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Abstract

Manual drafting is rapidly being replaced by modern, computerized systems
for defining the geometry of mechanical parts and assemblies, and a new generation
of powerful systems, called Geometric (Solid) Modelling Systems (GMSs), is
entering industrial use. Solid models are beginning to play an important role
in off-line robot programming, model-driven vision, and other industrial robotic
applications.

A major deficiency of current GMSs is their lack of facilities for specifying
tolerancing information, which is essential for design analysis, process planning,
assembly planning for tightly-toleranced components, and other applications of
solid modelling. This paper proposes a mathematical theory of tolerancing-that
formalizes and generalizes current practices, and is a suitable basis for incorporating
tolerances into GMSs.

A tolerance specification in the proposed theory is a collection of geometric
constraints on an object’s surface features, which are two-dimensional subsets of
the objects’ boundary. An object is in tolerance if its surface features lie within
tolerance zones, which are regions of space constructed by offsetting (expanding or
shrinking) the object’s nominal boundaries.
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1. Introduction

The traditional medium for specifying mechanical parts and assemblies
are blueprints (engineering drawings), which contain graphical descriptions of
the nomanal or ideal parts plus tolerancing information that defines allowable
departures from the nominal objects. Tolerances are specified by designers, and
should ensure that parts “in spec” are functionally equivalent and interchangeable
in assembly. Tolerancing information is essential for planning part manufacture
and “tight” assembly operations, for part inspection, and for other design and
production activities.

Manual drafting is rapidly being replaced by modern, computerized systems
for defining the geometry of mechanical parts and assemblies, and a new generation
of powerful systems, called Geometric (Solid) Modelling Systems (GMSs), is
entering industrial use [REQUS82]. Solid models generated by Computer Aided
Design (CAD) are expected to become the primary source of geometric information
in integrated design and production systems, and solid modelling technology is
beginning to play an important role in off-line robot programming, model-driven
vision, and other industrial robotic applications.

Current GMSs lack tolerancing facilities, and therefore can neither support
fully automatic manufacturing planning nor some of the spatial reasoning required
for assembly planning. For example, analysis of manipulator and sensor
inaccuracies must be supplemented with analysis of part inaccuracies for tight-
fitting assembly tasks [BROO82|. To incorporate tolerancing information in GMSs
and use it in automatic analysis and planning, the semantics of tolerances should be
defined mathematically. General definitions, which can be “understood” by general
programs, are preferable to special-case definitions, which are difficult to imbed in
programs and lead to large amounts of possibly inconsistent code. Unfortunately,
current industrial tolerancing practices, described in standards [ANSI73] and texts
[LEVYT4], are defined informally, mainly for special situations.

The goal of this paper is to propose a theory of tolerancing that formalizes
and generalizes current practices, and is a suitable basis for incorporating tolerances
into GMSs. The theory was designed to follow established tolerancing practices as
closely as possible, but some departures seemed desirable and others unavoidable.
The paper also explores briefly the representational implications of the theory,
which are straightforward, but does not attempt to discuss its algorithmic
implications, which are presently unknown.
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2. Current Practices and Prior Work

Current industrial tolerancing practices use a mix of so-called “geometric
tolerances”, sometimes called “modern” or “true-position” tolerances, with
“conventional” {4/ —) ftolerances — see Figure 2-1 for a very simple example.
The current trend in industrial practice is toward an increased use of geometric
tolerancing.
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Figure 2-1

A simple example of current tolerancing practices.

The rectangle and circle dimensions are specified by conventional 4/ — tolerances.
The symbol block associated with the circle specifies a “frue-position” tolerance
with respect to datums A and B, which are the surfaces labelled in the drawing.

Much of modern geometric tolerancing is easy to formalize, but there are
significant gaps centered on the notions of “feature” and “size”. Conventional
tolerancing, however, appears to be inherently ambiguous. Experienced humans
usually can resolve tolerancing ambiguities by appealing to “implicit datums” and
implied geometric relationships (e.g. tangency), but it is unreasonable to expect
automata to make similar decisions.

Some of the issues that are inadequately addressed in current practices but
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should be resolved in a theory of tolerancing are the following.

— What is a feature? Features are the entities to which tolerances apply,
yet standards and texts on tolerancing provide no precise definition of
“feature”.

— What is the spatial extent of “tolerance zones”? Texts suggest, for
example, that to test a vertical hole one should (conceptually) use a gage
with height equal to the nominal hole height; however, this may result in
portions of an object’s boundary being untested.

— How does one associate datums to features more complex than simple holes
or planes?

-— What is the “size” of an actual physical feature? For example, what is
the diameter of an actual (not perfectly cylindrical) hole? Can “size” be
defined for complex features? How?

— What do 4/ — tolerances mean when features have imperfect form?

— How are MMC (Maximum Material Condition) and LMC (Least Material
Condition) defined for complex features?

Published studies of tolerancing in the context of geometric modelling are
very few. My own report [REQUT77a] addressed both conventional and geometric
tolerancing but provided no clues on how fo deal simultaneously with both.
Hillyard’s Ph.D. dissertation [HILLT8a], [HILL78b], [HILL78¢|, and Hoffman’s
work [HOFT'82] appear to be concerned exclusively with conventional tolerances
and do not address issues such as those listed above. Work on geometric constraints
and object parameterization (see e.g. [BROOS1], [FITZ81] and [LIN81]) also
appears to be relevant to tolerancing. The approach that I shall discuss below
evolved from my earlier research [REQUT77a] and is not related to any of the
other published work cited above. (A forthcoming report [REQUS83| will discuss
mathematical and computational issues raised by tolerancing and alternative
theoretical approaches.)



8. A Theory of Tolerancing

The following subsections propose a mathematical theory of tolerancing
suitable for computational implementation. Two of the main (and perhaps
surprising) tenets of the theory are the following:

— Conventional tolerances are subsumed into geometric tolerances that
contain no “implicit datums” or unstated constraints.3™!

— There is no formal nction of a “measured size”, although “size tolerances”,
MMC and similar notions are defined mathemartically.

First I shall present a rough outline of the theory, and then embark on a
detailed exposition.

3.1 OQOutline

Consider initially a solid cylinder in 3-D Euclidean space. The size of the
cylinder obviously is well defined and can be described by its radius and height.
We can also agree on an unambiguous way, and a corresponding set of parameters
(distances and angles), to define the cylinder’s position, i.e., its location and
orientation.

Consider now a family of (perfect-form) cylinders with sizes and positions close
to those of the initial cylinder. It is clear that such a family can be defined in
terms of a range of allowable values for the agreed size and positional parameters
of cylinders. This seems to be the spirit of conventional tolerancing practices and
also of the geometric modelling literature cited above. Specifically, a manufactured
solid is “in spec” if its defining parameters are within specified ranges.

Manufacturing processes, however, do not produce perfect cylinders.
Therefore, let us consider an object that results from a small but random
deformation of our initial cylinder. It should be clear that the notions of “size”
and “position” for such an object have no obvious meanings. A possible way out of
this impasse consists of defining the size and position parameters of an imperfect-
form object as the corresponding parameters of an associated perfect-form object,
generated by surface-fitting or similar techniques. This approach is sometimes
useful, e.g. for defining “datums” (see Section 3.4 below), but does not seem
applicable to most of the modern tolerancing practices.

3-1  This does not mean that human users of GMSs must specify explicitly all

constraints — good user interfaces can take care of many of these through defaults.



The approach I shall develop below does not attempt to assign well-defined
sizes or positions to imperfect-form objects. It considers an imperfect-form object
“in spec” when its boundary is within “tolerance zones”, which are defined in terms
of perfect-form objects. To flesh out the approach, one needs general mathematical
procedures for building tolerance zones around objects and for specifying how such
zones are located and oriented.

As a preface to the detailed discussion in the following subsections consider a
simple cylinder of radius F2, various tolerance specifications on it, and the associated
tolerance zones.

1)

3)

Size tolerance T,;. A surface (generally not a perfect cylinder) satisfies this
specification if it lies entirely within an annular tolerance zone defined by
two coaxial cylinders of radii R 4+ T,/2 and R — Ts/2. The location and
orientation of the tolerance zone are arbitrary, i.e., can be adjusted to
ensure (hopefully) that the surface fits in the zone.

Form tolerance Ty. The tolerance zone is an annulus defined by two
coaxial cylinders of radii £2; and R2, with B; — R2 = T, and positioned
arbitrarily. R; and R are unrelated to B. Observe that a surface that
satisfies a size tolerance T also satisfies a form tolerance Ty = T, but the
converse is not generally true.

Orientation tolerance T, with respect to a coordinate system. The
tolerance zone is similar to a form tolerance zone, but its orientation in
the specified coordinate system is fixed. (The location is arbitrary.) An
orientation tolerance implies a form tolerance, but not conversely.

Position tolerance T, with respect to a coordinate system. The tolerance
zone is the annulus defined by two coaxial cylinders of radii R + T»/2
and R — T,/2, correctly located and oriented with respect to the given
coordinate system. A position tolerance implies size, form and orientation
tolerances, but the converses generally are not true. (There are less
restrictive position tclerances — see Section 3.7.)

Observe that the tolerance zones in all of the examples above were obtained
by “offsetting” the perfect-form surface.® 2

3-2

Offsetting seems to be a very useful concept in geometric modelling. It

has found applications in cutter-path generation for machine tools, mass-property
calculation [LEES2|, and trajectory planning for robots [LOZATY].



The particular offsetting technique used in the proposed theory is described in
Section 3.5. It is general, very simple, and always produces well-defined tolerance
zones. However, much of the theory is independent of the specific offsetting
procedures used.

The following subsections elaborate and formalize the rough outline presented
above.

* %

3.2 Variational Classes and Tolerance Specifications

The goal of a tolerance specification is to define a class of objects that are
interchangeable in assembly operations and functionally equivalent. Such classes
of objects will be called in this paper variational classes [REQUTTa]. A tolerance
spectfication is an entity of a computational nature: it is a representation of a
variational class. (See [REQURO| for basic representational concepts.) I propose in
this paper tolerance specifications that consist of:

1) An unambiguous representation for a nominal solid S (an r-set [REQUTTD|
[REQUS80]).

2) A representation for a decomposition of 8S (the boundary of S) into
subsets F; called nominal surface features, that are homogeneously 2-D
[REQUTTb| and whose union is 85.

3) A collection of geometric assertions A;; about S’s nominal surface
features.

The specific schemes used to represent solids and their surface features are
unimportant for the purposes of the theory, but solids are assumed to be definable
through regularized Boolean operations and rigid motions on a finite set of
primitive half spaces, whose boundaries are called primitive sur faces [REQUTTD,
REQUR0|. Surface features and assertions must possess certain properties discussed
later in this paper. (Some 2-D subsets of 85 cannot be features.)

The semantics (geometric meaning) of a tolerance specification will be
defined by a mathematical rule — called a theoretical inspeciion procedire
— for answering the following question: Given a tolerance specification T =
(S,{F:},{A:;}) and a subset P of E® that models an actual (physical)
manufactured part, is P in the variational class defined by the specification 77

A (model of a) part P satisfies a tolerance specification T" if and only if there is
a decomposition of 8P into subsets G; called actual surface features, such that:

6
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There is a one-to-one correspondence between G; and the nominal surface
features F; of S.

3) Each G; satisfies the assertions As; associated with its corresponding F.

Observe that this definition ensures that the entire boundary of a part P is taken
into consideration, but does not prescribe a unique segmentation of P’s boundary
into actual features.

A nominal feature F' is semple if it lies in a single primitive surface. A feature
is composste if it is the union of simple features. Note that the simple features
that contribute to a composite feature need not lie in distinct primitive surfaces
(although they usually do). Actual features that correspond to simple nominal
features also are called simple, and similarly for composite features.

I shall assume that the bounding surfaces of manufactured objects satisfy a
“slow variation” constraint that ensures that a surface does not vary too rapidly (at
a scale comparable to the applicable tolerance values), and therefore does not create
“nicks” or thin “slivers” as shown in Figure 3-1. (I have not tried to formalize this
constraint; a formal definition should exclude “slivers” but consider low-amplitude
high-frequency variations acceptable.)



(a) (b)
Figure 8-1

Violations of the slow variation assumption
in a “face” (a) and at an “edge” (b)

* %

3.3 Extended and Symmetric Features

Assertions about features often establish constraints on the geometric
relationships between bounded portions of a physical object’s boundary and
unbounded surfaces, centerplanes, axes, and similar geometric entities. These
notions are formalized in this section.

First I introduce the notion of eztended feature by means of an example and
then formalize it. Consider the nominal surface feature that consists of the two
faces of the slot shown in Fizgure 3-2a. The extended feature corresponding to F
consists of the two unbounded planes shown in projection in Figure 3-2b, together
with information on “where the material is”. More precisely, the extended feature
is an unbounded solid defined as the union of the planar halfspaces shown in Figure
3-2b.

8
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Figure 38-2

A slot (a), its associated extended feature (b), and a set that
violates the defining conditions for extended features (c)
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A general definition follows. An extended feature H associated with a nominal
surface feature F' is a solid (possibly unbounded) defined as a Boolean composition
of halfspaces H; and satisfying the following conditions:

1) 8H DF.

2) H must not contain in its definition halfspaces H; that contribute 2-D
subsets to H but not to F'.

3) Define the “neighborhood of p with respect to 8" as Nip,S;R) =
B{p; R)N S, where B(p; R) is a ball of radius R centered on p, and define
similarly a neighborhood with respect to H [TILO80]. Then, for every
point p in the (2-D) interior of the feature F', and for R suificiently
small, N(p, S; R) = N{(p, H; R). (This condition says essentially that the
“material sides” of S and H must agree.)

In the example above the solid H shown in Figure 3-2¢ violates condition 2
because Hs contributes a “face” to 8H but not to F. Note, however, that an
extended feature may contain halfspaces that contribute neither to 8H nor to 7.
The halfspace Hs of Figure 3-3 provides an example.

H = (H

H H

2 Hy Hy) Hg
Igure 8-8

1

The planar halfspace Ho contributes neither to F

nor to the boundary of H, yet it cannot b= vmitted
in the Boolean composition that defines 7.

10
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It can be shown that, under mild assumptions, the halfspaces that do
contribute 2-D subsets to H — called b-components [REQUT7T7a] — are uniquely
defined (up to complementation) by the feature F' [SILV82]. Halfspaces that are
not b-components are not unique but this causes no problems.

Observe that certain 2-D subsets of a solid’s boundary cannot be associated
with an extended feature. The union of the cylindrical surfaces of the boss and hole
shown in Figure 3-4 provides an example. Nominal surface features are required to
be homogeneously 2-D and to have associated extended features, and F in Figure
3-4 therefore is not an acceptable feature.

F

A

Figure 8-4

Two cylindrical surfaces that have no corresponding
extended feature and therefore are not a nominal surface feature.

Extended features that exhibit symmetry are especially interesting because
they can be used to establish “datums”, as explained below, and because they
may have identifiable “centerplanes”, “centerlines”, or “centers” which can be
constrained by assertions.

For simplicity, the definitions below apply to symmetry about the principal
planes, axes and origin of a master coordinate system, but generalizations are
obvious. An extended feature H is symmetric with respect to the zy plane if i$ is
invariant under the reflection 2 — —z; the plane zy is then called a centerplane
for H (and also for its associated nominal surface feature F). H is symmetric
with respect to the z axis if it is invariant under the transformation z - —z,y —
—y; the 2z axis is the feature's centerliine or azis. Finally, H is symmetric with
respect to the origin O — called the feature’s center — if it is invariant under the
transformation £ — —z,y — —Yy, 2 — —2.

L1



Figure 3-5 shows centerplanes and centerlines for two features. Observe that
the features shown in the figure also have an infinite number of centerplanes parallel

////,CENTERLINE
AR N
N J )
™

CENTERPLANES CENTERPLANE

(a) (b)
Figure 3-5

Two symmetric features (shown in 2-D projection).

xperienced humans can infer from blueprints which axes or centerplanes are
relevant to a tolerance specification, but in computerized systems it may be more
reasonable to require that the axis or centerplanes be specified explicitly, through
statements similar to: “The centerplane of feature F' that passes through point O
and is normal to vector V”.

For symmetric features one can define the concepts of measured azes (or
centerplanes, or centers) by formalizing the current practice of using expanding
mandrels to determine hole centers. Specifically, let us consider an actual subset
G of a part’s boundary and its corresponding surface feature ¥, extended feature
H and its centerplane Cp, which we assume to be the zy plane. The measured
centerplane of G corresponding to Cp is defined as follows. Consider a family of
solids Hy such that each Hy is obtained from H by a 1-D scaling transformation
Tz — 2,y — y,2 — k2.%3 We seek a solid Hr with minimal & and such that a
congruent version H), of Hy encloses completely G. The measured centerplane of
G is then the appropriate centerplane of H.. Figure 3-8 illustrates the concent for
a slot. Observe that the location and orientation of i}, are selected to minimize
k.

33 Scaling transformations are the only reasonable formalization I have been
able to find for capturing the notion of an “expanding feature”. Because the effects
of scaling depend on the choice of origin or axes I required features to be symmetric
so as to have “natural” origins and axes. A general theory for non-symmetric
features could be constructed by specifying explicit origins and axes.

12
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Figure 3-6

The measured centerplane for an actual slot feature.

Centerlines are defined similarly, by using 2-D scalings of the form z —
kz,y — ky,z — 2z, where the axis is assumed to be the 2-axis. For centers we
use 3-D scalings z — kz,y — ky,z — kz, where the center is assumed to be the
origin.

Readers should convince themselves that the above definitions capture
mathematically current procedures for such simple features as holes and slots, and
apply to any symmetric feature, no matter how complex.

Features that lie in a single planar surface {(henceforth called simply “planar
features”) are not symmetric in the sense defined above. For such features I
introduce the notion of a measured plane, which is analogous to a measured
centerplane for a symmetric feature. Specifically, the measured plane associated
with an actual planar feature G is 0H where H is a planar halfspace that encloses

13
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G completely and whose boundary is “closest” to G in some appropriate sense. In
current practice 8H is selected so as to “just rest” on or “be tangent” to &, and
sometimes points or lines where the actual feature should contact an ideal plane
are specified explicitly. A more precise requirement might be that the (integral)
sum of the distances of all points of G to 8H be minimal. Figure 3-7 shows two
examples.

8,

dH;

Figure 8-7

Two planar features G; and Ge, and
associated measured planes H; and dH-.

Finally, it should be noted that measured entities (planes, centerlines, and
so on) sometimes are not uniquely defined. When there is ambiguity a tolerance
specification will always be interpreted to mean that there is (at least one) measured
entity for which the appropriate assertions are satisfied. With this understanding,
for simplicity of language I shall refer to “the measured entity” in the sequel as if
it were unique.

14
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3.4 Datum Systems

The notions of datum and datum systems are well described in current
standards and texts [ANSI73|. In the context of this paper a datum is a measured
axis, centerplane, or center associated with a symmetric feature, or a measured
plane associated with a planar feature.

The location and orientation (attitude) of features is controlled by assertions
involving the geometric relationships of a feature to a datum or system of datums.
The semantics of such assertions is straightforward. Suppose, for example, that a
datum D; is associated with a feature F,, and another feature F5 is related to D,
via an assertion. Given actual features G, and G2 corresponding to F; and F, one
constructs from G; the measured centerplane (or axis, .. .) as explained in Section
3.2 and uses it as a datum to check whether G2 satifies the assertion.

Ordered datum systems can be accommodated by modifying slightly the
“measuring procedure” of Section 3.2. Consider the example of Figure 3-8. The
measured plane corresponding to G; — the primary datum — is constructed as
in Section 3.2, and the secondary datum corresponding to G2 is constructed by a
similar procedure but is constrained to be normal to the first.

SECONDARY
DATUM

PRIMARY
DATUM

Figure 3-8

An ordered datum system.

The discussion above pertains to so-called “RFS datums”. (RFS stands for
15



“regardless of feature size” [ANSIT3].) “Floating datums” (MMC) are also useful
and can be accommodated essentially as explained in the standards [ANSIT3].

The proposed theory departs from current practice in that it requires that
each part have an explicitly defined “master” 3-plane datum system, and that
all features be located from the master datum system or from explicitly specified
datum systems related to the master. For example, one can locate a feature with
respect to the master datum system, use this feature to construct a new datum,
use the new datum to locate another feature, and so on. Therefore, what I propose
is something akin to a tree of datum systems, rooted at the master datum system.
(The datum graph is not really a tree because there are datums that are not part
of complete datum systems, and so forth.)

* %

3.5 Offset Solids, Size Tolerances, MMC and LMC

This section contains the major departures of the proposed theory from
current practices. In essence, I reject the notion of a “measured size” and provide
instead mathematical rules for deciding whether a feature satisfies a “size folerance
specification”. The rules are based on notions of Maximum Material Condition
(MMC) and Least Material Condition (LMC).

A few definitions are needed. First recall that the distance of a point p of E°
to a subset S of E® is [NADLTS]

Dist(p, S) = min Dist(p, q) ,
qeE S

where Dist(p, g) is the ordinary point distance in £3.3"* QObserve that the definition
above implies that all points of S are at zero distance from S, and that when S is
a solid (r-set) the distance between an external point and the solid is the same as
the distance between the point and the boundary of the solid, i.e.,

Dist(p, S) > 0 = Dist(p, S) = Dist(p, 8S) .

Now let D be a positive number and S a solid, and define the corresponding
(positive) single-of fset soltd O(D; S) as

O(D; 8) = {p : Dist(p,S) < D} .>®

3=4 1f S is not sufficiently smooth one must replace the minimum in the above

definition by the infimum, or greatest lower bound.
35 Positive single-offset solids are sometimes called “generalized balls” in

the mathematical literature [NADLT] and are closely related to Minkowski sums,
which are used for example in geometric probability theory.

16



For a negative offset I a (negative) single-offset solid is defined as
0(D; S) = §—*0(|D|:¢"S),

where —* and ¢* denote regularized difference and complement. (Regularized set
operators are slightly modified versions of their usual counterparts [REQUTTD,
REQUR0].) Given a nominal feature F, its associated extended feature H, and
two numbers Dy, > 0 and D, < 0 called the “positive and negative offsets”, the
MMC and LMC solids are defined as the appropriate offset solids, viz.,

MMC (D,; H) = O(D,; H)
LMC (Dy; H) = O(Dy; H) .

Figure 3-9 provides a simple example. For a cylindrical hole feature of nominal
radius 8, positive offset .1 and negative offset —.1, the corresponding MMC and
LMC solids are unbounded cylindrical halfspaces of radius 7.9 and 8.1, respectively.
Intuitively, the MMC solid is the result of adding to the extended feature H a layer
of material of thickness D, and the LMC solid is the result of subtracting from H
a layer of thickness |Dn|.

5 gl
o

MMC(.1;H)

R = -9 l
LMC(-.1;H) '

R =8.1

Figure 3-9

A cylindrical hole and its associated MMC and LMC solids.

More generally, a multiple-offset solid can be defined as follows. Consider
N nominal simple features F;, with corresponding extended features H;, and such

17
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that 7' = U F; is a composite feature, with a corresponding extended feature H.
Denote by E; the homogeneously 2-D subset of 3H; that also is a subset of 8.H.
(Intuitively, E; is the contribution of F; to the boundary of H.) Associate with
each F; a positive number D;. The corresponding (positive) multiple-offset solid is

O(D1,Ds,...;H) =U{p :p € cH and Dist(p, E;) < D;}UH .
1

Intuitively, the multiple-offset solid is the result of adding to H a layer of variable
thickness; the thickness of the layer adjacent to feature F; is D;. When all the D;
are negative a (negative) multiple-offset solid is defined per

*

O(.D1,D2,. . .;H) = H-—-*O(lDll, ‘Dzl, vin g e H) ,

which is a direct generalization of the earlier definition. Multiple-offset solids can be
used to define multiple-offset MMC and LMC solids by considering vectors (arrays)
of positive and negative offsets associated with features and interpreting D, and
D,, as vectors in the definitions of MMC and LMC given above. Figure 3-10a is
a graphical multiple-offset specification for a simple solid, and Figures 3-10b and
3-10c show the corresponding MMC and LMC solids.

Armed with precise notions of MMC and LMC we can now define size
tolerances. Let G be an actual feature with corresponding nominal feature # and
estended feature H. G satifies a size tolerance with single offsets Dy, D5, if and
only if there is a congruent instance H' = R(H), where R is a rigid motion, such
that

G C MMC(Dy; H')—* LMC(Dn; H') .

In essence, G must be within the “tolerance zone” that lies between an MMC and
an LMC solid. The location and orientation of this tolerance zone are unspecified
and can be selected so as to (hopefully) force G to fit in it. When Dy = —D,, =
T:/2, one says simply “a size tolerance Tg".

When D, and D, are vector (multiple) offsets, G satisfies the size tolerance if
it lies in the composite tolerance zone delimited by the MMC and LMC solids, as in
the single-offset definition above, and each individual simple G; satisfies the single
size tolerance that corresponds to F;. Figure 3-10d shows the composite tolerance
zone that corresponds to the specification of Figure 3-10a, and also the individual
tolerance zone that corresponds to the top face of the feature.

18
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Figure 8-10

A multiple-offset size specification (a),
its associated MMC (b) and LMC (c) objects, and tolerance zone (d).



The definitions above apply to any feature and therefore are extremely
general. They largely agree with current practice for simple features such as
cylindrical holes, but depart from current practice for more complex features,
as in Figure 3-10d. Whether such departures are practically important remains
to be seen. Note, however, that undesirable behavior such as that of surface X
in Figure 3-10d cannot occur, because X cannot be segmented so as to satisfy
simultaneously the individual size tolerances of the features and the slow variation
constraint discussed in Section 3.2.

I chose to abandon in the definitions above the so-called “Taylor principle”
of current practice because I was unable to generalize it to arbitrary features. My
definition is somewhat more restrictive than current practices, which define lower
size limits by means of a 2-D tolerance zone that can “float” within an MMC solid.

It is worth remarking that size tolerances, as defined above, are applicable
also to planar features. For such features, size tolerance specification is essentially
what is called “flatness” in current practice.

* %

3.8 Form, Orientation, and Runout Tolerances

I propose to replace various special-case tolerances used in current practice
(e.g., cylindricity, flatness) with a single form tolerance that applies to all features.
[n essence, an actual feature 3 satisfies a surface form tolerance specification with
tolerance value T if it lies in a tolerance zone of “width” Ty and arbitrary “size”
and orientation. A precise definition follows. Let H be the extended feature that
corresponds to G. Then, G satisfies a form tolerance with value Ty if there is a
congruent instance H' of H and two numbers D21 and D2 such that

G C O(D1; H')—*O(Dy; HY)
DI > D2 ’
D, —D 7Ty

For example, a cylindrical hole feature G satisfies a form tolerance specification
(called “cylindricity” in current practice) if G lies in a cylindrical annulus defined
by two coaxial cylinders; the radii of the two cylinders are unspecified and need
not equal the nominal, MMC or LMC radii, but they must differ by the specified
form tolerance value.

Surface orientation ftolerances are similar to surface form tolerances, but
require datum specifications and imply tolerance zones correctly oriented with
respect to the datums. Similarly, surface (or total) runout tolerances require datum
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specifications and imply tolerance zones correctly located and oriented with respect
to the datums. (Note that this definition of runout applies also to features that
are not rotationally symmetric.)

The form and orientation tolerances described above apply to a surface as a
whole. There are also similar tolerances — called curve tolerances in this paper —
that apply to curves lying on surfaces. Curve tolerances imply 2-D tolerance zones
as explained below.

Consider an actual surface feature G, its corresponding nominal and extended
features F' and H, and suppose that G is constrained via a curve form tolerance
with value 7, with respect to a (nominal) plane normal to a vector V. Construct
instances F/ = R(F)and V! = R(V), where R is a rigid motion, and the family of
all planes P; normal to V’. For each plane P; consider the intersection of P; with
two offset solids that “differ by 7.” (as in the definition of surface form tolerances);
this intersection defines a 2-1D zone Z; “of width T.”. (Note that the various Z;
need not be congruent.) Now apply a rigid motion R; in the plane P; to generate a
tolerance zone Z; = R(Z;). G is “in spec” if and only if it is possible to perform the
construction just described in such a way that the Z% zones include the intersections
G N F;, for all planes P;. Figure 3-11 shows an example, which corresponds to what
is called “roundness” in current practice: a cylindrical feature and an associated
curve form tolerance with respect to the cylinder’s axial direction. Observe in the
figure that the 2-D annular tolerance zones Z% need neither be coaxial nor have the

same radii; however, the two radii of each annulus must differ by the same amount
i

Curve form tolerances with respect to points and lines are defined similarly.
They differ from the previous definition only in the method for constructing the
planes P;. For a curve tolerance with respect to a point, the P; are all the planes
that contain the point, and for a tolerance with respect to a line, the P; are all the
planes that contain the line.

The curve form tolerances just described are analogous to the form tolerances
introduced at the beginning of this section, because the location and orientation of
tolerance zones are not constrained by datum relationships. One could define curve
tolerances with constrained orientation, but they don’t seem to have a counterpart
in current practices. If both the location and the orientation are fixed with respect
to a datum system one obtains generalizations of currently-used tolerances. Ior
example, a curve tolerance with respect to a plane and with datum specification
— called in this paper a curve runout tolerance with respect to a plane — is a
generalization of a so-called “circular runout” tolerance.
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Curve tolerances for a cylindrical feature (roundness
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3.7 Position Tolerances

An unqualified position tolerance with value Tp > 0 and relative tc a datum
system defines a tolerance zome of width T, about a nominal feature. More
precisely, an actual feature G corresponding to a nominal feature F' and extended
feature H satisfies an unqualified position tolerance T} if

G C O(Tp/2; H)—O(—T,/2; H'),

where H’ is a congruent instance of H that is positioned correctly, i.e., whose
location and orientation relative to the datum system are precisely the same as
those of H relative to the nominal features that define the datum system. Observe
that if G satisfies a position tolerance T, then it also satisfies a size tolerance
with positive and negative offsets Tp/2 and —Tp/2, a form tolerance Tp, and an
orientation tolerance Tp. Unqualified position tolerances are quite strict and do not
reflect certain part mating relationships that are important in practice. The two
types of qualified position tolerances described below also are necessary.

Given an actual feature G corresponding to a nominal feature F with size
tolerances characterized by offsets Dy, and Dy, an MMC position tolerance T,
(with T, > 0) relative to some datum system has the following meaning. First
construct an instance H’ of the extended feature H at the appropriate location
and orientation relative to the datum system. G satifies its position constraints if
G C O(Tp + Dp; H'). When D, is a vector of offsets, T, should also be a vector,
usually with all components equal to a single positive number.

RF'S position tolerances have different semantics. They can be applied only
to planar or symmetric features (i.e., features that can be associated with datums)
and define constraints on the measured entities of the features (see Section 3.3).

Specifically, an RFS position tolerance is an assertion on a planar or
symmetric feature that defines a solid tolerance zone within which a measured
entity of the feature must lie. The tolerance specification consists of a tolerance
value together with the “name” of the entity to which it applies and two “bounding
planes”. Consider, for example, a feature symmetric about the z-axis. A tolerance
specification consisting of (Axis = 2z, Value = .1, Zmaez = 3, Zmin = 0) defines a
cylindrical tolerance zone as shown in Figure 3-12.

An actual feature G will satisfy this specification if and only if its measured
azis L {see Section 3.2) satisfies

LN(Praz M Pmin) C Tolerance Zone ,

where Prqz and Ppin are the planar halfspaces whose intersection defines the
“slab” of interest.
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An RF'S tolerance zone for an axis

RF'S tolerances that apply to planes and centers are defined similarly, and
correspond to cuboid and spherical tolerance zones, respectively.>"® (Specifications
for spherical tolerance zones do not include bounding-plane data.)

Current ANSI standards state that position tolerances are not applicable to
planar features, but I see no reason for doing so.

56 [ find the semantics of RF'S position tolerances discussed above somewhat

unpleasant because it involves bounded tolerance zones, instead of {generalily)
unbounded zones defined by offset solids. Unfortunately, I have not been able
to provide a reasonable counterpart for current RF'S practices via offset solids.
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3.8 Validity of Tolerance Specifications

A tolerance specification is valid if it defines an “acceptable” variational
class. Unfortunately, a formal characterization of what constitutes an “acceptable”
variational class is unknown, and therefore the validity of tolerance specifications
is largely an open problem.® 7

The remainder of this section presents some informal thoughts on validity
but does not attempt to settle the issues. Two validity conditions seem clear:
the nominal representation must itself be valid and the union of all the nominal
features must equal the nominal object’s boundary. But what assertions must be
required for validity? Can single assertions be unsatisfiable? Can collections of
assertions have “contradictions” and therefor: be unsatisfiable?

Observe that the theory prescribes tolerance zones that are always well
defined, and are also “thick enough” to contain a nominal surface feature as well
as an infinite family of features “close” to the mominal. This implies that single
assertions are always satisfiable, provided that some relatively trivial conditions
are met. (For example, daturn specifications must be valid, and symmetric-feature
tolerances must not be applied to asymmetric features.) Observe also that it is
impossible to construct contradictory assertions. Suppose, for example, that a
feature has both a size tolerance T; and a form tolerance Ty. If Ty > T then the
form constraint is redundant (and can be ignored) because it is implied by the size
tolerance; but if Ty < T, then both tolerances apply independently. In either case
there is no contradiction.® 3

The conclusions are that an object cannot be overconstrained and (with minor
qualifications, as noted above) any collection of assertions is satisfiable. But can an
object be underconstrained? The answer clearly is yes. Conditions to ensure that
constraints are “enough” are unknown. Intuitively, conditions should ensure that
each feature lies in a tolerance zone of finite “thickness” and restricted position with
respect to some datum system that is related to the object’s master datum system.
The important tolerances for specification validity appear to be size and position
tolerances; others are optional but not needed for validity. My current conjecture is
that a specification is valid if each feature’s constraints imply a strict (unqualified)
position tolerance with some finite, non-null tolerance value (see Section 3.7).

* k %

37 A conjecture: variational classes are regular closed sets in a hyperspace
[NADLT78| whose elements are r-sets [REQUS0].

%% When a nominal object is defined via geometric constraints (e.g., by
requiring that certain distances or angles have given values) the situation is quite
different, and it is easy to construct constraint sets that are unsatisfiable [REQUS83|.
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4. Conclusions

Current tolerancing standards and practices must be tightened (formalized)
considerably if we are to represent tolerancing information in computer-based
geometric modelling systems in a form suitable for automatic tolerance analysis,
automatic planning of manufacturing, assembly and inspection operations, and for
other design and production activities.

The theory outlined in this paper is a step toward such formalization. The
theory almost surely needs refinement, may require substantial modifications, and
may even prove totally inadequate. However, it illustrates the level of precision
required, and it shows that one can construct a reasonable theory of tolerancing
that is based on a few general concepts rather than on an extensive set of special-
case considerations. The theory occasionally departs from current practices, but
such departures may be unimportant.

The theory states that an object satisfies a tolerance specification if the
object’s bounding surfaces are within suitably defined regions of space called
tolerance zones. T'wo types of tolerance zones are used:

1) Bounded tolerance zones are cylinders, parallelipipeds, or spheres within
which axes, centerplanes, or centers of symmetric features must lie. These
tolerance zones are used for RF'S positioning.

2) General, usually unbounded tolerance zones are constructed via offset
solids, and are used for all tolerancing except RF'S positioning. General
tolerance zones may include datum specifications. The distinctions between
size, position and form-related tolerances lie in the specific rules for
constructing the zones. (For example, is the location and orientation of
a zone fixed, or can it “float”?)

Offset solids are defined in the theory in a specific and very general way,
but much of the theory is applicable with any reasonable concept of offsetting.
Parameterized CSG (Constructive Solid Geometry} or boundary representations
[REQURO0] presumably could provide alternative offsetting methods, but neither has
been thoroughly investigated and both seem to raise delicate problems [REQUS3].

Conventional +/ — tolerances are not supported directly; they must be
replaced with functionally equivalent (or nearly so) constraints expressible in the
theory. Usually, conventional tolerances can be replaced either by size tolerances
or by position tolerances with explicit, rather than implied, datums.

Computational implementation of representation schemes based on the theory
is relatively straightforward. In essence one need only provide in a GMS facilities
for (1) defining and “naming” nominal surface features and associated enfities (e.g.
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axes), (2) establishing relations between them, and (3) assigning attributes to them.
(Offsetting semantics different from those described in Section 3.6 may pose quite

different representational requirements.)

An experimental software system for representing tolerancing ( “variational”)
information is currently being implemented in the PADL-2 CSG-based geometric
modeller at the University of Rochester [BROWS2]. This subsystem is designed
to support the tolerancing semantics described in this paper but provides “escape
mechanisms” for user-defined semantics because it is unreasonable to expect a rapid
change of tolerancing practices.

Two major questions must be addressed by future research:

— Does the theory satisfy adequately industrial requirements? (One should
resist the temptation of “enriching” the theory to cater to special cases
unless a critical analysis of industrial requirements shows that such cases
are truly important.)

— Is the theory effective for applications such as tolerance analysis,
and manufacturing and assembly planning, i.e., are such apnlications
mathematically and computationally tractable in terms of the theory?
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