

Toward a Scalable Test Methodology for 2D-mesh Network-on-Chips

Kim Petersén,
Dept. of Electronic Computer and Software

KTH/ICT/ECS, Electr
+46 (0) 70 859 41 84,
kim.petersen@hdc.se,

 Johnny Öberg
 Systems, Royal Institute of Technology (KTH)
um 229, SE-164 40 Kista, Sweden
 +46 (0) 8 790 41 27
 johnny@imit.kth.se

Abstract1
This paper presents a BIST strategy for testing the NoC
interconnect network, and investigates if the strategy is a
suitable approach for the task. All switches and links in
the NoC are tested with BIST, running at full clock-speed,
and in a functional-like mode. The BIST is carried out as
a go/no-go BIST operation at start up, or on command. It
is shown that the proposed methodology can be applied
for different implementations of deflecting switches, and
that the test time is limited to a few thousand-clock cycles
with fault coverage close to 100%.

1. Introduction
During the last ten years, state of the art SoC designs

have increased dramatically in complexity and the
prediction is that this will continue also for the years to
come. The technical and economical benefit of this is
expected to be enormous, at least if the full potential can
be utilised efficiently. Several improvements have been
envisioned.

From a functional and implementation point of view,
a decrease of implementation and verification time by
increased reusability through IPs is expected. Traditional
on-chip busses are expected to be replaced by Networks-
on-chip (NoC), since future generations of SoC designs
require much higher volumes of communication than can
be handled efficiently by traditional on chip busses [9].

From a manufacturing test point of view, a change
from external test to BIST is envisioned, a change that is
expected to solve several problems: [12].
1) Scalability. Usage of external testers is becoming

very difficult and expensive, since test data volumes
increase at the same time as the number of gates
hidden behind each package pin also increases.

2) Deep submicron (DSM) processes must be tested at
full clock-speed, which is very expensive [12], if
even possible to accomplish with external testers.

3) A change from production test only to life time test
is required, since tomorrows designs are foreseen to
be used in more reliability demanding applications.

1 The Industrial Research School in Electronic Design in Sweden

supports this work.

And from a manufacturing yield point of view, a
change from “go/no-go-test” to “test and repair” is
required, since the increased density of designs increases
the probability for physical defects [13] [5].

This paper presents a BIST strategy for testing the
NoC interconnect network, and investigates if the strategy
is a suitable approach for the task. The test method is
inline with the vision of a scalable test methodology. The
intention is to use the BIST to detect faults and to be able
to pinpoint the location of each defect, and finally
autonomously use this information to reconfigure the
architecture in such a way that full functionality, from a
user point of view, can be remained. The efficiency of the
method is evaluated in terms of testability and area
overhead for the selected switch type.

The paper is organised as follows. Section 2 reviews
related work and motivate the proposed method. Section 3
describes the target NoC architecture. Section 4 presents
the functional test strategy. In section 5, test experiments
are carried out. Finally, in section 6, conclusions are
drawn and future work is discussed.

2. Related work
In [3], a method is proposed based on partial scan

together with an IEEE 1500-compliant test wrapper [2].
All routers have an identical number of scan chains. The
routers are tested in parallel by providing the same test
stimuli for all routers, and using a single comparator per
scan chain. Diagnostic is supported by the comparison
logic. In [6], a similar strategy is presented to test multiple
identical blocks in parallel; the difference is that BIST is
used instead of external patterns. The proposals are
limited to NoC architectures where multiple identical
versions of switches always exist, which is not always true
for a 2D-mesh NoC. As an example, a 3 by 3 2D-mesh
only contains one centre switch with four links, i.e. there
is no neighbour switch to compare and share test vectors
with. In [14] there is a similar strategy presented as in [6],
with the difference that external patterns are used,
supplied directly through a switch.

Different test strategies for a commercial solution of
a NoC are discussed in [4], including the possibility to
repair them during manufacturing test. It is claimed that
the error information must be collected and permanently
stored inside the SoC. With this approach, error

978-3-9810801-2-4/DATE07 © 2007 EDAA

information is static and thus can not handle situations
where the chip slowly degrades. In our approach, error
data is updated at each start-up to allow for the possibility
of a graceful degradation of the NoC over time.

[7] suggests that a wide variety of standard Design-
For-Test (DFT) techniques can be used for NoC based
designs, from BIST for FIFOs, to functional testing of
wrapped switches. This approach has a high area overhead
due to full scan and BIST.

In [8], an implementation of the IEEE 1149.1
boundary scan standard is proposed as a strategy to carry
out hierarchical test, and enable diagnostics, of a 2D grid
router structure. However, this approach does not enable
test at full clock-speed in a NoC. The amount of extra
logic added to enable serial shifting through all registers
during test is also high.

In [10], it is proposed to add dedicated logic to
enable analysis of response from each FIFO in the switch,
however no test data is presented.

In general, all related work assumes one core per
resource. Our method assumes that any number of cores
can exist in a resource. Also, they assume that global
synchronization can be achieved during test. With our
method only local synchronization is required during test.
We also propose to use the Network Interfaces (NIs) as
autonomous test masters. In this paper, the NIs are used as
BIST engines to test the NoC. However, the future goal is
to extend the NIs to also be test masters at test of the
resources as well. This type of strategy none of the other
papers take into consideration. However, it has been
proposed to use the NoC as a TAM during test of
resources [15].

3. The NoC architecture used
The NoC architecture used is the Nostrum NoC [1].

The Nostrum backbone consist of a number of nodes
organised in a 2D mesh Manhattan-like structure, as
shown in figure 1.

m*n NoC, m and n≥4 3*3 NoC 2*2 NoC

Bidirectional link
Node connected to 3 other nodes

3
3

2

2
4

2
3

3 2

2
2

2
2

2
3

3
2

3
4

4
3

3
4

4
3

2
3

3
2

Figure 1. Different sizes of 2D mesh NoCs

Each node is composed of a switch (SW) and a
resource (R). The switch and the resource are connected
together through a Network Interface (NI), as shown in
figure 2.

SW NI

R

Link to
another
switch

Figure 2. The Switch-Resource Interface.

The resources are logic modules that contain the
various functions. A resource can comprise of one or more
IPs, which can be connected together through a traditional

bus. The signalling between any two switches and
between a switch and a resource is packet based.

The functional blocks in each resource communicate
directly with the off chip world through the IOs at the
package. It is assumed that all on chip communication
between resources is carried out through the NoC-
structure. The NoC is only intended for on chip
communication. It is also assumed that all communication
from or to the chip always goes through a resource, never
directly through a link. Any number of resources can have
interfaces to packet pins.

The NoC itself is administrated by a dedicated
operating system (OS) located, for example, in one of the
nodes. The OS is considered to be a part of the NoC itself,
and the presence of the OS is invisible outside the NoC.

During start-up, the OS configures the NoC and takes
part of the analysis phase carried out after switches and
links have been tested [11]. It is assumed that some or all
resources are flexible enough to carry out more than one
function, and that this degree of freedom in flexibility can
be used to hide (from a user point of view) the presence of
one or a couple of physical defects, either somewhere in
the NoC or in a resource.

During functional operation, the main task for the OS
is to work as a type of traffic police regarding usage and
allocation of the NoC. Requests to open and close
channels of communication are carried out by the NIs and
granted or denied by the OS. The goal with this approach
is to avoid possible and temporary overload of switches
and links. The presence or absence of the OS does not
affect the test phase of the proposed test methodology, it
only affect how to carry out the analysis phase.
3.1 Switch Architecture

The function of the switch is to route packets over
the full duplex links connected to each switch. The routing
function carried out by each switch can be of any type.
We use the Nostrum method of deflective (also called hot-
potato) routing [1] in our experiments. Routing decisions
are performed locally at each switch, guided by the
control logic. A new routing decision is carried out every
clock cycle.

A switch can be divided into two main parts, the
“datapath” and the “controller logic”. In figure 3, all parts
outside the square “control logic” are part of the datapath.
The datapath is the part of the design where packets are
passing across. The “controller logic” is the local
intelligence in the switch, and decides which input to
connect to which output.

A switch can be configured to use either an absolute
or a relative addressing mode. Figure 3 show a switch
configured to use a relative address mode. If an absolute
address mode is selected, the blocks “incrementer” (+1)
and “decrementer” (-1) can be omitted. The function of
HC (Hop Counter) is explained in a later section.

The transmission time across a link is one clock
cycle. The transmission time through a switch is also one
clock cycle. If the registers at the input of a switch are
omitted, the total transmission time across a link plus a
switch is reduced to one clock cycle (with a longer critical
path).

Deflective switches can be categorized into bouncing
and non-bouncing ones, depending on whether feedback
routing is allowed or not. For the datapath, the differences
between the two types are that the bouncing version
requires one more input at the multiplexor for connection
of an input to an output. Figure 3 shows the bouncing
version of a switch. Our experiments always use the
bouncing version.

reg

 -1

HC

REG

R
E
G

REG

 +1

R
E
G

MUX

R
E

G

R
E

G

HC

R
E
G
R
E
G

 +1

HC

REG REG

-1 HC

 NI

Control logic
that perform
routing decisions

MUX

south

east

north

west

M
U
X

M
U
X

M
U

X

Load info to neighbour switches

Figure 3. The architecture of a switch with four links
All technical data included in this paper is, if nothing

else is stated, based on that 128 bit wide links are used
and that registers are present both at input and output of
the switches.
3.2 Transmission protocol

A complete message is transferred as one or more
equally sized packets (flits). The size of a packet is the
same as the width of a link. Each packet consists of a
header and a payload, as shown in figure 4.

No. of
bits

Payload SW header NI header

Row Column

Destination Address

HC Pkt VC
x z 1 1 y

Figure 4. General structure of a packet

The outcome of a routing decision consists of
connecting each input to one and only one output in the
switch. The contents in the "SW header" together with the
load status in the neighbour switches rules the router
decision carried out by the control logic. Only the NI uses
the ”NI header” part.

The bit “Pkt” indicates if the packet is a real packet
or just a set of “dummy” bits. VC stands for “Virtual
Circuit” and is a flag that enables two levels of priority for
a packet, high or low.

The HC is a “Hop Counter”, and can be configured
as being either a fixed or a dynamic priority flag.

If fixed, a switch never modifies the content in HC.
In this configuration, HC is only used as a priority level
flag.

If dynamic, the value of the HC is increased by one
for each switch the packet arrives to. The higher value the

HC has, the higher priority the packet gets. A switch can
be configured to kill the packet (bit “pkt” is set to zero)
when HC reaches a maximum value. This method allows
removing a packet that due to an error in the network can
not reach its destination.

The SW-header grows with increasing NoC size as
shown in Table 1, which is valid when a relative address
and a dynamic HC is used.

Table 1. How the “SW header” increases with NoC size
NoC Bits in the “SW header” Tot. No.
n*n VC Pkt HC y x of bits
n=2 1 1 3 2 2 9

3 ≤ n ≤ 4 1 1 4 3 3 12
5 ≤ n ≤ 8 1 1 5 4 4 15

 9 ≤ n ≤ 11 1 1 6 5 5 18
12 ≤ n ≤ 16 1 1 7 5 5 19
17 ≤ n ≤ 22 1 1 8 6 6 22
23 ≤ n ≤ 26 1 1 9 6 6 23

The difference, in number of bits used, between
relative addressing and absolute addressing is illustrated
in figure 5.

2 5 10 15 20 25

Relative address

n
2
4

6

Absolute address

No. of bits used in address (x or y)

Figure 5. Absolute vs relative address size

4. A scalable NoC test strategy
The test methodology presented here is originally

developed for usage with deflective switches in a 2D-
mesh NoC. Even so, the test strategy should also be
applicable for other types of switches and NoC
architectures. The test is carried out automatically at
power on or when activated by a broadcast command
from the OS.

Our proposal to carry out a complete test strategy is
as follows, where each step is carried out serially in order
of appearance:
1) All NIs are tested concurrently with the help of BIST

engines embedded in each NI.
2) All NIs autonomously and concurrently carry out test

of the switches and links, and saves a signature.
3) The OS reads the signatures stored in each NI from

step 1 and 2, and analyses the read signatures. If the
NI detects one or more faults, but the NI needs
further information to be able to point out the
position of the fault, go to step 4, otherwise go to
step 5.

4) The OS demands a proper set of NIs to carry out
further tests of the switches and links. After ready,
the OS reads and analyses the new signatures.

5) If needed, the OS orders the disconnection of the
faulty part of the NoC.
Only step “2)” is further described and investigated

in this paper, due to limited space.
The procedure to carry out step 2 can be divided into

two equal main phases, as indicated by figure 6.

In Phase 1: The datapath with surrounding links are
tested in the grey marked nodes. At the same time in the
white marked nodes, the controller part is tested, and all
links are set in an unconditional deflective mode.

In the second phase, the roles of the nodes are
reversed.

2*2 NoC 3*3 NoC

2nd phase 1st phase

2nd phase 1st phase
2

3

3

4

2

3
2 3 2

1st phase 2nd phase
2

2 2
2 3

3

2

3 4

2

3
2 2

→ Test dp and links Test ctrl and echo links
→ Test ctrl and echo links Test dp and links

2
2

2
2

Figure 6. Checkerboard test strategy at NoC Level.

During the two test phases, all the NIs are working
concurrently as local test masters. Each NI tests its own
switch and all the links (2, 3 or 4) attached to the switch.
Each NI supplies all test vectors needed, and collects test
responses. We have not investigated if it is more optimal
to distribute some analysis into the NIs instead of
concentrating this activity to the OS only.
4.1 Testing the Links and Datapaths

The links connected to a switch is tested at the same
time as the datapath in that switch is tested. This implies
that links are fully tested twice and from different
directions, as shown in figure 7. By doing so, after test no
untested logic or nets remain in the boundary between the
switches.

HC+1

Row Address+1 HC+1

link

Mux

Row Address-1

Mux

Deflect ion
side

Test
side

Test
side

Deflec-
t ion side

register

Figure 7. Test of a link between two neighbour switches.
The test is carried out at full clock-speed and in a

functional-like mode. No extra logic for test is inserted
into the datapath. During test and “deflection”, the NI
controls the multiplexors in the datapath, and not the
controller logic.
4.2 Testing the Controller Logic

The only test logic inserted into the switches or links
consists of a number of 2-input multiplexors, as shown in
figure 8.

The inserted multiplexors creates a test wrapper to
enable NI to carry out a stand alone BIST on the
controller, and at full clock-speed. The NI also uses some
of the multiplexors inserted during test of the datapath.
The controller logic is also partly tested when the datapath
is tested, since the NI can observe the outputs from the
controller logic at the same time as the datapath (under
test) feeds data onto the inputs of the controller logic. The

experiments have not taken into consideration that this
may improve the fault coverage.

N
 I

Links in

Datapath

Links out NI test interface

Test
wrappers

Control
logic

 “SW headers“

Figure 8. Control logic wrapped for test.

5. Experimental results
A set of experiments has been carried out to get an

indication of if the proposed test strategy is good or not.
A commercial test tool has been used to carry out the

different experiments, and ATPG generated test patterns
have been used as test vectors. ATPG has been used since
it is a time effective method to generate high quality test
vectors. We believe that ATPG, in this particular case, is a
useful approach to get an indication of what data to expect
to achieve with a BIST solution. This expectation is based
on the assumption that it should be possible to develop an
optimal and dedicated BIST solution, since the datapath in
a NoC is a highly regular structure, and that such a
solution generates test patterns that are less pseudorandom
compared to when using standard LFSRs.

The efficiency of the method is evaluated in terms of
test time, fault coverage and area overhead achieved for
different sizes of NoCs, and for different variants of
deflective switches. The results included in the tables are
extracted by using ATPG generated test vectors. The only
test logic inserted into the switches and links are a limited
number of 2-input multiplexors, which creates a test
wrapper around the controller logic. All test vectors are
applied, and all test responses are collected through the NI
interface.

A commercial synthesis tool has been used to
translate the logic tested from VHDL to a netlist in
Verilog format to be used by the backend ATPG tool. The
CMOS library used is tcbn90g (90 nm), revision 110. All
design sizes stated in “eq. gates” are extracted by dividing
area values, given by the synthesis tool, by 2.4 (the area of
a 2-input NAND-gate). In the cases when gate size for
BIST logic is stated, it includes logic for both test vector
generation and test vector analysis. If nothing else stated,
all values presented are valid for switches using relative
address and with registers on both inputs and outputs to
links.

The datapath is flip-flop dominated and the controller
is combinational logic dominated.
5.1 Links and Datapaths

The smallest type of switch in a 2D-mesh is a corner
switch, which is the only type of switch used in a NoC of
size 2 by 2. Table 2 shows how data for a corner switch
scales for different sizes of NoCs.

Table 2. Datapath in a corner switch (2 links).
NoC
n*n

Datapath
area

Total test
time in

clock cycles

Fault
coverage

 Eq. Gates (patterns) (%)
n=2 5784 1126 (55) 99.94

3 ≤ n ≤ 4 5807 1177 (58) 99.94
5 ≤ n ≤ 8 5829 979 (47) 99.93

 9 ≤ n ≤ 11 5848 1226 (60) 99.90
12 ≤ n ≤ 16 5858 1234 (64) 99.90
17 ≤ n ≤ 22 5876 1322 (68) 99.86
23 ≤ n ≤ 26 5886 1483 (77) 99.86
For NoCs larger than 2 by 2, the largest type of

switch has four links connected to it. How such a switch
scales for different sizes of NoCs is shown in table 3.

The right most column shows that fault coverage
always is almost 100%. The second column from right
side shows the number of clock cycles needed to
completely test the datapath including the surrounding
links for one switch. The total test time for all the switches
in a NoC is this value multiplied by two, because of the
checkerboard testing strategy described earlier in section
4. Values enclosed in parentheses show the number of
patterns used during the test. A pattern is carried out
across a number of clock cycles, since it takes a multiple
of four clock cycles before a response returns to the NI.

A slight dip in test time is found at row “5 ≤ n ≤ 8”
for both table 2 and 3. In table 3 is another dip found at
row “23 ≤ n ≤ 26”. The reason for this is probably due to
that most of the test patterns created by the ATPG tool are
created randomly, and that they just happened to fit
properly for that particular configuration. This will be
investigated in the future.

Table 3. Datapath in a full size switch (4 links).
NoC
n*n

Datapath
area

Total test
time in

clock cycles

Fault
coverage

 Eq. gates (patterns) (%)
n=2 12016 2693 (129) 99.90

3 ≤ n ≤ 4 12063 2742 (129) 99.91
5 ≤ n ≤ 8 12102 2737 (134) 99.89

 9 ≤ n ≤ 11 12144 2760 (134) 99.85
12 ≤ n ≤ 16 12164 2830 (147) 99.85
17 ≤ n ≤ 22 12202 3091 (153) 99.81
23 ≤ n ≤ 26 12227 2936 (152) 99.80
Table 4 shows how test time is affected when the

addressing mode is changed from relative to absolute at
the same time as HC is changed to a 3 bit fixed value
priority flag. The two upper rows show the case when
registers (just as earlier) are used at both inputs from and
outputs to links. The difference in the bottom row is that
the input registers from links have been removed.

Table 4. Absolute addressing and fixed HC (priority).
No. of links in

switch

Datapath
area

Total test
time

clk cycles

Fault
coverage

 Eq. gates (patterns) (%)
2 5738 1000 (50) 100.00
4 11922 2550 (121) 100.00

4 (single reg) 8417 1919 (141) 100.00
We can see that for n ≤ 26, datapath with links can be

tested in less than 6000 (2*2936) clock cycles,
independently of the version of deflective switch used.
Further more we can also see that test time increase
slowly with size. When relative addressing is used, the
increase for a corner switch is less than 5.5% and for a 4-
link switch in average about 1.5% for every increasing
value of n that leads to new bits. In the case of absolute
addressing, test time is constant 5100 (2*2550) clock
cycles for any n ≥ 3.

If registers at input from links are removed, shorter
test times are achieved since the number of hops until a
packet returns is reduced.
5.2 The Controller Logic

Table 5 shows how area and test time for a corner
switch scales for different sizes of NoCs. The number of
clk cycles is the same as the number of patterns needed
for testing the controller.

The difference between table 5 and 6 is that in table 5
a dynamic HC is used. The HC scales in size according to
table 1. In table 6, HC is changed into a 3-bit wide and
fixed value priority flag.

Table 5. Control logic in a corner switch (2 links).
NoC
n*n

Control
area

Total test
time

Fault
coverage

BIST
area

 Eq.
gates

(clk
cycles)

(%) Eq.
gates

n=2 209 54 99.3 1275
3 ≤ n ≤ 4 228 72 99.4 1655
5 ≤ n ≤ 8 245 74 99.4 1868

 9 ≤ n ≤ 11 273 81 99.5 2083
12 ≤ n ≤ 16 288 89 99.4 2208
17 ≤ n ≤ 22 301 91 99.5 2452
23 ≤ n ≤ 26 316 108 99.5 2663

The implementation of the control logic is hardly
affected if the address mode is changed from relative to
absolute; this is the reason why no table showing test data
when using absolute address is included.

For every increasing value of n: A dynamic HC
increase the test time for a corner switch with less than
13% and when HC is changed to always be 3-bits wide
(priority coding), the increase is in average about 5%.

Table 6. Corner switch with a fixed HC size (3 bits).
NoC
n*n

Control
area

Total test
time

Fault
cov.

BIST
area

 Eq gates (clk
cycles)

(%) Eq.
gates

n=2 209 54 99.3 1275
3 ≤ n ≤ 4 213 61 99.4 1421
5 ≤ n ≤ 8 215 67 99.4 1630

 9 ≤ n ≤ 16 228 61 99.4 1582
17 ≤ n ≤ 26 227 65 99.4 1783

We can conclude that for n ≤ 26 the time to test the
control logic is much shorter than the time it takes to test
the corresponding datapath with surrounding links, thus
the testing of the datapath is the limiting factor.
5.3 Discussions

The size of the BIST logic is much bigger than the
control logic itself. Also, the BIST area increases faster
with increasing NoC size compared to how the control
logic area increases. On the other hand, a linear
approximation of the area of the datapath BIST is ~12k
gates, which is roughly 100% of the 4-link switch area
and ~5% of the area occupied by the links between the
switches (link area is about 20 times larger than the switch
area in our NoC). However, the BIST area presented can
be expected to be unnecessary large. The implemented
BIST generates deterministic patterns (extracted from
ATPG) and analyses the achieved response once every
clock cycle against the expected response (generated by
ATPG). So, the BIST area for the control logic can be
reduced by using an LFSR based version instead, since the
test time for the controller can be extended at least 10
times, without increasing the total test time of the NoC.

The example with the deterministic BIST indicates
that it is possible to create dedicated and fast BIST
structures. The datapath in a switch is highly regular,
compared to the controller logic. Therefore, it should be
possible to develop a dedicated BIST for the datapath, and
that has an acceptable area overhead.

Another thing to take into consideration for the links
is the use of a MAF (Maximum Aggressor Fault) strategy
discussed by [16]. Our experience is that faults targeted by
the MAF model is unlikely to occur, if a ground line is
inserted between the individual lines in a link.

6. Conclusions
A scalable test methodology targeting 2D-mesh type

of NoCs has been presented. The test is executed at full
clock-speed and in a functional-like mode. It is carried out
as a go/no-go BIST at start-up. On the NoC level the
proposed method can locate physical defects down to the
granularity of a switch, with its surrounding links. At the
switch level, the position of a physical defect can be
distinguished to be present either in the controller part or
in the datapath/links.

We conclude that from test point of view absolute
address mode is better than relative address mode, since
test time is constant for a NoC greater or equal to 3*3, and
up to large values of n*m.

Switches and links in a 2 by 2 NoC can be tested in
less than 3000 clock cycles and NoCs up to 26 by 26
switches can be tested within 6000 clock cycles. If the
addressing mode is changed from relative to absolute, the
test time can be reduced to a constant of 2000 clock cycles
for a 2 by 2 NoC and 5100 clock cycles for any 2D NoC
with size n ≥ 3. The test times can possibly be reduced
further with a more careful selection of patterns instead of
using an ATPG tool to generate them. This will be
investigated in the future.

The total BIST area overhead, for a centre switch and
links is limited to less than 7%. Optimising the BIST
solutions should reduce the area overhead. How to do this
will also be investigated in the future.

7. References
[1] M. Millberg, E. Nilsson, R. Thid and A. Jantch. A

Guaranteed bandwidth using looped containers in
temporary disjoint networks within the Nostrum network on
chip. Proc. DATE, pp 890-895 Vol. 2, 2004.

[2] Standard IEEE 1500. Standard Testability Method for
Embedded Core-based Integrated Circuits. IEEE 2005.

[3] A. M. Amory, E. Brião, É Cota, M. Lubaszewski, F. G.
Moraes. A Scalable Test Strategy for Network-on-Chip
Routers. Proc. of ITC 2005.

[4] B. Vermeulen, J. Dielissen, and K. Goossens. Bringing
Communication Networks on a Chip: Test and Verification
Implications. IEEE Communications Magazine, vol. 41-9,
2003, pp. 74-81.

[5] Y. Zorian. Embedded Infrastructure IP for SOC Yield
Improvement. DAC 02, pages 709-712.

[6] K. Arabi. Logic BIST and Scan Test Techniques for
Multiple Identical Blocks. IEEE VLSI Test Symposium,
2002, pp. 60-68.

[7] R.Ubar and J Raik. Testing Strategies for Network on Chip.
Book: Network on Chip, A. Jantsch and H. Tenhunen, Eds.
Kluwer Academic Publisher, 2003, pp. 131-152.

[8] C. Aktouf. A Complete Strategy for Testing an on-Chip
Multiprocessor Architecture. IEEE Design & test of
Computers, vol. 19-1, 2002, pp. 18-28.

[9] C. A. Zeferino, M. E. Kreutz, L. Carro and A. A. Susin. A
Study on Communication Issues for System-on-Chip.
Proceedings of the 15th Symposium on Integrated Circuits
and System Design (SBCCI), 2002.

[10] Panda et al. Design, Synthesis, and Test of Networks on
Chips. IEEE D&T, vol. 22, issue 8 2005, pp404-413.

[11] K. Petersén, J Öberg. Utilizing NoC Switches as BIST-
structures in 2D-Mesh Network-on-Chip. Future
Interconnects and Network on Chip Workshop, 2006.

[12] Y. Zorian. Testing the monster chip. IEEE Spectrum, July
1999, pages 54-60.

[13] Y. Zorian. Embedded Memory Test and Repair:
Infrastructure IP for SoC Yield. International Test
Conference 2002, pages 340-349.

[14] C. Grecu, P. Pande, B. Wang, A. Ivanov, R. Saleh.
Methodologies and Algorithm for Testing Switch-Based
NoC Interconnects. IEEE DFT 2005, pages 238-246.

[15] E. Cota et al.The Impact of NoC Reuse on the Testing of
Core-based Systems. VTS 2003, pages 128-133.

[16] C. Grecu, P. Pande, A. Ivanov, R. Saleh. BIST for
Network-on-Chip Interconnect Infrastructures.

