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Abstract

In the present study the authors develop a double
inverted-pendulum intrapersonal model for posture in
the Sagittal plane. A novel synergetic approach is taken
to successfully reproduce qualitative features of experi-
mental data. The HKB model is investigated and mod-
ified into a more general type of ”excitator” to cre-
ate suitable dynamics for this application. Bifurcation
analysis of HKB couplings revealed regimes where ap-
propriate asymmetries exist in the fixed points. The find-
ings suggest that this approach produces an innovative
and viable solution for postural coordination dynamics.

1. Introduction

The coordination of the human body is a hugely

complex task; it requires constraining a multitude of de-

grees of freedom (of some 103 muscles and 102 joints)

to act as a single unit in accomplishing behavioural

tasks. Double inverted-pendulum models in the sagit-

tal plane have been shown to give a full representation

of the repertoire of postural movements [3, 4]. Empir-

ical evidence from Bardy et als experimental paradigm

[2], in which humans move back and forth in order to

track the displacement of a visual target, has revealed

that the relative phase between the ankle and hip joint

undergoes an abrupt phase transition in between at-

tractors at approximately 20 and 180 degrees due to a

symmetry breaking bifurcation as frequency increased

above a critical level. The validity of a self-organised

model of posture is further substantiated by evidence

of critical fluctuations, critical slowing down and hys-

teresis between these two modes [2]. Considering this,

the awkward complexity of existing physiological mod-

els [4] and the previous success of the Haken-Kelso-

Bunz (HKB) model in coordination dynamics in human

movement [6] an application of a synergetic approach

is timely. We will focus on the experimental paradigm

developed by Bardy et al [2] and attempt to reproduce

the main qualitative features seen in the data.

2. The Model

Figure 1: The value of xa & xb in the model represent

the displacement of the lower and upper segments of the

body. xh (xh = xa+xb ) represents the displacement of

the eye relative to the ankle (and hence to the ground).

Peak to peak displacements are shown here.

Following the example of Kelso et al [6] a Syner-

getics approach will be taken. The dynamics in the

experimental data can be fully described by the angle of

the ankle and hip joints. To this end we introduce two

variables; xa represents the horizontal displacement of
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the hip joint relative to the ankle joint, xb represents

the horizontal displacement of the eye relative to the

hip joint. A third variable xh is a sum of the two

aforementioned variables and represents the motion of

the eye relative to the ankle joint (Figure 1).

Experimental results show a distinct change in the

stability of relative phase as frequency (ω)is increased

[2]. In line with previous research in coordination

dynamics [6, 7, 8], we implement the equivalent of

the former (specifically the relative phase, φ, between

xa & xb) as our order parameter and the latter (ω) as

our control parameter. The following main qualitative

features are clearly seen in experimental data and we

require that they also be reproduced by the model;

1. A change in the stability of the order parameter as

the control parameter is increased.

2. Fixed points at 20 and 180 degrees.

3. Correct amplitude variations in xa & xb before and

after the phase transition.

There are distinct similarities between postural dynam-

ics and those seen in the finger tapping experiments

that initially inspired the HKB model [6]. However,

the symmetry breaking bifurcation seen in Kelso et als

work [6] creates a transition with only the in-phase

mode remaining stable at supercritical frequencies.

In postural movement it is the anti-phase mode that

remains stable. Therefore a reverse coupling [8] of

the oscillators (opposed to the HKBs original form) is

required to satisfy the first criteria.

The HKB model was created for a system of two

symmetrical components (the index fingers of

the left and right hand) [6] with fixed points at

0 and 180 degrees. In this application the upper

and lower segments of the body and their cou-

pling are clearly not symmetrical. The results of

asymmetries are apparent in the fixed points (Cri-

teria 2) and the amplitude variations (Criteria 3).

An asymmetrical HKB model has been developed [9]

which introduces a shift in both of the fixed points.

However, to fulfil the second criteria the anti-phase

fixed point must remain at 180 degrees.

A possible solution has arisen from bifurcation

analysis on the coupling parameters (in combination

with the asymmetrical HKB model [9]). A negative

value of the coupling term β creates a phase locked

solution (Figure 2) which, with a correct parameter

choice, can produce a phase lead of 20 degrees in

the anti-phase fixed point (in a reversed coupled

HKB system), thus moving it to 200 degrees, with

the in-phase fixed point remaining unchanged (at 0

degrees). Applying the asymmetrical HKB model

(with appropriate parameter selection to shift both fixed

point by -20 degrees) within this regime of negative β
parameter will leave fixed points at 20 and 180 degrees

thus satisfying the second criteria1.
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Figure 2: Bifurcation analysis on β, ω = 0.75, α = 0.1
(Other parameters A = 1, B = 1 & γ = 0.7). In

phase (blue), anti-phase (red) and phase locked (green)

fixed points (stable = solid line, unstable = dotted line)

are shown. For a low value of β only the anti-phase

(180 degrees) and phase locked (which can be set to 20

degrees with parameter choices).

Implementing the HKB model will produce values

of xa & xb representing body positions which are

impossible and do not fulfil the experimental task [2].

Experimental data reveal specific amplitude variations;

in-phase (20 degree) motion is produced mainly from

rotation of the ankle joint with a small contribution

from the hip joint (larger hip rotations in this mode

will move the centre of pressure outside of the base

of stability); in anti-phase the amplitude of the hip

rotation becomes much larger than the ankle rotations

(motion of the head is produced by the difference in

these amplitudes and is thus an essential requirement

for the experimental paradigm we are attempting to

model [2]). Variation in the relative amplitude of

the two oscillators can be created if asymmetrical

coupling parameters are applied. However, it is

not possible to create pre- and post-transition ampli-

tudes, as described above, by parameter selection alone.

1For the sake of brevity the following discussions will refer to the

symmetrical HKB model rather than the asymmetrical form required
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The summation of the two oscillators (xa & xb)

varies from zero while in anti-phase to 2r while

in-phase (where r is the amplitude of both HKB

oscillators x1 & x2 [6]). Therefore a linear com-

bination of x1 & x2 (such as λx1 + μx2 ) can be

implemented to created any required change in ampli-

tude at the phase transition. Thus to fulfil criteria 3

a modification is applied to the original HKB such that:-

xa = x1

xb = λx1 + μx2

The following substitution can be used to write the

model as a system of 4 first-order differential equations;

xc = ẋa

xd =
ẋb − λẋa

μ
=

ẋb − λxc

μ

which gives;

ẋa = xc

ẋb = μxd + λxc

ẋc = −(Ax2
a +Bx2

c − γ)xc − ω2xa

+

(
α+

β

μ
(xa (λ+ μ)− xb)

2

)
(xc − xd)

ẋd = −
(
A

(
xb − λxa

μ

)2

+Bx2
d − γ

)
xd

− ω2(
xb − λxa

μ
)

+

(
α+

β

μ
(xb − xa (λ+ μ))

2

)
(xd − xc)

Written in the form above one can see that a more

general type of ”excitator” [7] system has been created,

though this result has arisen independently of asso-

ciated literature. The first oscillator (xa) is identical

to the original HKB and an appropriate amplitude,

for the motion of the lower segment of the body,

can be created by parameter selection (Kelsos et als

method for parameter fitting can be applied here [7]).

The coupling parameters α and β can be selected to

reproduce a phase transition at the correct frequency

with β taking a negative value to create a phase lock

of 20 degrees between oscillators. Following this λ
& μ can then be selected to created correct amplitude

variation of xb (representing the top segment of the

body). To create a reverse coupling (criteria 1) the

inequality μ + λ < 0 must be fulfilled. Selection of

dummy parameters; λ = 0.8 & μ = −1.2 create an

amplitude variation (Figure 3) similar to that seen in

experimentation (see Figure 4 compared to Figure 1 in

[5] for a comparison).

The frequency of the postural experiments (0.1

0.75 Hz) [2] are much lower than used in the original

HKB model and a sufficiently small value of A must

be selected (A << ω) in line with the slowly varying

wave form approximation to substantiate analytical

methods. Initial numerical simulations suggest that

a system such as that outline above agrees well with

experimental data (Figures 3 & 4).
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Figure 3: Numerical simulation of model. Parameter

values; A = 1, B = 1, γ = 0.7, α = −0.3β = 0.8, λ =
0.8&μ = −1.2. Simulation was run for 100 seconds

with frequency increasing from 1.6 to 2.1 Hz.
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Figure 4: Phase portrait in xa-xb plane for simulation

for in-phase (φ = 20) mode (left) and anti-phase (φ =
180) mode (right). (see figure 3 for futher details).
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3 Conclusion

Our findings suggest that the Synergetic approach

applied here yields dynamics which reproduces the

main qualitative features of the experimental data [2].

The versatility of an ”excitator” [7] opposed to the

HKB model has been further substantiated, and arrived

at independently from past literature. However, the

analysis and simulations are shown here in the absence

of noise, results that contain stochastic variations

will be an important development. Furthermore, two

distinct types of phase transition have been associated

with the HKB model in past literature [1]; amplitude-

and phase-modulated transition. Comparisons must

be made between the model and experimental data to

ensure the same mechanisms are apparent.

A specific amplitude is a requirement of the task

in the experimental paradigm on which this work

focuses [2]. This makes it difficult to distinguish

between movements that are a natural product of the

postural system and due to experimental constraints.

There is a possibility of developing experimentation

which requires rhythmical synchronisation but no

specific amplitude so the emerging dynamics are less

constrained.

Several important variations in potential function

with parameter changes have been identified within

this work (though they are only presented here in brief;

Figure 2) further characterisation of the dynamics of

the HKB model in all parameter regimes would aid

the development of this model. The continuation of

this work, to create a quantitative model of postural

coordination dynamics, by data fitting, appears to

be viable. However, the value of such a model will

depend on its accuracy and number of parameters

fitted compared to existing representations developed

from physiology. An investigation into the intrinsic

dynamics applied in these two different approaches

may inform further model design and yield insights

into the underlying mechanisms of human posture and

which of these becomes modified in pathologies.

All past postural modelling incorporates the phys-

iological features of the system, which leads to

undesirably complicated models. This works offers

the beginning of a new approach for this field; by

focusing on the features that emerge in the dynamics it

may be possible to isolate the essential mathematical

features of the system and develop a new model for the

coordination dynamics of human posture.
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