresponds to assuming n � Nðnj0; �2

�Þ
and assuming that this term also accounts for input and out-
put errors.

[31] A more recent strategy seeks to represent structural
uncertainty as a stochastic variation of one or more RR

model parameters [e.g., Kuczera et al., 2006; Rajaram and
Georgakakos, 1989; Reichert and Mieleitner, 2009; Smith
et al., 2008] or states [e.g., Moradkhani et al., 2005a,
2005b, 2006; Salamon and Feyen, 2009; Vrugt et al.,
2005; Weerts and El Serafy, 2006]. Time- and state-varying
parameters have also been explored within the instrumental
variable literature [e.g., Young, 1998; Young et al., 2001].

[32] In this paper, we use a hierarchical structural error
model that hypothesizes a single stochastic RR parameter
K, which varies on a characteristic time scale represented
using epochs !,

Q̂t ¼ HðR1:t;K1:!ðtÞ; hÞ ð6Þ

�!ðtÞ � pð�j��Þ; ð7Þ

where !ðtÞ is the epoch associated with the tth time step
and H� are parameters describing the statistical properties
of the stochastic parameters (e.g., H� could contain the
mean and variance of storm-dependent parameters).

[33] A key challenge in using approach (7) is the mean-
ingful specification of H�. Since structural error remains
the least understood source of uncertainty, scarce guidance
exists for specifying anything other than vague priors,
whether on exogenous structural error terms or on stochas-
tic parameters.

2.4. Remnant Errors

[34] In addition to error models developed for particular
error sources, we also account for ‘‘remnant’’ errors
[Renard et al., 2010; Thyer et al., 2009]. These are related
to the notions of ‘‘model inadequacy’’ [Kennedy and
O’Hagan, 2001] and ‘‘model discrepancy’’ [Goldstein and
Rougier, 2009] but are intended to capture not only unac-
counted structural errors of the hydrological model but also
inevitable imperfections and omissions in the descriptions
of data uncertainty.

[35] Here we assume additive Gaussian remnant errors "t

with unknown variance �2
" ,

Qt ¼ Q̂t þ "t; "t � Nð0; �2
"Þ: ð8Þ

[36] Note that in traditional regression, remnant errors
such as (8) represent the lumped effects of all sources of
error and correspond to ‘‘residual’’ errors.

2.5. Posterior Distribution

[37] When derived using the approach of Kavetski et al.
[2002] and Kuczera et al. [2010b], the BATEA posterior
distribution is given by Bayes’ theorem as follows:

pðh;R;K;Hj~R; ~QÞ ¼ pð~R; ~Qjh;R;K;HÞpðh;R;K;HÞ=pð~R; ~QÞ; ð9Þ

pðh;R;K;Hj~R; ~QÞ / pð~Qjh;K;R;HQ;H"Þpð~RjR;HRÞpðKjH�Þ
�pðRÞpðHRÞpðHQÞpðH�ÞpðH"ÞpðhÞ:

ð10Þ

[38] The BATEA posterior in equation (10) explicitly
represents individual sources of uncertainty in the hydro-
logical model-data system as follows.
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[39] 1. The ‘‘runoff likelihood’’ pð~Qjh;K;R;HQ;H"Þ
describes runoff and remnant errors. We refer to Kuczera et
al. [2010b] for a fully general derivation of this likelihood
and to section 3.3 for its derivation with the specific error
models used in the case study.

[40] 2. The ‘‘rainfall likelihood’’ pð~RjR;HRÞ describes
rainfalls errors.

[41] 3. The ‘‘stochastic-parameter term’’ pðKjH�Þ char-
acterizes structural errors.

[42] In addition, independent information on any quan-
tity of inference can be supplied via the priors:

1. pðHRÞ and pðHQÞ are priors on the parameters describ-
ing respectively, rainfall and runoff data uncertainties;
2. pðhÞ is the prior on the time-invariant RR parameters;
3. pðH�Þ is the prior on the parameters H� of the prob-
ability model of the stochastic parameters K ;
4. p(R) is the prior distribution of the true rainfall time
series; note that the product of this prior with the ‘‘rain-
fall likelihood’’ pð~RjR;HRÞ is proportional to the rain-
fall error model (2).
5. pðH"Þ is the prior on the parameters of the remnant
error model. Here H" ¼ �" in equation (8).
[43] The posterior in equation (10) can be explored using

Markov chain Monte Carlo (MCMC) sampling. In this
study, we use a multistage limited-memory MCMC strat-
egy detailed by Kuczera et al. [2010a]. Also note that equa-
tion (10) can be modified to use joint priors on any quantity
of inference. This would be needed, for example, if
BATEA were applied recursively as new data arrives.

[44] The key scientific (as opposed to computational)
challenge in using BATEA or any other Bayesian approach
for the decomposition of individual sources of error is to
develop accurate and precise probabilistic models for the
individual terms in the posterior (10). This will generally
require independent information to augment and constrain
the inference. Illustrating these developments in a practical
study is a major objective of this paper.

2.6. Calibration Schemes

[45] The BATEA framework can be used to derive sev-
eral calibration schemes, differing in the type of error mod-
els and the amount of prior knowledge utilized in the
inference. This allows exploring the benefits and challenges
of explicitly describing each source of uncertainty and of
including additional prior information. The following
schemes are considered in this study (Table 1).

[46] 1. The standard least squares (SLS) scheme lumps
the effects of all sources of errors into the remnant error
term in equation (8).

[47] 2. The output-input (OI) scheme explicitly accounts
for rainfall and runoff uncertainty. Structural errors are
handled entirely by the remnant error term. Vague priors
are used for the terms p(R) and pð�RÞ. However, prior in-
formation, derived from rating curve analysis, is used for
the runoff error parameters �Q.

[48] 3. The OI-CS scheme is an ‘‘enhanced’’ OI scheme,
augmented using an informative prior for the term p(R).
This prior is derived using CS as described in section 3.2.

[49] 4. The output-input-structural (OIS) scheme explicitly
accounts for rainfall and runoff uncertainty and characterizes
structural errors using a stochastic RR parameter. Note that T
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it still uses the remnant error (8) to account for the inevita-
ble imperfections of the uncertainty models.

[50] 5. The OIS-CS scheme is an enhanced OIS scheme,
augmented using the CS prior for the term p(R).

2.7. Quantification and Decomposition of Predictive
Uncertainty

2.7.1. Total Predictive Distributions
[51] In Bayesian methods, the uncertainty in a quantity

of interest (e.g., runoff Y) is usually quantified by means of
the predictive distribution. Let N denote the vector of all
inferred quantities and pðNj~DÞ denote the posterior of pa-
rameters N given observed data ~D. By definition, the pre-
dictive distribution of Y is [Gelman et al., 2004]

pðY j~DÞ ¼
Z

pðY jN; ~DÞpðNj~DÞdN: ð11Þ

[52] The ‘‘total’’ predictive distribution (TPD) in equation
(11) integrates over the posterior uncertainty in the parame-
ters N and can be obtained directly from the MCMC
samples ðNðiÞÞi¼1; ... ; Nsim

. It is widely used in hydrology,
including flood forecasting [e.g., Krzysztofowicz, 1999;
Reggiani et al., 2009; Todini, 2008] and climate studies
[Rougier, 2007].
2.7.2. Partial Predictive Distributions

[53] In this study, the individual contributions of distinct
sources of uncertainty are quantified by formulating ‘‘par-
tial’’ predictive distributions (PPDs). The derivation of a
PPD is illustrated using a simple two-parameter model.

[54] Let pð�1; �2j~DÞ be the posterior of parameters �1 and
�2. For example, �1 and �2 could be viewed as representing
input and structural errors, which we are trying to disaggre-
gate in this study. Now, consider the conditional distribution:

pðY j~D; ��2Þ ¼
Z

pðY j��2; �1Þpð�1j~D; ��2Þd�1; ð12Þ

where ��2 is a given conditioning value (e.g., the posterior
mode).

[55] Equation (12) represents the uncertainty in Y contrib-
uted by the uncertainty in �1, conditional on ��2. We hence
refer to it as the ‘‘PPD of Y arising from the uncertainty in
�1.’’ The PPD pðY j~D; ��1Þ, representing the uncertainty con-
tributed by �2, can be defined in a similar manner.

[56] Unlike the TPD, PPDs cannot, in general, be con-
structed directly from MCMC samples of the joint posterior
distribution. Sampling from the conditional posterior distri-
bution pð�1j~D; ��2Þ in equation (12) would, in general,
require separate MCMC sampling. However, in the special
case where the posteriors of �1 and �2 are independent, the
conditional distribution pð�1j~D; ��2Þ is equal to the marginal
distribution pð�1j~DÞ. The PPD then reduces to

pðY j~D; ��2Þ ¼
Z

pðY j��2; �1Þpð�1j~DÞd�1: ð13Þ

[57] Consequently, if the analysis of the full posterior sug-
gests that �1 and �2 are nearly independent, the PPD in equa-
tion (13) can be approximated from the MCMC samples

by generating a realization Y(i) for each parameter ð�ðiÞ
1
;

��2Þi¼1; ... ; Nsim
. To the extent that �1 and �2 are independent,

the sample ðY ðiÞÞi¼1; ... ; Nsim
is then an approximate realization

from the PPD pðY j~D; ��2Þ.
[58] This study distinguishes between the following

sources of errors : (1) rainfall errors, (2) structural errors,
and (3) runoff plus remnant errors. The corresponding
PPDs are constructed from the MCMC samples generated
during the inference by iterating the flowchart in Figure 1
for i ¼ 1:Nsim.

3. Materials and Methods

3.1. Study Area and Hydrological Model

3.1.1. The Yzeron Catchment
[59] The case study is based on the 129 km2 Yzeron

catchment in the Rhône-Alpes region of France, near Lyon
(Figure 2a). Its regime is rainfall dominated, with floods
between autumn and spring and extended periods of low flows
in summer. The annual average rainfall and runoff are approx-
imately 845 and 150 mm respectively, yielding an annual run-
off coefficient of 0.18. The upstream elevations range from
400 to 917 m, with steep slopes often exceeding 10%.

Figure 1. Derivation of partial predictive uncertainties
from the MCMC analysis of the joint methodology BATEA

posterior. Here h ið Þ;/ ið Þ; � ið Þ
� ; �

ið Þ
� ; h

ið Þ
1 ; �

ið Þ
�1
; �

ið Þ
�1
;

�

�
ið Þ
" Þ is the

ith MCMC sample, i ¼ 1:Nsim, and h
^

; �
^

; l
^

�; �
^

�; h
^

1;
�

�
^

�1
; �
^

�1
; �
^

"Þ is a selected point estimate of inferred quanti-

ties on which the partial predictive distributions (PPDs) are
conditioned (in this study, the modal values are used).
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[60] Nearly 8 years of daily runoff (shown in Figure 2b)
are used in this study. The last 2 years, 2007 and 2008, are
used for calibration, while the preceding 6 years are used
for validation.

[61] Two separate sets of rain gauges are used. The first
set, denoted as R3D, comprises three rain gauges in the
lower areas of the catchment (squares in Figure 2a), with
daily totals available for the whole period of study. The
daily mean of the R3D rain gauges provides an estimate of
the daily areal rainfall (inverted bars in Figure 2b) that was
used in the calibration and validation experiments.

[62] The second set, R13H, comprises 13 rain gauges
located within the vicinity of the Yzeron catchment, shown
as dots in Figure 2a. The spatial density of this network is
quite high considering the moderate catchment size; more-
over, it provides measurements at an hourly resolution.
However, its observations are available only for the last 2
years of the study period. Consequently, the R13H data are
used solely to investigate the error properties of the R3D

estimates of the catchment average rainfall. In particular,
the high spatial density of the R13H gauges permits the
spatial variability of rainfall to be described using condi-
tional simulation (section 3.2). The concurrent availability
of the R3D and R13H data explains the use of the last 2
years of the study period for calibration, while only R3D
data are used in the validation period.
3.1.2. The GR4J Rainfall-Runoff Model

[63] This study applies the widely used GR4J model
[Perrin et al., 2003], which simulates catchment runoff
using rainfall and potential evapotranspiration at a daily
time step (Figure 2c). The model has two conceptual
stores (production and routing), two unit hydrograph ele-
ments, and four calibration parameters: the maximum pro-
duction storage �1 (L, mm), the groundwater exchange
parameter �2 (L T�1, mm d�1), the maximum routing stor-
age �3 (L, mm), and the unit hydrograph time delay pa-
rameter �4 (T, days). Further details are given by Perrin
et al. [2003].

Figure 2. Data and model used in the case study. (a) Map of the Yzeron catchment (map center is
located at 04�4303500E, 45�4401500N), (b) rainfall (R3D) and runoff time series, and (c) schematic of
GR4J [Modified from Perrin et al., 2003].
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3.2. Development of the Rainfall Error Model

3.2.1. Conditional Simulation
[64] The uncertainty of areal rainfall estimates is gener-

ally dominated by sampling errors, i.e., errors due to the
incomplete description of the rainfall spatial field using rain
gauges [Moulin et al., 2009; Severino and Alpuim, 2005].
Conditional simulation is a geostatistical method that gener-
ates multiple replicates of the rainfall field based on the val-
ues measured at individual rain gauges [e.g., Vischel et al.,
2009]. In most common CS methods, the replicates match
the observed values at the rain gauge locations but differ
elsewhere. The spatial variability of the replicates depends
on the geostatistical properties (distribution, variogram,
etc.) of the rainfall fields, which are estimated prior to gen-
erating the CS replicates.

[65] CS provides a natural means to describe the uncer-
tainty in the areal rainfall forcing and is therefore well
suited for augmenting the statistical inference of hydrologi-
cal models.
3.2.2. The Turning-Band Method Rainfall Generator
For CS

[66] The CS method used in this study was the turning-
band method (TBM) rainfall generator. The main equations
of the TBM geostatistical model are provided in Appendix A.
Further details are provided by Tompson et al. [1989]. A
summary of the main characteristics is provided below.

[67] TBM generates three-dimensional fields that
describe rainfall variability in two spatial (areal) dimensions
and in the time dimension. Rainfall fields are constructed
from the product of two independent fields: (1) a Boolean
indicator field representing pixels with zero and nonzero
rainfall and (2) a field of nonzero precipitation generated
from a prespecified distribution.

[68] The TBM simulation depends on parameters
describing the at-site rainfall distribution (e.g., mean and
variance of a lognormal distribution) and the spatiotempo-
ral properties of the observed rainfall fields (e.g., the spatio-
temporal variogram). The simulated field is constructed to
be consistent not only with the observed variogram of raw
data (e.g., hourly rainfall) but also with the variograms of
data aggregated over various durations (e.g., 2, 4, 6, 12,
and 24 h intervals). This constraint is addressed using the
integrative properties of random fields: given the vario-
gram of the point process that generates (unobserved) in-
stantaneous rainfall, it is possible to derive the variograms
of the aggregated fields. This operation is known as the reg-
ularization of the point variable to the aggregated variable
[e.g., Journel and Huijbregts, 1978, chapter II]. Conse-
quently, the inference of the variogram parameters of the
(unobserved) point process is based on the (observed) var-
iograms of observations aggregated over various durations.
This allows the generated field to be consistent with the
spatiotemporal properties of aggregated rainfall.

[69] The TBM method generates Gaussian random
fields, which are then transformed to obtain the indicator
field and the nonzero precipitation field. This transforma-
tion is based on thresholding for the indicator field and on
the transformation F�1 �ð Þ½ � for the nonzero precipitation
field, where � is the cumulative distribution function
(CDF) of the standard Gaussian distribution and F�1 is the
inverse CDF of nonzero rainfalls. Care is needed at this

step because these transformations alter the spatial correla-
tions of the simulated random field. Therefore, empirical
and analytical correction formulae are used to match the
correlation structure of the final rainfall field to the obser-
vations (see Appendix A for details). Finally, Gibbs sam-
pling is used to condition the simulations at the rain gauge
locations. Onibon et al. [2004] provide further details.
3.2.3. Derivation of the Rainfall Error Model Using
CS Data

[70] Figure 3 depicts three representative CS replicates
over four consecutive hourly steps. In all replicates, rainfall
values match the observations at the conditioning gauge
locations (open squares, at the R13H locations) but differ
elsewhere. For each replicate, the hourly rainfalls are aggre-
gated to the daily scale and averaged over the catchment
area. This yields the daily areal rainfall of the Yzeron catch-
ment associated with a particular conditional replicate.

[71] Figure 4a compares the time series of areal rainfall
estimated from the R3D network to the distribution esti-
mated from 34 CS replicates (conditioned on rainfall values
from the R13H network). The limited number of replications
is due to current computational constraints: a single CS of
2 years of hourly data over a 49 � 49 grid takes several
hours on a standard desktop CPU. Improved computational
strategies are beyond our scope and will be investigated in
future work.

[72] Figure 4a shows that the spread of the conditional
replications is highly variable on a daily scale. For exam-
ple, the individual replicates varied from 15 to 40 mm on
day 119, while the R3D estimate was 25 mm. This suggests
considerable uncertainty in the R3D areal rainfall estimates
during this particular event. Conversely, the replicates
ranged from 55 to 67 mm for day 134, with the R3D esti-
mate of 62 mm, suggesting a markedly smaller uncertainty
in the R3D data. Figure 4b also shows that the standard
deviation of CS replicates (computed for each day of the
calibration period) has no clear relationship with the R3D-
estimated areal rainfall. This implies that larger rainfall
events are not necessarily subject to larger uncertainties.

[73] Figure 4c compares the mean of the conditional rep-
lications R̂ with the R3D-estimated values ~R for each day
of the calibration period. Overall, they are in acceptable
agreement, suggesting the absence of strong systematic
bias in the R3D estimates. However, a closer inspection
reveals considerable discrepancies between the two esti-
mates of the areal rainfall for small events. More precisely,
on some days R3D estimates are zero even when CS sug-
gests considerable precipitation (up to 20 mm). This sug-
gests that significant rainfall events can be missed with
only three rain gauges or that the CS is overestimating
small events or both.

[74] The errors in the R3D estimates can be approxi-
mated as

�t ¼ R̂t=~Rt: ð14Þ

[75] The multiplicative model was selected in an attempt
to capture the heteroscedasticity of the rainfall errors, espe-
cially for large storm events. It has been used in several
previous studies [e.g., Kavetski et al., 2002; Villarini et al.,
2008; Vrugt et al., 2008].
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[76] Figure 4d, which plots the multipliers � versus the
R3D rainfall estimates, reveals a complex distributional
structure of rainfall errors. Multipliers associated with
small-recorded rainfall values are predominantly larger
than 1.0 (corresponding to the underestimation reported
earlier) and are highly variable. The discrepancies in small
rainfall events have several possible explanations: (1) biases

in the R3D areal averages due to insufficient spatial cover-
age and/or (2) biases in the CS of small rainfall events.
Multipliers tend to stabilize around 1.0 for higher rainfall
values, suggesting an absence of strong systematic biases
and a limited heteroscedasticity. While the low heterosce-
dasticity of multipliers associated with larger events sup-
ports the multiplicative error model (14), the difficulty in

Figure 3. Examples of conditional rainfall replicates over the Yzeron catchment. Here three replicates
comprising four consecutive hourly steps are shown.

Figure 4. Comparison of the CS replicates to catchment average R3D rainfall estimates. (a) Time
series (dots show R3D, lines show replicates), (b) standard deviation of replicates, (c) mean of replicates,
and (d) rainfall multiplier.
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describing errors in small rainfall suggests that simple mod-
els, such as Gaussian multipliers, may not be adequate over
the entire rainfall range and need future refinement.
3.2.4. Diagnostic Evaluation of CS Predictions Versus
R3D Gauges

[77] To investigate the reliability of CS for small rainfall
events, we evaluated the CS replicates against R3D rain
gauge values (as opposed to areal averages) by comparing
the rainfall series from a given R3D rain gauge gk with the
CS predictive distribution at the pixel containing gk. The
reliability of the CS predictive distribution is evaluated
using the predictive QQ plot, which displays the p-values
of the observations within the predictive distribution
against the quantiles of the uniform distribution. A statisti-
cally reliable predictive distribution leads to p-values close
to the 1:1 line. Departures from the bisector have specific
diagnostic interpretations (see Laio and Tamea [2007] and
Thyer et al. [2009] for further details).

[78] While Figure 5b suggests that the CS predictive
distribution is reliable for daily rainfall exceeding 2 mm,
Figure 5a suggests poorer reliability for small rainfalls. In
particular, numerous observations have p-values of zero,
suggesting a tendency of the CS to overestimate the actual
rainfall. The discrepancies in small rainfall events discussed
in previous section 3.2.3 are therefore at least partly due to
biases in the CS of small events.

[79] Since the current analysis shows that CS reliably
quantifies the uncertainty in the larger rainfall events, which
are generally (though not always) of primary interest, it sup-
ports the use of CS as a tool to derive rainfall error estimates
for hydrological applications. The investigation of the appa-
rently poor CS performance for small rainfall is deferred to
a future study.
3.2.5. Conditional Simulation as a Prior on the True
Rainfall in BATEA

[80] A key advantage of the Bayesian paradigm is its
ability to augment the inference with independent knowl-
edge. In this study, we incorporate the information from the
geostatistical analysis of the R13H network into a BATEA
calibration of a hydrological model forced with the R3D

rainfall. This is achieved by using the CS replicates to spec-
ify the term p(R) in the BATEA posterior (10).

[81] The prior p(R) is described using independent
Gamma distributions with time-varying parameters �̂t and
�̂t, describing the rainfall at all time steps t where rainfall
exceeds 2 mm,

pðRÞ ¼
Y

Nt

t¼1;Rt>2mm

p� Rtj�̂t; �̂t

� �

: ð15Þ

[82] The scale �̂t and shape �̂t at step t are estimated by
matching the moments of the Gamma distribution to the
moments of the CS replicates described in section 3.2.3.
Note that the specification of the prior pðRÞ is based solely
on the R13H data (analyzed using CS) and does not use
data from the R3D network. A posteriori, the R3D data are
used indirectly in the exploratory analyses reported in
sections 3.2.3 and 3.2.4.

[83] Note that the exclusion of rainfalls below 2 mm
from the error model is used as a computational accelera-
tion strategy to remove insensitive degrees of freedom
from the inference. This approximation has little effect on
the inference results because the predicted runoff is largely
insensitive to small rainfalls.
3.2.6. Rainfall Error Model

[84] The likelihood of rainfall errors, pð~RjR;HRÞ in
equation (10) is specified as follows:

Rt ¼ ~Rt�t; �t � TNð��; �
2
�; 0Þ; ð16Þ

where TN(a, b2, 0) denotes a Gaussian distribution with
mean a and standard deviation b, truncated at zero. Similar
to equation (15), the error model (16) is applied only on
days where Rt > 2 mm. The advantages and limitations of
rainfall models (15) and (16) are discussed in section 5.4.

3.3. Development of the Runoff Error Model

[85] Runoff uncertainty was investigated by analyzing
the rating curve and related stage-discharge measurements.

Figure 5. Evaluation of the predictive distribution of daily rainfall obtained using CS against the three R3D
rain gauges (each symbol corresponds to a specific rain gauge). The p-values on the bisector line indicate stat-
istically reliable predictions. (a) Nonzero rainfalls smaller than 2 mm and (b) rainfalls larger than 2 mm.
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The Yzeron catchment can be considered well gauged, with
stage-discharge measurements covering a large fraction of
the flow duration curve.

[86] Figure 6 shows the runoff measurement errors,
defined as the difference between the runoff measurements
and the runoff predicted by the rating curve (‘‘RCP run-
off’’). There is a clear trend of runoff measurement errors
increasing with the RCP runoff.

[87] In view of Figure 6, we hypothesized a heterosce-
dastic error model, where runoff uncertainty is Gaussian
with a zero mean and a standard deviation �Q proportional
to the RCP runoff,

Q ¼ ~Q þ "Q; "Q � Nð0; �2
QÞ; �Q ¼ a þ b~Q; ð17Þ

where Q is the gauged runoff and ~Q is the RCP runoff. In
the context of equation (3), HQ ¼ ða; bÞ.

[88] Equation (17) was fitted to the Yzeron runoff data
(with vague priors on a and b) using the WinBugs software
[Spiegelhalter et al., 2003]. The 90% predictive limits of
the runoff measurement error model are shown in Figure 6.
The fanning out of the uncertainty bounds for large runoff
values is dominated by extrapolation from lower flows,
where many more stage-discharge measurements are avail-
able. This deficiency arises because of limited gauging data
in the high-flow range (a single measurement for flows
exceeding 10 mm).

[89] The posterior mean and standard deviation for the
parameters of the rating curve error model (17) were a ¼
0.0032 6 0.0015 and b ¼ 0.096 6 0.014. Since the preci-
sion of these estimates is relatively high, they were fixed at
their posterior means during the subsequent BATEA
calibration.

[90] Note that equation (17), in combination with the rem-
nant error model (8), allows deriving the runoff likelihood
term in equation (10). Given the error models selected here,
observed runoff is treated as a realization from a Gaussian
distribution with mean Q̂t and variance ða þ b~QÞ2 þ �2

" .

3.4. Representation of Structural Errors

[91] The characterization of structural error of the GR4J
model is explored using stochastic daily variation of its pa-
rameter �1. We also investigate a more traditional exogenous

treatment of structural errors using the remnant error term
(see also section 2.4).

[92] When �1 is treated as stochastic, it is assumed to fol-
low a truncated Gaussian distribution with unknown mean
��1

and standard deviation ��1
,

�1 � TNð��1
; �2

�1
; 0Þ: ð18Þ

[93] Note that �1 controls the maximum storage of the
production store (Figure 2c). It may seem surprising, or
even imprudent, to make this quantity time dependent
because the actual storage can then, in principle, exceed the
maximum capacity. However, a separate sensitivity analy-
sis (similar to Figure 5 of Kuczera et al. [2006]) indicated
that this parameter, when made stochastic, had the largest
impact on model predictions. Importantly, we examined
the inferred stochastic variability of �1 to determine its
effect on the storage values and long-term water balance
(section 4.4.2).

4. Inference Results and Posterior Diagnostics

[94] Section 4 describes the application of the calibration
schemes of section 2.6 and Table 1 to the Yzeron data,
using the input, output, and structural error models con-
structed in sections 3.2–3.4.

4.1. Well Posedness of the Calibration Schemes

[95] The convergence of MCMC samples reflects the sta-
tistical characteristics of the target distribution. In particu-
lar, slowly convergent sampling is often indicative of ill-
posed posteriors [Renard et al., 2010]. Such posteriors arise
when the data contain insufficient information to identify
the quantities of interest and no prior information is avail-
able or used.

[96] The MCMC convergence was assessed using the
GR criterion [Gelman et al., 2004; see also Cowles and
Carlin [1996] for a broader review]. For all calibration
schemes except OIS (see below), GR statistics were below
1.2 for all inferred quantities, suggesting a well-posed infer-
ence. As expected intuitively, Table 1 shows that conver-
gence is faster for lower-dimensional inference schemes.
Yet it also highlights the impact of the prior on the speed of

Figure 6. Heteroscedastic model of runoff measurement errors estimated from rating curve analysis of
the Yzeron catchment.
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MCMC convergence. Despite having exactly the same like-
lihood function and the same number of inferred quantities,
scheme OI-CS converges 10 times faster than OI because it
uses the informative CS prior. This emphasizes that the com-
putational cost of an inference depends more on its structure
than just on its dimensionality. An in-depth discussion of
dimensionality and computation in hierarchical models is
provided by Spiegelhalter et al. [2002]; see also the syn-
thetic investigations by Renard et al. [2010].

[97] The OIS scheme, which attempts to infer both rain-
fall and structural errors without using the CS prior, suffered
from a prohibitively slow rate of MCMC convergence, with
GR statistics for several inferred quantities (including hydro-
logical parameters and latent variables) still exceeding 3.0
after 106 MCMC iterations. Inspection of the simulated val-
ues revealed strong negative correlations between the latent
variables for input and structural errors (with some posterior
cross correlations exceeding �0.9). Moreover, the posterior
standard deviations of inferred quantities were higher than
in the OIS-CS scheme by a factor of about 3 on average, but
exceeding 10 for some latent variables. This computational
behavior is symptomatic of ill posedness (see detailed dis-
cussion by Renard et al. [2010]). In practical terms, this
means that rainfall and structural errors are not simultane-
ously identifiable solely from the given forcing response
time series with no associated error estimates.

[98] The nonconvergence of the OIS scheme, contrasted
with the convergence of the OIS-CS scheme, supports a
key conclusion of Renard et al. [2010], namely, that the
specification of informative priors for rainfall and runoff
uncertainty is a necessary step to ensure well posedness
when both forcing and structural errors are modeled hier-
archically using latent variables.

4.2. Reliability of Total Predictive Uncertainty
(All Schemes)

[99] Section 4.2 examines the adequacy of the predictive
distribution of runoff. Posterior scrutiny of the predictive dis-
tribution is important because violations of calibration assump-
tions can result in unreliable and misleading predictions [Hall

et al., 2007; Thyer et al., 2009]. In addition to visual
appraisals, which are of clear value to a hydrological expert,
a more formal approach for evaluating the reliability of a
predictive distribution is given by the predictive QQ plot
(see section 3.2.3). However, reliability alone is insufficient
to demonstrate that a particular predictive method is supe-
rior to another [e.g., Gneiting et al., 2007]. In particular, the
precision of the predictive distribution also needs to be
assessed. Moreover, the reliability of the total predictive
distribution does not prove that all individual error models
are correctly specified; it is a necessary but insufficient con-
dition. This topic is further discussed in section 5.2.

[100] Figure 7 shows the predictive QQ plots constructed
for the validation period. In addition, Figure 8 shows the
total predictive distributions from schemes OI, OI-CS, and
OIS-CS for several flood events. Figure 8 allows a visual
appraisal of the precision (i.e., sharpness or resolution) of
the TPDs. Several important results can be noted.

[101] 1. The SLS scheme produces an unreliable predic-
tive distribution. The shape of the QQ curve in Figure 7a
suggests a general overestimation of predictive uncertainty.
However, when restricted to runoffs above 2 mm (65 days,
Figure 7b), it shows that predictive uncertainty is actually
severely underestimated for large runoffs, with many
observations outside of their predicted range.

[102] 2. The shape of the OI curve in Figure 7 suggests a
severe underprediction of observations. This is confirmed
by Figure 8 (top), with the predicted runoff being consis-
tently lower than the observed values.

[103] 3. The OI-CS scheme slightly underestimates the
predictive uncertainty, with about 1% of the observations
lying outside of the predictive range (p-values of 0 and 1
by convention). On the other hand, Figure 8 shows that OI-
CS yields markedly more precise predictions compared to
other schemes.

[104] 4. The OIS-CS scheme yields a reliable estimation
of the predictive uncertainty for all runoff ranges (Figures
7a and 7b). However, Figure 8 shows that its predictive
precision is the lowest, suggesting that in this application,
representing structural errors using a stochastic parameter

Figure 7. Evaluation of the predictive distributions of runoff estimated using different BATEA
schemes. The PQQ plot for observed runoff in validation is shown for (a) all runoffs and (b) runoffs
exceeding 2 mm.
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has increased the predictive uncertainty compared to the
OI-CS setup, where structural errors were represented as
part of the additive remnant error term.

[105] Further insights can be gained by examining the
estimated parameters of the rainfall and structural error
models, as listed in Table 2.

[106] 1. The standard deviation of the rainfall multipliers
is estimated as 1.54 in the OI scheme but reduces to 0.27 in
the OIS-CS scheme. This occurs because the OI scheme
lacks an adequate description of structural errors (the homo-
scedastic Gaussian remnant error term is poorly suited to
this) and, by increasing its standard deviation, the rainfall
error model can compensate for unaccounted structural
errors. This compensation is detectable in this case study
because of the availability of independent prior knowledge
on rainfall errors.

[107] 2. Conversely, the estimated parameters of the rain-
fall error models are similar in the OI-CS and OIS-CS
schemes. This illustrates the constraint exerted by the CS
prior, limiting the interactions between rainfall and struc-
tural errors. However, recall that removing the stochastic
variability in �1 (OI-CS) leads to a slight underestimation
of the predictive uncertainty.

4.3. Decomposition of Total Predictive Uncertainty
Into Forcing, Response, and Structural Components
(OIS-CS Only)

[108] Section 4.2 showed that the BATEA methodology
yields reliable estimates of predictive uncertainty when
prior information on rainfall and runoff errors is available
(OIS-CS scheme). It is then of practical significance and
scientific interest to explore and evaluate the relative con-
tributions of forcing and structural errors to the total predic-
tive uncertainty.

[109] Figure 9 shows the TPD and PPD for the forcing,
structural, and response errors (see section 2.7 for details).
Under the hypotheses made in this case study (including the
hydrological model and the data error models), predictive
uncertainty in the runoff appears to be dominated by struc-
tural errors. Although significant, rainfall errors explain a
smaller part of TPD, with runoff and remnant errors contrib-
uting even less. The identifiability of the parameters of the
rainfall and structural error models (in particular, their near-
independence, maximum absolute posterior correlation of
about 0.12) provides confidence that the PPDs with respect to
rainfall and structural errors can be interpreted as representing

Figure 8. Total predictive uncertainty for the five largest events of the validation period. Each column
depicts a different storm event. Shaded areas represent 50% and 90% predictive intervals (from darkest to
lightest), and the black line represents the predictive median. Observed runoff values are shown with dots.

Table 2. Rainfall and Structural Uncertainty Estimated as Part of

the Hydrological Model Inference Using BATEAa

Rainfall Multipliers Stochastic �1

Mean
Standard
Deviation Mean

Standard
Deviation

OI 0.206 0.17 1.546 0.15
OI-CS 1.186 0.03 0.306 0.03
OIS-CS 1.156 0.03 0.276 0.02 2186 23 846 17

aThe posterior means are reported, followed by the corresponding poste-
rior standard deviations.
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the individual contributions of these random variables to
the TPD.

[110] Note that this study uses partial predictive intervals
in the decomposition of uncertainty. Since these correspond
to conditional distributions (see section 2.7), the choice of
the conditioning values may affect the decomposition of
uncertainty. In the validation analyses presented here, we
condition all latent variables on the modal estimate of their
mean (�� in equation (16); see also Figure 1) because it
represents the ‘‘most likely’’ estimate of individual latent
variables. Note that a PPD derived with such conditioning
excludes the effects of random rainfall errors (as intended
for a PPD reflecting structural uncertainty only) but
includes the effects of systematic rainfall biases (since the
posterior mean of the multipliers in general deviates from
unity). Further design and interpretation of partial predic-
tive limits will be carried out in a separate development.

[111] These results suggest that in this particular applica-
tion a greater reduction in predictive uncertainty can be
achieved by improving the hydrological model rather than
by improving the accuracy of the rainfall and runoff data.
We also stress that insights such as those above could not
have been obtained with approaches that do not attempt to
isolate structural uncertainty and therefore motivate further
research efforts on the decompositional approach.

4.4. Posterior Scrutiny of Error Model Hypotheses

4.4.1. Input Errors (OIS-CS Only)
[112] Figure 10 shows diagnostic plots to scrutinize the

rainfall error model in equation (16). In particular, Figures
10a and 10b suggest that the assumption of independent
rainfall multipliers from a truncated Gaussian distribution
is plausible (however, note the considerable posterior
uncertainty).

Figure 9. Decomposition of the predictive uncertainty estimated using the OIS-CS. Observed runoff
values are shown with dots. Shaded areas represent 50% and 90% predictive intervals (from darkest to
lightest) for the total predictive distribution, and thick lines represent 90% predictive intervals for the
partial predictive distribution. The contributions of (top) output and remnant errors, (middle) structural
errors, and (bottom) input errors are shown. In this case study, structural uncertainty appears to be
dominant.
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[113] Figures 10c and 10d yield further insights into the
identifiability of rainfall errors. They assess the extent to
which the posterior estimates of true rainfall differ from the
prior, i.e., whether the rainfall-runoff data and hydrological
model contain sufficient information to modify the prior
estimates of the true rainfall estimated using CS. Figure
10c compares the 90% credibility intervals of the true rain-
fall arising from the prior and the posterior distributions. In
most cases, these intervals are similar, suggesting that the
information content of the calibration data only marginally
modifies the prior CS-based estimates of true areal rainfall.
A few exceptions can be observed: e.g., on day 136, the
posterior is considerably tighter than the prior.

[114] The contribution of the rainfall-runoff data to the
refinement of the rainfall error estimates during the hydro-
logical model calibration can be quantified using an
‘‘uncertainty reduction factor’’ (URF). In this work, the
URF is defined as the ratio of the posterior and prior stand-
ard deviations of each inferred rainfall multiplier. It can be
interpreted as follows: (1) URF 	 0 implies a significant
reduction of uncertainty in the areal rainfall estimates (high
information content in calibration data) ; (2) URF > 1 indi-
cates increased uncertainty (e.g., if the calibration data con-
flicts with the prior) ; (3) URF 	 1 indicates that the
calibration data have not refined the rainfall error model
and the inference of the rainfall multipliers is governed by
the prior. Note that case 3 is ‘‘noninformative’’ solely with
respect to the inference of rainfall errors and does not imply
that the inference of the hydrological model parameters is
noninformative or governed by the priors.

[115] Figure 10d plots the URFs versus the correspond-
ing R3D rainfall values. Two points can be made.

[116] 1. For large rainfall values (>20 mm), the URFs
are mainly between 0.8 and 1, indicating little reduction in
uncertainty. This implies that the prior (rather than the
data) controls the inference of rainfall errors affecting large
events. This is the likely reason for the ill posedness of
scheme OIS, which does not use the prior information in
equation (15).

[117] 2. URFs for smaller rainfall events are highly vari-
able, with some multipliers having a significant reduction

in uncertainty after calibration. Although perhaps unex-
pected given the low sensitivity of the hydrological model
to small rainfalls, such reductions could be explained by
the constraint exerted by the error model in equation (16):
during calibration, multipliers with a large prior variance
will have their posterior variances tightened approximately
to �2

�. Inadequacies of the simple rainfall error model (16)
and the CS replicates for small rainfalls (section 3.2.3) may
also be responsible for the differences in the URF patterns.
4.4.2. Structural Errors (OIS-CS Only)

[118] Similar to rainfall errors, Figures 11a and 11b sug-
gests that the structural error model based on stochastic
variation of �1 at the storm time scale is plausible. How-
ever, as noted in section 3.4, it is important to check the
evolution of storage with respect to the production store
capacity because stochastic variations of parameter �1 may
lead to a store content exceeding the store capacity.

[119] Figures 11c and 11d show the evolution of storage
during the calibration period. While the store remained con-
sistently below its full capacity, exceedances did occur on
some rare occasions. A closer inspection of GR4J [Perrin
et al., 2003] suggests two possible problematic scenarios.

[120] 1. If rainfall exceeds PET, a part of the net rainfall
fills the production store, with the remainder being routed
through unit hydrographs. However, when the store exceeds
its capacity, some water is subtracted from the production
store. Note that this does not create a water balance error
because this overflowing water is simply transferred to the
routing components. Moreover, in the 2 year calibration pe-
riod, overflows due to stochastic variations of �1 amounted
to a total of <1.5 mm, which is minor in the overall context
of a 2 year runoff volume of nearly 300 mm.

[121] 2. If PET exceeds rainfall, a part of the store con-
tent is evaporated. The actual evaporation is computed as a
function of the net PET and the store level. While exceed-
ing the store capacity could result in the actual ET exceed-
ing PET, this never occurred in this study.
4.4.3. Residual Diagnostics

[122] Figure 12 shows distributional and autocorrelation
diagnostics for the standardized residuals. Note that for all
schemes except SLS, the residuals combine runoff and

Figure 10. Posterior diagnostics for the rainfall error model in the OIS-CS scheme. (a) QQ plot of esti-
mated rainfall multipliers (posterior mode). The red line represents the truncated Gaussian distribution,
and gray bars represent 90% posterior intervals for each multiplier. (b) Autocorrelation function of esti-
mated rainfall multipliers. (c) Prior versus posterior estimates of true rainfall. The 90% intervals are
shown. (d) Uncertainty reduction factor (URF), defined as the ratio of posterior and prior standard devia-
tions of individual rainfall multipliers.
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remnant errors (section 2). For those schemes, standardiza-
tion is therefore performed by dividing the raw residual at

time step t by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2
Q tð Þ þ �2

"

q

, where �QðtÞ is the standard devi-

ation of runoff errors (which are heteroscedastic with respect
to the runoff magnitude, as shown in equation (17)) and �" is
the standard deviation of remnant errors (which, in this case
study, are homoscedastic, as shown in equation (8)).

[123] Several comments can be made.
[124] 1. Accounting for data errors (OI-CS, OI, and OIS-

CS schemes) markedly reduces the skewness and excess
kurtosis (Figures 12a and 12b) of the standardized resid-
uals. However, skewness and kurtosis remained statistically
significant for all calibration schemes, including OIS-CS.
This further discredits the assumption of homoscedastic
Gaussian remnant errors and needs to be addressed.

[125] 2. The autocorrelation tends to decrease when
more sources of errors are represented explicitly in the in-
ference scheme (Figure 12c). The amount of prior informa-
tion also appears to be an important factor, with markedly

higher autocorrelations for the OI-CS scheme than for the
OI scheme. Nevertheless, given appreciable remaining
autocorrelation, the remnant error model may need autore-
gressive components.

5. Discussion

5.1. Quantification of Predictive Uncertainty

[126] Section 4.2 indicated that the predictive distribu-
tion of runoff was fairly reliable for the OI-CS and OIS-CS
scheme. It can be seen that the OI-CS scheme slightly
underestimates predictive uncertainty (see Figure 7 and
section 4.2), while the OI scheme yields significantly larger
estimated input errors and predictive uncertainty. This sug-
gests that the CS prior constrains the input error estimates
and reduces their ability to interact with structural errors
and compensate for unaccounted errors.

[127] Arguably the most reliable predictive distribution
is obtained with the OIS-CS scheme (section 4.2), which
includes the CS prior and an explicit characterization of

Figure 11. Posterior diagnostics for the structural error model in the OIS-CS scheme. (a) QQ plot of
estimated �1 values (posterior mode). The red line represents the truncated Gaussian distribution, and
gray bars represent 90% posterior intervals for each �1 value. (b) Autocorrelation function of estimated
�1 values. (c) Content (thin black line) and stochastic capacity (thick red line) of the production store. (d)
Content (thin black line) and capacity (thick red line) of the routing store.

Figure 12. Diagnostics of standardized residuals (which represent combined runoff and remnant
errors). (a) skewness, (b) excess kurtosis, and (c) autocorrelation. In all panels, dashed lines indicate sig-
nificance limits (level � ¼ 5%).
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structural errors using stochastic parameters. Importantly,
the OIS scheme, which omits prior information on the rain-
fall errors, leads to an ill-posed inference (section 4.1).
This is consistent with previous findings that priors on rain-
fall and runoff uncertainty control the well posedness of
Bayesian hierarchical inferences in hydrology [Renard et
al., 2010]. However, further work is warranted to improve
the predictive precision of the OIS-CS scheme. If, as it
appears for this case study, structural uncertainty is the
dominant uncertainty, improving the predictive precision
will likely require tightening the characterization of struc-
tural errors, as well as improving the hydrological model.

5.2. Decomposition of Predictive Uncertainty

[128] The empirical results in section 4.3 suggest that
decomposing predictive uncertainty into its contributing
sources is possible when independent estimates of rainfall
and runoff data uncertainty are available and used in the
BATEA inference. The reliability of this decomposition can
be examined by considering (1) the reliability of the total
predictive distribution in combination with (2) the reliability
of the individual data and structural components. However,
scrutinizing individual components of a predictive distribu-
tion is considerably more challenging than scrutinizing the
full predictive uncertainty, as discussed next.

[129] Direct scrutiny of the estimated contribution of
rainfall uncertainty to the uncertainty in the predicted run-
off requires accurate areal rainfall estimates. Since this is
rarely available, the adequacy of the decomposition can be
investigated indirectly by scrutinizing the inferred distribu-
tion of latent variables. In this study, this posterior diagnos-
tic was carried out only partially by comparing the inferred
and predicted rainfall errors with those suggested by the
R3D rain gauge network. Because of the short length of the
densely gauged R13H rainfall time series for this catch-
ment, it was used entirely to construct the rainfall error
model for the calibration period and was not used to check
the rainfall PD in the validation period. In applications
where longer periods of densely gauged rainfall are avail-
able, it could be partitioned between calibration and
validation.

[130] Future avenues for scrutinizing the rainfall compo-
nent include comparing inferred rainfall errors with the
errors suggested by other sources, such as radar. Although
radar estimates are affected by complex measurement
errors [e.g., Kirstetter et al., 2010], they can provide spatial
information that is not captured by sparse rain gauge net-
works. For instance, comparing the location of the main
mass of a rainstorm with the location of the rain gauges
may shed light at least on the sign of the error (i.e., whether
the rain gauge network has underestimated or overesti-
mated the areal rainfall).

[131] Direct validation of the estimated structural uncer-
tainty requires highly accurate forcing and response data,
so that structural errors can be isolated. This is seldom
achievable in practice, except in densely gauged experi-
mental catchments. However, indirect strategies are possi-
ble. For instance, assessing the stability of structural error
estimates when different rainfall and runoff data are used
provides a useful measure of the interactions between data
and structural errors.

5.3. On the Treatment of Structural Error

[132] The treatment of structural error remains a topic of
active research (e.g., see the discussion by Beven [2005]
and Doherty and Welter [2010]). This study does not aim
to compare or improve methods for representing structural
errors. Instead, it uses two particular structural error meth-
ods as part of a study pursuing error decomposition by
exploiting independently derived data error models. We
view this as a logical first step before structural error char-
acterization is tackled.

[133] Many other distinct strategies have been proposed
to represent structural errors, including stochastic state errors
[Moradkhani et al., 2005a], model-averaging schemes [e.g.,
Duan et al., 2007; Marshall et al., 2007], multimodel frame-
works [e.g., Clark et al., 2008], and other approaches [e.g.,
Bulygina and Gupta, 2009; Jacquin and Shamseldin, 2007].
Which of these approaches, if any, provide an adequate
description of structural errors remains an open question. In
particular, some authors have argued that the epistemic na-
ture of structural uncertainty makes it poorly suited to a sta-
tistical treatment [e.g., Beven, 2008]. Our view is that in a
particular modeling context, such as hydrological modeling,
such proposition is impossible to prove or refute a priori.
Yet the extent to which a statistical scheme succeeds in rep-
resenting structural error can be scrutinized a posteriori by
inspecting total and partial predictive uncertainties, applying
residual and other diagnostics, etc.

5.4. Limitations and Future Work

[134] While we are optimistic with respect to the practi-
cal feasibility of the Bayesian approach in the context of
hydrologic prediction, several significant challenges remain
to be tackled.

[135] First, immediate limitations with respect to data
availability are noted. In particular, CS requires a distributed
rain gauge network to calibrate the CS parameters and var-
iograms. Applications where no reliable information exists
to inform the data error models are unlikely to be suitable
for a decomposition of sources of error. This provides a
strong argument in favor of continuing measurement and ex-
perimental campaigns and improving operational networks.

[136] Second, the geostatistical rainfall model used in this
paper can be improved to overcome the lack of reliability
for small rainfall (see section 3.2.4). For example, an ap-
proximate classification of rainfall events into more homog-
enous rainfall types (e.g., localized convective storms versus
frontal rainfall events) could be performed, and the geostat-
istical properties (e.g., variograms) could be estimated sepa-
rately for each type. Similarly, orographic effects could be
included through a regression with respect to elevation.

[137] Third, while the error model in equation (16) is
geared primarily toward characterizing the errors in the
larger rainfall events, the limitations of the multiplicative
error model are noted. It is unable to handle errors in zero
rainfalls (i.e., for a localized storm not recorded by the rain
gauge network) and appears poorly suited for errors in
small rainfalls (see section 3.2.3).

[138] Finally, applications at a subdaily scale would
require additional development of the rainfall and runoff
error models, particularly including autocorrelation
[McMillan et al., 2011].
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[139] Other areas in need of further research attention
include the following.

[140] 1. The rating curve error model needs to be gener-
alized to rigorously distinguish between random and sys-
tematic rating curve errors and to account for their likely
autocorrelation at short time scales. Several options are
emerging, including Bayesian approaches [e.g., Moyeed
and Clarke, 2005], dynamic schemes [Dottori et al., 2009],
and other methods [e.g., McMillan et al., 2010].

[141] 2. The stochastic parameter approach needs further
appraisal and more informative structural error models
should be developed. The work by Reichert and Mieleitner
[2009], who used an Uhlenbeck process to characterize the
time structure of stochastic parameters in lieu of the epoch
dependence assumption [Kuczera et al., 2006], is an impor-
tant advance in this direction.

[142] 3. A more flexible remnant error model, allowing
for autocorrelation and heteroscedasticity, is needed (e.g.,
see the recent work by Schoups and Vrugt [2010] and Smith
et al. [2010]).

[143] 4. The understanding of structural errors can be
improved. In particular, the use of structural errors to diag-
nose, compare, or improve hydrological models remains an
important area of future research [e.g., Reichert and Mie-
leitner, 2009; Smith et al., 2008].

[144] 5. The computational implementation is an area
of ongoing work [e.g., Kuczera et al., 2010a; Vrugt et al.,
2008]. Moreover, given the emerging evidence that in
many cases the geometrical complexity of parameter distri-
butions is an artifact of the numerical implementation of
the hydrological model, the use of efficient gradient-based
schemes for optimization and uncertainty analysis is of in-
terest [e.g., Kavetski and Clark, 2010; Kavetski et al.,
2006d].

[145] The utility of these developments should be scruti-
nized using stringent posterior diagnostics. In particular,
the predictive QQ plot [e.g., Laio and Tamea, 2007; Thyer
et al., 2009] and similar reliability checks in combination
with appraisals of the predictive precision provide an
objective yardstick to empirically evaluate the practical
performance of the inference and make quantitative judg-
ments on their suitability for operational purposes.

6. Conclusions

[146] The application of the Bayesian framework in a
real-data case study confirms earlier findings that prior in-
formation on data uncertainty is not merely beneficial but
essential for a meaningful and reliable quantification and
decomposition of the predictive uncertainty.

[147] 1. Simultaneous inference of forcing and structural
errors within the hierarchical framework is ill posed unless
informative priors on forcing and response uncertainties are
specified.

[148] 2. Ignoring sources of error may lead to unreliable
predictions. Conversely, including additional error models
improved the reliability of the total uncertainty estimates.
We stress that this improvement was demonstrated in the
validation period and thus is unlikely to be due to potential
overfitting.

[149] 3. Including informative priors on rainfall uncertainty
demonstrably improves the reliability of runoff predictions

(scrutinized in a validation time period) and paves the way
for a quantitative decomposition of the total predictive uncer-
tainty into its contributing causes.

[150] In this study, where the GR4J model was calibrated
to a three-gauge daily rainfall observation network in the
Yzeron catchment (France), structural uncertainty appears
to dominate data uncertainty. This conclusion is likely to
be catchment and model dependent. In addition, further
work is needed to further develop and test techniques for
analyzing and communicating partial uncertainties.

[151] The use of rainfall conditional simulation as part
of hydrological model calibration represents a significant
advance in the treatment of rainfall uncertainty in hydrolog-
ical calibration. Whereas earlier work, including data assim-
ilation approaches, previous applications of BATEA and
analogous hierarchical Bayesian methods, used largely heu-
ristic rule-of-thumb considerations in the specification of
rainfall uncertainty, this study demonstrates that conditional
simulation can provide more reliable and precise estimates
of the uncertainties in individual rainfall measurements and
how these uncertainties vary in time. This demonstrably
improves the statistical reliability of the model predictions
when compared against methods that disregard such infor-
mation. Perhaps more importantly, approximate decomposi-
tions of predictive uncertainty become possible, including
separate estimation of structural errors of the hydrological
model.

[152] More generally, this study takes an important step
toward more reliable uncertainty quantification and decom-
position, which would be beneficial for many key scientific
and operational purposes in hydrological and environmen-
tal modeling, including (1) improved probabilistic forecasts
and predictions, (2) meaningful hydrological model evalua-
tions unobscured by data errors, and (3) more efficient
research and operational resource allocation to reduce pre-
dictive uncertainty.

[153] Given the manifest significance of a robust quanti-
tative understanding of data and modeling uncertainties in
environmental studies, further development and implemen-
tation of instrumental and statistical procedures is needed
to estimate the accuracy and precision of environmental
data at the data collection and postprocessing stages. The
Bayesian paradigm, with its philosophy of using and refin-
ing the knowledge of all uncertain quantities (be it model
parameters, true forcings, or some error properties of the
latter), provides a very appealing platform for the system-
atic integration of these insights into environmental model
inference and prediction.

Appendix A: Details of the TBM Rainfall
Generator

[154] The models given in Table A1 apply to the point-
process generating (unobserved) instantaneous rainfall.
Moreover, the variograms are those used to generate Gaus-
sian random fields and may differ from the empirical vario-
grams of observed data. The following steps are necessary.

A1. Step 1: Pass From Gaussian to Real Space

[155] A Gaussian field U ¼ U(x,y,t) generated using the
variograms in Table A1 is transformed into a real-space
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random field R ¼ R(x,y,t) using the following transforma-
tions. For the indicator field,

R x; y; tð Þ ¼ 0 if U x; y; tð Þ < ��1 	Ið Þ
1 otherwise

�

:

[156] For the nonzero field,

R x; y; tð Þ ¼ F�1
W � U x; y; tð Þ½ �f g;

where � is the standard Gaussian CDF and FW is the CDF
of the at-site distribution in Table A1.

[157] These transformations alter the correlations of the
transformed field, which will not match those of the Gaus-
sian field. The variograms 
I and 
W in real space are there-
fore derived as follows.

[158] For the indicator field, an exact formula can be used:


I dð Þ ¼
Z

arcsin
ffiffiffiffiffiffiffiffiffiffiffiffi


�
I

dð Þ=2
p� �

0

exp � ��1 	Ið Þ
1 þ cos t

� 	

dt:

[159] For the nonzero field, the transformation is assumed
to affect only the sill of the variogram,


W dð Þ ¼ Var W½ � 
�
W

dð Þ;

where Var[W] is the variance of the at-site distribution
(Table A1). Simulation studies suggest that this is a reason-
able hypothesis when the coefficient of variation of the at-
site distribution is moderate.

A2. Step 2: Convert Partial Variograms Into the
Total Variogram

[160] Given the variograms of the indicator field I and
the nonzero field W, the variogram 
 dð Þ of the rainfall field
Z ¼ IW can be derived as follows [Lepioufle, 2009]:


 dð Þ ¼ 1 � 	I � 
I dð Þ½ �
W dð Þ þ 2
I dð Þ
Tr dð Þ;

where 
Tr dð Þ is the transition variogram between zero and
nonzero rainfall. If I and W are independent, this variogram
does not depend on the distance d and is equal to [Lepiou-
fle, 2009]


Tr dð Þ ¼ �2
W þ Var W½ �

2
:

A3. Step 3: Convert Simultaneous Rainfall Into
Cumulated Rainfall

[161] The variogram 
 dð Þ describes the instantaneous
rainfall field, yet the observed data are rainfall cumulated
over a given duration (e.g., 1 h). It is therefore necessary to
derive the variogram of the cumulated rainfall field.

[162] Let (x1, y1) and (x2, y2) be two pixels in the simula-
tion domain, and let �1 and �2 be two time points. Here

h ¼ dS x1; y1ð Þ; x2; y2ð Þ½ � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 � x1ð Þ2 þ y2 � y1ð Þ2
q

is the

spatial distance between (x1, y1) and (x2, y2). The spatial
variogram of the rainfall cumulated over a duration D
can be derived as follows [e.g., Journel and Huijbregts,
1978]:


D hð Þ ¼ 1

D2

Z Z

0;D½ �


 dS�T x1; y1; �1ð Þ; x2; y2; �2ð Þ½ �f gd�1d�2

� 1

D2

Z Z

0;D½ �


 dS�T 0; 0; �1ð Þ; 0; 0; �2ð Þ½ �f gd�1d�2:

A4. Step 4: Estimation

[163] 
D hð Þ is the spatial variogram of observed data
cumulated over a duration D. The parameters in Table A1
can therefore be estimated by fitting the variograms

D1

hð Þ; . . . ; 
Dk
hð Þ to the empirical variograms of observed

data cumulated over durations D1, . . . , Dk. A simple least
squares fitting criterion is used in this case study, with dura-
tions 1, 3, 6, 12, and 24 h. The inferred parameters are
given in Table A2.

Table A1. Geostatistical Rainfall Models Used in This Case Studya

Indicator Field I(x,y,t) Nonzero Rainfall Field W(x,y,t)

At-site
distribution

binomial, Pr I x; y; tð Þ ¼ 0½ � ¼ 	I

inverse Gaussian, PW wð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�W

2w3
exp ��W w � �Wð Þ2

2�2
W w

" #

v

u

u

t

Spatiotemporal
distance

dS�T x1; y1; t1ð Þ; x2; y2; t2ð Þ½ �

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d2
S x1; y1ð Þ; x2; y2ð Þ þ �2

I d2
I t1; t2½ �½ �

q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 � x1ð Þ2 þ y2 � y1ð Þ2 þ �2
I t2 � t1ð Þ2

q

dS�T x1; y1; t1ð Þ; x2; y2; t2ð Þ½ �

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d2
S x1; y1ð Þ; x2; y2ð Þ þ �2

W d2
T t1; t2½ �


 �

q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 � x1ð Þ2 þ y2 � y1ð Þ2 þ �2
W t2 � t1ð Þ2

q

Variogram
(in Gaussian space)

spherical, 
�
I

dð Þ ¼
3d

2�I

� d3

2�3
I

if d < �I

1 otherwise

8

<

:

spherical, 
�
W

dð Þ ¼
3d

2�W

� d3

2�3
W

if d < �W

1 otherwise

8

<

:

aThe parameters are 	I , �I , �I , �W , �W , �W , and �W .

Table A2. Estimated Parameters and Simulation Grid for the

Geostatistical Models

Indicator Field
I(x,y,t)

Nonzero Field
W(x,y,t)

At-site distribution 	I ¼ 0:58 �W ¼ 1:13;�W ¼ 0:36
Spatiotemporal distance �I ¼ 10 km h�1 �W ¼ 10 km h�1

Variogram (in
Gaussian space)

�I ¼ 30 km �W ¼ 30 km

Simulation grid �x ¼ 500 m;
�y ¼ 500 m;
�t ¼ 1 h

�x ¼ 500 m;
�y ¼ 500 m;
�t ¼ 1 h
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