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Abstract1 
This paper presents a BIST strategy for testing the NoC 
interconnect network, and investigates if the strategy is a 
suitable approach for the task. All switches and links in 
the NoC are tested with BIST, running at full clock-speed, 
and in a functional-like mode. The BIST is carried out as 
a go/no-go BIST operation at start up, or on command. It 
is shown that the proposed methodology can be applied 
for different implementations of deflecting switches, and 
that the test time is limited to a few thousand-clock cycles 
with fault coverage close to 100%. 
 

1. Introduction 
During the last ten years, state of the art SoC designs 

have increased dramatically in complexity and the 
prediction is that this will continue also for the years to 
come. The technical and economical benefit of this is 
expected to be enormous, at least if the full potential can 
be utilised efficiently. Several improvements have been 
envisioned. 

From a functional and implementation point of view, 
a decrease of implementation and verification time by 
increased reusability through IPs is expected. Traditional 
on-chip busses are expected to be replaced by Networks-
on-chip (NoC), since future generations of SoC designs 
require much higher volumes of communication than can 
be handled efficiently by traditional on chip busses [9]. 

From a manufacturing test point of view, a change 
from external test to BIST is envisioned, a change that is 
expected to solve several problems: [12]. 
1) Scalability. Usage of external testers is becoming 

very difficult and expensive, since test data volumes 
increase at the same time as the number of gates 
hidden behind each package pin also increases.  

2) Deep submicron (DSM) processes must be tested at 
full clock-speed, which is very expensive [12], if 
even possible to accomplish with external testers. 

3) A change from production test only to life time test 
is required, since tomorrows designs are foreseen to 
be used in more reliability demanding applications. 
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supports this work. 

And from a manufacturing yield point of view, a 
change from “go/no-go-test” to “test and repair” is 
required, since the increased density of designs increases 
the probability for physical defects [13] [5]. 

This paper presents a BIST strategy for testing the 
NoC interconnect network, and investigates if the strategy 
is a suitable approach for the task. The test method is 
inline with the vision of a scalable test methodology. The 
intention is to use the BIST to detect faults and to be able 
to pinpoint the location of each defect, and finally 
autonomously use this information to reconfigure the 
architecture in such a way that full functionality, from a 
user point of view, can be remained. The efficiency of the 
method is evaluated in terms of testability and area 
overhead for the selected switch type.  

The paper is organised as follows. Section 2 reviews 
related work and motivate the proposed method. Section 3 
describes the target NoC architecture. Section 4 presents 
the functional test strategy. In section 5, test experiments 
are carried out. Finally, in section 6, conclusions are 
drawn and future work is discussed. 

2. Related work 
In [3], a method is proposed based on partial scan 

together with an IEEE 1500-compliant test wrapper [2]. 
All routers have an identical number of scan chains. The 
routers are tested in parallel by providing the same test 
stimuli for all routers, and using a single comparator per 
scan chain. Diagnostic is supported by the comparison 
logic. In [6], a similar strategy is presented to test multiple 
identical blocks in parallel; the difference is that BIST is 
used instead of external patterns. The proposals are 
limited to NoC architectures where multiple identical 
versions of switches always exist, which is not always true 
for a 2D-mesh NoC. As an example, a 3 by 3 2D-mesh 
only contains one centre switch with four links, i.e. there 
is no neighbour switch to compare and share test vectors 
with. In [14] there is a similar strategy presented as in [6], 
with the difference that external patterns are used, 
supplied directly through a switch. 

Different test strategies for a commercial solution of 
a NoC are discussed in [4], including the possibility to 
repair them during manufacturing test. It is claimed that 
the error information must be collected and permanently 
stored inside the SoC. With this approach, error 
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information is static and thus can not handle situations 
where the chip slowly degrades. In our approach, error 
data is updated at each start-up to allow for the possibility 
of a graceful degradation of the NoC over time. 

[7] suggests that a wide variety of standard Design-
For-Test (DFT) techniques can be used for NoC based 
designs, from BIST for FIFOs, to functional testing of 
wrapped switches. This approach has a high area overhead 
due to full scan and BIST. 

In [8], an implementation of the IEEE 1149.1 
boundary scan standard is proposed as a strategy to carry 
out hierarchical test, and enable diagnostics, of a 2D grid 
router structure. However, this approach does not enable 
test at full clock-speed in a NoC. The amount of extra 
logic added to enable serial shifting through all registers 
during test is also high. 

In [10], it is proposed to add dedicated logic to 
enable analysis of response from each FIFO in the switch, 
however no test data is presented. 

In general, all related work assumes one core per 
resource. Our method assumes that any number of cores 
can exist in a resource. Also, they assume that global 
synchronization can be achieved during test. With our 
method only local synchronization is required during test. 
We also propose to use the Network Interfaces (NIs) as 
autonomous test masters. In this paper, the NIs are used as 
BIST engines to test the NoC. However, the future goal is 
to extend the NIs to also be test masters at test of the 
resources as well. This type of strategy none of the other 
papers take into consideration. However, it has been 
proposed to use the NoC as a TAM during test of 
resources [15]. 

3. The NoC architecture used 
The NoC architecture used is the Nostrum NoC [1]. 

The Nostrum backbone consist of a number of nodes 
organised in a 2D mesh Manhattan-like structure, as 
shown in figure 1. 
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Figure 1. Different sizes of 2D mesh NoCs 

Each node is composed of a switch (SW) and a 
resource (R). The switch and the resource are connected 
together through a Network Interface (NI), as shown in 
figure 2. 
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Figure 2. The Switch-Resource Interface. 

The resources are logic modules that contain the 
various functions. A resource can comprise of one or more 
IPs, which can be connected together through a traditional 

bus. The signalling between any two switches and 
between a switch and a resource is packet based.  

The functional blocks in each resource communicate 
directly with the off chip world through the IOs at the 
package. It is assumed that all on chip communication 
between resources is carried out through the NoC-
structure. The NoC is only intended for on chip 
communication. It is also assumed that all communication 
from or to the chip always goes through a resource, never 
directly through a link. Any number of resources can have 
interfaces to packet pins. 

The NoC itself is administrated by a dedicated 
operating system (OS) located, for example, in one of the 
nodes. The OS is considered to be a part of the NoC itself, 
and the presence of the OS is invisible outside the NoC. 

During start-up, the OS configures the NoC and takes 
part of the analysis phase carried out after switches and 
links have been tested [11]. It is assumed that some or all 
resources are flexible enough to carry out more than one 
function, and that this degree of freedom in flexibility can 
be used to hide (from a user point of view) the presence of 
one or a couple of physical defects, either somewhere in 
the NoC or in a resource. 

During functional operation, the main task for the OS 
is to work as a type of traffic police regarding usage and 
allocation of the NoC. Requests to open and close 
channels of communication are carried out by the NIs and 
granted or denied by the OS. The goal with this approach 
is to avoid possible and temporary overload of switches 
and links. The presence or absence of the OS does not 
affect the test phase of the proposed test methodology, it 
only affect how to carry out the analysis phase. 
3.1 Switch Architecture 

The function of the switch is to route packets over 
the full duplex links connected to each switch. The routing 
function carried out by each switch can be of any type. 
We use the Nostrum method of deflective (also called hot-
potato) routing [1] in our experiments. Routing decisions 
are performed locally at each switch, guided by the 
control logic. A new routing decision is carried out every 
clock cycle. 

A switch can be divided into two main parts, the 
“datapath” and the “controller logic”. In figure 3, all parts 
outside the square “control logic” are part of the datapath. 
The datapath is the part of the design where packets are 
passing across. The “controller logic” is the local 
intelligence in the switch, and decides which input to 
connect to which output. 

A switch can be configured to use either an absolute 
or a relative addressing mode. Figure 3 show a switch 
configured to use a relative address mode. If an absolute 
address mode is selected, the blocks “incrementer” (+1) 
and “decrementer” (-1) can be omitted. The function of 
HC (Hop Counter) is explained in a later section. 

The transmission time across a link is one clock 
cycle. The transmission time through a switch is also one 
clock cycle. If the registers at the input of a switch are 
omitted, the total transmission time across a link plus a 
switch is reduced to one clock cycle (with a longer critical 
path). 



 

 

Deflective switches can be categorized into bouncing 
and non-bouncing ones, depending on whether feedback 
routing is allowed or not. For the datapath, the differences 
between the two types are that the bouncing version 
requires one more input at the multiplexor for connection 
of an input to an output. Figure 3 shows the bouncing 
version of a switch. Our experiments always use the 
bouncing version. 
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Figure 3. The architecture of a switch with four links 
All technical data included in this paper is, if nothing 

else is stated, based on that 128 bit wide links are used 
and that registers are present both at input and output of 
the switches. 
3.2 Transmission protocol 

A complete message is transferred as one or more 
equally sized packets (flits). The size of a packet is the 
same as the width of a link. Each packet consists of a 
header and a payload, as shown in figure 4. 
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Figure 4. General structure of a packet 

The outcome of a routing decision consists of 
connecting each input to one and only one output in the 
switch. The contents in the "SW header" together with the 
load status in the neighbour switches rules the router 
decision carried out by the control logic. Only the NI uses 
the ”NI header” part. 

The bit “Pkt” indicates if the packet is a real packet 
or just a set of “dummy” bits. VC stands for “Virtual 
Circuit” and is a flag that enables two levels of priority for 
a packet, high or low. 

The HC is a “Hop Counter”, and can be configured 
as being either a fixed or a dynamic priority flag. 

If fixed, a switch never modifies the content in HC. 
In this configuration, HC is only used as a priority level 
flag. 

If dynamic, the value of the HC is increased by one 
for each switch the packet arrives to. The higher value the 

HC has, the higher priority the packet gets. A switch can 
be configured to kill the packet (bit “pkt” is set to zero) 
when HC reaches a maximum value. This method allows 
removing a packet that due to an error in the network can 
not reach its destination. 

The SW-header grows with increasing NoC size as 
shown in Table 1, which is valid when a relative address 
and a dynamic HC is used. 

Table 1. How the “SW header” increases with NoC size 
NoC Bits in the “SW header” Tot. No.
n*n VC Pkt HC y x of bits 
n=2 1 1 3 2 2 9 

3 ≤ n ≤ 4 1 1 4 3 3 12 
5 ≤ n ≤ 8 1 1 5 4 4 15 

  9 ≤ n ≤ 11 1 1 6 5 5 18 
12 ≤ n ≤ 16 1 1 7 5 5 19 
17 ≤ n ≤ 22 1 1 8 6 6 22 
23 ≤ n ≤ 26 1 1 9 6 6 23 

The difference, in number of bits used, between 
relative addressing and absolute addressing is illustrated 
in figure 5. 
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Figure 5. Absolute vs relative address size 

4. A scalable NoC test strategy 
The test methodology presented here is originally 

developed for usage with deflective switches in a 2D-
mesh NoC. Even so, the test strategy should also be 
applicable for other types of switches and NoC 
architectures. The test is carried out automatically at 
power on or when activated by a broadcast command 
from the OS.  

Our proposal to carry out a complete test strategy is 
as follows, where each step is carried out serially in order 
of appearance: 
1) All NIs are tested concurrently with the help of BIST 

engines embedded in each NI. 
2) All NIs autonomously and concurrently carry out test 

of the switches and links, and saves a signature. 
3) The OS reads the signatures stored in each NI from 

step 1 and 2, and analyses the read signatures. If the 
NI detects one or more faults, but the NI needs 
further information to be able to point out the 
position of the fault, go to step 4, otherwise go to 
step 5. 

4) The OS demands a proper set of NIs to carry out 
further tests of the switches and links. After ready, 
the OS reads and analyses the new signatures. 

5) If needed, the OS orders the disconnection of the 
faulty part of the NoC. 
Only step “2)” is further described and investigated 

in this paper, due to limited space. 
The procedure to carry out step 2 can be divided into 

two equal main phases, as indicated by figure 6. 



 

 

In Phase 1: The datapath with surrounding links are 
tested in the grey marked nodes. At the same time in the 
white marked nodes, the controller part is tested, and all 
links are set in an unconditional deflective mode. 

In the second phase, the roles of the nodes are 
reversed. 
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Figure 6. Checkerboard test strategy at NoC Level. 

During the two test phases, all the NIs are working 
concurrently as local test masters. Each NI tests its own 
switch and all the links (2, 3 or 4) attached to the switch. 
Each NI supplies all test vectors needed, and collects test 
responses. We have not investigated if it is more optimal 
to distribute some analysis into the NIs instead of 
concentrating this activity to the OS only. 
4.1 Testing the Links and Datapaths 

The links connected to a switch is tested at the same 
time as the datapath in that switch is tested. This implies 
that links are fully tested twice and from different 
directions, as shown in figure 7. By doing so, after test no 
untested logic or nets remain in the boundary between the 
switches. 
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Figure 7. Test of a link between two neighbour switches. 
The test is carried out at full clock-speed and in a 

functional-like mode. No extra logic for test is inserted 
into the datapath. During test and “deflection”, the NI 
controls the multiplexors in the datapath, and not the 
controller logic. 
4.2 Testing the Controller Logic 

The only test logic inserted into the switches or links 
consists of a number of 2-input multiplexors, as shown in 
figure 8. 

The inserted multiplexors creates a test wrapper to 
enable NI to carry out a stand alone BIST on the 
controller, and at full clock-speed. The NI also uses some 
of the multiplexors inserted during test of the datapath. 
The controller logic is also partly tested when the datapath 
is tested, since the NI can observe the outputs from the 
controller logic at the same time as the datapath (under 
test) feeds data onto the inputs of the controller logic. The 

experiments have not taken into consideration that this 
may improve the fault coverage. 
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Figure 8. Control logic wrapped for test. 

5. Experimental results 
A set of experiments has been carried out to get an 

indication of if the proposed test strategy is good or not.  
A commercial test tool has been used to carry out the 

different experiments, and ATPG generated test patterns 
have been used as test vectors. ATPG has been used since 
it is a time effective method to generate high quality test 
vectors. We believe that ATPG, in this particular case, is a 
useful approach to get an indication of what data to expect 
to achieve with a BIST solution. This expectation is based 
on the assumption that it should be possible to develop an 
optimal and dedicated BIST solution, since the datapath in 
a NoC is a highly regular structure, and that such a 
solution generates test patterns that are less pseudorandom 
compared to when using standard LFSRs. 

The efficiency of the method is evaluated in terms of 
test time, fault coverage and area overhead achieved for 
different sizes of NoCs, and for different variants of 
deflective switches. The results included in the tables are 
extracted by using ATPG generated test vectors. The only 
test logic inserted into the switches and links are a limited 
number of 2-input multiplexors, which creates a test 
wrapper around the controller logic. All test vectors are 
applied, and all test responses are collected through the NI 
interface. 

A commercial synthesis tool has been used to 
translate the logic tested from VHDL to a netlist in 
Verilog format to be used by the backend ATPG tool. The 
CMOS library used is tcbn90g (90 nm), revision 110. All 
design sizes stated in “eq. gates” are extracted by dividing 
area values, given by the synthesis tool, by 2.4 (the area of 
a 2-input NAND-gate). In the cases when gate size for 
BIST logic is stated, it includes logic for both test vector 
generation and test vector analysis. If nothing else stated, 
all values presented are valid for switches using relative 
address and with registers on both inputs and outputs to 
links. 

The datapath is flip-flop dominated and the controller 
is combinational logic dominated. 
5.1 Links and Datapaths 

The smallest type of switch in a 2D-mesh is a corner 
switch, which is the only type of switch used in a NoC of 
size 2 by 2. Table 2 shows how data for a corner switch 
scales for different sizes of NoCs. 



 

 

Table 2. Datapath in a corner switch (2 links). 
NoC 
n*n 

Datapath 
area 

Total test 
time in 

clock cycles 

Fault 
coverage 

 Eq. Gates (patterns) (%) 
n=2 5784 1126 (55) 99.94 

3 ≤ n ≤ 4 5807 1177 (58) 99.94 
5 ≤ n ≤ 8 5829 979 (47) 99.93 

  9 ≤ n ≤ 11 5848 1226 (60) 99.90 
12 ≤ n ≤ 16 5858 1234 (64) 99.90 
17 ≤ n ≤ 22 5876 1322 (68) 99.86 
23 ≤ n ≤ 26 5886 1483 (77) 99.86 
For NoCs larger than 2 by 2, the largest type of 

switch has four links connected to it. How such a switch 
scales for different sizes of NoCs is shown in table 3. 

The right most column shows that fault coverage 
always is almost 100%. The second column from right 
side shows the number of clock cycles needed to 
completely test the datapath including the surrounding 
links for one switch. The total test time for all the switches 
in a NoC is this value multiplied by two, because of the 
checkerboard testing strategy described earlier in section 
4. Values enclosed in parentheses show the number of 
patterns used during the test. A pattern is carried out 
across a number of clock cycles, since it takes a multiple 
of four clock cycles before a response returns to the NI. 

A slight dip in test time is found at row “5 ≤ n ≤ 8” 
for both table 2 and 3. In table 3 is another dip found at 
row “23 ≤ n ≤ 26”. The reason for this is probably due to 
that most of the test patterns created by the ATPG tool are 
created randomly, and that they just happened to fit 
properly for that particular configuration. This will be 
investigated in the future. 

Table 3. Datapath in a full size switch (4 links). 
NoC 
n*n 

Datapath 
area 

Total test 
time in 

clock cycles 

Fault 
coverage 

 Eq. gates (patterns) (%) 
n=2 12016 2693 (129) 99.90 

3 ≤ n ≤ 4 12063 2742 (129) 99.91 
5 ≤ n ≤ 8 12102 2737 (134) 99.89 

  9 ≤ n ≤ 11 12144 2760 (134) 99.85 
12 ≤ n ≤ 16 12164 2830 (147) 99.85 
17 ≤ n ≤ 22 12202 3091 (153) 99.81 
23 ≤ n ≤ 26 12227 2936 (152) 99.80 
Table 4 shows how test time is affected when the 

addressing mode is changed from relative to absolute at 
the same time as HC is changed to a 3 bit fixed value 
priority flag. The two upper rows show the case when 
registers (just as earlier) are used at both inputs from and 
outputs to links. The difference in the bottom row is that 
the input registers from links have been removed. 

Table 4. Absolute addressing and fixed HC (priority). 
No. of links in 

switch 
 

Datapath 
area 

Total test 
time 

clk cycles 

Fault 
coverage 

 Eq. gates (patterns) (%) 
2 5738 1000   (50) 100.00 
4 11922 2550 (121) 100.00 

4 (single reg) 8417 1919 (141) 100.00 
We can see that for n ≤ 26, datapath with links can be 

tested in less than 6000 (2*2936) clock cycles, 
independently of the version of deflective switch used. 
Further more we can also see that test time increase 
slowly with size. When relative addressing is used, the 
increase for a corner switch is less than 5.5% and for a 4-
link switch in average about 1.5% for every increasing 
value of n that leads to new bits. In the case of absolute 
addressing, test time is constant 5100 (2*2550) clock 
cycles for any n ≥ 3. 

If registers at input from links are removed, shorter 
test times are achieved since the number of hops until a 
packet returns is reduced. 
5.2 The Controller Logic 

Table 5 shows how area and test time for a corner 
switch scales for different sizes of NoCs. The number of 
clk cycles is the same as the number of patterns needed 
for testing the controller. 

The difference between table 5 and 6 is that in table 5 
a dynamic HC is used. The HC scales in size according to 
table 1. In table 6, HC is changed into a 3-bit wide and 
fixed value priority flag. 

Table 5. Control logic in a corner switch (2 links). 
NoC 
n*n 

Control
area 

Total test 
time 

Fault 
coverage

BIST 
area 

 Eq. 
gates 

(clk 
cycles) 

(%) Eq. 
gates 

n=2 209 54 99.3 1275 
3 ≤ n ≤ 4 228 72 99.4 1655 
5 ≤ n ≤ 8 245 74 99.4 1868 

  9 ≤ n ≤ 11 273 81 99.5 2083 
12 ≤ n ≤ 16 288 89 99.4 2208 
17 ≤ n ≤ 22 301 91 99.5 2452 
23 ≤ n ≤ 26 316 108 99.5 2663 

The implementation of the control logic is hardly 
affected if the address mode is changed from relative to 
absolute; this is the reason why no table showing test data 
when using absolute address is included. 

For every increasing value of n: A dynamic HC 
increase the test time for a corner switch with less than 
13% and when HC is changed to always be 3-bits wide 
(priority coding), the increase is in average about 5%. 



 

 

Table 6. Corner switch with a fixed HC size (3 bits). 
NoC 
n*n 

Control 
area 

Total test 
time 

Fault 
cov. 

BIST 
area 

 Eq gates (clk 
cycles) 

(%) Eq. 
gates 

n=2 209 54 99.3 1275 
3 ≤ n ≤ 4 213 61 99.4 1421 
5 ≤ n ≤ 8 215 67 99.4 1630 

  9 ≤ n ≤ 16 228 61 99.4 1582 
17 ≤ n ≤ 26 227 65 99.4 1783 

We can conclude that for n ≤ 26 the time to test the 
control logic is much shorter than the time it takes to test 
the corresponding datapath with surrounding links, thus 
the testing of the datapath is the limiting factor. 
5.3 Discussions 

The size of the BIST logic is much bigger than the 
control logic itself. Also, the BIST area increases faster 
with increasing NoC size compared to how the control 
logic area increases. On the other hand, a linear 
approximation of the area of the datapath BIST is ~12k 
gates, which is roughly 100% of the 4-link switch area 
and ~5% of the area occupied by the links between the 
switches (link area is about 20 times larger than the switch 
area in our NoC). However, the BIST area presented can 
be expected to be unnecessary large. The implemented 
BIST generates deterministic patterns (extracted from 
ATPG) and analyses the achieved response once every 
clock cycle against the expected response (generated by 
ATPG). So, the BIST area for the control logic can be 
reduced by using an LFSR based version instead, since the 
test time for the controller can be extended at least 10 
times, without increasing the total test time of the NoC.  

The example with the deterministic BIST indicates 
that it is possible to create dedicated and fast BIST 
structures. The datapath in a switch is highly regular, 
compared to the controller logic. Therefore, it should be 
possible to develop a dedicated BIST for the datapath, and 
that has an acceptable area overhead. 

Another thing to take into consideration for the links 
is the use of a MAF (Maximum Aggressor Fault) strategy 
discussed by [16]. Our experience is that faults targeted by 
the MAF model is unlikely to occur, if a ground line is 
inserted between the individual lines in a link. 

6. Conclusions 
A scalable test methodology targeting 2D-mesh type 

of NoCs has been presented. The test is executed at full 
clock-speed and in a functional-like mode. It is carried out 
as a go/no-go BIST at start-up. On the NoC level the 
proposed method can locate physical defects down to the 
granularity of a switch, with its surrounding links. At the 
switch level, the position of a physical defect can be 
distinguished to be present either in the controller part or 
in the datapath/links. 

We conclude that from test point of view absolute 
address mode is better than relative address mode, since 
test time is constant for a NoC greater or equal to 3*3, and 
up to large values of n*m. 

Switches and links in a 2 by 2 NoC can be tested in 
less than 3000 clock cycles and NoCs up to 26 by 26 
switches can be tested within 6000 clock cycles. If the 
addressing mode is changed from relative to absolute, the 
test time can be reduced to a constant of 2000 clock cycles 
for a 2 by 2 NoC and 5100 clock cycles for any 2D NoC 
with size n ≥ 3. The test times can possibly be reduced 
further with a more careful selection of patterns instead of 
using an ATPG tool to generate them. This will be 
investigated in the future. 

The total BIST area overhead, for a centre switch and 
links is limited to less than 7%. Optimising the BIST 
solutions should reduce the area overhead. How to do this 
will also be investigated in the future. 
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