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ABSTRACT

This paper investigates pure strategy sequential equilibria of
repeated games with imperfect monitoring. The approach emphasizes the
equilibrium value set and the static optimization problems embedded in
extremal equilibria. We characterize these equilibria, and provide
computational and comparative statics results. The "self-generation”
and "bang-bang” propesitions which were at the core of our analysis of
optimal cartel equilibria [2], are generalized to asymmetric games and
infinite action spaces. New results on optimal implicit reward
functions include the necessity {(as opposed to sufficiency) of bang=-bang

functions, and the nature of optimal punishment regions.
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l. Introduction

A recent paper of ours [2] demonstrates the existence of equilibria
of the Green-Porter model [6],[15] that are optimal in terms of the
degree of implicit collusion they sustain, and yet have an unexpectedly
simple intertemporal structure. Here we exploit the same analytic
approach to develop a general theory for a broad class of asymmetric
discounted repeated games with imperfect monitoring. The results
characterize efficient sequential equilibria, facilitate their computa-
tion, and establish a strong relationship between the equilibrium value
set and the discount factor. More generally, they demonstrate the
advantages of a perspective which views these repeated games in terms of
a particular intertemporal decomposition.

Our analysis is in the spirit of dynamic programming, whose impact
on game theory has, of course, been substantial (see, for example,
Shapley [22}, Abreu [1] and Radner, Myersoun and Maskin [17])}. It
proceeds via a succession of propositions, central among which 1is
"salf-generation” (see Section 3), which reduce the study of the
equilibria in question to the solution of a class of static problems.
The latter are in turun greatly simplified, and the class to be
confronted drastically reduced, by the following "bang-bang"” proposi-
tion. It is unrestrictive to limit the reward function impliecitly

facing players after any history,l to taking only those values that are

The way in which an equilibrium induces an implicit reward function in
each contingency is discussed in Section 3, and at greater length in

[2].
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extremal Iin the set of equilibrium payoffs of the supergame. We consider
sequential equilibria in pure strategies only.

The result that it is sufficient to consider reward functions of
the bang—bang form leaves lingering doubts about the appropriateness of
the restriction. If the "natural” solution were a smooth function,
which could be replaced by one with the bang-bang property at the cost
of creating a complex pattern of rapid alternations among extremal
values, one kind of simplicity would be traded against another.
Reassurance 1s provided by a much stronger characterization in Section
7. Under certain conditions, the reward functions faced by players in
Pareto efficient equilibria must be bang-bang: efficlency demands that
non—extremal points of the payoff set are never used.

In most of the paper, players' choice sets are assumed discrete,
Section 8 gives conditions under which our results hold when players
instead have continuous choice variables. In symmetric games such as
the Green—-Porter model, if the first—order approach (see, for example,
Mirrlees [14], Grossman and Hart [7], and Rogerson [20]) to the static
problems mentioned earlier is valid, the implicit punishment regions
occur where a certain "local likelihood ratio™ is high. If, for example,
a monotone likelihood ratic property holds (see Section 9), the reward
function takes the form of a tail-test. Optimal supergame strategies
are then trigger strategies of the simplest possible kind.

Ronald Howard's value-iteration [9] has an analogue in repeated
games discussed in Section 5. It is an iterative procedure for comput-
ing the set of equilibrium values. The novelty here is the presence of

sequential incentive constraints and the fact that the map that is



iterated is set-valued. Apart from its importance for the numerical
computation of equilibria of specific supergames, the algorithm is an
alternative characterization of the equilibrium value set, and as such
will have a variety of theoretical applications.

The ways in which this paper furthers the research reported in [2]
may be summarized as follows. First, it relaxes the restriction of
symmetry, showing the theﬁry capable of embracing both asymmetric
equilibria of symmetric games and arbitrary asymmetric games. Secondly,
the sufficiency of using bang-bang reward functions in efficiently
collusive equilibria is strengthened to a necessity theorem. The dual
approach taken also proves helpful in relaxing the assumption that
choice sets of players are discrete. Reward functions are characterized
in detail for certain eanvironments. Finally, we provide an algorithm

useful in computing the sequential equilibrium value set.

2. The Model

The model outlined below features unobservable actions, stochastic
outcomes and a publicly observable random variable correlated with
players' private choices. It lends itself naturally to the study of a
number of economic questions. Important examples are oligopoly [6],[15]

and partnership problems [16] of various kinds.

The Single—Period Game

G denotes the N-person component game. FEach player i has a
compact strategy set Si and a payoff function Hi : 3 + R, where
8 := Sl X ees X Sy Hi is an expected value. Payoffs actually

received, T, are stochastic and depend on realizations of a random



variable P. P has density function g(pjg) that depends on the
vector of actions gq ¢ S. T depends on q_y 3= (ql,...,qi_l,qi+l,...,qN)
only through the effect of the latter on the distribution of P, i.e.,

m; : Q@ x8, > R. Finally, Hi(q) = g ﬂi(p,qi)g(p;q)dp.

The Repeated Game

Gm(é) denotes the infinitely repeated game with component game G
and discount factor & ¢ (0,1). A strategy o, for player i1 in G 8)
-]
is a sequence of functions {ci(t)}t=1, where ci(l) € 8, and for

t>1, oi(t) : Qt_l x Si_l + Si' The interpretation is that players

can observe (and therefore condition upon) only their own past actions

and past realizations of therrandom variable P. Let pt = (p(1l),...,p(t))
and qt = (q(1),...,9(t)) denote t-perlod price and quantity histories,
respectively. As is standard c|pt’qt denotes the strategy profile
induced by o after the t-period history (pt,qt). P is assumed to be
drawn independently in every period according to the density g(p;q).
Associated with any strategy profile o of G (8) 1is a stochastic

stream of payoff-vectors. v(g) = (vl(o),...,vN(c)) denotes the

expected present discounted value of this stream. Note for later use

that period t payoffs are recelved at the end of period t and

discounted to the beginning of period 1. We assume that:

{AL) Si is compact i=1,.4.,N;

(A2) ni(p,qi) is continuocus in its arguments;
(A3) Q = {p|lglp,q) > 0} is independent of q € S;
(Ad) G has a Nash equilibrium in pure strategies.

Additional assumptions are introduced as required.



(Al) and (A2) guarantee that v(g) is well defined. The solution
concept used is sequential equilibrium (see Kreps and Wilson [11]).
Hereafter, we use S.E. to denote a sequential equilibrium in pure
strategies. V := {v(o)|o is an S.E.} 1s the set of S.E. payoffs.

(A4) implies that V 1s non-empty; the strategy profile specifying that
in every period independently of the history each player uses his

one~period Nash equilibrium action, is an S.E. .

3. Factorization and Self—-Generation

Consider the maximization problem faced by a player in the first
period of an equilibrium ¢. His choice of action q; has two
consequences: it affects payoffs in period 1, and also influences the
distribution of the first period price p(l). The player is in effect
maximizing the sum of current payoffs and the expectation of the future
reward {a function of p(l)) implicitly "promised” by o. The reward
function must be drawn from V: an S.E. can offer only S.E. rewards.
Furthermore, ci(l) must yield at least as high a value of the sum as
any other action available to 1. The same remarks apply to player i's
choice after any t-period history.

We proceed rather abstractly by studying structures suggested by
the above observations but no longer in the context of any particular

equilibrium.

Definition: Let Lm(Q{RN) denote the set of all (essentially)
bounded measurable functions u from Q into 'RN. For any pair

(q,u) € § x Lm(Q;lRN), E(qsu) = &8{Il(q) + J'Qu(p)g(p;q)dp}-



Definition: For any set W_E'RN, a pair {(q,u) € 8 x LQ(Q;RN)

is called admissible with respect to W 1if
(i) u(®) €W, and
(ii) Ei(Yi’q-i;U) S_Ei(q;u) for all y; €8, and i =1,...,N.
These conditions mimic the two requirements noted above on pairs of

the form (recommended action, reward function) arising in an S.E. .

Definition: For each set W_E'RN, B(W) := {E(q;u)|(q,u) is admissible
Wer.t. W}

By definition there exist functions @, U with domain B{(W) and
ranges S and L7(Q; W) respectively such that for any w ¢ B(W), the
pair (Qw),U(w)) is admissible wer.t. W and E(Q{w);U(w)) = w. Such
functions will be used 1in the proof of the next proposition.

That admissibility successfully captures the information essential
for studying V 1is evidenced in Propositions 1 (Self-Generation) and 2
(Factorization). These combine to say that V 1is the largest bounded
fixed point of the set-valued map B. This is remarkable insofar as the
definition of B 1s quite simple and makes no reference to the complex
strategic structure of an infinite-horizon game.

The proofs of the propositions below are very similar to those
presented for the symmetric case in [2]. We have included them to
provide a self-contained, although terse, treatment. The reader may

refer to [2] for a more extended account.

Definition: W c EN is said to be self-generating if W < B(W).




Proposition | (Self-Generation): For any bounded set W c RN, if W

is self-generating, then B(W) < V.

Proof For each w ¢ B{(W), 1let Ul(w) := U(w) and Ut(w)(pt) 1=
0 D (BTN (p(E))  for all pb e oF and t =2,3,... . Since
W < B(W), these functions are well defined. They are used now to
construct sequential equilibria o(w) which yield payoffs v(o(w)) = w,
as required:
o(w)(1) = Q(w)
(D (5N = e W) e = 1,2,3,...
Successively using E(Q(x),U(x)) = x and noting that & < 1, one may
check that this construction implies v(o(w)) = w. Again by
construction, a(x)lp = S(U(x)(p)), and
1M, (v, 0 GID)) + [y vy (UG (p)) )& (s ¥, oy (x)(1) Jdp ]
< v.(a(x)) for all x e B(W).
For any w ¢ B(W) and any history pt € Qt, t=1,2,.4., a(w)lpt = o(x)
for x = Ut(w)(pt) € W e B(W). Hence, the inequalities above imply that
given a_i(w), 3i(w) is an "unimprovable”, and hence optimal, strategy
for player i (see, for example, Kreps [10])}. Thus it is a best response
to B;i(w), and of(w) is a Nash equilibrium for all w ¢ B(W).
The strategy profiles a(w) are by construction independent of

quantity histories qt € St; they are functions only of price histories

pt ¢ at. Therefore, to check that g(w) is an S.E., it is sufficient

to verify that a(w)lpt is a Nash equilibrium for all pt € Qt,

t =1,2,... . As noted above, &(w)lpt = o(x) for some x ¢ B(W).



Finally recall that we have just shown that o{x) is a Nash

equilibrium for all x e B(W). B

Remark (A3) implies that the set of Nash equilibrium payoffs is
identical to the set of sequential equilibrium payoffs, though not every
Nash equilibrium is a sequential equilibrium. The argument is
straightforward and is left to the reader; it hinges on the fact that

all possible price histories occur in equilibrium.

Proposition 2 (Factorization): V = B(V).

Proof: By Proposition 1, we need only show that V ¢ B(V). Consider

weV and an S.E. ¢ such that v{cg) = w. Consider the pair (q,u)

such that q := o(1) and wu(p) := V(c’p,o(l)] for all p €

Clearly w = 8[M(a(1)) + [ov(o|,  (yy)e(ps o(1))dp] = E(qsu). By (A3),

the 1nformation sets (p,ci(l)) are reached in equilibrium for all

p € Q; hence of is an S.E. and u{p) ¢ V for all p ¢ Q.
p,o(l)

-

Consider o; such that di(l) = Yy € 54 and o

i’P,Yi B °i|p,qi
for all € Q. By definition, (o,,0 = .
P ¥ ( i’ _i)lps("(iaq_i) G'p,q
Since ¢ is an S.E., for all i
m(q) + IQ u; (P)g(psa)dp = M, (q) + IQ vi(olp’q)g(p;q)dp

2 Hi(yi’q-i) + f Vi(cl

HE PN . |
. p,(Yi,q_i))g(p ¥;+4-1)dp

= Hi(Yi,q_i) + fQ ui(p)g(p;yi,q_i)dp for all Y € Si'



Hence the pair (q,u) 1is admissible w.r.t. V and E(q;u) = w, as

required. O

4. Bang-Bang Reward Functions and the Structure of Equilibria

This section proves that any reward function can be replaced by one
yielding each player the same expected value (without affecting
incentive compatibility) and taking on values only on the set of extreme
points of V. Apart from the obvious practical advantages this offers
in working with particular games, it has theoretical applications:
examples are provided in the proofs of Propositions 5 and 6.

N

For Wc R, let co W denote the convex hull of W and Ext W

the set of extreme points of co W.

Definition: u ¢ L™(Q;W) has the bang-bang property if u(p) ¢ Ext W
a.e. p € Q.

Propositoh 3 below implies that the function U of Section 3 can
be chosen so that for each w, U{w) has the bang-bang property. Now
consider the nature of an equilibrium with value w, and summarized by
(Q,U) with U chosen as above. For any price p(l) arising in the
first period, an extremal reward U(w)(p(l)) is "delivered” by the pair
(QUUEw) (p(1))), UU(w)(p(1)))). When p(2) is observed, a new reward
function comes into effect, and so on. Since after any t-period
history, players' future payoffs are in Ext V, a play of the game can
be viewed as an alternation among extreme points of V, where the

particular pattern of extreme points is determired by the sequence of



realized prices. For the special case in which V is one—-dimensional
(as it is, for example, when attention is restricted to symmetric
equilibria of symmetric games), this ﬁeans that only two extreme points,
and hence two action profiles, ever arise after the first period of the
game.

We now replace (Al) by
(Al*) S, is finite 1 =1,...,N.
This assumption is retained up to Section 7, but is used only to ensure

the sufficiency of bang-bang reward functions.

Proposition 3: Let W_E'RN be compact and (q.ﬁ) be an admissible

palr wer.t. co W. Then there exists a function u : @ + Ext W such
that (q,u) is admissible w.r.t W and E(q,u) = E(q,u1).
Proof: Let

F:= {ue L7(Q,co W)|(q,u) is admissible w.r.t.

co W and E{q,u) = E(q,ﬁ)}.

By assumption F 1s nonempty (u ¢ F), and it may easily be checked
that F 1is convex. By Alaoglu's theorem [21], F 1is compact when
LG(Q;co W) 1is endowed with the weak-* topology. Hence, by the
Krein-Milman theorem, F has an extreme point.

By (Al*), the set of integral constraints defining F 1{s finite
and Proposition 6.2 of Aumann [3] applies directly. It implies that any
extreme point u of F satisfies a(Q) c Ext W. Since Ext W c W,

(q,u) 1s also admissible w.r.t. W, and the proof is complete. 0

Corollary. Let W_E'RN be compact. Then B(W) = B{co W).

-10-



Lemma l: If W_EZRN is compact, B{(W) is compact.

Proof: Let W_g'RN be compact. An easy argument shows that

B(W) < 8[IS) + co W], so B(W) 1is bounded. We need only show that

B(W) is closed. Let {wn} be a sequence in B(W) such that lim W, = W
We will argue that w € B(co W) = B(W). For each n there exists

(qn,un), an admissible palr w.r.t. W, such that E(qn,un) = . Since 8§
is compact, W < co W, and L7(Q;co0 W) is weak-* compact, w.l.o.g. we

can assume that there exist q ¢ § and u ¢ LW(Q;co W) such that qn +q
and u"™ ¥ u. In the Appendix we show that E : § x L™(Qco W) » R’Y

is continuous when L (Q;co W) 1s endowed with the weak-* topology.

Therefore

w=1limw_ = lin E(q™u™ = E(qsu) .

Similarly, one can show that E(q;u) 2_E(yi,q_i;u) for all vy; €8, and
i=1,44.,N, Hence (q,u) is admissible with respect to W, and

w € B(co W). g

Proposition 4: V 1is compact.

Proof: See proof of Corollary 2 of [2]. 0

5. Computation

For many purposes it is important to have an algorithm capable of
finding the set V in particular supergames, thereby making possible a
study of the details of the equilibria themselves. To do so, it is
necessary to find the largest bounded fixed point of the set-valued map

B., It turns out that V may be computed by an elegant procedure

-11-



analogous to Howard's “value-iteration” [9] for dynamic programs. The
algorithm starts with a set WO-E EN such that V ¢ B(WO) < WO. It
then proceeds by computing the monotonically decreasing sequence of sets
W = B(W 1) n=1,2,... « V 1is the limit of this process:

=+
V=21im W :=n W_.
n n= n

Observe that the operator B 1is monotone, in the sense that for
each Wl_i W, < RN} B(Wl) < B(WZ)' The next two lemmas follow
directly from Factorization and the monotonicity of B; their proofs
are left to the reader.

Lemma 2: Let W := [8/(1-8)] co {li(q)|q € S}. Then V < B(W) c W.

Lemma 3: If W <c Rﬂ satisfies V c B(W) < W, then V c B(B(W)) = B(W).

Lemma 4: Let {Wn} be a decreasing sequence of compact sets in

RN. Then co N W =n co W,
n n
Proof: See Appendix.

Proposition 5 (Algorithm)é Let W_E‘RN be compact and satisfy

Vc B(W) < W. Define Wo =W and for n=1,2,... let W= B(W__,).
Then {Wn} is a decreasing sequence and V = lim Wn'
n->w
Proof: By Lemmas ! and 3, {Wn} is a decreasing sequence of compact
sets, so W_ := lim Wn =n Wn and W_ 1is compact. Again by Lemma 3,
o
Ve W,. To comglete the proof we need to show that W_ cV. By

Self-Generation and the corollary to Proposition 3, it is sufficient to

" show that W_ < B(co W_). Consider any w ¢ W_. By definition, for

-12-



each n=1,2,..., there exists (qn,un) admissible w.T.t. Wn such
that E(q%,u®) = w. Since q" ¢ S, where $ is compact, and Lm(Q;Wn)
< LE(Q;co W), where L7(Qico W) 1is a weak-* compact set, we may

n n % w©
Wel.ouge assume q + q and u > u for some q ¢ S and u ¢ L (Qco W.
We argue that (g,u) 1is an admissible pair w.r.t. co W_, and w = E(q,u).
Since for all n=1,2,..., u™(Q) < co Wm‘g co Wn for all m> n
(modulo sets of measure 0), we have u(Q) < co Wn for all n. Hence, by

Lemma 4, u(Q) < n co W =co"W =coW. Since E : 5 x LA co W) » R’y

is continuous when L {Q;co W) is endowed with the weak—* topology,

E(q,u) = lim E(q%;u™) = w.
n-+eo

n, n
Also Ei(q ju ) z_Ei(yi,qu;un) for all Y, € N and each n =1,2,...

imply Ei(q;u) Z_Ei(Yi,q_i;u) for all y; ¢ 8, and each i =1,...,N, d

6., Comparative Statics: Monotonicity in &

Intuition suggests that the equilibrium set should in some sense
increase with the discount factor. Plausibly “cooperation” becomes
easier as players become more patient and thereby increasingly willing
to forego immediate gain for a possible future reward. One 1is led to
conjecture a monotonic relationship between equilibrium outcomes and the
number §, where outcomes are thought of as average discounted
payoffs. Despite the complexity and generality of the model, this
conjecture can be proved correct without invoking any assumptions beyond
those of Proposition 3. When the discount factor increases from 61 to
62, and payoffs are appropriately normalized, the original set of

equilibrium values is contained in the new set of values associated with

_13_



62. The proof is short and simple and illustrates the power of
self-generation as an analytical tool.
We now write V(8), B(W|&) and E(q;u|8) to make explicit the

dependence on the particular value of the discount factor.

Proposition 6 {Monotonicity in Discount Factor): Let 61 and 62 be

two discount factors such that 0 < 51 < 62 < 1. Then

[(1-8,3/8,1 v(8)) = [(1-8,)/8,] v(8,)

Proof: As may be easily checked, we need to show (1+k)V(61).£ V(52),
where k := (52-61)/(61(1-62)). For any w € V(61) let (q,u) be an
admissible pair w.r.t. V(él) such that w = E(q;ulél). Define the
function u  on ® by u+(p) = u(p) + kw. Then it may be verified

that (q,u+) is an admissible pair w.r.t. {kw} + V(él), and E(q;u+]62) =
(1+k)w. Hence, (l+k)w e B({kw} + V(61)|62) for all w € V(§;). Since
for any =z e?Rn, z + kw = A(1+k)z + (1-M)(1+k)w for A := 1/(l+k) ¢
(0,1), {kw} + V(él) < co (1+k)V(61). Therefore, (1+k)V(61) <

B(co (1+k)V(61)[62). Finally, by the corollary of Proposition 3 and

Self-Generation, (1+k)V(61)_E V(62). 0

7. Optimization and the Necessity of Bang-Bang Reward Functions

This section explores the idea that efficient incentive schemes must
necessarily have a bang-bang structure. Consider W c RN compact
and some q ¢ S which is the first element of an admissible pair
yielding an extremal payoff in the set B(W). An implication of
Proposition 3 is thal among the reward functions which support q and

maximize a linear function of player payeffs, at least one has the

~14—



bang-bang property. We show here that under certain conditions all
optimal solutions must be bang-bang. The proof takes a dual approach to
the optimization problem which highlights the way in which
considerations of efficiency lead to the use of rewards that are extreme
points of V (or, more generally, of the compact set W from which
rewards are to be drawn).

Establishing the necessity of bang-bang solutions requires mild
conditions not needed for the sufficlency result. A discussion follows

the statement and proof.

Definition: Let A_E'RN. a-l A denotes "<a,x-y> =0 for all

X,y € A", a-l A denotes "not a.l A",

Definition: q ¢ $ satisfies the Slater constraint qualification

Ww.r.t. W 1if there exists u ¢ Lm(Q;co W) such that

E,(q5u) > E,(v4,9_45u) for all vy, € Sy, v #q, and 1= 1,...,N.

For all P e RB and W c BN compact, let

F(B,W) := arg min{<B,w>|w ¢ W} and TF(W) = {F(B,W)|F(B,W) £ Ext W}.

Proposition 7: Let W c R be compact, and consider (q,u) ¢

arg min{<«,E(q;u)>|(q,u) is admissible w.r.t. W} for some a ¢ RN,

a« # 0. Suppose that (1) g(p,q) 1is analytic in p, (ii) q
satisfies the Slater constraint qualification w.r.t. W, (iii) TF(W)
is a countable collection of sets, and (iv) a.l F for all F ¢ F(W).

Then u satisfies the bang-bang property.

Proof: Let a, q, and u be as above. By Proposition 3, u 1is a

solution to:

-15-



(P1) min <a,fQ u(ple(p;q)dp>
subject to u e L (Q;co W)
Ei(y,ﬁ_i;u) S_Ei(a;u) for each vy ¢ Si

and 1 =1,...,N,

We show that any solution to (Pl) that has range W must have the

bang-bang property. The Lagrangean associated with (Pl) is

+ = if u £ L(Qco0 W)
L(u,r) = fq<u(P).£(P.K)>dp + b(A) if u e L7(Q3co W) and A2 0
- - Cif ue L(Q3co W) and A} O,

where A 1s the vector of Lagrange multipliers {Kiyly € Si’ i=1,...,N},

£4(p,A) = (& - XYESi A8, D + IYESi MBS Y, ))

and

N
BN = § EYESi M Imna) - m@].

Note that Ei(p,l) is analytic in p. By (ii), optimal Lagrange

maltipliers X_Z 0 exist and any solution to (Pl) also solves
(P2) min L{u,\) subject to u € LY(Q; co W).

It is clear that any optimal solution u of (P2) which has range W
must be such that wu(p) e arg min {KE(p,N),w>|w ¢ W} a.e. p e Q.
Therefore, to complete the proof it is sufficient to show that there

does not exist Qé © 2 such that u(Qé) >0 (p denotes the Lebesgue

measure) and F(Z(p,\)) ¢ F for all p ¢ Qe (For simplicity we

-16—-



write F(B,W), F(W) as F(B), F respectively.) Suppose there
does. Since IF 13 a countable collection there exist QO 5_96
and 7 € RN Sete p(QO) >0 and F(g(p,iJ) = F(n) ¢ F for all

P € QO.

Let h{p:x,y) := <E(p,N),x-y> for all p ¢ Q@ and any

x,y € F(n). By assumption, h(p;x,y) = 0 for all p ¢ éO' Since
h(p;x,y) is analytic in p and u(QO) > 0, hip;x,y) = 0 for all

p € 2. Therefore, 0 = IQ hip;x,v)dp = <IQ g(p, Ndp,x-y> = <a,x-y> for

each x,y ¢ F(n). Hence, ol F(n) ¢ F, contradicting (iv). |

Conditions (i) and (ii) are technical assumptions that facilitate
the dual line of proof we pursue. Assumption (1i1) is relatively
innocuous. It 18 worth noting that it is always satisfied when
Ve E?. (iv) serves to exclude exceptional cases such as the follow-
ing. Suppose that for prices in some set 90 of positive measure, a
reward function u supporting q optimally w.r.t. o takes on values
in some face F of V. Consider another function 0 supporting gq,
which on QO also takes on values in F, and coincides with u
elsewhere., {Typically there are many ways to satisfy the incentive
constraints, but some are more efficient than others.} If «a happens
to be perpendicular to F, u vyields the same value of the objective
function as does u, and hence is a distinct solution to the optimiza-
tion problem. Any non—degenerate convex combination of u and u is
also an optimal solution, and fails to have the bang-bang property.

(iv) 1s unrestrictive in the following sense: it must be satisfied

for a dense subset of extreme points of B(W).
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Lemma 5: Let W.E'RN be compact, and assume T(W) is a
countable collection. Then for every x e Ext B{W) and any
€ > 0, there exist y ¢ Ext B(W) and a ¢ RN S.te  NIy-xi < g,

y ¢ arg min {<a,w>|w € B(W)} and a-l F for all F e FF(W).

Proof: See Appendix.

8. Continuous Choice Sets

When players' choice sets are not finite, the methods of Section 4
fail. Specifically, the presence of an infinity of incentive
constraints rules out the possibility of a straightforward adaptation of
the proof of Proposition 3. On the other hand, the approach of the
previous section is particularly well-suited to this situation: duality
allows us to replace the original problem with one having no incentive
constraints. Proposition 8 below gives conditions under which an
optimal reward function must be bang-bang. It 1s exactly analogous_to
Proposition 7, except that assumption (iii) is now much more demanding2
(although for V < R?, it is still satisfied gutomatically).

Assume now that the 5,'s are compact subsets of R. We only

i

sketch the proof since it is very similar to that of Proposition 7.

2
A usefulzexamgle is the following: suppose N =3 and W =
{(x,y,2)|x" + y <1, z =0} v {(0,0,1)}. Then TF(W) =@ and

TF(co W) is an uncountable collection.
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Propesition 8: Let W, g, u, a and (Pl) be as in Proposition 7.

Suppose that g(p;q) is analytic3 in p and continuous in g, and
that the dual problem to (Pl) has a solution. If T(co W) is
a countable collection of sets and a-l F for all F ¢ F(co W),

then u satisfies the bang-bang property.

Proof: Let u be any solution to (Pl). The Lagrangean associated

with (Pl) is as before. Now, however,

£,(p W) o= oy = fo A (ay) g, @ + fg A (Valps v,T_;)dy
and i i

b = Y S A - w @y -
i=l i
¢ is analytic in p (see Appendix). Proceeding to (PZ) as in

Proposition 7 we have
G(p) € arg min {<§(p,i),w>|w e co W} a.e. p e

Replacing F(B,W), F(W) by F(B,co W), F(co W) and continuing as
in the earlier proof, we conclude that u(p) € Ext W a.e. p e Q.

Hence, u solves (Pl) and the proof is complete. B

An alternative proof of necessity of bang-bang reward functions
{for continuocus cholice sets) is provided im the next section. It
emerges from the investigation of the nature of punishment regions when

the first-order approach is valid.

3 We require that there exists an open set Q. T such that Q¢ QO
and g : @, * § > T is analytic in its first argument. T denotes
the complex numbers.
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9, Punishment Regions: First Order Conditions and
Generalized Tail Tests

A major determinant of the equilibria constructed earlier Is the
nature of the punishment and reward regions they Implicitly use. This
section characterizes these regions for symmetric equilibria of
symmetric games4’5 having continuous strategy spaces and satisfying a
strong condition: solutions to the static optimization problems of
Section 8 coincide with those of the relaxed problem in which the
incentive constraints are replaced by one first-order condition for the
players. {The scope of the "first-order approach” is explored in the
context of the principal~agent problem by Mirrlees [14], Grossman and
Hart [7], and Rogerson [20], among others.) We show that the punishment

region used in supporting the symmetric action profile q, consists of
dg(p;q)/dq,

g(psq)
appropriate side (depending on the sign of le(q)/qu) of some

all prices for which the ratio r{p;q) := lies to the
critical value. This 1s a close analogue of the Neyman —-Pearson lemma
(see, for example, De Groot [5]). It is a generalized tail test in the
sense that one is re—ordering price space according to the value of the
ratio specified above, and then applying a tail test. When this ratio
is monotonic in p (that is, g has the monotone likelihood ratio

property (M.L.R.P.)), no re-ordering 1is necessary, and a conventional

These were the focus of attention in [2].

The one-shot game is symmetric if Si = SI i=2,...,N and for any
permutation (il,...,iN) of (1,...,N), g(p;(qil,...,qiN)) =
g(p;(ql,...,qN)) and Hl(qil""’qiN) = Hil(ql""’qN)' A

strategy profile of the repeated game is symmetric if in all

contingencies all players are required to take the same action.
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tail test is optimal. In this case, the best symmetric sequential
equilibrium is described completely by two quantities and two trigger
prices (see Section 6 of [2]). This kind of application of M.L.R.P. is
familiar from the principal-agent literature, especially Mirrlees [13],
Holmstrom [8], Milgrom [12] and Grossman and Hart [7].

We assume in this section that Hl(q) and g(p;q) are
differentiable w.r.t. q- The statement of Proposition 9 requires some

N

additional definitions. Let e_ := (l,...,1) ¢ R .

N

Definition: Let q = xeg ¢ § and W S R. The pair (q,u) is locally

admissible weret W if u e L(QW) and

dlIL, (q)
1 dg(psq)
te— dp = 0 .
5 Jg ule) =5 p=0
1 1
Also define H(q;W) := {u]|(q,u) 1is locally admissible w.r.t. W}
Let R* := R U {-=,+»}, For all R ¢ R¥, 1let T(R) :=
{p ¢ Qr(psq) > R} and FO(R) := {p ¢ Qr(p;q) = R}. For compact

Wc R, let w=minW and % = max W. For each R ¢ R*,

define the generallzed tail test functions:

W if p e T(R)
uS(R)(p) =% _

w otherwise

w if p e T(R)
uS(R)(p) :=

W otherwise

u®(R) (respectively, u“(R)) punishes prices which are relatively

more likely when output is expanded {contracted).
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Proposition 9 (Generalized Tail Tests): Fix q = Xey € S and define

d := 31, (q)/3q;. Let W< R be compact and H(q,W) # #. Assume
that u(FO(R)) =0 for all R € R. Then

(1) if d> 0 and H(q;W) # {u®(0)}, therée exist R,, R, ¢ R*,

1’
R, <0 <R, such that ue(Ri) € H(q;W), 1 = 1,2 and

2

El(q;ue(Rl)) < El(q;u) < El(q;ue(Rz)) for any other u ¢ H(q;W).
(ii) if d < 0 and H(q;W) # {u(0)} there exist Rl’ R, € R*,

Ry <0 <R, such that uc(Ri) € H(q;W), 1 = 1,2 and

El(q;uc(Rl)) < El(q;u) < El(q;uc(Rz)) for any other u ¢ H(qg;W).

Proof: The result is proved for d > 0, The proof for 4 < 0 is

analogous and for d = 0 trivial., Consider the program:

P1{a) min « Igu(p)g(p;q)dp

S-to u [ Lm(Q;CO W)

foutp)r(psadg(psqddp = —d .

We need to show that for some R; <0 < R,, ue(Rl) and ue(RZ) are
unique solutions to Pl(a) for a=1 and a= -1 respectively. For
notational convenience we usually omit the argument g from the
functions g and r.
a _ e e

Define F (R) = fQu (RY(p)r{p)g(p)dp. Clearly F® 1is
continuous. It attains a unique minimum at R = 0 and increases
monotonically to the right and left of R = 0. Since IQ r(p)g(pldp = 0,

F%(*) = F®(-=) = 0. The Lagrangean associated to Pl(a) 1is

K (u,0) = [o ulp)(a + Ar(p)) g(p)dp if u e L™(Q5co0 W),
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By assumption there exists u ¢ Lm(Q;W), u # u®(0) such that

J'Q u(p)r(p)eg(p)dp = -d. Since IQ w0 (p)r(p)g(p)dp <

IQ w(p)r(p)g(p)dp, it is clear from the earlier discussion that there
exist a,b € R such that fQ w®(a)(p)r(p)g(p)dp = F¥(a) < -d <

FE(b) =VIQ (b)Y (p)r(p)g(p)dp. Hence the Slater constraint
qualification is satisfied (see [19]). Let M*(a) be an optimal
Lagrange multiplier. If u solves Pl{a), then it also solves the half

saddlepoint problem
P2( ) min Ka(u,k*(a)) Sete U € Lm(Q;co W),

We consider the cases a =+l and a = -1. For either suppose
M(a) < 0. Since by assumption u(PO(' a/**(a))) = 0, the solution to
P2(a) is unique and must be of the form u“(R) for some R ¢ R*.

If A*(a) = 0, the solution to P2(a) is either (=) (g = +1) or

uw(-=) (a = -1). Since for all R ¢ R* IQ uS(R)(p)r(p)g(p)dp > O,
for A*(a) < 0 we must have d {0, a contradiction. Hence,

A(ag) > 0, a = -1, +1, From P2(a) we now conclude that the solution is
unique and has the form uS(R(a)) for some R(a) ¢ R. Returning to
Pi{a), it is clear that R(a) must satisfy F(R(a)) = -d. The
properties of F® discussed earlier imply that this equation has two

distinct solutions, one of them negative and the other positive.

Clearly R(1l) = R, is the former and R(-1) = Rz the latter. N

Remark: If g is amalytic in p, then p(Ib(R)) >0 4if and only 1if
R =0 and r{p;q) is identically zero. Thus, we may replace "Assume

that u(FO(R)) =0 for all R ¢ R" by "Assume g 1is analytic in p."
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Assume now that Q < R.

Definition: g has the Monotone Likelihood Ratio Property (M.L.R.P.) if

for all q = xey € 8, r(p;q) 1is strictly decreasing in p.
If g satisfies M.L.R.P., then for any R ¢ R* there exists
t ¢ R* such that T(R) = {p ¢ ®|p < t}. Thus, a trigger value of

the likelihood ratio may be equivalently expressed as a trigger—price.

For each trigger-price t ¢ @ define the tail-test functions:

W if p<t
o)) = {

W otherwise

£1

h if p<t
u (t)(p) :=

otherwise .

t=

ul(t) punishes "low" prices while uh(t) punishes "high" prices.

Corollary (Tail Tests): Fix q = xey € 8 and d = bﬂl(q)/bql. Let
W< R be compact and H(q;W) # . Assume g satisfies M.L.R.P.
and let p, solve r(po;q) = 0. Then
(1) if d > 0 and H(q;W) # {ul(po)}, there exist t;» ty €9,
t, < py < t; such that ul(ti) € H(q;W) 41 = 1,2 and
El(q;ul(tl)) < El(q;u) < El(q;ul(tz)) for any other u ¢ H{q;W).
(ii) if d < 0 and H(q;W) # {uh(PO)}, there exist t,,t, € Q,
t <py < t, such that uh(ti) e H{(q;W) i =1,2 and

Ei(q;uh(tl)) < El(q;u) < El(q;uh(tz)) for any other u e H(q;W).
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10. Conclusion

Qur purpose in this paper has been to lay foundations for a
systematic theory of repeated discounted games with imperfect
monitoring. The results suggest that ultimately a rather rich and
satisfying theory will emerge. Already available for a broad class of
these games are powerful characterizations of the equilibrium value set,
a variety of results on the nature of implicit reward functions
generated by extremal equilibria, and comparative static and
computational theorems. While some of the propositions, notably the
bang-bang principle, specifically address the problems caused by
imperfect monitoring, those in Section 3 (and, with appropriate
qualifications, Sections 5 and 6) apply also to games with perfect
monitoring. Not yet covered are hybrid cases falling between models
with perfect monitoring and those having a publicly observed random
signal with constant support. Also awaiting study are mixed strategy
equilibria of repeated discounted games. These problems deserve much

attention.
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APPENDIX

Lemma (Continuity of E): Assume that the density g and the expected
payoff function Hi are continuous in q, and let W_EiRN be
compact. Then Ei 3 § % LQ(Q;W) + IR is continuous when LW(Q;W)

is endowed with the weak-* topology.

Proof: It is easy to show that for each q ¢ § and each £ > 0, there

exists o > 0 such that

f Ig(p;v) - g(p;q)]dp < e for all ye8 with iy - qil < a .
Q

Let € >0 and (q,u) € § x L(@;W). Define the following

neighborhood of u 1in the weak-* topology of Lm(Q;W):

N(w) = (v e L(@&W] [ (u(p) - v, (pDglpiaddp| < &/3} .
- R

We now show that there exists a > 0 such that lEi(Y;V) - Ei(q;u)l { €
for all v ¢ N(u) and y ¢ S with Iy - qf < @ Let

Moi=max {|w;| [(w,...,w) e Wl There exists % > 0 such that
[ letesy) - g(psq)|dp < €/(3M) for all y e S with iy - ql < .
Q

By continuity of Hi, there exists X > 0 such that |Hi(q) - Dﬁ(y)|
< gf3 for all y e S with Iy - qll < %. Let «:= min {a,a}

Then for each Yy ¢ S with Iy - qil < @, and any v e N(u),
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B (vsv) = B (qsu)]

<8 (y) = T + 8] [ov,(p)glpiv)dp = [qu; (pYe(p;a)dp]

< 8ef3 + 8] [ (v () = uy(p)glpsaddp| + 8] [ov, (P)(g(psv) ~ g(psq))dp|
< 6e/3 + 8e/3 + & [ la(psy) -~ g(psa)|dp < Be < e

Therefore, Ei is continuous. 0

Lemma 4: Let {Wn} be a decreasing sequence of compact sets in

RY., Then co "W =10 coW.
n n

Proof: Clearly n Wn £ N co Wn, and since 0 ¢o Wn is convex, c¢o N Wn
< 0N co Wn' Conversely, we argue that c¢o 0 Wn 2N co Wn. Let x € N co Wn'

n N+1

Then for each n, there exist X ¢ R and (w?,...,w§+1) €

+1 n N+l .n _ _ N+l .n n
WNn such that A" > 0, zi=l P\i =1, and x = zi=l ?\i Wy
since {A"} is bounded, {(W?"°"W1t\ll+1)}f— WT+1, and W,oois
compact, we can assume W.l.o.g. that A" > A and (w?,...,wgﬂ) >

. .
(wl,...,wNﬂ),- where A > 0 and ZI;J:; 7\1 = l. Since
(WT,...,WEH) € Wﬂﬂ for each m > n, and Wn is compact,
+1 N+1

(wl""’WNH) € W: for all n. Thus (Wl""’wN+1) e [n Wn] , and

N+1 _
by continuity Zi=1 7\1 Wy = Xe Therefore x € co f Wn. a

Lemma 5: Let W < ]RN be compact, and assume IF(W) is a countable
collection. Then for every x ¢ Ext B{(W) and any £ > 0, there exist
v ¢ Ext B(W) and a ¢ RN s.t. ly-xfl < g, ¥ ¢ arg min {<cr.,w>|w ¢ B(W)}

and a4 F for all F ¢ TF(W).
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Proof:

Let F(W) = {Fk} and denote by fi the set of all vectors

perpendicular to Fk’ that is,
N
Fi = {B ¢ ﬁl] <ﬁ,f{[f2> = {0 for each £.f, ¢ Fk} .
Finally define F := U Fk' Since Fk is a subspace of iRN of

dimensfion at most N -1, Fk i1s closed and nowhere den;e for each
k. Hence, by Baire's Category Theorem, F is nowhere dense as the
countable union of nowhere dense closed sets.

A point 2z 1is an exposed point of B(W) if there exists a
hyperplane H such that {z} = H n co B(W). Take x ¢ Ext B(W) and
£ > 0. By Straszewicz's Theorem (see Theorem 18.6 in Rockafellar [18]),
there exists an exposed point z of B{(W) such that Ix - zI < ¢/2.

N

Let B ¢ R be such that {z} = F(B,B{(W)). For each « eTRN

consider the problem
P{a) min <a,w> subject to w e B(W).

Let 1B denote the unit ball. By the Maximum Theorem (see, for example,
Debreu [4]), there exists n > 0 such that for each a ¢ 8 + nB,
F(a,B(W)) < F(B,B(W)) + (&/2)B = {z} + (e/2)B. Since Fl is

nowhere dense, we can choose « ¢ {B} +nTB such that a £ F .

The set F(a,B(W)) contains an extreme point y ¢ B(W)., Therefore,

y € Ext B(W), ly - x# < lly - zl + Iz - x0# < g, and y can be supported
by a hyperplane whose normal « is not perpendicular to any

Fk € TF(W). 0
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Lemma (Analyticity of the index function £): Assume that there exists

an open set @, ¢ & such that @ ¢ Q. and g1 %y x5 +»C is

0 0

analytic in its first argument and continuous in its second. Let q ¢ §

1 A . .
and ?\i e L (Si’]R+)' Then the function § : Q) > €, defined by

z(p) := Isi A (Nglpsv,a_ddy

is analytic.

Proof: We first show that £ 1s continuous. Let p ¢ QO and N(p)

be a compact neighborhood of p in Q and define

0’
w(y) := max {g(z;v,q_;) [z ¢ N(p)}, yeS, .

By the Maximum Theorem, m : Si *+ R, 1s continuous. Since Si is

compact, m ¢ Lm(Si;]R+). Therefore, the function m : Si > R,

defined by m(y) := ki(y)m(y), Yy €8 belongs to Ll(Si;R+). By

i’
Lebesgue's dominated convergence theorem, [ 1s continuous at p.

Let 4 c @, bea triangle. Then

[ wpdp = [ [ M(elpsv,a_ddy dp = [ M(v) [ g(p;y,q_dp dy = O

BA A Si Si A

by Cauchy's theorem. Then Morera's theorem [21] implies that  1is

analytic in QO. 0
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